
CS-321 Compiler Design

Page 1

Programming Project #5: Symbol Table

Due Date: Tuesday, November 15, 2005, Noon

Overview
In this project, you will create a file called Checker.java which will traverse (i.e., “walk”) the
abstract syntax tree, processing symbol table information and catching several errors related to
symbol usage.

Files
The following files can be found via the class web page or FTPed from:

~harry/public_html/compilers/p5

Main.java
This file has been altered to create a Checker object and invoke the method checkAst().

Checker.java
This is the file you will create and turn in.

CheckerStarter.java
You may use this file to get started.

SymbolTable.java
This file is new and includes methods to create and access the symbol table.

Ast.java
This file is unchanged, but you will use some fields that were not used in the last project.

PrintAst.java
This file has been modified to include printing of the new fields.

PrettyPrintAst.java
This file is new. It prints out the AST in “pretty” format, looking like source code.

Lexer.class
Token.java
StringTable.java
FatalError.java
LogicError.java

These files are unchanged.

CS-321 Compiler Design

Page 2

Parser.class
This is a compiled version of my parser. You may use it if your Parser.java is incomplete,
just as you may use my version of the lexical analyzer, Lexer.class. Comment out the
appropriate lines in the makefile.

makefile
tst
go
run
runAll

Same as before, but altered for this project. (There is only one tst directory this time.)

Main.jar
This is the “black box” code, which was used to produce the output files in tst. You may
run this program on various PCAT source files to determine what output your program
should produce.

You may temporarily modify other .java or tst files in the course of debugging (for example, you
might modify Main.java to comment out the call to printAst, to reduce the size of the output), but
your final program (Checker.java) should work with the versions of the files I provide. Your
program will be tested using my version of Lexer.class and Parser.class.

Overall Organization
You will write a method called checkAst() to walk the abstract syntax tree. The main() method
will call parseProgram() to produce an AST. It will then call your checkAst() method to traverse
the entire tree. Finally, it will call printAst() to print out the AST. It also calls prettyPrintAst()
to produce a formatted version of the AST.

Here is the main driver I have provided (more-or-less):

 parser = new Parser (args);
 ast = parser.parseProgram ();
 checker = new Checker ();
 checker.checkAst (ast);
 PrintAst.printAst (ast);
 PrettyPrint.prettyPrintAst (ast);

The code in checkAst() and the routines it calls should check for and report certain semantic errors
(discussed later) and your code should also initialize the new fields (myDef, lexLevel, and
currentLevel) in several AST nodes.

You should create a single file called Checker.java. This file should contain a class called
Checker. This class should have a method called checkAst() as well as related methods as
needed.

You may use the Lexer.java and Parser.java files you wrote or you may use the Lexer.class and
Parser.class files I have provided. If you use my lexer and/or parser you will need to modify the
makefile.

CS-321 Compiler Design

Page 3

CheckerStarter.java
A file called CheckerStarter.java has been included and you may use it to get started.

PrettyPrint.java
A file called PrettyPrint.java has been included and you may find it useful in debugging. The
main() method contains a call to the method prettyPrintAst().

The class PrettyPrint contains a collection of methods which walk over the AST, printing it out as
it goes. You may wish to study this code to see one approach to walking the abstract syntax tree. It
is not necessarily the best way or the way you will want to use, but it may provide a starting point.

The tree is printed as a more-or-less legal PCAT program, which makes it much easier to read than
the output from printAst().

For example, the following source:

(* A very simple program *)

program
 is
var x,y : integer := 0;
 begin
 if x then

 x := y+3;
 end;
 end;

will be printed as follows. Note that comments are lost and the indentation is standardized.

PROGRAM IS
 VAR
 x: integer := 0;
 y: integer := 0;
 BEGIN
 IF x THEN
 x := (y + 3);
 END;
 END;

The prettyPrint methods may be modified, if you desire, to print out additional information, such
as the values of certain fields in the AST. This may be helpful in debugging, but the tst files all
make use of the more thorough printAst method. For further details on printing out additional
fields, see the comment at the beginning of PrettyPrint.java.

