
Earley Deduction1

Harry H. Porter III
Portland State University

March 10, 1986

Author’s e-mail: harry@cs.pdx.edu
Author’s Web Page: www.cs.pdx.edu/~harry

This paper is online at:
www.cs.pdx.edu/~harry/earley/earley.pdf
www.cs.pdx.edu/~harry/earley/earley.htm

Abstract

This  paper  first  reviews  Earley  Deduction,  a  generalization  of  the  Earley  Parsing
Algorithm to the execution of Horn Clause Logic Programs. Earley Deduction is both
sound and—unlike the standard Prolog interpreter—complete; proofs of this are included.
For functor-free programs, the method is also guaranteed to terminate. (The functor-free
subset  of  Prolog  is  called  DATALOG  and  can  be  used  to  compute  relational  join,
selection, transitive closure, etc.) Earley Deduction is elegant but, unfortunately, the price
paid  for  completeness  is  efficiency.  We  conclude  by  describing  implementation
techniques that make Earley Deduction practical for DATALOG programs.

Review of Earley Deduction

The traditional  Prolog interpreter  performs a depth-first  search for a proof and consequently
suffers from some of the problems associated with depth-first parsing algorithms. For example, if
a program contains left-recursive rules the interpreter may go into an infinite loop, failing to find
a proof even though one exists, just as a top-down parser may fail to find a parse when given a
grammar containing left-recursion.  In 1970, Jay Earley described an algorithm called  Earley
Parsing that  overcomes  some of  the  problems  of  both  top-down and bottom-up parsing  by

1 Although written long ago, when I was a Ph.D. student at Oregon Graduate Center / Oregon
Graduate Institute / OHSU, this paper was reformatted in May, 2009, and posted to the web at
this time.  Other than repairing typos, no substantive changes have been made.

Date Printed: 1/15/23 Page 1



Earley Deduction

combining aspects of both [Earley, 1970]. In computational linguistics, various incarnations of
this algorithm have been studied under the name Chart Parsing.

F. C. N. Pereira and D. H. D. Warren have extended this algorithm to the execution of logic
programs and call the method Earley Deduction [Pereira & Warren, 1983]. Their algorithm has
three desirable properties. First, it is sound and complete. Second, it is guaranteed to terminate
for an interesting subset of logic, namely functor-free programs. Finally, Earley Deduction is
straightforward and easy to implement.

We begin by describing Earley Deduction by tracing its execution on a small logic program.
Then we show correctness and completeness of the algorithm and show that it terminates for
functor-free programs. We conclude with a discussion of implementation techniques and results
for a version of the algorithm restricted to functor-free programs.

The  following  example  logic  program  contains  a  transitive  closure  rule  which  causes
nontermination in the standard interpreter. The clauses comprising our example are:

p(X,Z) ← p(X,Y), p(Y,Z). (1)
p(a,b). (2)
p(b,c). (3)

These are called the program clauses.

A goal is transformed into a goal clause by adding a dummy predicate ans as the clause head.
The arguments to this  ans predicate will be used to accumulate the bindings computed in a
successful proof. The goal clause we will use is:

ans(Z)  p(a,Z). (4)

This goal has only one literal but, in general, there will be several literals on the right-hand side.

The method works by building up a set of  derived clauses. As an initialization step, the  goal
clause is added as the first element to the set of derived clauses. Each step of the method adds
another clause to the set of derived clauses and, when no more clauses can be added, terminates.

There are two inference rules called reduction and instantiation. Both rules work by combining a
derived clause with another clause (either program or derived). The former (derived) clause will
be called the  selected clause and the latter clause will be called the  other clause. One literal
within the body of each derived clause will be marked as the selected literal. It is chosen when
the clause is first created and added to the derived clause set. The choice is arbitrary; we will
always select the first literal in the body of a derived clause.

