
The Java Language:
A White Paper Overview

Harry H. Porter III
Portland State University

May 5, 2002

harry@cs.pdx.edu



The Java Language Harry H. Porter III

Table of Contents

Abstract............................................................................................................................................4
Introduction......................................................................................................................................4
Charater Set.....................................................................................................................................4
Comments........................................................................................................................................5
Identifiers.........................................................................................................................................5
Reserved Words (Keywords)...........................................................................................................6
Primitive Data Types.......................................................................................................................6
Boolean............................................................................................................................................7
Integers............................................................................................................................................8
Floating-Point..................................................................................................................................8
Numerical Operations......................................................................................................................9
Character and String Literals...........................................................................................................9
Implicit Type Conversion and Explicit Casting............................................................................10
Pointers are Strongly-Typed..........................................................................................................12
Assignment and Equality Operators..............................................................................................14
Instanceof.......................................................................................................................................15
Pointers in Java (References).........................................................................................................15
Operator Syntax.............................................................................................................................16
Expressions as Statements.............................................................................................................18
Flow of Control Statements...........................................................................................................19
Arrays............................................................................................................................................21
Strings............................................................................................................................................23
Classes...........................................................................................................................................25
Object Creation..............................................................................................................................27
Interfaces........................................................................................................................................28
Declarations...................................................................................................................................30
Types: Basic Types, Classes, and Interfaces.................................................................................32
More on Interfaces.........................................................................................................................33
Garbage Collection........................................................................................................................34
Object Deletion and Finalize.........................................................................................................35
Accessing Fields............................................................................................................................35
Subclasses......................................................................................................................................36
Access Control / Member Visibility..............................................................................................37
Sending Messages..........................................................................................................................40
Arguments are Passed by Value....................................................................................................42
“this” and “super”..........................................................................................................................43
Invoking Static Methods................................................................................................................44
Method Overloading......................................................................................................................45
Method Overriding........................................................................................................................46

Date Printed: 1/15/23 Page 2



The Java Language Harry H. Porter III

Overriding Fields in Subclasses.....................................................................................................47
Final Methods and Final Classes...................................................................................................48
Anonymous Classes.......................................................................................................................49
The “main” Method.......................................................................................................................50
Methods in Class “Object”............................................................................................................51
Variables of Type Object...............................................................................................................52
Casting Object References.............................................................................................................52
The “null” Pointer..........................................................................................................................53
“Static Final” Constants.................................................................................................................53
Abstract Methods and Classes.......................................................................................................54
Throwing Exceptions.....................................................................................................................56
Contracts and Exceptions..............................................................................................................62
Initialization Blocks.......................................................................................................................65
Static initialization blocks..............................................................................................................66
Wrapper Classes............................................................................................................................67
Packages........................................................................................................................................68
Threads..........................................................................................................................................70
Locking Objects and Classes.........................................................................................................71
Strict Floating-Point Evaluations...................................................................................................73
Online Web Resources..................................................................................................................73
Please email any corrections to the author at:...............................................................................74

Date Printed: 1/15/23 Page 3



The Java Language Harry H. Porter III

Abstract  

This document provides a quick, yet fairly complete overview of the Java language. It does not
discuss the principles behind object-oriented programming or how to create good Java programs;
instead it focuses only on describing the language.

Introduction  

Java is a programming language developed by Sun Microsystems. It is spreading quickly due to
a number of good decisions in its design. Java grew out of several languages and can be viewed
as a “cleaning up” of C and C++. The syntax of Java is similar to C/C++ syntax.

Charater Set  

Almost all computer systems and languages use the ASCII character encoding. The ASCII code
represents each character using 8 bits (that is, one byte) and there are 256 different characters
available. Several of these are “control characters.”

Java, however, uses 16 bits (that is, 2 bytes) for each character and uses an encoding called
Unicode.  The first  256 characters  in  the Unicode character  set  correspond to  the  traditional
ASCII character set, but the Unicode character set also includes many unusual characters and
symbols from several different languages.

Typically,  a new Java program is  written and placed in a standard ASCII file.  Each byte is
converted into the corresponding Unicode character by the Java compiler as it is read in. When
an executing Java program reads (or writes) character data, the characters are translated from (or
to)  ASCII.  Unless  you  specifically  use  Unicode  characters,  this  difference  with  traditional
languages should be transparent.

To specify a Unicode character, use the escape sequence \uXXXX where each X is a hex digit.
(You may use either uppercase A-F or lowercase a-f.)

Non-ASCII Unicode characters may appear in character strings or in identifiers, although this is
probably not a good idea. It may introduce portability problems with operating systems that do
not support Unicode fonts. The Unicode characters are categorized into classes such as “letters,”
“digits,” and so forth.

Comments  

There are three styles of comments.

// This is a comment
/* This is a comment */
/** This is a comment */

Date Printed: 1/15/23 Page 4



The Java Language Harry H. Porter III

The first and second styles are the same as in C++. The first style goes through the end of the
line, while the second and third styles may span several lines.

The second and third styles do not nest. In other words, attempting to comment out large sections
of code will not work, since the comment will be ended prematurely by the inner comment:
 

/* Ignore this code...
   i = 3;
   j = 4;   /* This is a comment */
   k = 5;
*/

The third comment style is used in conjunction with the JavaDoc tool and is called a JavaDoc
comment. The JavaDoc tool scans the Java source file and produces a documentation summary
in  HTML  format.  JavaDoc  comments  contain  embedded  formatting  information,  which  is
interpreted by the JavaDoc tool.  Each JavaDoc comment must appear directly  before a class
declaration, a class member, or a constructor. The comment is interpreted to apply to the item
following it.

We do not discuss JavaDoc comments any further in this paper, except to say that they are not
free-form text  like  other  comments.  Instead,  they  are  written  in  a  structured  form that  the
JavaDoc tool understands.

Identifiers  

An identifier is a sequence of letters and digits and must start with a letter. The definition of
letters and digits for the Unicode character set is extended to include letters and digits from other
alphabets. For the purposes of the definition of identifiers, “letters” also includes the dollar ($)
and underscore (_) characters. Identifiers may be any length.

A number of identifiers are reserved as keywords, and may not be used as identifiers (see the
section on Reserved Words).

Reserved Words (Keywords)  

Here are the keywords. Those marked *** are unused.

abstract default if private this
boolean do implements protected throw
break double import public throws
byte else instanceof return transient
case extends int short try
catch final interface static void
char finally long strictfp volatile
class float native super while
const *** for new switch
continue goto *** package synchronized

In this document, keywords will be underlined, like this.

Date Printed: 1/15/23 Page 5



The Java Language Harry H. Porter III

The following identifiers are not keywords. Technically, they are literals. 

null
true
false

Primitive Data Types  

The following are the basic types:

boolean
char 16-bit Unicode character
byte 8-bit integer
short 16-bit integer
int 32-bit integer
long 64-bit integer
float 32-bit floating point
double 64-bit floating point

All  integers  are  represented  in  two’s  complement.  All  integer  values  are  therefore  signed.
Floating point numbers are represented using the IEEE 754-1985 floating point standard. All
char values are distinct from  int values, but characters and integers can be cast back and
forth.

(Note that the basic type names begin with lowercase letters; there are similar class names for
“wrapper classes.”)

Useful constants include:

Byte.MIN_VALUE
Byte.MAX_VALUE

Short.MIN_VALUE
Short.MAX_VALUE

Integer.MIN_VALUE
Integer.MAX_VALUE

Long.MIN_VALUE
Long.MAX_VALUE

Float.MIN_VALUE
Float.MAX_VALUE
Float.Nan
Float.NEGATIVE_INFINITY
Float.POSITIVE_INFINITY

Double.MIN_VALUE
Double.MAX_VALUE
Double.Nan
Double.NEGATIVE_INFINITY

Date Printed: 1/15/23 Page 6



The Java Language Harry H. Porter III

Double.POSITIVE_INFINITY

Boolean  

There are two literals of type boolean: true and false. The following operators operate on
boolean values:

! Logical negation
==  != Equal, not-equal
&  |  ^ Logical “and,” “or,” and “exclusive-or” (both operands evaluated)
&&  || Logical “and” and “or” (short-circuit evaluation)
?: Ternary conditional operator
= Assignment
&=  |=  ^= The operation, followed by assignment

The assignment operator “=” can be applied to many types and is listed here since it can be used
for boolean values. The type of the result of the ternary conditional operator “?:” is the more
general of the types of its  second and third operands. All  the rest of these operators yield a
boolean result.

Integers  

Integer literals may be specified in several ways:

123 Decimal notation
0x7b Hexadecimal notation
0X7B Hexadecimal notation (case is insignificant)
0173 Leading zero indicates octal notation

There are four integer data types:

byte 8-bits
short 16-bits
int 32-bits
long 64-bits

Literal constants are assumed to be of type int; an integer literal may be suffixed with “L” to
indicate a long value, for example 123L. (You may also use lowercase “l”, but don’t since it
looks like the digit “1.”)

Floating-Point  

Floating-point literals may be written in several ways:

34.
3.4e1
.34E2

Date Printed: 1/15/23 Page 7



The Java Language Harry H. Porter III

There are two floating-point types:

float 32-bits
double 64-bits

By default, floating-point literals are of type double, unless followed by a trailing “F” or “f”
to indicate a 32-bit value. You may also put a trailing “D” or “d” after a floating-point literal to
indicate that it is of type double.

12.34f
12.34F
12.34d
12.34D

There  is  a  positive  zero  (0.0 or  +0.0)  and  a  negative  zero  (-0.0).  The  two  zeros  are
considered equal by the == operator, but can produce different results in some calculations.

Numerical Operations  

Here are the operations for numeric values: 

expr++  expr-- Post-increment, post-decrement
++expr  --expr Pre-increment, pre-decrement
-expr  +expr Unary negation, unary positive
+  -  * Addition, subtraction, multiplication
/ Division
% Remainder
<<  >>  >>> Shift-left, shift-right-arithmetic, shift-right-logical
<  >  <=  >= Relational
==  != Equal, not-equal
= Simple assignment
+= -+ *= /= %=
    <<= >>= >>>= The operation, followed by assignment

The << operator shifts bits left, filling with zeros on the right. The >> operator shifts right, with
sign extension on the left. The >>> operator shifts right, filling with zeros on the left.

Character and String Literals  

Character literals use single quotes. For example:

'a'
'\n'

The following escape sequences may be used in both character and string literals:

Date Printed: 1/15/23 Page 8



The Java Language Harry H. Porter III

\n newline
\t tab
\b backspace
\r return
\f form-feed
\\
\'
\"
\DDD octal specification of a character (\000 through \377 only)
\uXXXX hexadecimal specification of a Unicode character

String constants may not span multiple lines. In other words, string literals may not contain the
newline character directly. If you want a string literal with a newline character in it, you must use
the \n escape sequence.

Implicit Type Conversion and Explicit Casting  

A type conversion occurs when a value of one type is copied to a variable with a different type.
In certain cases, the programmer does not need to say anything special; this is called an “implicit
type conversion” and the data is transformed from one representation to another without fanfare
or warning. In other cases, the programmer must say something special or else the compiler will
complain that the two types in an assignment are incompatible; this is called an “explicit cast”
and the syntax of “C” is used:

x = (int) y;

Implicit Type Conversions  The general rule is that no explicit cast is needed when going from
a type with a smaller range to a type with a larger range. Thus, no explicit cast is needed in the
following cases:

char  short
byte  short
short  int
int  long
long  float
float  double

When an integer value is converted to larger size representation, the value is sign-extended to the
larger size.

Note that an implicit conversion from long to  float will involve a loss of precision in the
least significant bits.

All integer arithmetic (for byte, char, and short values) is done in 32-bits.