For complex compilers, such “pretty-print” code is invaluable in knowing what your data
structures look like at various points in compiler development. In my experience, the pretty-print
code is developed in parallel with the compiler itself. By enabling and disabling various print
statements in the pretty-print methods, we can see whatever information we are interested in at the
moment.

CS-321 Compiler Design

Page 4

PrintAst.java
The methods in PrintAst.java have been modified to print out the new fields. The output of
printAst() is often so long as to be unreadable; however it does a fairly comprehensive job of
dumping the entire AST and should catch any differences between your AST and the ones in the
.bak files.

New Fields in Ast.java
In this project, we will be concerned with several fields that were previously ignored. You will need
to fill in the following fields.

VarDecl
int lexLevel;

ProcDecl
int lexLevel;

Formal
int lexLevel;

TypeName
Ast.CompoundType myDef;

CallStmt
Ast.ProcDecl myDef;

FunctionCall
Ast.ProcDecl myDef;

ArrayConstructor
Ast.TypeDecl myDef;

RecordConstructor
Ast.TypeDecl myDef;

Variable
Ast.Node myDef;
int currentLevel;

The Symbol Table Routines
The file SymbolTable.java contains code to implement the Symbol Table. Since there will only
be one symbol table, all methods are static (class) methods and all fields are static. There will never
be any instances of this class.

Here are the methods you may call to manipulate the symbol table:

static void enter (String str, Ast.Node def)
static Ast.Node find (String str)
static boolean alreadyDefined (String str)
static void openScope ()
static void closeScope ()
static void printTable ()

CS-321 Compiler Design

Page 5

There is a static variable in this class called level which will keep track of the current lexical
“depth.” The level of the outer main program block is zero, so level is initialized to zero. The
lexical level of procedures defined in the main program body is 1; and nested procedures have
higher levels.

As your compiler enters a procedure, you should call openScope(); as you finish processing a
procedure, you should call closeScope(). OpenScope() and closeScope() will increment and
decrement level. They will also open a new scope in the symbol table into which variables may be
entered. When a scope is closed, all the symbol table entries for that level are forgotten.

The following kinds of symbols will be entered into the symbol table: variables, type names (from a
TypeDecl), procedure names, and formal parameter names.

Upon encountering the declaration of a symbol (i.e, a variable, type, formal, or procedure name),
you should enter it in the symbol table by calling enter(). Since every symbol may only be defined
once in each scope, you should call alreadyDefined() before calling enter(). If
alreadyDefined() returns TRUE, then an “Identifier is already defined” error is needed. (Of
course, there is no need to call enter() since we apparently have a definition for the symbol
already.)

To look up a symbol, you should use find(). It will search all scope levels, starting with the
highest (i.e., the top of the symbol table stack; the most deeply nested level) and continue to the
scope of the main program body. Find() will return the definition that was provided when the
symbol was entered, which will be a pointer to an Ast.Node, or null if the symbol was not found.

The symbol table routines have been augmented with “print” statements to produce a trace of their
usage in the hope that this will make testing easier.

There is also a method called printTable() which may be used to get a dump of the entire symbol
table. In the final version of your code, this method will not be called, but I included it since it may
help you in debugging. One reasonable place to call printTable() is right before the statements in
a Body are processed; this will be just after a bunch of variables, types and procedures have been
added.

Details of the Symbol Table Implementation
The symbol table is maintained as a hash table array called symbolTable[]. Each entry points to a
linked list of objects, of class Bucket. (Each of these lists is often called a “hash table bucket
list.”) There will be one Bucket per defined symbol. If a given identifier is declared several times
in several nested scopes, there will be one Bucket for each entry. The Bucket objects in any given
bucket list will be linked on their next field and will be in decreasing (more precisely non-
increasing) scope level order. When find() searches a bucket list, it will stop at the first Bucket
whose id matches the name being sought, thus returning the declaration from the greatest
(innermost) scope level in which a definition exists.

