
Section 3.2 CS340-Discrete Structures 

Section 3.2: Recursively Defined Functions 
  and Procedures 

Function: Has inputs (“arguments”, “operands”) and output (“result”) 
  No “side effects”. 

Procedure: May have side effects, e.g., “print(…)”  

  A recursive function (or procedure) calls itself!  

A function f is recursively defined if at least one value of f(x) is defined 
in terms of another value, f(y), where x≠y. 

Similarly: a procedure P is recursively defined if the action of P(x) is 
defined in terms of another action, P(y), where x≠y. 

When an argument to a function is inductively defined, here is a technique 
for creating a recursive function definition: 
  1.  Specify a value of f(x) for each basis element x in S. 
  2.  For each inductive rule that defines an element x in S in terms of 

  some element y already in S, specify rules in the function 
  that compute f(x) in terms of f(y). 
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Example: Find a recursive definition for function f:NN defined by 
   f(n) = 0 + 3 + 6 + … + 3n. 
 e.g.,  f(0) = 0 
   f(1) = 0 + 3 
   f(2) = 0 + 3 + 6 

Solution: Notice that N is an inductively defined set: 
    0∈N; n∈N implies n+1∈N 
  So we need to give f(0) a value and 
   we need to deinfe f(n+1) in terms of f(n). 

The value for f(0) should be 0.  What about f(n+1)? 
 f(n+1) = 0 + 3 + 6 + … 3n + 3(n+1) 
   = f(n) + 3(n+1) 

So here is our (recursive) definition for f: 
 f(0) = 0 
 f(n+1) = f(n)+3(n+1) 

We could also write: 
 f(0) = 0 
 f(n) = f(n-1)+3n for n>0 

Here is a more programming-like definition: 
 f(n) = ( if n=0 then 0 else f(n-1)+3n endIf ) 
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Example: Find a recursive definition for 
  cat: A* × A*  A* 
 defined by cat(s,t) = st 

Solution: Notice that A* is inductively defined. 
  Basis: Λ∈A*; Induction: a∈A and  x∈A* imply ax∈A* 

We can define cat recursively using the first argument. 

The definition of cat gives 
 cat(Λ,t) = Λt = t. 

For the recursive part we can write 
 cat(ax,t) = axt = a(xt) = acat(x,t) 

Here is a definition: 
 cat(Λ,t) = t 
 cat(ax,t) = acat(x,t) 

Here is the if-then-else form: 
 cat(s,t)    =    if s=Λ then t else head(s)cat(tail(s),t) 
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Example:  Find a definition of   f:lists(Q)Q   defined by 
  f(<x1, …, xn>) = x1 + … + xn 

Solution: Notice that the set lists(Q) is defined rescursively. 
  Basis: <>∈lists(Q) 
  Induction: h∈Q and t∈lists(Q) imply h::t∈lists(Q) 

To discover a recursive definition, we can use the definition of f as follows: 
 f(<x1, …, xn>) 
  = x1 + x2 … + xn 
  = x1 + (x2 + … + xn) 
  = x1 + f(<x2, … ,xn>) 
  = head(<x1, …, xn>) + f(tail(<x1, …, xn>)) 

So, here is our recursive definition: 
  f(<>) = 0 
  f(h::t) = h + f(t) 

Expressing this in the if-then-else form: 
  f(L)   =  if L=<> then 0 else head(L)+f(tail(L)) 
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Example: Given f:NN as defined by 
 f(0) = 0 
 f(1) = 0 
 f(x+2) = 1+f(x) 

Here is the if-then-else formulation: 
 f(x) =    if (x=0 or x=1) then 0 else 1 + f(x-2) 

What exactly does this function do? 

Let’s try to get an idea by enumerating a few values. 
 map(f,<0,1,2,3,4,5,6,7,8,9>) = <0,0,1,1,2,2,3,3,4,4> 

So f(x) returns the floor of x/2.  That is, f(x) = x/2. 
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Example:  Find a recursive definition for the function f:lists(Q)Q 
 as defined by: 
  f(<x1, …, xn>) = x1x2 + x2x3 + … + xn-1xn 

Approach: 
 Let f(<>) = 0 and f(<x>) = 0.  Then for n≥2 we can write: 
  f(<x1, …, xn>) 
   = x1x2 + x2x3 + … + xn-1xn 
   = x1x2 + (x2x3 + … + xn-1xn) 
   = x1x2 + f(<x2, …, xn>) 
 So here is our recursive definition: 
  f(<>) = 0 
  f(<x>) = 0 
  f(h::t) = h·head(t) + f(t). 

 We can express this in if-then-else form as: 
  f(L) =  if  (L=<> or tail(L)=<>) 
    then 
     0 
    else 
     head(L)·head(tail(L)) + f(tail(L)) 
    endIf 
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Example:  Find a recursive definition for the function 
  isin : A × lists(A)  {true,false} 
 where isin(x,L) means that x occurs in the list L. 

Solution: 
 isin(x,<>) = false 
 isin(x,x::t) = true 
 isin(x,y::t) = isin(x,t), where x ≠ y 

Here’s the if-then-else form: 

 isin(x,L) =  if L=<> 
    then 
     false 
    else 
     if x=head(L) 
     then 
      true 
     else 
      isin(x,tail(L)) 
     endIf 
    endIf 
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Example:  Find a recursive definition for the function 
  isin : A × lists(A)  {true,false} 
 where isin(x,L) means that x occurs in the list L. 