Consider the following code:

Date Printed: 1/15/23 Page 9



The Java Language Harry H. Porter III

byte x, y, z;
...
x = y + z;        // Will not compile

In this example, “y” and “z” are first converted to 32-bit quantities and then added. The result
will be a 32-bit value. A cast must be used to copy the result to “x”:

x = (byte) (y + z);

It may be the case that the result of the addition is to large to be represented in 8 bits; in such a
case, the value copied into x will be mathematically incorrect. For example, the following code
will move the value -2 into “x.”

y=127;
z=127;
x = (byte) (y + z);

The next example will cause an overflow during the addition operation itself, since the result is
not representable in 32 bits. No indication of the overflow will be signaled; instead this code will
quietly set “x” to -2.

int x, y, z;
y=2147483647;
z=2147483647;
x = y + z;

When  one  operand  of  the  “+”  operator  is  a  String and  the  other  is  not,  the  String
concatenation  method  will  be  invoked,  not  the  addition  operator.  In  this  case,  an  implicit
conversion will be inserted automatically for the non-string operand, by applying the toString
method to it first.  This is the only case where method invocations are silently inserted. This
makes the printing of non-string values convenient, as in the following example:

int i = ...;
System.out.println ("The value is " + i);

This would be interpreted as if the following had been written:

System.out.println ("The value is " + i.toString() );

Explicit Casts  When there is a possible loss of data, you must cast. For example:

anInt = (int) aLong;

A boolean cannot be cast to a numeric value, or vice-versa.

When floating-point values are cast into integer values, they are rounded toward zero. When
integer types are cast into a smaller representation (as in the above example of casting), they are
shortened by chopping off the most significant bits, which may change value and even the sign.
(However, such a mutation of the value will never occur if the original value is within the range

Date Printed: 1/15/23 Page 10



The Java Language Harry H. Porter III

of the newer, smaller integer type.) When characters are cast to numeric values, either the most
significant bits are chopped off, or they are filled with zeros.

Pointers are Strongly-Typed  

In the following examples in this document, we will assume that the programmer has defined a
class called “Person.”

Consider the following variable declaration:

Person p;

This means that variable p will either be null or will point to an object that is an instance of
class Person or one of its subclasses. This is a key invariant of the Java type system; whatever
happens at runtime, p will always either (1) be null, (2) point to an instance of Person, or (3)
point to an instance of one of Person’s subclasses.

We say that p is a “Person reference.”  Assume that class Person has two subclasses called
Student and  Employee. Variable  p may point to an instance of  Student, or  p may also
point to an instance of some other subclass of  Person, such as  Employee, which is not a
Student.

Java has strong, static type checking. The compiler will assure that variable p never violates this
invariant. In languages like C++, the programmer can force p to point to something that is not a
Person; in Java this is impossible.

A class reference may be explicitly cast into a reference to another class. Assume that Student
is a subclass of Person.

Person p;
Student s;
...
p = s;            // No cast necessary.
...
s = (Student) p;  // Explicit cast is necessary

The first assignment

p = s;

involves an implicit conversion. No additional code will be inserted by the compiler. The pointer
will simply be copied. The invariant about variable  p cannot be violated by this assignment,
since we know that s must either (1) be null, (2) point to an instance of Student, or (3) point
to an instance of one of Student’s subclasses, which would necessarily be one of Person’s
subclasses.

Date Printed: 1/15/23 Page 11



The Java Language Harry H. Porter III

The second assignment

s = (Student) p;

is a cast  from a superclass reference down to a subclass reference.  This must be checked at
runtime,  and the compiler  will  insert  code that  performs a check. For example,  assume that
Employee is  a  subclass  of  Person;  then  p could  legitimately  point  to  an  Employee at
runtime before we execute this assignment, without violating the invariant about p’s type. But if
the pointer is blindly copied into variable  s, we would violate the invariant about variable  s,
since it would cause s to point to something that is not a subtype of Student.

The compiler will guard against the above disaster by quietly inserting a “dynamic check” (i.e.,
“runtime check”)  before the code to  copy the pointer.  If  p points  to an object  that  is  not  a
Student (or  one  of  Student’s  subclasses),  then  the  system  will  throw  a
ClassCastException.

It is as if the compiler translates

s = (Student) p;

into the following:

if (p instanceof Student) {
  s = p;
} else {
  throw new ClassCastException ();
}

Assignment and Equality Operators  

The assignment operator is “=”. For example:

x = 123;

The assignment operator may be used as an expression, just as in “C”:

if (x = 0) ...;

The equality operators “==” and “!=” test whether two primitive data values are equal or not.
When applied  to  operands with object  types,  the “==” and “!=” operators  test  for  “pointer
identity.”  In other  words,  they test  to  see if  the two operands refer  to  the  same object,  not
whether they refer to two objects that are distinct but “equal” in some deeper sense.

Person p, q;
 ...
if (p == q) ...;

Date Printed: 1/15/23 Page 12



The Java Language Harry H. Porter III

The  “==”  operation  is  often  referred  to  as  “identity”  (instead  of  “equality”)  to  make  this
distinction. Two String objects may be equal but not identical. For example:

String s, t;
s = "abc" + "xyz";
if (s == "abcxyz") ...;
if (s.equals ("abcxyz")) ...;

The first test will fail. The second test will succeed.

The “Not-A-Number” floating-point value is never identical with anything. Even the following
test will be false:

if (double.Nan == double.Nan) ...;

Instanceof  

The keyword instanceof may be used to determine whether the type of an object is a certain
type. For example:

Person p = ...;
 ...
if (p instanceof Student) ...;

The type of the first operand (p) is determined at runtime. We assume that class Student is a
subclass of  Person.  Consequently,  it  is possible that  p may point to a  Student object at
runtime.  If so, the test will succeed.

The second operand of instanceof should be a type (either a class or an interface).

If instanceof is applied to null (that is, if p is null), the result is always false.

Pointers in Java (References)  

Pointers in “C” are explicit. They are simply integer memory addresses. The data they point to
can be retrieved from memory and the memory they point to can be stored into. Here is an
example in “C”. Note that a special operation (*) is used to “dereference” the pointer.

struct MyType { ... };     // "C/C++" language
MyTpye *p, *q;
...
(*p).field = (*q).field;   // Get from memory & store into memory
...
p = q;                     // Copy the pointer
...
if (p == q) ...            // Compare pointers
...
if (*p == *q) ...          // Compare two structs

Date Printed: 1/15/23 Page 13



The Java Language Harry H. Porter III

The “C++” language did not go beyond “C” in this aspect.

In  contrast,  pointers  in  modern OOP languages  are  implicit.  To enforce  this  distinction,  we
usually call  them “references,”  not “pointers”,  although they are still  implemented as integer
memory addresses. Just as in “C,” the data they point to can be retrieved from memory and the
memory they point to can be stored into. However, the dereferencing is always implicit.

class MyType { ... };      // Java language
MyTpye p, q;
...
p.field = q.field;         // Get from memory & store into memory
...
p = q;                     // Copy the pointer
...
if (p == q) ...            // Compare pointers
...
if (p.equals(q)) ...       // Compare two objects

One  important  difference  is  that  in  “C/C++”  the  programmer  can  explicitly  manipulate
addresses, as in this example:

p = (MyType *) 0x0034abcd; // "C/C++" language
(*p).field = ...;          // Move into arbitrary memory location

This sort of thing is impossible in Java. You cannot cast references back and forth with integers.
One benefit is that the language can verify that memory is never corrupted randomly and that
each variable in memory contains only the type of data it is supposed to contain.

Another benefit of the OOP approach to references is that the runtime system can identify all
pointers and can even move objects from one location to another in memory while a program is
running, without upsetting the program. (In fact, the garbage collector does this from time-to-
time while the program is running.)  When an object is moved, all references can be readjusted
and the program will never by able to detect that some of its pointers have been changed to point
to different memory addresses.

Operator Syntax  

Here is a list of all the operators, in order of parsing precedence. All operators listed on one line
have the same precedence. Operators with higher precedence bind more tightly.

highest []  .  (params)  expr++  expr--
++expr   --expr   +expr   -expr  ~  !
new  (type)expr
*  /  %
+  -
<<  >>  >>>
<  >  <=  >=  instanceof
==  !=

Date Printed: 1/15/23 Page 14



The Java Language Harry H. Porter III

&
^
|
&&
||
?:

lowest =  +=  -=  *=  /=  %=  <<=  >>=  >>>=  &=  ^=  |=

All operators are left-associative except for assignment. Thus

a = b = c;

is parsed as:

a = (b = c);

Here are some comments about the operators:

==  != Identity testing (i.e., pointer comparison)
/ Integer division: truncates toward zero

   -7/2 == -3
% Remainder after /

   (x/y)*y + x%y == x
    -7%2 == -1

[] Array indexing
. Member accessing
(params) Message sending
&  |  ^  ! Logical AND, OR, XOR, and NOT (valid on boolean values)
&  |  ^  ~ Bitwise  AND,  OR,  XOR,  and  NOT  (valid  on  integer  and  char
values)
<<  >>  >>> Shift bits (SLL, SRA, SRL)
&&  || Boolean only, will evaluate second operand only if necessary
?: Boolean-expr ? then-value : else-value
(type)expr Explicit type cast
+ Numeric addition and String concatenation

Expressions as Statements  

Just as in “C”, every expression can be used as a statement. You simply put a semicolon after it.
Several sorts of expressions occur commonly and are often thought of as statements in their own
right, although technically they are just examples of expressions occurring at the statement level.

Assignment Statement  The assignment operator may be used at the statement level.

x = y + 5;
a = b = c = -1;    // Multiple assignment is ok

Date Printed: 1/15/23 Page 15



The Java Language Harry H. Porter III

Message-Sending Statements  Message-sending expressions may be used at the statement level:

p.addDependent (a,b,c);

A method may be non-void or void. That is, it may either return a result or not. If a method
returns a result and the method is invoked at the statement level, the result will be discarded.

Increment and Decrement Statements  Another sort of expression that commonly occurs at the
statement level is given in these examples:

i++;
j--;
++i;   // same as i++;
--j;   // same as j--;

Object  Creation  Statements  The  new expression may be used  at  statement  level,  as  in  the
following. In this case, the object is created and its constructor is executed. The new expression
returns a reference to the newly constructed object, but this reference is then discarded.

new Person (“Thomas”, “Green”);

Flow of Control Statements  

The while loop is the same as in “C/C++”:

while (boolean-condition) statement;

The for loop is the same as in “C/C++.” Here is an example:

for (i=0,j=100; i<5; i++,j--) statement;

The do statement has the following form:

do statement while (boolean-condition);

Braces “{“ and “}” may be used to group statements into blocks, just as in “C/C++”. Here are
some examples combining flow of control statements with blocks.

while (boolean-condition) {
  statement;
  statement;
  statement;
}
for (i=0; i<5; i++) {
  statement;
  statement;
  statement;
}

Date Printed: 1/15/23 Page 16



The Java Language Harry H. Porter III

do {
  statement;
  statement;
  statement;
} while (boolean-condition);

In the switch statement, the expression is evaluated to determine which case to execute. The
switching expression must have an integer type. For example:

switch (integer-expression) {
case 23:

statement;
statement;
break;

case 45:
statement;
statement;
break;

case 51:
case 52:
case 53:

statement;
statement;
break;

default:
statement;
statement;
break;

}

The break statement is optional; if missing, control will fall through into the following case.
The default clause is also optional.

Loops and blocks  may also be labeled.  This  label  may be used in  break and  continue
statements. For example:

while (condition-1) {
my_loop: while (condition-2) {

while (condition-3) {
...
break my_loop;
...
continue my_loop;
...

}
}

}

In  the  break and  continue statements,  the  label  is  optional.  If  missing,  the  break or
continue will apply to the innermost do, for, while, or switch.

The return statement has two forms:

Date Printed: 1/15/23 Page 17



The Java Language Harry H. Porter III

return;
return expression;

The first form is used to return from void methods while the second form is used to return from
methods that yield a result. If a non-void method expects a result, then the expression supplied
must be a sub-type of (or equal to) the type expected.  For example,  if the method returns a
double, then the  return statement may provide an  int, since an  int may be implicitly
coerced into a double. If the method returns an object of type Person, the return statement
may provide a Student object, since Student is a subtype of Person.

