
Section 3.2 CS340-Discrete Structures

Section 3.2: Recursively Defined Functions
 and Procedures

Function: Has inputs (“arguments”, “operands”) and output (“result”)
 No “side effects”.

Procedure: May have side effects, e.g., “print(…)”

 A recursive function (or procedure) calls itself!

A function f is recursively defined if at least one value of f(x) is defined
in terms of another value, f(y), where x≠y.

Similarly: a procedure P is recursively defined if the action of P(x) is
defined in terms of another action, P(y), where x≠y.

When an argument to a function is inductively defined, here is a technique
for creating a recursive function definition:
 1. Specify a value of f(x) for each basis element x in S.
 2. For each inductive rule that defines an element x in S in terms of

 some element y already in S, specify rules in the function
 that compute f(x) in terms of f(y).

Page 1

Section 3.2 CS340-Discrete Structures Page 2

Example: Find a recursive definition for function f:NN defined by
 f(n) = 0 + 3 + 6 + … + 3n.
 e.g., f(0) = 0
 f(1) = 0 + 3
 f(2) = 0 + 3 + 6

Solution: Notice that N is an inductively defined set:
 0∈N; n∈N implies n+1∈N
 So we need to give f(0) a value and
 we need to deinfe f(n+1) in terms of f(n).

The value for f(0) should be 0. What about f(n+1)?
 f(n+1) = 0 + 3 + 6 + … 3n + 3(n+1)
 = f(n) + 3(n+1)

So here is our (recursive) definition for f:
 f(0) = 0
 f(n+1) = f(n)+3(n+1)

We could also write:
 f(0) = 0
 f(n) = f(n-1)+3n for n>0

Here is a more programming-like definition:
 f(n) = (if n=0 then 0 else f(n-1)+3n endIf)

Section 3.2 CS340-Discrete Structures Page 3

Example: Find a recursive definition for
 cat: A* × A*  A*
 defined by cat(s,t) = st

Solution: Notice that A* is inductively defined.
 Basis: Λ∈A*; Induction: a∈A and x∈A* imply ax∈A*

We can define cat recursively using the first argument.

The definition of cat gives
 cat(Λ,t) = Λt = t.

For the recursive part we can write
 cat(ax,t) = axt = a(xt) = acat(x,t)

Here is a definition:
 cat(Λ,t) = t
 cat(ax,t) = acat(x,t)

Here is the if-then-else form:
 cat(s,t) = if s=Λ then t else head(s)cat(tail(s),t)

Section 3.2 CS340-Discrete Structures Page 4

Example: Find a definition of f:lists(Q)Q defined by
 f(<x1, …, xn>) = x1 + … + xn

Solution: Notice that the set lists(Q) is defined rescursively.
 Basis: <>∈lists(Q)
 Induction: h∈Q and t∈lists(Q) imply h::t∈lists(Q)

To discover a recursive definition, we can use the definition of f as follows:
 f(<x1, …, xn>)
 = x1 + x2 … + xn
 = x1 + (x2 + … + xn)
 = x1 + f(<x2, … ,xn>)
 = head(<x1, …, xn>) + f(tail(<x1, …, xn>))

So, here is our recursive definition:
 f(<>) = 0
 f(h::t) = h + f(t)

Expressing this in the if-then-else form:
 f(L) = if L=<> then 0 else head(L)+f(tail(L))

Section 3.2 CS340-Discrete Structures Page 5

Example: Given f:NN as defined by
 f(0) = 0
 f(1) = 0
 f(x+2) = 1+f(x)

Here is the if-then-else formulation:
 f(x) = if (x=0 or x=1) then 0 else 1 + f(x-2)

What exactly does this function do?

Let’s try to get an idea by enumerating a few values.
 map(f,<0,1,2,3,4,5,6,7,8,9>) = <0,0,1,1,2,2,3,3,4,4>

So f(x) returns the floor of x/2. That is, f(x) = x/2.

Section 3.2 CS340-Discrete Structures Page 6

Example: Find a recursive definition for the function f:lists(Q)Q
 as defined by:
 f(<x1, …, xn>) = x1x2 + x2x3 + … + xn-1xn

Approach:
 Let f(<>) = 0 and f(<x>) = 0. Then for n≥2 we can write:
 f(<x1, …, xn>)
 = x1x2 + x2x3 + … + xn-1xn
 = x1x2 + (x2x3 + … + xn-1xn)
 = x1x2 + f(<x2, …, xn>)
 So here is our recursive definition:
 f(<>) = 0
 f(<x>) = 0
 f(h::t) = h·head(t) + f(t).

 We can express this in if-then-else form as:
 f(L) = if (L=<> or tail(L)=<>)
 then
 0
 else
 head(L)·head(tail(L)) + f(tail(L))
 endIf

Section 3.2 CS340-Discrete Structures Page 7

Example: Find a recursive definition for the function
 isin : A × lists(A)  {true,false}
 where isin(x,L) means that x occurs in the list L.

Solution:
 isin(x,<>) = false
 isin(x,x::t) = true
 isin(x,y::t) = isin(x,t), where x ≠ y

Here’s the if-then-else form:

 isin(x,L) = if L=<>
 then
 false
 else
 if x=head(L)
 then
 true
 else
 isin(x,tail(L))
 endIf
 endIf

Section 3.2 CS340-Discrete Structures Page 8

Example: Find a recursive definition for the function
 isin : A × lists(A)  {true,false}
 where isin(x,L) means that x occurs in the list L.