Solution: 
 isin(x,<>) = false 
 isin(x,x::t) = true 
 isin(x,y::t) = isin(x,t), where x ≠ y 

Here’s the if-then-else form: 

 isin(x,L) =  if L=<> 
    then 
     false 
    else 
     x=head(L) or isin(x,tail(L)) 
    endIf 
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Example: Find a recursive definition for 
  sub: lists(A) × lists(A)  {true,false} 
 where sub(L,M) means the elements of L are elements of M. 

Solution:  

 Here is a pattern-matching solution: 
  sub(<>,M) = true 
  sub(h::t,M) = if isin(h,M) then sub(t,M) else false 

  Here is a programmatic (executable) version: 
  sub(L,M) = if L=<> 
     then 
      true 
     else 
      if isin(head(L),M) 
      then 
       sub(tail(L),M) 
      else 
       false 
      endIf 
     endIf 
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Example: Find a recursive definition for 
  intree: Q × binSearchTrees(Q)  {true,false} 
 where intree(x,T) means x is in the binary search tree T. 

Solution:  
 intree(x,<>) = false 
 intree(x,<L,x,R>) = true 
 intree(x,<L,y,R>) = if x<y then intree(x,L) else intree(x,R) 

Why is this a better definition? 
 intree(x,<>) = false 
       true, if x=y 
 intree(x,<L,y,R>) =  intree(x,L), if x<y 
       intree(x,R), if x>y 

Here is the if-then-else form: 
 intree(x,T) =  if T=<> then false 
     elseIf x=root(T) then true 
     elseIf x<root(T) then intree(x,left(T)) 
     else intree(x,right(T)) 
     endIf 
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Traversing Binary Trees 

There are 3 ways to traverse a binary tree. 
Each is defined recursively. 

preorder(T): if T≠<> then 
    visit root; preorder(left(T)); preorder(right(T)) 

inorder(T): if T≠<> then 
    inorder(left(T)); visit root; inorder(right(T)) 

postorder(T): if T≠<> then 
    postorder(left(T)); postorder(right(T); visit root 

Example: Traverse this tree in each of the orders: 

         Solution: 
          pre-order: 
          in-order: 
          post-order: 

a 

d e 

b c 
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Traversing Binary Trees 

There are 3 ways to traverse a binary tree. 
Each is defined recursively. 

preorder(T): if T≠<> then 
    visit root; preorder(left(T)); preorder(right(T)) 

inorder(T): if T≠<> then 
    inorder(left(T)); visit root; inorder(right(T)) 

postorder(T): if T≠<> then 
    postorder(left(T)); postorder(right(T); visit root 

Example: Traverse this tree in each of the orders: 

         Solution: 
          pre-order:  a (b  d  e) (c) 
          in-order: (d  b  e) a (c) 
          post-order:  (d  e  b) (c) a 

a 

d e 

b c 

The parentheses are 
not part of the 
answer, but adding 
them makes things 
clearer. 
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Example: Find a recursive definition for 
   post: binaryTrees(A)  lists(A) 
 where post(T) is the list of nodes from a pot-order traversal of T. 

Solution: 
 post(<>) = <> 
 post(<L,x,R>) = cat(post(L),cat(post(R),<x>) 

The function cat will concatenate two lists, and can be defined as: 
 cat(<>,L) = L 
 cat(h::t,L) = h::cat(t,L) 

Example: Find a recursive definition for 
   sumnodes: binaryTrees(Q)  Q 
 where sumnodes(T) returns the sum of the nodes in T. 

Solution: 
 sumnodes(<>) = 0 
 sumnodes(<L,x,R>) = x + sumnodes(L) + sumnodes(R) 
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Infinite Sequences 
We can construct recursive definitions for infinite sequences by defining a 
value f(x) in terms of x and f(y) for some value y in the sequence. 

Example: Suppose we want to define a function f that returns an infinite 
sequence.  The function f should return this sequence: 

 f(x) = <x1, x2, x4, x8, x16, … > 
Approach: 

 Look at the definition and try to find a solution: 
  f(x) 
   = <x1, x2, x4, x8, x16, … > 
   = x :: <x2, x4, x8, x16, … > 
   = x :: f(x2) 
 So we can define: 
  f(x) = x :: f(x2) 
 This function returns an infinite sequence. 

Q: Of what use is such a function in computing??? 

A: We can use “lazy evaluation”: When we need an element from f(x), 
  we’ll need to evaluate f.  Yes, this is an infinite computation, but we’ll 
  do only as much work as necessary to get the element we need. 
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Example: What sequence is defined by g(x,k)= xk :: g(x,k+1)? 

Solution:   g(x,k) = xk :: g(x,k+1) 
     = xk :: xk+1 :: g(x,k+2)  
     = <xk, xk+1, xk+2, …> 

Example: How do we obtain the sequence <x, x3, x5, x7, …>? 

Solution: Define f(x) = h(x,1) 
   where h(x,k) = xk :: h(x,k+2) 

Example: How do we obtain the sequence <1, x2, x4, x6, x8, …>? 

Solution: Define f(x) = h(x,0), where h is from the previous example. 