The if statement has the same form as in “C/C++”:

if (boolean-expression)
statement-1;

else
statement-2;

The else clause is optional. Typically the two statements are blocks, giving a form like this:

if (boolean-expression) {
statement;
statement;
statement;

} else {
statement;
statement;
statement;

}

Arrays  

Arrays may be declared as in this example:

Person [] p;

To create an array object with 10 elements, use this form of the new expression:

new Person [10]

For example:

Person [] p = new Person [10];

This creates an array with the following elements:

p[0], p[1], p[2], ... , p[9]

Date Printed: 1/15/23 Page 18



The Java Language Harry H. Porter III

The older “C/C++” syntax, shown next, has the “p” and the “[]” reversed. This syntax can also
be used but it is discouraged:

Person p [] = new Person [10];

In either case, the array object is created and all 10 elements are initialized to null. You may
wish to initialize the elements of the array, as in this example:

Person [] p = new Person [10];
for (int i = 0; i < p.length; i++) {

p[i] = new Person(...);
}

In  this  example,  we  used  “new Person(...)”  to  create  a  Person object.  The  new
expression is discussed later. It returns a pointer, which is subsequently copied into one of the
array elements.

The size of an array can be obtained by applying the “length” attribute to an array object, as
in:

p.length

Reading and writing array elements can be done using traditional [] notation:

p[i] = p[j];

If an attempt is made to read or write an array element that does not exist, the index-out-of-
bounds  error  will  be  signaled.  (This  exception  is  called
“ArrayIndexOutOfBoundsException.” Exception handling will be discussed later.)

Arrays may be initialized using syntax like this example:

int [] [] a = { {1, 2}, {4, 5, 6}, {3}};

An extra comma is allowed after the last item in these lists, as in:

int [] a = {1, 2, 3, 4, 5, 6, };   // extra comma at end is optional

The extra comma is convenient when editing a Java source code file. Often you may want to
delete the last element or copy lines, as in the following example.

int [] [] a = {
                {1, 1, 4, 1, 1, 1},
                {1, 1, 5, 1, 1, 1},
                {1, 1, 6, 1, 1, 1},
              };

Strings  

Date Printed: 1/15/23 Page 19



The Java Language Harry H. Porter III

The String class is included in one of the Java packages. You may declare a String variable
and give it an initial value like this:

String x = "hello"; 

Strings may be printed as follows:

System.out.print (x);
System.out.println (x);   // Follows it with a newline

Strings may be concatenated with the + operator. For example:

x = x + " there";
System.out.println (x + " everyone!");

The + operator is treated somewhat specially. When one operand is a String and the other is
something  else (like  an “int”),  the  second thing will  be converted  to  a  String and then
concatenated  with the first  thing.  This  makes  it  very convenient  to print  out data  values,  as
shown in the next example:

int i = ...;

System.out.println ("The value is " + i);

This implicit conversion occurs whenever non-Strings are used in the concatenation operation
and  is  done  by  invoking  the  toString() method.  Therefore,  this  previous  example  is
equivalent to:

System.out.println ("The value is " + (i.toString()));

The characters in a String are numbered 0..(length-1). To find the length of a String, use:

x.length

There are many useful String methods. Here are a few:

x.length ()  int
x.charAt (int)  char
x.indexOf (char)  int
x.equals (String)  boolean
x.equalsIgnoreCase (String)  boolean
x.startsWith (prefixString)  boolean
x.endsWith (suffixString)  boolean
x.compareTo (String)  -1,0,+1
x.substring (startPos,endPos)  String
x.toLowerCase ()  String
x.toUpperCase ()  String
x + y  String
x.toCharArray ()  char[]

Date Printed: 1/15/23 Page 20



The Java Language Harry H. Porter III

Strings are immutable. That is, they may not be modified once created.

To determine if two Strings have the same sequence of characters, do not use the == identity
operator. Instead, use the “equals()” method. This is discussed in the next few paragraphs.

There are two ways to test the equality of objects. The first is to test whether the objects are the
same object. That is, given two pointers to two objects, you can test whether the pointers are
equal (using ==) as shown in the next example. The == test is called “object identity.”

String s1 = ...;
String s2 = ...;
...
if (s1 == s2) {
  // both point to the same object
}

The second way is to ask whether two objects contain the same data. This test is called “object
equality” and is performed with the equals() method. The equals() message is understood
by all  Objects. For  Strings, this method will test whether the  Strings contain the same
characters in the same order.

if (s1.equals(s2)) {
  // both contain the same character sequence
}

Note that “equal”  Strings will  not necessarily be “identical.” You may have two different
instances of String that happen to contain the same character sequences. On the other hand, if
two Strings are “identical,” they will necessarily be “equal.”

[In an earlier version of Java (Java 1.0.1) it was the case that all “equal”  Strings were also
“identical,” but this is not true of more recent versions. In other words, there was only one copy
of every distinct  String. The earlier approach made it quick to compare two Strings (you
merely had to compare pointers) but it required that a table of all known Strings be maintained
behind the scenes and whenever a new String was created, this table had to be searched to see
if we already had such a String in existence.]

The  class  StringBuffer has  many  of  the  same  methods  as  String but  adds  the
functionality to allow you to modify the characters. Here are some additional methods for that
class:

StringBuffer (String)  StringBuffer
StringBuffer (initCapacity)  StringBuffer
StringBuffer ()  StringBuffer

StringBuffer x, y;
x.append (y)  StringBuffer
x.setCharAt (int,char)  void
x.setLength (int)  void

Date Printed: 1/15/23 Page 21



The Java Language Harry H. Porter III

Classes  

The following example illustrates how a class is defined.

public class Person {
String first;
String last;
int age;
static int total = 0;
Person (String f, String l, int a) {

first = f;
last = l;
age = a;
total++;

}
String getName () {

return last + ", " + first;
}
void setName (String f, String l) {

first = f;
last = l;

}
static int getCount () {

return total;
}

}

The keyword class is followed by the name of the class being defined. In this example, we are
defining a class called Person. Class names are capitalized.

A number of modifiers may be associated with a class and they are listed before the keyword
class. In this example, the class is declared to be  public. Modifiers of a class include the
following keywords:

public
abstract
final
strictfp

A  class  definition  contains  a  number  of  “members.”  The  first  three  members  are  “data
members.” Data members are sometimes called “fields” or “instance variables.” The syntax for
data  members  is  similar  to  variable  declarations.  Data  members  may  also  have  modifiers,
although none are shown in this example.

Each Person object will have three fields, called first, last, and age. The fourth member
(named “total” in this example) has the modifier static, which means that there will only
be a single copy of the  total variable regardless of how many  Person objects have been
created. “Static fields” are sometimes called “class variables;” the concept is the same.

Date Printed: 1/15/23 Page 22



The Java Language Harry H. Porter III

The next member is a “constructor” method. A constructor looks like a normal method, except
the name of the method (Person) is exactly the same as the class name. A constructor provides
code to create a new object of this class. Whenever a new Person object is to be created, this
constructor method will be invoked. Constructor methods may access the fields of the newly
created object. This example is typical in that the constructor initializes the fields of the new
object based on arguments passed to it. In this example, the constructor also modifies the static
field “total” to keep a count of the total number of Person objects created.

A constructor always has the same name as the class. In this example, the class is Person and
the constructor is  Person().  There will often be several constructors, differing only in the
number  or  types  of  arguments  each  expects.  Whenever  an  object  is  created,  one  of  the
constructors  must  be invoked;  the compiler  will  determine  this  by the number and types of
arguments provided in the new expression.

The next two members are methods called getName() and setName(). There will typically
be  many  methods  differing  in  names  and  argument  types.  Methods  may  return  a  value  (as
getName() does) or may return no value (as setName() does).

Methods  will  usually  have  modifiers,  although  in  this  example  none  are  provided  for
getName() and setName().

The last method getCount() has the modifier static, and is called a “static method.” Static
methods  are  sometimes  called  “class  methods.”   They  may  not  access  the  fields  (i.e.,  data
members) of the object.

To invoke a normal  (i.e.,  non-static)  method,  an object  is  provided;  this  object  is  called  the
“receiver” and the method is invoked on that object. In the case of a static method, there is no
receiver object. Within a static method, you may not access the non-static fields because there is
no  this object when a static method is executed. However, within a static method you may
access the static fields, since static fields are shared across the class.

In this example, the static method simply returns the value of the static variable total.

Object Creation  

In the following example, a variable of type Person is declared and a new Person object is
allocated:

Person p;
p = new Person ("Harry", "Porter", 50);

Variable declarations may have initializing expressions (just as in “C/C++”) so these two lines
could also be written as:

Person p = new Person ("Harry", "Porter", 50);

Date Printed: 1/15/23 Page 23



The Java Language Harry H. Porter III

This causes a new object of class  Person to be allocated on the heap and a reference to that
object to be stored in the variable p.

Our example Person class did not have a “no-argunment” constructor, but we may modify it as
follows:

public class Person {
 ...
Person () {

first = "John";
last = "Doe";
age = 0;
total ++;

}
...

}

Now we may create a new Person with:

Person p = new Person ();

We may also create objects in other contexts besides variable initialization. For example, we may
create a Person object and use it immediately as an argument to some other method:

grp5.addToGroup (new Person ("Susan", "Brown", 20), "President");

When  an  object  creation  is  attempted,  but  there  is  insufficient  memory  available,  then  the
following exception will be thrown:

OutOfMemoryError

Interfaces  

Java includes support for separating “specification” from “implementation.”  We use a “class” to
provide the implementation details for objects. The class tells how the object will be represented
(fields)  and  what  code  it  will  execute  when messages  are  sent  to  it  (methods).  We use  an
“interface”  to  provide  a  specification  for  objects.  The  interface  tells  what  messages  will  be
understood by an object, but gives no details on how the objects will be implemented.

An interface is specified with syntax as illustrated by this example:

interface MyInter extends OtherInterA, OtherInterB, OtherInterC {
  int foo (...);
  int bar (...);
  ...
  int x = 123;
  double pi = 3.1415;
}

Date Printed: 1/15/23 Page 24



The Java Language Harry H. Porter III

Every interface has a name (in this example,  the interface is named  MyInter), which must
begin with an uppercase letter. The extends clause is optional and can list one or more other
interfaces.  In  this  example,  the  interface  being  defined  will  extend  the  interfaces  named
OtherInterA, OtherInterB, and OtherInterC. The body of the interface lists a number
of messages and constants. In this example, we see two messages, named foo and bar, and two
constants, called x and pi.

An interface may also include nested classes and interfaces, but these are not shown here. The
messages, constants, nested classes, and nested interfaces may be listed in any order.

Note the distinction between “messages” and “methods.”  The syntax of these messages is just
like the syntax of methods, except that there is no body of code. Interfaces contain messages and
classes contain methods.

void myFunct (int a, char ch);                           // message
...
void myFunct (int a, char ch) { ... statements ... }     // method

An interface tells what messages an object must be understood, while a class tells how the object
will implement the message. The class provides methods to implement the messages: the class
will provide one method for each message in the interface.

To take an example, let us define an interface for “taxable entities.”  A taxable entity must be
able to respond to certain messages, for example, to query its name and tax ID number and to
compute and return the tax due.

interface TaxableEntity {
  String getName ();
  int getID ();
  int computeTax (int year);
}

Several classes may implement (or “follow” or “respect”) the TaxableEntity interface. For
example, the classes Person and Corporation may be two classes that follow this interface.

class Person implements TaxableEntity {
  ...
  String getName () { ... }
  int getID () { ... }
  int computeTax (int year) { ... }
  ...
}
class Corporation implements TaxableEntity {
  ...
  String getName () { ... }
  int getID () { ... }
  int computeTax (int year) { ... }
  ...
}

Date Printed: 1/15/23 Page 25



The Java Language Harry H. Porter III

As you can see, the syntax for class definitions allows an optional implements clause which
indicates the relationship between a class and one (or more) interfaces. In addition to fields and
other methods that the class provides, the class must provide methods for the messages in the
interface, and the compiler will check this.