The reduction  step can only  be applied  when the  other clause  is  a  unit  clause.  It  works  as
follows.  First,  the selected  literal  of  the selected  clause is  unified  with  the unit  clause.  The
selected clause must always be a derived clause but the other clause—the unit clause—can be
either  a  program or  a  derived clause.  Let  σ be the  most general  unifier.  [Just  as  in  Prolog,

Date Printed: 1/15/23 Page 2



Earley Deduction

variables are assumed to be quantified over individual clauses: variables in different clauses are
assumed to be distinct, even if they share the same name.]

For example, let clause (4) be the selected clause and let clause (2) be the other clause. The
selected literal of the selected clause is p(a,Z) since it is the left-most literal on the right-hand
side. The unifier is σ = { Z ← b }.

Second, remove the selected literal from the selected clause, apply σ to what remains and add the
result as a new derived clause. Removing the selected literal gives  ans(Z) and applying the
unifier gives ans(b) which is added to the derived clause set.

ans(b). (5)

Whenever a clause is derived that has head predicate ans and that is a unit clause, it is output as
a solution. Thus, ans(b) is printed as an answer.

The second kind of rule is instantiation. For this rule, we take the selected literal of the selected
clause and unify it with the positive literal (i.e., the head) of a non-unit program clause, giving a
most general unifier  σ. We then apply σ to the program clause and add the result  as a new
derived clause.

To illustrate  this  rule,  we use clause (4) as the selected clause to instantiate  clause (1).  The
unification of the selected literal p(a,Z) with the head of clause (1) p(X,Z) gives σ = { X ←
a }. Instantiating the program clause with σ gives the new derived clause.

p(a,Z) ← p(a,Y), p(Y,Z). (6)

Continuing the inferencing, the reduction rule can be applied to clause (2) and clause (6). We say
that clause (2) reduces clause (6) and the result is clause (7):

p(a,Z) ← p(b,Z). (7)

It is occasionally possible to perform a reduction or instantiation step producing a clause that has
already been derived earlier. For example, clause (6) can now be used to instantiate clause (1)
but  the result  has  already been derived (as  clause (6)  itself).  To avoid this  redundancy,  we
stipulate that a clause is not to be added as a new derived clause if it is subsumed by an already-
derived clause. (A more general term subsumes a more specific term if the latter can be obtained
by applying a substitution to the former.) The obvious way to perform this check is to take a new
candidate clause and look through all the derived clauses, performing the subsumption check on
each. This blind searching can be quite time consuming and we will  have something to say
below about doing it more intelligently.

We complete the specification of Earley Deduction by specifying how the algorithm selects pairs
of clauses for combination. Not every selection strategy will find answers even when they exist,
as the following sequence demonstrates:

Date Printed: 1/15/23 Page 3



Earley Deduction

Program Clauses:
p(X) ← p(f(X)). (14)
p(a). (15)

Derived Clauses:
ans ← p(a). Goal (16)
p(a) ← p(f(a)). 16 instantiates 14 (17)
p(f(a)) ← p(f(f(a))). 17 instantiates 14 (18)
p(f(f(a))) ← p(f(f(f(a)))). 18 instantiates 14 (19)
  •
  •
  •

At some step in the algorithm let clauses C1 and C2 be two clauses that can be combined (either
using instantiation or reduction) to produce a new clause C3. We require the selection strategy to
eventually get around to combining  C1 and  C2 and considering  C3. Consequently, a clause at
least as general as C3 will eventually be added to the derived set, since C3 itself will be added
unless it is subsumed by some other previously derived clause. We call such a selection strategy
fair.

Assume the program clauses are numbered from 1 to n, clause n+1 is the goal clause and new
derived clauses are numbered sequentially as they are added from n+2. Here is an example of a
fair scheduling policy:

i := n+1
repeat

for j := 1 to i-1 do
Attempt to combine clause i and clause j using instantiation and
reduction and add any new clauses to the set of derived clauses.

endfor
i := i+1

until i > the number of clauses

There are several more instantiations and reductions we can perform before we reach a point
where no new clauses can be derived. This example program quickly terminates and we show the
resulting clauses below. We have included comments and, for convenience, clauses (1) through
(7) are repeated.