CS-321 Compiler Design

Page 6

static final int HASH_TABLE_SIZE = 211;
static Bucket [] symbolTable = new Bucket [HASH_TABLE_SIZE];
static int level = 0;

static class Bucket {
 String id; // Key: The symbol
 Ast.Node def; // Value: The definition of this symbol
 int hashVal; // What this id hashed to
 int scope; // Scope level at which this symbol entered
 Bucket next; // Ptr to next Bucket in this bucket list
 Bucket slink; // Ptr to next Bucket in this scope list
}

Each Bucket contains a def field which points to the definition associated with that symbol and a
scope field that gives the lexical level at which this symbol was defined.

In order to implement closeScope(), we could just go through all the entries in the hash table and
go through every list. For every bucket list, we would need to scan the list, removing the Buckets at
the front of it, until we hit an entry with a lower scope.

Often a program will have many blocks, each defining only one or two symbols. The above
approach to closing a scope must go through the entire hash table. In production systems, we like
to make hash tables very large to improve performance but this makes closing a scope time
consuming. Consequently, we will use a more complex data structure to make closing a scope
execute in time proportional to the number of symbols being removed from the table.

There will be one Scope object allocated every time we call openScope(). It will be added to the
front of a linked list. Every time we call closeScope() we will remove the Scope record at the front
of the list. The Scope records are linked on their next field.

// There is one "Scope" object for each active scope level; they are
// linked together in decreasing scope-level order by field "next".
// All symbols at a given level are linked into a list (the "scope
// list"), which is pointed to by the "slink" field.
//
static class Scope {
 Bucket slink; // Ptr to latest Bucket for this scope
 Scope next; // Ptr to next Scope record
}

static Scope scopeList = new Scope ();

(Notice that the initialization of scopeList to point to a list of one Scope object relies on the
initialization in Java of pointers to zero / null.)

Each Scope object will contain a pointer (called slink) to a linked list of all the Buckets that have
been added at that scope level. Thus, each Bucket object will be on two lists: one is the bucket list,
using the field next; the other is the linked list we are discussing here, using the slink field.

To close a scope, all we need to do is run through the slink list for the topmost scope and remove
each Bucket from its bucket list. To make this go even faster, we save the hash value of the symbol
so we don’t have to recompute it each time.

CS-321 Compiler Design

Page 7

Finally, there is a routine called printTable() which will print out the symbol table. The
printTable() method is never called by the black box code, so it is not strictly necessary in doing
this project, but you may find it helpful while debugging.

(By the way, you are free to modify your copy of Main.java to call printTable(), to comment out
calls to printAst(), or to do whatever else you want. Of course the grader will use the “standard”
copies of files like Main.java when he or she tests your Checker.java file.)

Symbol Definitions
The symbol table will contain an entry for each variable ID, type ID, procedure ID, and formal ID.

We could define a new class for symbol definition information, and depending on the details of the
language, this may be necessary or desirable. With PCAT, however, we can do something kind of
tricky, but which will reduce the amount of coding we need to do.

We will use VarDecl, TypeDecl, ProcDecl, and Formal nodes as the definitions of the symbols.

For example, when the compiler parsed the following source:

var x: integer := 0;

a VarDecl structure was created. During the checking phase, we will enter “x” into the symbol
table. The definition of “x” will simply be a pointer to this VarDecl node.

Likewise, we will enter each procedure ID into the symbol table with a pointer to its ProcDecl node.
We will enter each type ID with a pointer to its TypeDecl node and we will enter each formal
parameter with a pointer to its Formal node.