An interface may have no messages at all. In such a case, the interface is known as a “marker
interface.”  Marker interfaces are used as a form of documentation and program organization.
Since the marker interface adds no additional  messages, its  presence has little  impact  to the
compiler.  Instead,  such an interface  acts  as a signal  to the users that  the objects  have some
special behavior or property. An example marker interface is Cloneable, which is discussed
elsewhere in this document.

Declarations  

Variables are declared in declarations. Here are some examples:

int i = 1;
int j = 2;
int k = 3;

There is a variant syntax, just as in the “C” language:

int i = 1, j = 2, k = 3;

Variables may also be declared without assigning them initial values, as in:

int i, j, k;

The above syntax can be used for

• local variables in methods
• normal fields in classes
• static fields in classes (class variables)
• final fields (constants in classes and interfaces)

The variables in a method are called “local variables”. If no initial value is given, then local
variables are not initialized to default values; instead the compiler will check that no undefined
variables are ever used. In other words, the compiler will perform a data-flow analysis of the
method to make sure that the variable is always assigned before it is used, and complain if it
appears that an uninitialized variable is being used.

Fields may be given initial values. If no initial value is given, the field will be given a default
value, based on its type.

class MyClass {
  int x;            // initialized to default of 0
  int y = 47;
  ...

Date Printed: 1/15/23 Page 26



The Java Language Harry H. Porter III

}

The default values for field initialization are:

boolean false
char \u0000 16-bit Unicode character
byte 0 8-bit integer
short 0 16-bit integer
int 0 32-bit integer
long 0 64-bit integer
float 0.0 32-bit floating point
double 0.0 64-bit floating point
<object reference> null pointer to an object

The initialization expression may be rather complex. In fact, it may contain method invocations
(and therefore result in arbitrary user code being executed).

int x = 2 * a.foo (b, c);

The initializing expression in a field declaration may not throw any checked exceptions, since
there is no “surrounding code” to catch the exception.

The following access modifiers may appear in declarations:

• public
• private
• protected

These  control  the  “access  visibility”  of  fields,  and  are  discussed  elsewhere  in  this
document.

• static
A static field is a “class variable.”  There is only one copy of the variable and it is shared
by all instances of the object.

• final
A  final variable is a constant. Once given a value, it may not be reassigned. Local
variables may be marked  final; normally they would have an initializing expression
and  any  assignments  would  be  disallowed.  You  may  also  leave  out  the  initializing
expression,  in  which  case  the  compiler  will  check  that  the  method  has  exactly  one
assignment  to  the  variable.  A  final field  would  normally  have  an  initializing
expression. If this is left  off, then the field must be initialized within an initialization
block or within the constructor. Parameters may also be marked as final, in which case
they may not be assigned to within the method.

• volatile
In the presence of multiple threads and shared memory, a field’s value may be changed
asynchronously by another thread. Normally the compiler / virtual machine assumes that
fields do not get changed by other threads and the virtual machine may cache the field’s
value in registers and so on. This modifier prevents such cacheing and forces the virtual
machine to reload a field from memory every time it is used.

Date Printed: 1/15/23 Page 27



The Java Language Harry H. Porter III

A variable declaration may specify arrays with brackets. Here is an example creating three 2-
dimensional arrays of Persons:

public static volatile Person [] [] x, y, z = ... ;

Types: Basic Types, Classes, and Interfaces  

Variables are declared in declarations, which have the following general form. (We are ignoring
some details of the syntax here, since this section is discussing types, not declarations.)

<type> <var> = <expr>;

For example:

int i = 0;

The <type> can be either:

• primitive types (like int)
• classes (like Person)
• interfaces (like TaxableEntity)

Throughout this document, when we say “type” we mean “class, interface, or primitive type.”

Consider a variable that has, as its type, an interface:

TaxableEntity t;

This means that t will always point to a class that implements TaxableEntity. So we could
do this:

t = new Person (...);

since Person implements the TaxableEntity interface.

Assume that  Student is a subclass of  Person. Then  Student will also have the required
methods (getName,  getID, and  computeTax). This is true because either  Student will
inherit them from Person, or Student will override them. But in either case Student must
have methods for these messages. Therefore, it is safe to allow t to point to a Student object.
There can never be a “Message Not Understood” error at runtime.

More on Interfaces  

Members of an interface may not have any modifiers. For example:

interface TaxableEntity {

Date Printed: 1/15/23 Page 28



The Java Language Harry H. Porter III

  public static final void foo (...);  
  ^^^^^^ ^^^^^^ ^^^^^                  // Syntax error here
  ...
  private float = 3.1415; 
  ^^^^^^^                              // Syntax error here
}

(Here is why modifiers are not allowed. First, the public keyword is not used for the messages
and constants in the interface. All the members of an interface are public by default. Making
them private or protected makes no sense since it would mean that the member is only accessible
from code in the interface or in its sub-interfaces, but interfaces do not contain any code at all. A
final method may not be overridden; the messages in interfaces have no implementation and
they must be overridden to be used. Therefore messages are never final. On the other hand, all
variables in an interfaces are constants, so they are always  final by default. Other attributes
(native, strictfp, synchronized) constrain the implementation in some way; these are
not allowed since the interface is a specification, and does not contain implementation details.)

A class may implement several interfaces. Here is an example:

class Person implements TaxableEntity, AnimateThing, GraphicObj {
  ...
}

Any field appearing in an interface is implicitly  static and  final. Thus, any field in an
interface is defining a constant. The constant must have an initializing expression. We can use
the constant like we use any static field. The normal syntax is to list the name of the interface and
the field, separated by a period, as in this example:

... a + (5 * TaxableEntity.pi) + b ...

We can also refer to the constant through the use of a variable whose compile-time type is the
interface, but this is not recommended since it is a little unclear. Here is an example:

TaxableEntity t;
...
... a + (5 * t.pi) + b ...     // Not recommended

Garbage Collection  

Java has a built-in “garbage collector” which will automatically reclaim unreachable objects.
Thus, there is no explicit object deletion operator. If an object can be reached via pointers from
other objects, then its space will not be reclaimed; if the object is not reachable, then the garbage
collector will eventually collect its memory space and reuse it for other objects.

Object Deletion and Finalize  

Date Printed: 1/15/23 Page 29



The Java Language Harry H. Porter III

When the garbage collector identifies an object as unreachable and therefore as collectible, it
gives the programmer one last chance to look at the object before it is reclaimed. If the object has
a method called finalize(), it is invoked before the object is collected.

More particularly, if the class of the object has this method:

public void finalize () throws Throwable {
  ...
}

then it will be invoked. Since there may also be a  finalize() method implemented in the
superclass, it is good practice to invoke

super.finalize();

within the method.

The  finalize() method  may  contain  arbitrary  Java  code.  In  particular,  it  may  modify
pointers to make the object in question once again reachable, and therefore no longer collectible.
If so, the garbage collector will not collect the object.  (Making the object reachable again is
called “resurrecting” the object. It is a dubious programming practice.)  At some later time, the
object  may  once  again  become  unreachable  and  identified  as  collectable;  however,  the
finalize() method will not be invoked a second time: the finalize() method is invoked
at most once per object. The second time the object is identified as unreachable, it will simply be
collected.

Note that the garbage collector runs at somewhat unpredictable intervals. The exact timing of
when an object is identified as unreachable, or when the  finalize() method is invoked is
therefore somewhat random.

Accessing Fields  

The fields of an object may be accessed from code outside the code of the class by using the
“dot” operator:

x = p.first;
p.last = "Smith";

The fields of an object may be accessed from code inside the class by simply naming them:

class Person {
  ...
  String getName () {
    return last + ", " + first;
  }
}

Date Printed: 1/15/23 Page 30



The Java Language Harry H. Porter III

In this case, it is understood that the receiver is meant; it is the fields of the receiver object that
are  being  referred  to.  This  can  be  made explicit  by  specifying  the  receiver  with  the  this
keyword:

class MyClass {
  ...
  void myMethod () {
    ...
    this.field = ...;
    ...
    ... this.field ...
    ...
  }
}

In the above example, the this is optional; normally such code would be written as follows:

class MyClass {
  ...
  void myMethod () {
    ...
    field = ...;
    ...
    ... field ...
    ...
  }
}

Subclasses  

Classes are related to one another by the subclass / superclass relationship. The class hierarchy is
tree-shaped: every class has exactly one superclass except the class named “Object”, which is
the root of the class tree. In Java terminology, we say that a subclass “extends” its superclass.

In the following example, the Person class is extended by Student. This is specified with the
extends keyword:

class Student extends Person {
  ...
}

Here is another class called Employee which extends class Person:

class Employee extends Person {
  ...
}

The subclass will inherit all the fields in the superclass, and may add additional fields if desired.
The new fields may have the same names as fields in the superclass. If a field in the subclass has

Date Printed: 1/15/23 Page 31



The Java Language Harry H. Porter III

the same name, the field in the superclass is hidden. To get at the hidden field, you may do it two
ways.

First, within a method in the subclass, you may use super:

...super.field...

Second, you may access the field by using a reference to the superclass instead of a reference to
the subclass:

Student s = ...;
...s.field...       // gets the new Student field

Person p = s;
...p.field...       // gets the hidden Person field

Note that when you access a field, the declared class of the variable is used, whereas when you
send a message, the runtime class of the object is used to determine which method is executed.

Access Control / Member Visibility  

Each member of a class has an access visibility. Each member has either:

• public visibility
• protected visibility
• package visibility (the default)
• private visibility

These are shown in order: “public visibility” specifies no access control and “private visibility”
specifies  the greatest  restriction.  Each visibility  is  more restrictive  than the previously listed
visibility.

By “member” we mean either a “field” or a “method.”

Public Visibility  A  public member may be accessed from any code anywhere. That is, a
public member may be accessed from code in other classes and in other packages in the same
program. By “accessed,” we mean a field may be read or modified or a method may be invoked.

Protected Visibility  A  protected member may be accessed from any code in  the same
package as the class containing the field. In addition, a protected member of class P may be
accessed from code in class S (assuming S is a subclass of P) using an object reference whose
type is class S or one of S’s subclasses.

Consider  an  example  with  a  superclass  Person and  a  subclass  Student,  which  extends
Person. Assume that  Person has a protected field called “field.”  Also assume that we
have another  class  Employee which  is  a  subclass  of  Person,  but  which is  not  related  to
Student.

Date Printed: 1/15/23 Page 32



The Java Language Harry H. Porter III

class Person {
  protected int field;
  ...
}
class Student extends Person {
  ...
}
class Employee extends Person {
  ...
}

When is the following access allowed by the compiler?

x.field

It depends both on the declared type of the variable “x” and where the access occurs.

Every Student and every Employee will have a field called “field”. In code within class
Student,  access to  field is  legal only when “x” has a type of  Student,  or  one of its
subclasses. So a method that is invoked on a  Student may access “field”. Within such a
method, the receiver (this) has type Student. If the method also deals with other Students
besides the receiver, it may access “field” in the other objects as well.

However,  imagine a  Student method which deals with  Persons that  are not  Students.
(Perhaps there is a method called assignAdvisor() which is passed an Employee object.)
Within such a method, the code may not access the protected parts of the  Employee object.
Code within  Student may not  access  the  Employee’s  field.  So  even if  “x”  has  type
Person or Employee, the access would not be allowed from code in Student.

The rule about protected visibility seems complex but the intuition is straightforward:  When
a subclass (like  Student) extends a superclass (like  Person),  we want to give  Student
access to the protected parts of Persons. So when an extender of Person is working with a
Student (or one of its subclasses), that code may access the protected parts of the object. There
may be other extensions to Person (like Employee) but the implementation details of those
classes  will  remain  hidden  within  Student.  If  the  implementation  details  of  Employee
change later, it should not affect Student or its subclasses.