Date Printed: 1/15/23 Page 4



Earley Deduction

Program Clauses:
p(X,Z) ← p(X,Y), p(Y,Z). (1)
p(a,b). (2)
p(b,c). (3)

Derived Clauses:
ans(Z) ← p(a,Z). Goal (4)
ans(b). 2 reduces 4 (5)
p(a,Z) ← p(a,Y), p(Y,Z). 4 instantiates 1 (6)
p(a,Z) ← p(b,Z). 2 reduces 6 (7)
p(b,Z) ← p(b,Y), p(Y,Z). 7 instantiates 1 (8)
p(a,c). 3 reduces 7 (9)
p(b,Z) ← p(c,Z). 3 reduces 8 (10)
p(c,Z) ← p(c,Y), p(Y,Z). 10 instantiates 1 (11)
ans(c). 9 reduces 4 (12)
p(a,Z) ← p(c,Z). 9 reduces 6 (13)

In examining these clauses, note how the right-hand sides of derived non-unit clauses represent
goals we have discovered that need solving in order to produce an answer. For example,  the
right-hand side of clause (7) indicates that we need to solve  p(b,Z) in order to complete a
proof.  The  head  of  clause  (7)  is  the  subgoal  that  motivates  the  proof  of  p(b,Z),  namely
p(a,Z). The goal  p(b,Z) was encountered while trying to solve the body of clause (6) and
was produced when clause (2) reduced clause (6).

The algorithm has a top-down component since new goals are only produced when needed to
satisfy existing goals. Although this example is too short to illustrate it, goals are only created
when  their  solution  is  relevant  in  solving  the  goal  clause.  The  algorithm also  has  a  strong
bottom-up flavor since once proven, solutions are stored and reused, rather than recomputed. For
example, once a solution for p(a,Z) is produced (e.g. clause (9)) it can be used by both clause
(4) and clause (6).

Soundness of Earley Deduction

We next give an informal argument that this proof procedure is correct (sound) in the sense that
any answer obtained implies the query is a logical consequence of the axioms. We assume the
reader is familiar  with refutation proofs [Robinson, 1965]. We first show that both inference
rules are sound. Then, by induction on the sequential numbering of the derived clauses, each
derived clause is a logical consequence of the program clauses and goal clause.

Recall  that  a  definite  clause is  a  disjunction  of  literals,  one  positive  and  several  negative,
although it is more intuitively written using an implication whose antecedent is a conjunction of
positive literals. The query, a conjunction of positive literals, is negated (and then re-written as a
disjunction of negative literals) and the proof is by refutation. The contradiction is represented by
the  empty clause. In the Earley Deduction Algorithm, the unit clause  ans(...) denotes the
empty clause and also carries  information  about  the binding obtained in  its  derivation.  This

Date Printed: 1/15/23 Page 5



Earley Deduction

technique of adding additional dummy literals to clauses to accumulate answer substitutions is
well-known (e.g. [Nilsson, 1971]).

In a traditional refutation proof, there is only one inference rule:  resolution.  Here we have 2
rules, instantiation and reduction. Reduction is clearly a special case of resolution, namely when
one of the two clauses consists of a single positive literal. A clause produced by instantiation can
also be seen to be a logical consequence of previous clauses since it is just an instantiated version
of an axiom. Thus, if the unit clause ans(...) is derived, the empty clause has been produced
and thus the refutation is complete. Figure 1, which shows graphically the relationships between
derived  clauses  in  the  proof  of  ans(c),  may  make  the  correspondence  between  Earley
Deduction proofs and the resolution proof process clearer.

Figure 1. An Earley Deduction Tree.