Solution:
 isin(x,<>) = false
 isin(x,x::t) = true
 isin(x,y::t) = isin(x,t), where x ≠ y

Here’s the if-then-else form:

 isin(x,L) = if L=<>
 then
 false
 else
 x=head(L) or isin(x,tail(L))
 endIf

Section 3.2

From Previous Slide

CS340-Discrete Structures Page 9

Example: Find a recursive definition for
 sub: lists(A) × lists(A)  {true,false}
 where sub(L,M) means the elements of L are elements of M.

Solution:

 Here is a pattern-matching solution:
 sub(<>,M) = true
 sub(h::t,M) = if isin(h,M) then sub(t,M) else false

 Here is a programmatic (executable) version:
 sub(L,M) = if L=<>
 then
 true
 else
 if isin(head(L),M)
 then
 sub(tail(L),M)
 else
 false
 endIf
 endIf

Section 3.2 CS340-Discrete Structures Page 10

Example: Find a recursive definition for
 intree: Q × binSearchTrees(Q)  {true,false}
 where intree(x,T) means x is in the binary search tree T.

Solution:
 intree(x,<>) = false
 intree(x,<L,x,R>) = true
 intree(x,<L,y,R>) = if x<y then intree(x,L) else intree(x,R)

Why is this a better definition?
 intree(x,<>) = false
 true, if x=y
 intree(x,<L,y,R>) = intree(x,L), if x<y
 intree(x,R), if x>y

Here is the if-then-else form:
 intree(x,T) = if T=<> then false
 elseIf x=root(T) then true
 elseIf x<root(T) then intree(x,left(T))
 else intree(x,right(T))
 endIf

Section 3.2 CS340-Discrete Structures Page 11

Traversing Binary Trees

There are 3 ways to traverse a binary tree.
Each is defined recursively.

preorder(T): if T≠<> then
 visit root; preorder(left(T)); preorder(right(T))

inorder(T): if T≠<> then
 inorder(left(T)); visit root; inorder(right(T))

postorder(T): if T≠<> then
 postorder(left(T)); postorder(right(T); visit root

Example: Traverse this tree in each of the orders:

 Solution:
 pre-order:
 in-order:
 post-order:

a

d e

b c

Section 3.2 CS340-Discrete Structures Page 12

Traversing Binary Trees

There are 3 ways to traverse a binary tree.
Each is defined recursively.

preorder(T): if T≠<> then
 visit root; preorder(left(T)); preorder(right(T))

inorder(T): if T≠<> then
 inorder(left(T)); visit root; inorder(right(T))

postorder(T): if T≠<> then
 postorder(left(T)); postorder(right(T); visit root

Example: Traverse this tree in each of the orders:

 Solution:
 pre-order: a (b d e) (c)
 in-order: (d b e) a (c)
 post-order: (d e b) (c) a

a

d e

b c

The parentheses are
not part of the
answer, but adding
them makes things
clearer.

Section 3.2 CS340-Discrete Structures Page 13

Example: Find a recursive definition for
 post: binaryTrees(A)  lists(A)
 where post(T) is the list of nodes from a pot-order traversal of T.

Solution:
 post(<>) = <>
 post(<L,x,R>) = cat(post(L),cat(post(R),<x>)

The function cat will concatenate two lists, and can be defined as:
 cat(<>,L) = L
 cat(h::t,L) = h::cat(t,L)

Example: Find a recursive definition for
 sumnodes: binaryTrees(Q)  Q
 where sumnodes(T) returns the sum of the nodes in T.

Solution:
 sumnodes(<>) = 0
 sumnodes(<L,x,R>) = x + sumnodes(L) + sumnodes(R)

Section 3.2 CS340-Discrete Structures Page 14

Infinite Sequences
We can construct recursive definitions for infinite sequences by defining a
value f(x) in terms of x and f(y) for some value y in the sequence.

Example: Suppose we want to define a function f that returns an infinite
sequence. The function f should return this sequence:

 f(x) = <x1, x2, x4, x8, x16, … >
Approach:

 Look at the definition and try to find a solution:
 f(x)
 = <x1, x2, x4, x8, x16, … >
 = x :: <x2, x4, x8, x16, … >
 = x :: f(x2)
 So we can define:
 f(x) = x :: f(x2)
 This function returns an infinite sequence.

Q: Of what use is such a function in computing???

A: We can use “lazy evaluation”: When we need an element from f(x),
 we’ll need to evaluate f. Yes, this is an infinite computation, but we’ll
 do only as much work as necessary to get the element we need.

Section 3.2 CS340-Discrete Structures Page 15

Example: What sequence is defined by g(x,k)= xk :: g(x,k+1)?

Solution: g(x,k) = xk :: g(x,k+1)
 = xk :: xk+1 :: g(x,k+2)
 = <xk, xk+1, xk+2, …>

Example: How do we obtain the sequence <x, x3, x5, x7, …>?

Solution: Define f(x) = h(x,1)
 where h(x,k) = xk :: h(x,k+2)

Example: How do we obtain the sequence <1, x2, x4, x6, x8, …>?

Solution: Define f(x) = h(x,0), where h is from the previous example.