Exception #1: Note that “protected” members are also accessible throughout the package, so if
Person or  Employee were defined in the same package as the access in question, then the
access would be allowed.

Exception #2: Static members can be accessed from code in any subclass. In this example, if
“field” were also declared to be static, then the access would be allowed from code in class
Student, even if “x” had a type of Employee. This applies to static fields, static members,
and even static classes and static interfaces.

Date Printed: 1/15/23 Page 33



The Java Language Harry H. Porter III

For example, if  totalPopulationCount is a  protected static field in  Person, it
may be accessed from methods in Person, Student, Employee.

Package Visibility  A field with “package visibility” may be accessed from any code in classes
in this package but not from code in other packages.  “Package visibiliy” is the default if no
visibility access is specified, and it is never specified explicitly. (There is a public keyword,
but it is used for a different purpose.) The assumption is that a package will be created as a unit
in isolation. For example, a package would be created as a single programming act by a single
programmer. Therefore, all parts of the package should trust all other parts.

Private Visibility  A private field may be accessed from code in only the class containing the
field, but not in its subclasses. For example, if ssNumber is a private field in Person, it may
be accessed only from methods in class Person, and not from Student or Employee.

Sending Messages  

To invoke a method, we must send a message. Whenever a message is sent, a method will be
invoked. A message is sent to an object, called the “receiver.” For example, if  p is a Person
object, we can send a message as follows:

p.setName ("Thomas", "Green");

Even when no arguments are supplied in a message-send, the parentheses are still required:

x.foo (a, b, c);
x.bar ();

Because parentheses are required, you can easily tell whether a message is being sent or whether
a field is being accessed:

y = x.myMeth ();
y = x.myField;

The  receiver  may  be  a  sub-expression  and  the  arguments  may  also  be  sub-expressions.
Parentheses can be used to group sub-expressions.

(x.bar()) . setName ( "Sue"+"Ann", y.computeLast(a,b,c) );

Message sending expressions are parsed as left-associative, so the previous example could also
be written as follows, with no change in meaning:

x.bar().setName("Sue"+"Ann", y.computeLast(a,b,c));

Consider a message sending expression:

x.foo (a, b, c);

Date Printed: 1/15/23 Page 34



The Java Language Harry H. Porter III

At compile-time, the types of all expressions and sub-expressions will be determined. Assume
that we have this definition of x: 

Person x;

The compile-time type of the receiver is therefore Person.

Next, assume that there is a subclass of  Person called  Student. At runtime, the variable  x
may  refer  to  a  Student object.  The  following  assignment  is  legal  and  would  create  this
situation:

Student s =  ...;
x = s;

Now, go back to the message-sending expression in question:

x.foo (a, b, c);

The compile-time type  of  the receiver  is  Person,  but  the  run-time class  of  the  receiver  is
Student. Assume that  Person includes a  foo() method and that  Student overrides the
foo() method.

class Person {
void foo (...) { ...}
 ...

}
class Student extends Person {

void foo (...) { ...}
 ...

}

Any subclass will either inherit a method or override it.  Therefore, any subclass of  Person
must have a foo() method. The compiler can conclude that the message-sending expression is
legal, since Person provides a foo() method. Whatever kind of object x points to at run-time,
it must be a subclass of (or equal to) Person and any subclass extending Person must either
inherit or override the foo() method.

There is no “Message Not Understood” error in Java. In this way Java differs from untyped
languages like Smalltalk.

At run-time, the class of the receiver is determined. (In this case, the receiver is a  Student
object.) Then, the foo() method from that class is invoked and executed. The foo() method
from Person will not be invoked, at least in this example. Which method will be invoked can
only be determined at run-time. This is called “dynamic binding” since it must be done at run-
time.

Within a method, a message may be sent to the receiver by using the this keyword:

Date Printed: 1/15/23 Page 35



The Java Language Harry H. Porter III

class Person {
  void foo (...) {
    ...
    this.bar (...);
    ...
  }
}

In this case, the this keyword can be omitted. If no receiver of a message is specified, this is
assumed. So, the above is equivalent to:

class Person {
  void foo (...) {
    ...
    bar (...);
    ...
  }
}

Arguments are Passed by Value  

All arguments to methods are passed by value, as in “C”. The argument value is copied to the
parameter.  (Parameters  are  sometimes  called  “formal  variables.”)   Within  the  method,  the
parameter may be updated, but the definition of “pass by value” is that the original argument will
not be modified.

x.foo (i);
...
void foo (int a) {
  a = 5;               // OK.  Will not modify i.
}

References to objects may be passed and they are passed “by value,” too.

Person p = ...;
x.foo2 (p);
...
void foo2 (Person a) {
  a.setName (“Thomas”);
}

During message sending, the objects themselves are never copied; instead object references are
copied and passed. Of course, the method may follow the reference and modify the object.

“this” and “super”  

Within a method, you may refer to the receiver object with the keyword this. For example, you
can send another message to the receiver:

class Person {
  ...

Date Printed: 1/15/23 Page 36



The Java Language Harry H. Porter III

  void foo () {
    ...
    this.anotherMessage ();
    ...
  }
  ...
}

When sending a message to the receiver, you may leave this out; by default, the message will
be sent to the current receiver:

 this.foo (a,y,z)
 foo (x,y,z)            // equivalent

If you wish to invoke an overridden method, you must send the message to  super instead of
this. Using super is commonly done to invoke the overridden method from the method that
does the overriding, but we can also invoke other methods (as is shown with  bar() below)
from the superclass, without getting the version of bar() in this class.

class Student extends Person {
  ...
  void foo () {         // overrides the inherited version
    ...
    foo ();             // invoke this method, recursively
    ...
    super.foo ();       // invoke the overridden version
    ...
    super.bar ();
    ...
  }
  ...
}

Often the first action of a method is to invoke the method it is overriding. This might be done
when the subclass method is adding functionality to the superclass method.

void foo () {
  super.foo ();
  ...
}

Invoking Static Methods  

The invocation of static methods is different from the invocation of normal methods, since a
receiver object is not required. A static method may be invoked in either of two ways.

In the first way, the class is named directly. The syntax suggests that the message is being sent to
the class itself. For example, assume that getCount() is a static method in class Person; we
can write:

int i = Person.getCount();

Date Printed: 1/15/23 Page 37



The Java Language Harry H. Porter III

In the second syntax, a receiver object is specified, but the receiver is not used.

Person p =  ...;
int i = p.getCount();

Here, the object referenced to by p is not available within the static method. It is used only to
indicate that a static method from Person is to be invoked. The variable p may in fact be null
at the time the static method is invoked; this is fine and getCount() will be called anyway.

On the other hand, the variable  p may in fact refer to an object whose class is a subclass of
Person. For example, p may refer to a Student object. For static methods, Java uses “static
binding.” In other words, it ignores the run-time class of the receiver object and uses only the
compile-time type of the receiver expression in determining the method to be invoked. Even if
the  Student class also has a static  getCount() method (which is different from the other
getCount() method), the getCount() method from Person will always be invoked here.

For this reason, we say that static methods are never overridden. Since the receiver object is not
relevant for static methods, I prefer to invoke static methods using this syntax:

Person.getCount();

instead of this syntax:

p.getCount();

Method Overloading  

The terms “overloading” and “overriding” sound similar but mean different things. This section
discusses overloading and the next section discusses overriding.

If two methods have the same name but have a different number of parameters or have different
types on their parameters, then we say that this method is overloaded. In this example, “foo” is
overloaded. 

class Person {
  ...
  void foo () {
    ...
  }
  void foo (int i) {
    ...
  }
  void foo (String s) {
    ...
  }
  ...
}

Date Printed: 1/15/23 Page 38



The Java Language Harry H. Porter III

In some sense, overloaded methods are different methods altogether. Yet, in another sense, these
methods are all related. (In other languages like Smalltalk, the name is all that matters:  “Same
name,  same  method.  Different  name,  different  method.”  Since  overloading  can  make  Java
programs difficult to understand, I feel it should be avoided.)

Differences in only the number of thrown exceptions or in the type of the returned value are not
sufficient to distinguish between two methods and cause overloading. You may have several
methods with the same name in a single class as long as they differ in the number or types of
parameters. The compiler will complain if two methods in the same class have the same name,
the same number of parameters, and the same types for their parameters.

When  the  compiler  processes  a  message-sending  expression  involving  overloaded  method
names, it must determine which method to invoke and it does this based only on the method
name and the  number  and types  of  the  arguments  in  the  sending expression.  It  ignores  the
returned types and throw clauses.

When method overloading is  present,  here is  how the compiler  determines  which method is
meant in a message-sending expression. First, the compiler finds all the methods that have (1)
have the same name, (2) have the same number of arguments, and (3) have parameters types that
are assignment-compatible with the arguments in the message-sending expression.  Second, if
there is a set of more than one method selected in this way, then the compiler determines if any
method in this set has more restrictive types on its arguments than another method in the set and,
if so, we eliminate the method with the more restrictive parameter types. Finally, the remaining
set must have a single method or the compiler will complain that the message-sending expression
is ambiguous.

Method Overriding  

When a subclass provides a method with the same name and the same number and types of
parameters as a method in a superclass, the superclass’s method is overridden. In other words, to
override a method, the new method must have the same name, the same number of parameters
and the exact same types on each of the parameters.

When overriding a method, the returned types must be identical. If they are not, the compiler will
complain.

Also,  the  exceptions  listed  in  the  throws clause  of  the  subclass’s  method header  must  be
“narrower” than  the  superclass’s  method.  In other  words,  the  overriding  method may throw
fewer exceptions, but not more, than the overridden method. This means that every exception
listed in the subclass method must be the same as (or a subtype of) an exception listed in the
superclass’s method header.

When a method is overridden in a subclass, the subclass method may specify the same or a
different level of access visibility. If different, the subclass method must specify a greater access
visibility, not a lesser visibility.

Date Printed: 1/15/23 Page 39



The Java Language Harry H. Porter III

The general  principle  behind the above rules is that the overriding method must continue to
respect the overridden method’s contract. In other words, the overriding method must be useable
in any context that the overridden method was useable. The new (overriding) method cannot
throw some new, unexpected exception.  It  cannot suddenly become invisible (and hence un-
useable) where it was okay to use the overridden method.

Overriding Fields in Subclasses  

A subclass may contain a field with the same name as a field in a superclass. In such case, the
superclass field is hidden by the subclass field.

The type of the superclass field does not need to be related to the type of the field in the subclass.
In other words, the subclass field need not have as its type a subtype or supertype of the field in
the superclass.

For example, assume that a field called  name is declared in class  Person and re-declared in
subclass  Student.  Thus,  every  Student object  will  have  two  name fields.  Within
Student’s code, you may access the hidden name field of the receiver in either of two ways.

super.name
Person.name

You may also access the hidden name field of other objects as long as the access visibility of the
hidden field permits it.

x.name

In such an example, will this access the  Student name field or the hidden  Person name
field? The static type of the object expression (which the compiler knows) determines whether
you get the field from the superclass or the field from the subclass. The dynamic class (i.e., the
class of the object pointed to at run-time, which the compiler cannot determine) is not used!

Person p = ...;
Student s = ...;
...
p.name   // Gets the field from the superclass, regardless

//      of what p points to at run-time.
s.name   // Gets the field from the subclass.

It is probably a good programming practice to completely avoid hiding (i.e., overriding) inherited
fields.

Final Methods and Final Classes  

A method may be marked  final, in which case it may not be overridden in a subclass. If a
subclass attempts to override the method, the compiler will complain.

Date Printed: 1/15/23 Page 40



The Java Language Harry H. Porter III

final void foo (...) {
  ...
}

A class may be marked final, in which case it may not be extended. In other words, a final
class may not have subclasses. All methods in such a class are implicitly final.

final class MyClass {
  ...
}

Here are some reasons for marking a method final:

• For  security  reasons.  Normally  a  class’s  behavior  can  be  changed  in  a  subclass  by
overriding methods, but you may not want the behavior of a critical class to be changed
by other programmers.