Completeness of Earley Deduction

We will call trees like the one in Figure 1 Earley Deduction Trees.2 The tree will always have
the empty clause ans(...) at the root and every node will either (1) have two children or (2)
be a program clause, goal clause or derived unit clause. If the node has two children, it will have
been produced from those clauses by either reduction or instantiation. For clauses produced by
reduction, one child will be a unit clause, since one of the clauses used in the reduction step must

2 Comments are shown in brackets and, technically, are not part of the tree.

Date Printed: 1/15/23 Page 6



Earley Deduction

be a unit clause. Clauses produced by instantiation will simply be less general instantiations of
some program rule.

In showing that Earley Deduction is complete, we assume that the query is provable (thus a proof
exists) and show that the algorithm will find a proof, expressed as an Earley Deduction Tree. If
the query is true, then a Prolog proof tree (to be described below) exists, although the Prolog
interpreter will not necessarily find it. We show how this tree can be converted into an Earley
Deduction Tree and then show that Earley Deduction will discover a tree at least as general.

Figure 2 is an example Prolog proof tree. The root node is the query clause and every other node
is an instantiated clause from the program. Note that the substitutions (which some authors just
attach  to  the  clauses)  have  already  been  performed  on  the  clauses.  In  the  example,  the
substitutions happened to have eliminated all variables but that will not always be the case. Also
note that the head of a child clause exactly matches one negative literal in its parent’s right-hand
side and that each negative literal in a parent clause matches the positive literal of one of its
children. If a refutation proof exists, then such a tree exists.

Figure 2. A Prolog Proof Tree.

Next, we show how to construct an Earley Deduction Tree from a Prolog proof tree. Call the
result the constructed tree. In the construction, we will associate an Earley tree with every node
in the Prolog tree. The construction is defined recursively, starting at the leaves of the Prolog tree
and working toward the root. The Earley tree associated with the root is the result.

The leaves of the Prolog tree are unit clauses from the program. With these, associate one-node
Earley trees consisting of the same program unit clauses.

The translation of interior nodes of the Prolog trees is shown diagrammatically in Figures 3 and
4. Figure 3 shows an interior node of the Prolog tree and the roots of the Earley trees associated
with each of its children. Figure 4 shows how to build the Earley tree to be associated with the
interior node of the Prolog tree shown in Figure 3.

Date Printed: 1/15/23 Page 7



Earley Deduction

Figure 3. An Interior Node.

Figure 4. Resulting Earley Deduction Tree.

As an example, Figure 5 shows the constructed tree associated with the Prolog proof tree shown
in Figure 2.

Date Printed: 1/15/23 Page 8



Earley Deduction

Figure 5. An Example Earley Deduction Tree.

Next, consider an interior node of the constructed Earley tree built from the Prolog proof tree. It
is labeled with a clause C3 and has two children whose roots are labeled with clauses C1 and C2.
If the Earley Deduction algorithm has already produced two clauses that are at least as general as
C1 and C2 then, because the selection strategy is fair, they will ultimately be combined to derive
a clause at least as general as C3.

Finally, note that the Earley Deduction algorithm begins with a collection of program and goal
clauses containing clauses at least as general as the clauses labeling the leaves of the constructed
tree.  By induction  on  the  size  of  the  constructed  tree,  we  conclude  that  the  algorithm will
ultimately derive a clause which is at least as general as the head of the goal clause labeling the
root of the Prolog proof tree. Thus, Earley Deduction is complete and will eventually find any
existing proof.

Termination for DATALOG

A DATALOG program is just a definite clause program that contains no functors. Our example
was such a program. The functor-free subset of definite clause logic is important because it can
be used  to  express  data  and queries  from relational  algebra  in  a  clear  and concise  way.  In
addition,  it  can be used to  express queries involving recursively defined data  (e.g.  transitive
closure queries) which are problematic in the relational paradigm.