Later, when we process a use of “x”, as in:

x := ...;

we will be looking at a Variable node. At this point, we consult the symbol table to obtain a
pointer to the correct node to which this use of “x” refers. We will then store this pointer directly
into the Variable node.

A new field called myDef is in the following AST classes. These correspond to places where the
PCAT programmer may use an ID. (The ID should be defined elsewhere, for example in a
VarDecl or TypeDecl).

Variable
CallStmt
FunctionCall
ArrayConstuctor
RecordConstructor
TypeName

For all Variable nodes, your code must set this field to point to the corresponding VarDecl or
Formal node. For CallStmt and FunctionCall nodes, you must set myDef to point to the
corresponding ProcDeclnode. For ArrayConstructor and RecordConstructor nodes, you will
set myDef to point to a TypeDecl node. In each case, you can simply look up the ID in the
symbol table to find the definition.

CS-321 Compiler Design

Page 8

In the case of the TypeName node, you must set the myDef field to point to a CompoundType
(i.e., to either an ArrayType or a RecordType), so you’ll have to first look up the ID to find a
TypeDecl node. Then, you’ll have to go into that TypeDecl node to get the definition, which will
point to a CompoundType.

You’ll also need to check for errors. Consider the following code:

var x: ...;
type t is array of x; (* Error: x is not a type *)
...
if (t > 5) ... (* Error: t is not a variable or formal *)

Be sure to check that the right kind of symbol is being used, as well as simply making sure the
symbol is found in the symbol table.

SemanticError()
The starter file, CheckerStarter.java, includes a method you can call to print out errors:

void semanticError (Ast.Node t, String msg)

It is passed a pointer to a node from which it will extract a line number. Depending on the class of
the node, this method extract some additional information, such as an id or keyword. A call such
as:

semanticError (p, "Identifier is already defined");

will print a message such as:

Error on line 4 near foobar: Identifier is already defined

The semanticError() routine will then return to its caller—unlike syntaxError(), which
aborted—so the compiler can keep walking the AST looking for more errors.

Errors to Identify
In this project, you should look for and report the following errors:

Identifier is already defined

Whenever we encounter a TypeDecl, VarDecl, ProcDecl, or Formal we need to enter a
new symbol into the symbol table. If there is already an entry at the current scope level, it is
an error. Each symbol may only be declared once in each scope.

Identifier is not defined

Whenever we encounter an ID, we need to look it up in the symbol table to make sure it is
defined in this scope or an enclosing scope. This includes (1) in a CallStmt, (2) in a
FunctionCall, (3) in a NamedType, (4) in a Variable, (5) in a RecordConstructor, and
(6) in an ArrayConstructor.

CS-321 Compiler Design

Page 9

Expecting a local or formal name
Expecting a type name
Expecting a procedure name

It may be that the programmer has supplied a name that is in the symbol table but that name
is not the right kind of thing. For example:

type t is ...;
x := 4 * t;

Here, t is not undefined; the problem is that its definition points to a TypeDecl and not a
VarDecl or Formal. We also expect to see a procedure name in a CallStmt and a
FunctionCall, and we expect to see a type name in a NamedType, an ArrayConstructor,
and a RecordConstructor.

INTEGER, REAL, BOOLEAN, TRUE, FALSE, and NIL may not be
redefined

These IDs all have predefined meanings and should be appear in var, type, or procedure
declarations.

This field is already defined in this RECORD

In a record type declaration, each field must have a different name.

Multiple assignment to field in RECORD constructor

The following is in error since f1 is repeated.
x := R { f1:=4; f1:=5};

Predefined Identifiers
The following identifiers have predefined meanings in PCAT:

nil
true
false
integer
real
boolean

There are restrictions on their use that must be checked during this phase. For example, it is invalid
to attempt to redefine any of these names in:

• procedure definitions
• type definitions
• variable definitions
• fields within record types
• formal parameters within procedure headers

An error message should be issued in each of these cases and, of course, there is no need to enter
the bad name into the symbol table.