• If  a  method  has  been  marked  final,  the  compiler  may  be  able  to  make  certain
optimizations. Normally, dynamic-binding must be used since the compiler cannot (in
general) determine which method will be invoked by a message-sending expression. But
when a method has been marked  final, there will be no other implementations. This
may allow the compiler to replace the dynamic method lookup and binding by a simple
“procedure call,” which will execute faster.

• Classes with final methods may be more understandable. Object-oriented programs are
sometimes difficult to read. When you see a traditional “call statement” you know which
routine  will  be  invoked,  so  you can  understand  the  expression  that  does  the  call  by
looking up and understanding the routine in  question.  However  in  an object-oriented
language, an expression that sends the “foo” message may invoke one of many “foo”
methods. Simply locating and understanding a “foo” method may not be sufficient since
there may be another “foo” method that you are unaware of. However, seeing that the
“foo” method was marked as  final guarantees that there will be no additional “foo”
methods overriding it.

On the other hand, the power of object-oriented programming is that code in a pre-existing class
can be re-used by extending the class. If the pre-existing class doesn’t do exactly what you want,
you may create a subclass and override several of the methods to change their behavior, while
leaving other methods as is. Marking a class or a method final makes this sort of code re-use
impossible.

Anonymous Classes  

A normal class has a name that is given in its class definition:

class MyClass implements MyInterface {
  ...
}

An instance of the class may be created with a new expression:

Date Printed: 1/15/23 Page 41



The Java Language Harry H. Porter III

MyInterface x;
x = new MyClass (...);

With “anonymous classes,” the entire class definition occurs at the point the new instance is
created:

x = new MyInterface { ... fields and methods ...};

In this form the name of an interface follows the keyword new. This means we are defining a
class that will implement the interface called MyInterface.

In the second form the name of a class follows the keyword new. This means we are creating a
class that will extend the class called MySuperClass.

x = new MySuperClass { ... fields and methods ...};

In either case, MyInterface or MySuperClass will define the new object’s interface. That
is, instances of the anonymous class will understand the messages given by MyInterface or
MySuperClass, whichever was used.

Since an anonymous class has no name, it will have no constructors of its own. However, the
new expression  may  invoke  the  constructors  from  the  superclass.  Assuming  that
MySuperClass has a three-argument constructor, this expression will invoke it:

x = new MySuperClass (a,b,c) { ... fields and methods ...};

The Java book from Sun says “You should probably avoid anonymous classes longer than about
six lines” and [anonymous classes can] “create impenetrable inscrutability.” [quoted from “The
Java  Programming  Language”]  Since  it  is  easy  to  make  up new class  names,  one  wonders
whether anonymous classes should ever be used or whether they should even be in the language
at all.

The “main” Method  

A Java program should contain a “main” method. When the virtual machine is invoked on some
class, the main method from that class will be executed. This method should be

public static void

and should take a single parameter with type String[] as shown below:

class Echo {
  public static void main (String[] args) {
    System.out.println("Welcome!");
    for (int i = 0; i<args.length; i++) {
      System.out.print (args[i] + " ");
    }

Date Printed: 1/15/23 Page 42



The Java Language Harry H. Porter III

    System.out.println();
  }
}

 This program will print out its arguments, not including the program name. It may be run with
the following command line sequence (“%” is a Unix prompt and user input is in boldface). The
“java” command invokes the bytecode interpreter, which is often called the “virtual machine.” 

% java Echo hello there folks
Welcome!
hello there folks
% ...

A program may consist of several classes, each with a main method. When the virtual machine
is invoked, it is invoked on a particular class, which determines which main method is executed.

Methods in Class “Object”  

Object  identity  (often  called  “object  equality”)  is  tested  with  the  following  two  relational
operators.

if (x == y) ...;
if (x != y) ...;

They simply compare pointers to determine if the object referred to by “x” is the same object as
the object  referred to  by “y,”  and return  either  true or  false.  We can summarize  these
methods using the following shorthand:

x == y  boolean
x != y  boolean

Below are several other important methods that are understood by all objects. We summarize
their interfaces (i.e., their parameters, their return values, and their exceptions) as follows:

x.equals (Object obj)  boolean
x.hashCode () int
x.clone () Object (throws CloneNotSupportedException)
x.getClass () Class
x.finalize () void (throws Throwable)
x.toString () String

The  default  implementation  of  equals() simply  tests  for  object  identity  (==);  you  may
override it in subclasses, when two distinct objects in some sense represent the same “thing”. For
example, you may have multiple representations of polynomials; you might override equals()
with a method that will perform algebraic manipulations to determine if they represent the same
function.

Each object  must be able  to compute a “hash-code” so that it  can be stored in various data
structures. The method hashCode() may be sent to any object; it will return a pseudo-random

Date Printed: 1/15/23 Page 43



The Java Language Harry H. Porter III

integer  which can  be used as  an index into a  hash-based look-up table.  The  hashCode()
function should be overridden whenever  equals() is overridden so that two “equal” objects
always have the same hash-code. The default implementation may be used if equals() is not
overridden.

The default implementation of the  clone() method makes a shallow copy of the object and
returns it.  (A “shallow” copy involves allocating a single new object of the same size as the
receiver and copying the fields of the receiver into the new object. Pointers are copied, but the
objects they point to are not themselves copied.)
 
You may override the default implementation of  clone() to (perhaps) recursively copy the
objects that are pointed to. On the other hand, if an object should never be copied, you may
override clone() to throw CloneNotSupportedException. (There is also an interface
called  Cloneable, which has zero methods; it is a “marker” interface.  Your interfaces and
classes  may  implement  or  not  implement  the  Cloneable interface.)  The  method
Object.clone() is declared to be  protected;  when you override it,  you may make it
public so that the object can be cloned from outside the class. One possible implementation is:

class MyClass ... implements Cloneable {
  ...
  public Object clone() throws CloneNotSupportedException {
    return super.clone();
  }
  ...
}

Note that clone() returns an Object; therefore its result must be cast.

MyClass x, y ...;
...
y = (MyClass) x.clone();

Variables of Type Object  

Note that when used as a type, Object means that the variable may point to any kind of object,
including any kind of array. However, a variable of type Object may not contain a primitive
data value (e.g., an int, float, boolean, etc.)

Casting Object References  

Here is an example of a casting expression.  Assume that MySupertype and MySubtype are
related in the type hierarchy.

MySupertype x;
MySubtype y;
...
y = (MySubtype) x;

Date Printed: 1/15/23 Page 44



The Java Language Harry H. Porter III

Casting an object reference will insert code to perform a runtime type check.

Because of x’s declaration in this example, we (and the compiler) know that, at runtime, x must
point to an object of type MySupertype or one of its subtypes, such as MySubtype. In this
example, the programmer “believes” that directly before the assignment to y, x will point to an
object of type MySubtype (or one of its subtypes). In order to use it as a MySubtype, he must
first cast it down to that type.

If, at runtime, the programmer turns out to be wrong and “x” does not point to an object of type
MySubtype (or one of its subtypes), then the ClassCastException will be thrown.

The “null” Pointer  

The keyword null refers to a pointer to no object. “null” can be stored in variables, fields,
array elements, parameters, and so on. Whenever a message is sent, a field is accessed, or an
array element is accessed,

x.foo()
x.field
x[i]

it  is possible that  the object reference  x is  null.  If  so,  the  NullPointerException is
thrown. (However, if a static method is invoked using the “x.foo()” syntax, then it is okay for
the object reference  x to be  null since the binding is done statically and  x’s value is never
used.)

In some OOP languages like Smalltalk, “null” or “nil” refers to a special object. In Java, null
does not point to any object. It is sufficient to imagine that  null is implemented with a zero
pointer and that no object is ever stored at address 0.

“Static Final” Constants  

A constant may be defined and named as in the following example:

class MyClass {
  static final double pi = 3.14159;
  ...
}

The keyword final means that the value of the field being defined will not be changed once
set. The keyword static means that field being defined is not member of an instance, but is
related to the class as a whole.

Constants may also be placed in interfaces, in which case the keywords static and final are
not used. Any and all fields appearing in interfaces are assumed to be constants.

Date Printed: 1/15/23 Page 45



The Java Language Harry H. Porter III

interface MyInterface {
 double pi = 3.14159;
  ...
}

A constant defined in a class may be used within that class by simply naming it; anywhere else,
the constant may be referenced by prefixing its name with the class or interface it is a part of.

area = dia * pi;            // within MyClass
area = dia * MyClass.pi;    // anywhere else

Abstract Methods and Classes  

Normally,  each  method  in  a  class  will  include  a  body  of  code.  However,  you  may  avoid
providing an implementation for some methods in the class.  In this case, the method is said to be
“abstract” and the abstract keyword is used.

If a class contains any abstract methods, then the class heading must also contain the abstract
keyword. Here is an example:

abstract class MyAbstractClass {
  ...
  public void foo () { ... }   // Normal method
  abstract void bar ();        // Abstract method
  ...
}

An abstract class is incomplete since it doesn’t have an implementation for some of its methods.
Therefore, you may not create instances of an abstract class and the compiler will complain if
you try to. Consider this example:

MyAbstractClass x;
x = new MyAbstractClass ();    // Compiler error here
...
x.foo ();                      //   ...this method doesn’t exist.

Normally, an abstract class will have subclasses, which will provide normal methods for any
abstract methods that were inherited. The abstract keyword indicates that we expect to find a
subclass that completes the implementation. The abstract class provides a partial implementation;
the subclass completes it.

For example,  assume we have a subclass which provides an implementation for the abstract
methods and inherits other non-abstract methods. The subclass would not be marked as abstract.

class MySub extends MyAbstractClass {
  ...
  // foo is inherited
  void bar () { ... }          // An implementation is given for bar
  ...
}

Date Printed: 1/15/23 Page 46



The Java Language Harry H. Porter III

Note that we can have variables whose type is the abstract class, as in this code:

MyAbstractClass x;
...
x = new MySub ();
...
x.foo ();                      // An implementation will exist

A class may be marked abstract, even though none of its methods are marked abstract.
This might be used for a class that is intended to provide code for superclasses, but which has no
intrinsic meaning on its own.

A subclass that  extends some superclass may override a  normal  method,  making it  abstract.
Perhaps the superclass was not abstract; in any case, the subclass will be abstract since it now
contains unimplemented methods.

class MySuper {
  ...
  public void bar () { ... }
  ...
}

abstract class MySub extends MySuper {
  ...
  abstract void bar ();
  ...
}

We assume that there will be a further subclass of  MySub, providing method implementations
for the abstract methods it inherits (like bar).

Throwing Exceptions  

Errors may arise at runtime. Errors that are handled by the Java language are called “exceptions.”
Here are some pre-defined exceptions, which were mentioned earlier:

ArrayIndexOutOfBoundsException
NullPointerException
ClassCastException

When an exception occurs, it is said to be “thrown.”  Exceptions may be thrown implicitly, by
executing  code  that  does  something  bad.  For  example,  this  code  might  throw  the
ArrayIndexOutOfBoundsException:

x = a[i+1];

Exceptions may also be thrown explicitly by using the  throw statement. In this example, the
programmer has defined a new kind of error called MyExcept.

Date Printed: 1/15/23 Page 47



The Java Language Harry H. Porter III

throw new MyExcept ();

Exceptions are modeled with classes and objects. There is a class for every sort of exception.
There are pre-existing classes with names like:

ArrayIndexOutOfBoundsException
NullPointerException
...

If you wish to create a new sort of exception like  MyExcept, you must create a class called
MyExcept.  It should extend the predefined class called Exception.

class MyExcept extends Exception {
  ...
}

You may write code that catches any exceptions that occur, using the try statement.

try {
  statements
} catch (SomeException e) {
  statements
} catch (MyExcept e) {
  statements
} catch (YetAnotherException e) {
  statements
...
} finally {
  statements
}

The  try statement has a block of statements which follows the  try keyword. (We will call
these  the  “body  statements.”)  Then,  the  try statement  has  zero  or  more  catch clauses,
followed by an (optional) finally clause, with its statements.