Date Printed: 1/15/23 Page 9



Earley Deduction

Prolog is not altogether satisfactory for executing such queries because left-recursive rules may
cause non-termination and avoiding left-recursive rules may be inconvenient. Fortunately, Earley
Deduction is guaranteed to terminate whenever the program clauses contain no functors. We next
restrict our attention to DATALOG programs and show this.

Every step of the deduction adds a new clause to the set of derived clauses but these clauses are
never any longer than the longest program clause.3 To see that infinitely long clauses can never
be derived, consider the reduction and instantiation rules. Reduction takes a given clause (the
selected clause) and removes the selected literal. Thus reduction can’t be used to make longer
clauses. Instantiation takes a program clause and instantiates it and so it can’t be used to make a
longer clause either.

We assume that  the DATALOG program has  a  finite  number of clauses,  each with a  finite
number of literals and each of these with a finite number of arguments. Thus, there are a finite
number of predicates and constant symbols appearing in the program and goal clauses. Given a
finite number of symbols and some size k, there are only a finite number of clauses of length k or
fewer symbols. (Two clauses differing only in the names of variables are considered equal, so an
infinite supply of variable names does not effect this bound.)

The only question left is: Can we get stuck infinitely looking for but never finding a new derived
clause? At any moment, there are only a finite number of pairs of derived and program clauses
and there are only a couple of ways to combine each pair to produce a new clause. Given a newly
produced clause, the subsumption check can also be done in finite time. So, if there is another
clause that can be derived, the procedure must eventually find it.

Thus,  since  we  are  guaranteed  to  ultimately  produce  any  clause  that  can  be  derived  (by
completeness) and since we are guaranteed to never produce clauses longer than a given bound
and since there are only a finite number of such clauses, the process is guaranteed to terminate.
Of course, when we allow functor symbols, the derived clauses may be longer than either of the
two existing  clauses,  so  the  procedure  is  not  guaranteed  to  terminate  for  logic  programs in
general.

Implementation

We  have  implemented  Earley  Deduction  using  Smalltalk  on  a  Tektronix  4400  personal
workstation to evaluate the basic algorithm and to explore several optimizations. We began by
indexing the clauses using several keys to avoid searching all clauses during the subsumption
check, the reduction step and the instantiation step.

To speed up the subsumption check, a  complete key based on the predicate names and their
arities is created. For example, the clause:

p(X,Y) ← q(a,X,Y), r(f(X,Y)).

3 By  length we mean  number  of  symbols,  ignoring  the  number  of  characters  in  any given
symbol.

Date Printed: 1/15/23 Page 10



Earley Deduction

has the complete key p-2-q-3-r-1. To determine whether a clause is subsumed by any existing
derived clauses, only the clauses in the clause database with the same complete key need to be
considered.

For reduction,  we maintain  an index based on the  selected-literal  key which consists  of  the
predicate name of the selected (i.e., first) literal and its arity. The selected-literal key for this
clause is q-3. Each unit clause is used in an attempt to reduce all other clauses in the database.
Since the unit clause must unify with the selected literal of other clauses, only those clauses with
a selected-literal key matching the complete key of the unit clause need to be retrieved.

Finally for instantiation, an index based on the program-rule-head key is maintained. For every
non-unit program clause, a program-rule-head key is computed from the predicate name of the
head (positive) literal  and its arity. For the above clause,  it  is  p-2. Given a non-unit derived
clause that we wish to use to instantiate program clauses, we compute a key based on its selected
literal and arity. Then we need only consider those clauses with an identical program-rule-head
index.

Optimizations for DATALOG Programs

To increase the algorithm’s performance further while restricting it to DATALOG programs,
secondary indices  based on  format vectors are maintained in addition to the primary indices
described above. The format vector for a clause is a string containing information about which
argument positions are filled by constants and about variable usage in the clause. The format
vector for the clause:

p(a,X,Y) ← q(Y,b), r(X).

is  #-1-2-2-#-1. The predicate and arity information (which is contained in the primary keys) is
not present in the format vector. The character “#” appears in the format vector in positions
corresponding to constants and the numbers serve as normalized variable names.