(By the way, “nil” is just the same thing as “null” in other languages: a zero pointer.)

CS-321 Compiler Design

Page 10

Checking for repeated field names
We need to make sure that no field name is repeated in RecordConstructors and in
RecordTypes.

Here is an idea about how to approach this. It is kind of a hack, but we can “borrow” the symbol
table to make this checking easier. For example, upon encountering a RecordConstructor, call
openScope(). This is not really a new scope, but keep reading.

Next, go through the list of FieldInits. For each id, check to see if it is alreadyDefined(). If so,
call semanticError(). If not, enter() it into the symbol table, supplying a dummy NULL
definition. Finally, after processing the entire list of FieldInits, call closeScope(). The symbol
table will be the same as you found it before. A similar thing can be done for RecordTypes.

Don’t forget that we also need to check the expressions in the RecordConstructor. For example:

VAR f1: INTEGER := ...;
...

... R { f1:=2; f2:=(4*f1); f3:=2} ...

When we hit f1 in the expression (4*f1) we must identify it with the variable f1 and not the field
f1. To use the hack just described, we will need to make two passes over the list of FieldInits.
The first pass will check for repeated assignments to the same field. It will begin with openScope
and will end with closeScope, leaving the symbol table unchanged.

The second pass over the list of FieldInits will check each of the expressions. By the time we hit
the f1 in (4*f1), all the fields (f1, f2, f3) will have been removed from symbol table and we’ll find
the previous (correct) definition of f1.

A similar concern applies to processing RecordType nodes: we must first traverse the list of
FieldDecls to check for repeated definitions of the same field name and then traverse the list a
second time to check the TypeNames in the FieldDecl list.

Handling Defined Types
A type declaration associates a type name with a CompoundType. There are two kinds of
CompoundTypes: ArrayType and RecordType.

type MyArrType is array of real;
type MyRecType is record
 f1: integer;
 f2: real;
 next: MyRecType;
 end;

The TypeDecl node has fields named id and compoundType.

Elsewhere in the program the programmer can use these defined types. For example:

var a: MyArrType := ...;
 r: MyRecType := ...;

CS-321 Compiler Design

Page 11

These “uses” are represented with TypeName nodes, which have fields named id and myDef.
(By the way, I probably should have called the field “compoundType” instead of “myDef”, but I
do not want to change this.)

Our ultimate goal is to set the TypeName.myDef field to point to the definition, i.e., to the
ArrayType or RecordType node. Then, later in project 6, when we need that information during
type checking, it will be right there.

To achieve this, first, whenever we encounter a new type declaration, we will make an entry into the
symbol table. Using the name being defined (e.g., “MyArrType”) we will associate this name with
a pointer to its declaration.

SymbolTable.enter (...ID..., ...ptr to TypeDecl...);

Then later, when we encounter a TypeName, as in

var a: MyArrType := ...;

we’ll need to (1) lookup the ID in the symbol table, (2) make sure it is a TypeDecl, (3) locate its
definition, a CompoundType, and (4) copy that pointer into TypeName.myDef.

Dealing with Basic Types
Most programming languages have several predefined types. Sometimes these are called “basic
types” or “predefined types” or “built-in types”. For example, C/C++ includes these basic
types:

int
short
long
single
double
char

In PCAT, there are 3 predefined, basic type names:

integer
real
boolean

Their definitions are built in to the language; these names can be used anywhere a TypeName can
be used but the PCAT program should never contain a TypeDecl for these types.

For TypeName nodes that refer to these built-in types, we will simply leave their myDef fields
null.

In project 6 we’ll also need two additional built-in basic types, but you can ignore them for now. In
particular, we have two types of values that may appear in PCAT programs. Consider the types of
these expressions:

“hello”
nil

CS-321 Compiler Design

Page 12

These value do not have type integer, real, or boolean and, in project 6, we’ll create two additional
built-in basic types to handle them:

_string
_nilType

By placing an underscore in the type names, we can prevent the PCAT programmer from using
these types directly. After all “string” and “nilType” may be used as legal names in PCAT; they
do not have any built-in meaning. However, “_string” and “_nilType” are not legal identifiers
and would cause lexical errors if the programmer tried to use them.