The body statements are executed first. If no exceptions are thrown during their execution, or
during the execution of any methods they invoke, then none of the catch clauses are executed.
If an exception is thrown during the execution of the body statements, then the corresponding
catch clause will be executed.

In more detail,  the process  of  throwing and catching an exception works  like  this.  First,  an
instance of the exception class is created. If the exception was caused explicitly by a  throw
statement,  then  the  throw statement  will  create  the  new  object.  The  throw statement  is
followed by an expression, which would normally be a new clause, which invokes a constructor
for the exception class. In our example,

throw new MyExcept ();

Date Printed: 1/15/23 Page 48



The Java Language Harry H. Porter III

we create a new instance of MyExcept, using the “no argument” constructor.

If the exception arises implicitly, then the virtual machine constructs the object.

Next, the virtual machine looks for a matching catch clause. The clauses are searched in order
and the first matching catch clause will be selected. The catch clause has a single parameter.
In this example, it is “e”. This parameter is set to the exception object and the corresponding
statements are then executed.

} catch (MyExcept e) {
  statements...           // may use “e” here
}

We can pass information from the throw statement to the corresponding catch statements by
passing  it  in  the  exception  object.  Imagine  that  we wish to  pass  a  String to  indicate  the
severity of the problem. We can add a field called severity to MyExcept and then invoke a
constructor which will set that field.

class MyExcept extends Exception {
  String severity;
  MyExcept (String s) { severity = s; }
  ...
}

try {
  ...
  throw new MyExcept (“Mission-Critical”);
  ...
} catch (MyExcept e) {
  ... use e.severity here ...
}

Exception  classes  can  be  related  to  one  another  in  the  subclass  /  superclass  hierarchy.  For
example, we might have made MyExcept a subclass of some other exception class. The type in
the catch clause does not need to exactly match the class of the thrown exception. The catch
clauses are tried in order they appear and the first matching catch is selected.

(If one catch clause in the try statement is a supertype of some subsequent catch clause in
the same try statement, then the first catch clause will always be selected before the second
catch clause. This is considered an error and the compiler will catch it: No catch clause may
have a type that is a subtype of a catch clause listed earlier in the same try statement.)

Try statements may be nested. If there is no matching  catch clause in the innermost  try
statement, the next most inner try statement will be searched.

try {
  ...
    try {

Date Printed: 1/15/23 Page 49



The Java Language Harry H. Porter III

      ...
      throw ...;
      ...
    } catch (...) {
      statements
    } catch (...) {
      statements
    ...
    }
  ...
} catch (...) {
  statements
} catch (...) {
  statements
...
}

Various try statements are “entered” and “exited from” as the program runs. Thus, the nesting
we just discussed is actually dynamic, not lexical. Here is another example, in which method
bar() calls method foo() from within a try statement.

bar () {
  ...
    try {
      ...
      x.foo ();
      ...
    } catch (...) {
      statements
    } catch (...) {
      statements
    ...
    }
  ...
}

Suppose method foo() contains another try statement whose body may throw an exception.

foo () {
  ...
    try {
      ...
      throw ...;
      ...
    } catch (...) {
      statements
    } catch (...) {
      statements
    ...
    }
  ...
}

Date Printed: 1/15/23 Page 50



The Java Language Harry H. Porter III

When the  throw statement  is  executed,  the  virtual  machine  will  first  look for  a  matching
catch clause in the try statement in foo(). If none is found, it will then search the catch
clauses in the  bar() method. So which  catch clauses are searched depends on the order of
execution. If method foo() had been called from some other method instead of bar(), then
bar()’s catch clauses would not be searched.

The body of a try statement will be exited as the result of either:

• normal completion (i.e., execution falls out the bottom of the “body statements”)
• a return statement is executed
• an exception is thrown

If  an  exception  is  thrown  during  the  body  and  the  try statement  catches  it,  then  the
corresponding  catch statements will be executed. The  catch statements will then end as a
result of either:

• normal completion (i.e., execution falls out the bottom of the catch statements)
• a return statement is executed
• another exception is thrown within the catch statements

If an exception is thrown during the execution of a catch clause, then this new exception will
be propagated outside the try statement. In other words, the try statement will be exited so the
same set of catch clauses will not be searched for the new exception.

A try statement may contain an optional finally clause, which includes several statements,
which we will  call  the “finally  statements.”  The  finally  statements will always be
executed  before  execution  leaves  the  try statement,  regardless  of  whether  exceptions  were
thrown and regardless of whether a matching catch clause was found and executed.

The finally statements will be entered after either:

• normal completion of the body or a catch clause
• the execution of a return statement in the body or a catch clause
• the result of an uncaught exception in the body
• the result of a exception getting thrown in some catch clause

The  virtual  machine  remembers  which.  If  there  is  an  uncaught  exception,  it  is  said  to  be
“pending.”   If  there  was  a  return,  then  the  return is  pending.  Otherwise,  a  normal
completion is pending.

The finally statements may end with either:

• normal completion (i.e., execution falls out the bottom of the finally statements)
• a return statement is executed in the finally statements

Date Printed: 1/15/23 Page 51



The Java Language Harry H. Porter III

• another exception is thrown within the finally statements

If the  finally statements execute a  return statement or throw some new exception, then
that  will  take  precedence  over  whatever  sort  of  exit  was  pending.  In  other  words,  if  the
finally statements were entered with a return pending or an uncaught exception pending,
then it will be ignored and forgotten.

Otherwise, if the finally statements complete normally, whatever sort of exit is pending will
then happen. In particular, if there is an uncaught exception pending (from the body or one of the
catch clauses), that exception will be propagated to the code surrounding the try statement. If
there  is  a  pending  return,  then  the  return will  occur.  If  there  is  a  normal  completion
pending, then execution will continue after the try statement.

All exception classes are arranged in the subclass-superclass hierarchy and each is a subclasses
of the class named Throwable. Here is the class hierarchy, showing the predefined exception
classes. User-defined exceptions would be made subclasses of the class named Exception.

Object
  ...
  Throwable
    Exception
      <User Defined Exception #1>
      <User Defined Exception #2>
      <User Defined Exception #3>
      ...
      RuntimeException
        ArithmeticException
        ArrayStoreException
        ClassCastException
        ConcurrentModificationException
        EmptyStackException
        IllegalArgumentException
          IllegalThreadStateException
          NumberFormatException
        IllegalMonitorStateException
        IllegalStateException
        IndexOutOfBoundsException
          ArrayIndexOutOfBoundsException
          StringIndexOutOfBoundsException
        MissingResourceException
        NegativeArraySizeException
        NoSuchElementException
        NullPointerException
        SecurityException
        UndeclaredThrowableException
        UnsupportedOperationException
    Error
      LinkageError
        ClassCircularityError
        ClassFormatError
          UnsupportedClassVersionError
        ExceptionInitializerError

Date Printed: 1/15/23 Page 52



The Java Language Harry H. Porter III

        IncompatibleClassChangeError
          AbstractMethodError
          IllegalAccesError
          InstantiationError
          NoSuchFieldError
          NoSuchMethodError
        NoClassDefFoundError
        UnsatisfiedLinkError
        VerifyError
      ThreadDeath
      VirtualMachineError
        InternalError
        OutOfMemoryError
        StackOverflowError
        UnknownError

Contracts and Exceptions  

When a programmer writes a method, he should be aware of the “contract” the method has with
the users of the method. This contract is the interface between the user code (i.e., the caller) and
the method. This contract will include aspects that are checked by the compiler (like the number
and types of the arguments and return values) and semantic, logical aspects that are not checked
by the compiler (like the fact that “Argument n will never be negative” or that “The returned
value will be such-and-such”). Each method has a contract, which should be clearly documented.

For example,  consider  a  method (called  “search”)  that  searches  some data  structure for  a
specified  element,  such  as  a  dictionary  mapping  strings  to  integers.  Assume this  method  is
passed the key to search for. For example, the method might be passed a String. The contract
states that the value returned will be the int that was previously entered into the data structure
with the given key.

What happens if the search element does not exist -- this can be considered an error, of sorts. Is it
the responsibility of the user to ensure that the method will never be called to find an element
that doesn’t exist, or is it the responsibility of the method to deal correctly when asked to search
for something that does not exist?  The contract documentation should discuss how this error is
handled. An unclear decision about who is responsible for handling extreme and unusual cases is
the source of many subtle program bugs.

In Java, exceptions can be used to deal with errors and other extreme conditions, as in the above
example. Sometimes, it makes sense to return a special value to indicate an unusual result. For
example, we might choose to return –1 to indicate the search key was not found. But in other
cases, it  might be better for the method to throw an exception. In our example,  a reasonable
design is to code the  search method so that it  will throw an exception if asked to find an
element that does not exist. The search method itself will not catch the exception; instead it
will be passed up to the calling code.

The  fact  that  the  method  may  throw  an  exception  is  clearly  part  of  its  contract.  The
communication between the calling code and the method consists of more than just arguments

Date Printed: 1/15/23 Page 53



The Java Language Harry H. Porter III

and returned values. A method may also indicate its result  (or complete  its  computation)  by
throwing an exception.

In most languages, the programmer must specify what types of values are passed to a method
and what types of values will be returned. In Java, the programmer must also specify which
exceptions may be thrown by the method.

When we say “an exception is thrown by method foo,” we mean that some code in  foo will
throw an exception, but that the exception will not be caught within  foo. Instead, it  will be
propagated up to the caller’s code. It could also be that case that the exception is thrown in some
method  foo calls,  but  neither  the  called  method  nor  foo catches  the  exception.  Again,  it
propagates up to the code that called foo.

If a method like foo may throw an exception but not catch it, then the method header for foo
must specify that  foo may throw the exception.  The syntax for method  foo makes explicit
which exceptions may be thrown in foo and propagated to the calling code:

public void foo (...) 
       throws MyExcept, AnotherExcept, YetAnotherException
  {
    ...
    throw new myExcept (...);
    ...
    anotherMethod (...);
    ...
  }

By looking at the method header, the caller of foo will see that foo may throw any one of the
three  exceptions  listed  in  the  header.  Therefore,  the  calling  code  must  either  catch  these
exceptions or propagate them even further. Assume a method called “bar” calls foo, as shown
below. The  bar method handles two of the exceptions (MyExcept and  AnotherExcept),
but does not handle the third exception, which it propagates. Therefore, bar must list the third
exception in its header.

public void bar (...) 
       throws YetAnotherException
  {
    ...
    try {
      ... foo (...) ...
    } catch (MyExcept e) {
      ...
    } catch (AnotherExcept e) {
      ...
    }
  }

Date Printed: 1/15/23 Page 54



The Java Language Harry H. Porter III

The Java compiler checks all this: it ensures that a method cannot throw exceptions that are not
listed in is header. If a method may throw (without catching) any exception from any subclass of
Exception, then the exception must be listed in the method header.

Notice  that  the hierarchy of  exceptions  begins  with  Throwable.  One major  subdivision  is
Exception.  Many  of  them  are  predefined  and  these  are  grouped  under
RuntimeException.  RuntimeExceptions  relate  to  rather  common,  run-of-the-mill
problems, such as:

ArrayIndexOutOfBoundsException
NullPointerException
NoSuchElementException

User-defined exceptions would also be added under Exception.

The other major subdivision of  Throwable is  Error. These are more serious and indicate
system failure. Examples are:

InternalError
OutOfMemoryError
StackOverflowError

There are a number of predefined errors and exceptions, which are quite common and can occur
in  virtually  any  code.  The  burden  of  listing  them  all  in  every  method  header  would  be
unbearable.  Therefore,  you do not  need to list  the predefined exceptions  in method headers.
More precisely, any subclass of RuntimeException or Error does not need to be listed in
method headers; these are implicitly assumed. Instead, you only need to list those exceptions
outside of these classes.  This allows beginning Java programmers to pretty much ignore the
exception handling statements (throw and try-catch-finally) altogether, if they choose.