Given the complete key and format vector for a clause, all that is needed to fully specify the
clause (up to renaming of variables) are the values of the constants, which are represented simply
as tuples. In a database with more than a couple of clauses that are equal up to constant values
(and renaming of variables), this rather complex data representation saves space. Since many
clauses  with  identical  keys  and  format  vectors  are  generated  during  a  typical  DATALOG
execution, this representation pays off.

The main optimization for DATALOG, however, is  compiling the reduction and instantiation
steps. When a new clause is generated,  it  becomes necessary to compare it with all  existing
clauses to see what new clauses can be derived using the reduction or instantiation rules. Given
such a candidate clause, we must look through the primary indices and, for each, we must look
through all format vectors. Associated with each of these is a set of tuples, each one representing
a  clause.  Since  all  these  tuples  (clauses)  have  the  same  key  and  same  format  vector,  the
unification can be done for all the tuples at once by abstracting away from the actual values of

Date Printed: 1/15/23 Page 11



Earley Deduction

the constants. The result of such a compiled unification is a sequence of equality checks, which
can then be evaluated quickly for each of the tuples in the set.

We gloss over the details  of the compilation step (see [Porter, 1985]) by giving an example
compilation for a reduction step. Consider the candidate clause:

q(a, b, b, U, U, V, V).

This clause must be used to reduce all clauses with a seven-placed predicate named  q as the
selected literal. To find these clauses, we first use the selected-literal index to retrieve all those
clauses with keys of the form x-x-q-7-x-x-.... One such key is p-3-q-7-r-3 and it will be used for
this example.

Associated with this key are several format vectors. We will look at

1-2-#-#-2-2-#-#-3-4-4-#-2

For example, the clauses

p(W,X,a) ← q(b,X,X,c,d,Y,Z), r(Z,e,X).
p(U,V,a) ← q(a,V,V,c,c,Y,W), r(W,e,V).
p(W,U,a) ← q(b,U,U,d,d,Y,Z), r(Z,e,U).

would be represented by the tuples

a b c d e
a a c c e
a b d d e

We call these tuples (clauses) the target tuples (clauses).

The compilation phase may fail, in which case we know that none of the target tuples unify with
the candidate tuple without ever looking at any of the target tuples. In this example however, the
compilation succeeds producing the following “instruction” sequence:

#2  =  a
#3  =  #4

These instructions say that any tuple with the constant a in the second position and with the third
and fourth positions equal unifies with the candidate clause.

For every such tuple we must construct a new derived tuple. By removing the selected literal
from the target clauses, we get the key p-3-r-3. The compilation phase also produces a format
vector describing the new clauses (1-#-#-2-#-#) along with the following information telling how
to construct the new derived tuples from the target tuples:

Date Printed: 1/15/23 Page 12



Earley Deduction

#1 ← b
#2 ← #1

#3 ← #5

#4 ← b

After the compilation is complete, the equality comparisons are evaluated for each of the target
tuples. Only the second tuple satisfies them. The following derived tuple can then be constructed
using the tuple creation information:

b a e b

This tuple represents the desired clause:

p(X,b,a) ← r(Y,e,b).

These  operations—comparing  and  manipulating  tuple  values—are  familiar  from  relational
algebra [Maier, 1983]. In fact, the process of executing the comparisons and creating new tuples
representing  reduced clauses  for  any tuples  found to  satisfy the  comparisons  can  always be
expressed using standard relational operators. If we label the positions of the target tuples with
the attribute names A1, A2, ... A5 and call the set of target tuples the relation r, the set of tuples
representing  the  reduced  clauses  in  this  example  can  be  represented  (using  the  notation  of
[Maier, 1983]) as:

δA2,A3A1,A5 (π{A1,A5}(σA2=a  (r[A3=A4]r))) ⋈ <b:A1 b:A4> 

A very similar compilation-execution technique is used to speed up the instantiation step and the
subsumption check.

Earley Deduction will  terminate for DATALOG programs even if  the subsumption check is
relaxed to an equality check. In that case, a new tuple is not added to the derived set if it is
already there. By using a hash table index for the individual tuples, this check can be done in
essentially constant time. We will save time only if the time saved by using the equality check
outweighs the additional time associated with processing extra clauses that would have been
deleted by the full subsumption check.

Another optimization we implemented involves batching up the subsumption checking. In the
course of a reduction (or instantiation) step, a number of clauses with identical keys and format
vectors will be created. The subsumption check must be performed on each of these before it can
be added to the derived set. By delaying the subsumption checking until one of these tuples is
referenced, a number of very similar compilations can be replaced with a single compilation.
Then  the  subsumption  check  for  all  of  the  clauses  is  performed  at  one  time  by repeatedly
executing the compiled “instructions”.

Date Printed: 1/15/23 Page 13



Earley Deduction

Conclusions

All of the implementation optimizations described above were implemented and a number of
programs  were  executed  to  determine  whether  and  how  much  they  speeded  up  the  Earley
Deduction algorithm. For general logic programs, Earley Deduction is not nearly fast enough to
compete  with  typical  Prolog  interpreters.  Its  usefulness  arises  when  you  want  to  run  logic
programs without concern for the order of the program clauses (or literals within the clauses)
and/or you want all solutions in the face of possible non-termination. We are interested in using
it  to  execute  large Natural  Language rule-based parsers.  We want  to  be able  to  express the
grammar as clearly as possible, without letting implementation details like clause/literal order get
in the way. As in many logic programs, the rules in logic grammars express general knowledge
about language and it is often difficult to foresee how they will be used. Another area where the
generality of Earley Deduction is desirable is for systems in which the clauses are generated
automatically by a program that would be unnecessarily complicated by concern about execution
order.

Representing the clauses as tuples and compiling the reduction step, the instantiation step and the
subsumption check for DATALOG programs resulted in a significant speed-up over the general
algorithm—over 10 times for some of the programs tried. Replacing the subsumption check with
the simpler equality check speeded the algorithm up a little more (8.8% for the programs we
tried) and replacing the equality check by the batched subsumption check improved performance
even more (20.3%). Furthermore, the improvement realized from the DATALOG optimizations
increases as the length of the deduction grows since compiling has a greater benefit the more
times the compiled instructions are executed.

Our experiments were performed entirely within the Smalltalk environment. Using the clause
representation  described  above,  it  would  be  fairly  straightforward  to  store  the  tuples  in  a
traditional  relational  database,  keeping  the  compilation  and  overall  system  organization  in
Smalltalk. All access to the tuples can be done using standard relational operators. In this way,
the system could be enhanced to handle large DATALOG programs. An empirical evaluation of
such a system (vis-à-vis a Prolog interpreter) is one direction for further research.

Related Work

The most closely related work has been done by S. W. Dietrich and D. S. Warren. They describe
a  method  for  executing  logic  programs  using  extension  tables which  is  also  complete  for
DATALOG  programs  [Dietrich  &  Warren,  1986].  Their  approach  is  to  apply  dynamic
programming to the execution of logic programs. In the basic algorithm, a table of computed
tuples is associated with each predicate. Each time a rule is used to compute a new tuple for a
predicate,  it  is  added  to  the  corresponding  table—thus  the  name  extension  tables.  Certain
modifications are necessary to avoid infinite looping in the presence of recursive rules. The use
of extension tables is particularly exciting because it can be applied to nasty predicates without
invoking  the  overhead  of  large  extension  tables  for  trivial  predicates  which  are  easier  to
recompute when needed.