Initialization Blocks  

A class may contain an “initialization block.”  If so, it will be executed as if it were placed at the
beginning of every constructor in the class. Thus, it is executed once every time an object is
created.

class MyClass {
  ...
  foo () { ... statements ... }
  ...
  { ... statements... }
  ...
}

Below  is  an  example  that  keeps  track  of  how  many  instances  are  created.  There  are  two
constructors.  We could  put  the  code  to  increment  personCount in  each  constructor,  but
instead we factor it into an initialization block.

Date Printed: 1/15/23 Page 55



The Java Language Harry H. Porter III

class Person {
  static int personCount = 0;
  Person () { ... statements ... }
  Person (String name) { ... statements ... }
  { personCount++; }
  ...
}

There may be multiple initialization blocks. If so, they are executed in the order they are listed in
the class.

Static initialization blocks  

A  class  may  contain  a  “static  initialization  block,”  which  is  syntactically  similar  to  an
“initialization block,” except the static keyword is used:

class MyClass {
  ...
  static { ... statements... }
  ...
}

The static initialization block is executed when the class is first loaded. This may be at program
startup time or may be at some later time, when the class is first needed.

A class may have several static initialization blocks.

When a class is loaded, its static fields are set to their default values. Then the static fields and
the static initialization blocks are executed in the order they appear in the source code. In other
words, consider this example:

class MyClass {
  ...
  static { ... statements-1... }
  ...
  static int x = ...;
  ...
  static { ... statements-2... }
  ...
  static int y = ...;
  ...
  static { ... statements-3... }
  ...
}

The execution order would be:

statements-1
x’s initialization expression
statements-2
y’s initialization expression
statements-3

Date Printed: 1/15/23 Page 56



The Java Language Harry H. Porter III

The  static  initialization  block  may  only  refer  to  static  class  fields  and  may  not  throw  any
uncaught exceptions.

Wrapper Classes  

Each primitive class (like  int,  boolean,  double, etc.) has a corresponding class, called a
“wrapper class.” The wrapper classes are:

Number
  Byte
  Short
  Integer
  Long
  Float
  Double
Boolean
Character
Void

Wrapper classes serve two functions.

First, they act as a place to put constants and methods related to the primitive type. Examples
include a method to test a  double value against infinity, and a method to return the largest
long integer value.

Second, wrapper classes can be used to encapsulate values of a primitive type. Imagine that you
have a Set class that can hold sets of Objects. The Set class is somewhat general, since it can
hold any type of Object. But it could not hold an int value, since that is a primitive value, not
an Object. To create a set of ints, you can first put each int into a wrapper object.

To create a wrapper object, you must supply a primitive value.

Integer i = new Integer (123);
...
Object x = i;

To get the value out of a wrapper object you may use methods like this:

int j = i.intValue ();

Of course there are similar methods for the other primitive types.

new Byte (byte)  Byte
new Short (short)  Short
new Integer (int)  Integer
new Long (long)  Long
new Float (float)  Float
new Double (double)  Double
new Boolean (boolean)  Boolean

Date Printed: 1/15/23 Page 57



The Java Language Harry H. Porter III

new Character (char)  Character

x.byteValue (Byte)  byte
x.shortValue (Short)  short
x.intValue (Integer)  int
x.longValue (Long)  long
x.floatValue (Float)  float
x.doubleValue (Double)  double
x.booleanValue (Boolean)  boolean
x.charValue (Character)  char

Note the inconsistency in the spellings:

char   Character 
int    Integer

There is also a Void wrapper class, but it has no instances.

Each wrapper object is immutable. Once created, it may not be changed.

Packages  

Classes  and interfaces  are  grouped together  into  “packages.”  Every  class  and interface  will
belong  to  some  package.  Typically,  the  parts  of  a  package  will  be  related.  They  will  be
developed together and will be released and delivered as a unit.

As  of  this  writing,  the  Sun “Java  2  Standard  Edition,  v  1.4”  appears  to  contain  about  137
packages, comprising 2738 classes and interfaces. A typical package might contain perhaps 5
interfaces and 15 classes.

Some important packages are:

java.lang    Essential classes;  always imported automatically
java.io      Basic I/O (files and character streams)
java.util    Data structure classes
java.awt     “Abstract Windowing Toolkit” (user interface classes)
java.net     Sockets, TCP/IP, and URL classes
java.applet  Running Java programs over WWW and internet browsers

Packages can be nested in a tree-shaped hierarchy. Each source file begins with a line like this:

package x.y.z;

The package statement must be the first line in a file. It will indicate which package the classes
or interfaces in this file belong to. For example:

package com.sun.games;

If the package statement is missing, an “unnamed” package is meant. This is useful for small,
single-file Java programs.

Date Printed: 1/15/23 Page 58



The Java Language Harry H. Porter III

Although the dot notation suggests nesting or a hierarchy or some other relationship between
packages, it is purely naming. The package named “x.y” cannot reference stuff in the package
named “x” or in the package named “x.y.z” any differently than it can reference stuff in a
package named “a.b”. As the Sun documentation says, “Nesting can group related packages
and help programmers find classes in a logical hierarchy, but it confers no other benefits.” [The
Java Programming Language: Third Edition.]

Any package (which we can call the “current package” for convenience), may make use of things
in some other package, but we must specify the thing’s name in full. We prefix the name of the
item with the name of the package containing it.

The package named java.util contains a class called Date, so we could write:

java.util.Date d = new java.util.Date ();

This gets tedious.  The  import statement  may be used in the current package,  to make full
qualifications unnecessary.

import java.util.Date;  // to import a single class or interface
import java.util.*;     // to import everything in the package

Now we can write:

Date d = new Date ();

Threads  

A “thread of control” is lightweight process. They are used in multi-programmed applications.
There is a class called Thread, which is used in creating and manipulating threads in Java.

To create a thread, you begin by creating a subclass of the Thread class. You should override
the run() method. (The inherited run() method does nothing and returns immediately.) The
method you provide will become the “main” method of that thread.

public class MyThread extends Thread {
  public void run () {
    ... statements ...
  }
  ...
}

Each running thread is represented with a  Thread object, so you must first create a  Thread
object:

Thread t = new Thread ();

Date Printed: 1/15/23 Page 59



The Java Language Harry H. Porter III

When  the  Thread object  is  first  created,  it  is  not  initially  running;  you  must  send  it  the
start() method to cause it to begin executing.

t.start ();

To get a pointer to the Thread object for the currently running thread, use this method:

Thread.currentThread ()  Thread

To put a thread to sleep for a specific duration, send this method to a thread:

aThread.sleep (long milliseconds)  void

To yield the processor to any other runnable threads, use this method:

Thread.yield ()  void

To “join” two threads, one thread can send this message to another thread. This will wait for
aThread to die and will then return.

aThread.join ()  void

Each thread has a name and a priority. These can be changed or queried with these methods:

aThread.setName (String name)  void
aThread.setPriority (int pri)  void
aThread.getName ()  String
aThread.getPriority ()  int

You may send the interrupt() message to a running thread.

Locking Objects and Classes  

Java  supports  “monitor-style”  concurrency  control  with  locks  and  the  synchronized
keyword.

Every object has a lock associated with it. This lock can be used to control concurrent access to
the object. Methods and statements may be marked with the synchronized keyword.

If some thread attempts to execute a synchronized method on some receiver object, the lock
of that object will first be acquired, then the method will execute, then the lock will be released.
If some other thread attempts to execute a synchronized method on the same object (either
the same method or a different method) while the first thread still  holds the lock, the second
thread will wait until the lock is released

If  a  thread  that  has  already  acquired  the  object’s  lock  attempts  to  execute  another
synchronized method on the same object, it is not a problem: there will be no waiting. Since

Date Printed: 1/15/23 Page 60



The Java Language Harry H. Porter III

the thread already owns the lock, the method invocation will occur without delay. The object’s
lock will be released when the synchronized method that acquired the lock returns (or exits
by throwing an uncaught exception).

A  subclass  method  may  override  a  synchronized method.  The  new  method  may  be
synchronized or not. The superclass method will still be  synchronized, whenever it is
invoked.

Each class also has a lock associated with it. If a class method (i.e., static method) is marked
synchronized, then the class lock will be acquired for the duration of the class method.

The class lock is unrelated to the locks of the instances of the class. In other words, a (non-static)
synchronized method does not acquire the class lock before proceeding; the class lock may
be held by some other thread while the first thread executes its synchronized method. This
allows  a  synchronized  static  method  to  proceed  in  parallel  with  a  synchronized  non-static
method.

You may also acquire the lock on an object with the synchronized statement:

synchronized (expression) {
  ... statements ...
}

This works the same way. The expression is evaluated to yield an object. The lock for that object
is acquired, waiting if necessary. Then the statements are executed and the lock is released.

All  objects  understand  the  following  messages,  which  can  be  used  to  further  control
concurrency:

x.wait ()  void
x.notify ()  void
x.notifyAll ()  void

The wait() method will suspend the thread which invokes it, until some other thread executes
a notify() or notifyAll() operation. The wait() method will both suspend the thread
and  release  the  lock  (atomically).  Later  (after  a  notify() or  notifyAll() has  been
executed), the lock will be reacquired and the waiting thread will be reawakened.

[I  am  not  sure  whether  the  Java  specification  requires  (1)  “Hoare  semantics”,  (2)  “Mesa
semantics”, or (3) does not specify either.]

A typical programming paradigm might involve two methods that work on a single object:

synchronized void doWhenCondition () {
  while (!condition) {
    wait ();
  }
  ... Do what must be done when condition is true ...

Date Printed: 1/15/23 Page 61



The Java Language Harry H. Porter III

}

synchronized void changeCondition () {
  ... Change some value that may be used in the condition test ...
  notifyAll ();
}

Note that the invocation of wait() is in a loop. This is because some other thread may sneak in
between the invocation of notifyAll() and the end of the wait(), and change the object.
The waiting thread will generally need to re-check the condition before proceeding.

Strict Floating-Point Evaluations  

When an expression contains floating-point arithmetic, its result can be dependent on the order in
which the operations are evaluated. For example, with “real number” arithmetic, multiplication is
associative, but with floating-point arithmetic (which is an approximation to real arithmetic), the
result may not be the same.

(x * y) * z      x * (y * z)

Normally, the compiler may re-write certain expressions to gain efficiency, but this code may
generate results that are different. In some calculations the programmer may wish to control the
exact order in which operations are performed. The programmer can prevent the compiler from
re-writing expressions by using the strictfp keyword.

The  strictfp keyword can be applied to classes, methods, and interfaces. (Interfaces may
contain expressions in the initialization of constants.)

Online Web Resources  

The current  version of  Java  is  called  J2SE (“Java 2 Standard  Edition”),  version  1.4.   Sun's
website is fairly large; the following websites are of interest:

java.sun.com/j2se/1.4/docs

Contains links to many good Java documents.

java.sun.com/j2se/1.4/docs/api

The Java 2 class library. This site brings up a multi-frame window for convenient browsing.

java.sun.com/j2se/1.4/docs/api/overview-summary.html

The same as above, but without the browsing frames.  (This page may be faster and easier to
use.)

www.cs.pdx.edu/~harry/musings/JavaLang.html

Date Printed: 1/15/23 Page 62



The Java Language Harry H. Porter III

An HTML version of the document you are reading.

www.cs.pdx.edu/~harry/musings/JavaLanguage.doc

An MS-Word version of the document you are reading.

Please email any corrections to the author at:  

harry@cs.pdx.edu

I really appreciate your feedback on this document and I thank you in advance for any typos,
mistakes, errors, confusing wordings, ambiguous phrasings, sloppy writing, imprecise thinking,
or just plain bad writing, that you might bring to my attention!

You have my permission to copy and distribute this document without restriction.

Date Printed: 1/15/23 Page 63