Date Printed: 1/15/23 Page 14



Earley Deduction

D.E.  Smith,  M.R.  Genesereth  and M.L.  Ginsberg define  a  recursive  inference  as  an infinite
sequence of goals containing repeated similar subgoals. By examining goal sequences, certain
portions of the search space can be identified  as unable to produce any new answers.  They
present a number of theoretical results about where the search for a proof may safely be pruned
[Smith, Genesereth & Ginsburg, 1986]. In addition, they also present a number of provocative
examples while discussing infinite inference chains and techniques for dealing with them.

Another  system concerned  with  the  execution  of  functor-free  programs  is  Jeffrey  Ullman’s
NAIL! system [Ullman,  1984, Ullman, 1985]. Summarizing,  the system compiles  queries by
building a  rule/goal graph describing the clauses and their interconnectivity. The system then
analyses this graph trying to find a relational expression that effectively computes the answer
relation. The desired relational expression can be produced if nodes in the tree can be captured
and a number of  capture rules are described. L. J. Henschen and S. A. Naqvi also describe an
algorithm for compiling queries in the functor-free subset of logic [Henschen & Naqvi, 1984].

Summary

In summary, we have described Earley Deduction, an algorithm for executing logic programs
which  appears  useful  in  specialized  applications,  particularly  where  non-termination  is  a
problem.  We  then  looked  at  the  relational  subset  of  logic  and  discussed  a  number  of
implementation  techniques  that  improved  performance  considerably  in  our  experiments.  It
appears that, for sufficiently large programs in the relational subset, Earley Deduction can be
made faster and more practical than the traditional Prolog interpreter.

Acknowledgements

I am gratefully indebted to the following people, with whom stimulating conversations have led
to  the  ideas  presented  here:  David  S.  Warren,  Fernando  Pereira,  Susan  W.  Dietrich,  Mark
Grossman, Mark Ballard, Cliff Walinsky and, particularly, David Maier.

REFERENCES

[Dietrich & Warren, 1986]
Dietrich, S.W. and Warren, D.S., Extension Tables: Memo Relations in Logic Programming,
Technical Report 86/18, CS Dept., SUNY, Stony Brook, New York, 1986.

[Earley, 1970]
Earley, Jay, An efficient context-free parsing algorithm, Comm. ACM 6(8):451-455 (1970).

[Henschen & Naqvi, 1984]
Henschen, L.J. and Naqvi S.A., On Compiling Queries in Recursive First-Order Databases, J.
ACM 31(1):47-85 (1984).

Date Printed: 1/15/23 Page 15



Earley Deduction

[Maier, 1983]
Maier,  David,  The Theory  of  Relational  Databases,  Computer  Science  Press,  Rockville,
Maryland, 1983.

[Nilsson, 1971]
Nilsson,  Nils  J.,  Problem Solving  Methods  in  Artificial  Intelligence,  McGraw-Hill,  New
York, 1971.

[Pereira & Warren, 1983]
Pereira  F.C.N.  and Warren  D.H.D.,  Parsing  as  deduction,  ACL Conference  Proceedings,
1983.

[Porter, 1985]
Porter,  Harry  H.  III,  Optimizations  to  Earley  Deduction  for  DATALOG  Programs,
Unpublished memorandum, 16 October 1985.

[Robinson, 1965]
Robinson,  J.A.,  A Machine-Oriented  Logic  Based  on  the  Resolution  Principle,  J.  ACM,
12(1):23-41 (1965).

[Smith, Genesereth & Ginsburg, 1986]
Smith,  D.E.,  Genesereth,  M.R.  and  Ginsberg,  M.L.,  Controlling  Recursive  Inference,
Artificial Intelligence, 30(3):343-389 (1986).

[Ullman, 1984]
Ullman, J.D., Testing Applicability of Top-Down Capture Rules, Unpublished memorandum,
Dept. of CS, Stanford University, 1984.

[Ullman, 1985]
Ullman,  J.D.,  Implementation  of  Logical  Query  Languages  for  Databases,  ACM  Trans.
Database Systems, 10(4), (1985).

Date Printed: 1/15/23 Page 16