Redefining Built-in Types
Some languages allow the built-in basic types to be redefined. You might see stuff like this:

type integer is array of real; // NOT LEGAL PCAT!
var x: integer; // NOT LEGAL PCAT!
... // NOT LEGAL PCAT!
... x[7] ... // NOT LEGAL PCAT!

My opinion is that this is a horrible idea in language design since it permits program code that is
needlessly misleading.

Note that there is another approach to implementing built-in types, which is used in some
compilers. The idea is to make an entry in the symbol table for each predefined type. Then, when
you encounter the use of a type, for example,

var x: MyTypeName;

you look it up in the symbol table to see what its definition is. For the built-in types, like “integer”
and “real”, you’ll need to have some definition. For each built-in type, we would create a special
dummy object to represent the built-in type.

This approach has its benefits and it allows you to compile languages that allow the predefined type
names to be redefined.

Type Equality in PCAT
When are two types considered equal? For PCAT, the answer will be slightly different, depending
on whether they are built-in basic types or not.

If the two types are built-in basic types, then they are equal if and only if they have exactly the same
name. In other words, we’ll have to compare the TypeName.id strings.

If the two types are defined type names, then we’ll have to look at their definitions. If they are both
defined in the same TypeDecl, then they are equal, but it’s possible for two types to have the same
name, yet be defined in different ways.

For example, consider this PCAT code:

CS-321 Compiler Design

Page 13

type T1 is array of integer;
var x: T1;
...
procedure foo (...) is
 type T1 is record ... end;
 var y: T1;
 ...
 x := y;

The assignment of y to x is legal if both variables have the same type, that is, it is legal if their types
are equal. Both have type T1, but these were defined in different places and were given different
definitions. Later, in project 6, we will detect a semantic error in the above code.

Next, consider this example:

type T2 is array of integer;
var a: T2;
...
procedure foo (...) is
 type T2 is array of integer;
 var b: T2;
 ...
 a := b;
 ...

According to the semantics definition of PCAT, this code also contains a type error!!! Even though
a and b have the type array of integer, these array types are defined in different places. This is the
question of “name equality” versus “structural equality”, which will be discussed in more detail
later.

Comparing Strings in Java
In Java, a string is represented using an object. The object stores the actual bytes of the string.
According to the Java definition, there may be several objects that all contain identical sequences of
characters. For example, there may be 361 objects floating around that all have the characters

“integer”

Consider the following code for comparing string objects:

if (str1 == str2) ...

The variables str1 and str2 may point to different objects with the very same characters. This test
is fast, since it just compares pointers, but may not do what you want.

The following test is almost certainly wrong:

if (str1 == “integer”) ...

Instead, you want to use the equals method in class String:

if (str1.equals(“integer”)) ...

CS-321 Compiler Design

Page 14

However, this is slow since (1) it involves a method invocation and (2) it has to look at each
character in turn.

In this project, we’ll need to compare strings a lot and we want to do it efficiently using ==.

The whole point of using the StringTable in the lexer was to make sure that there was only one
object around for each unique sequence of characters. In the lexer, every time we found a new
identifier, we looked it up in the StringTable and, if found, used the previous String object instead
of a new String object. This way, even if the string “integer” appears in the program 361 times,
there will only be one String object with the character “i n t e g e r” used during type checking.

Such a shared common version of a String is called the “canonical version” of the String. Of all
the 361 String objects with characters “i n t e g e r”, this one canonical object is the representative.
It will be used everywhere and the other 360 versions will be ignored.

In this project, we need to compare the TypeName.id to see if it is one of the built-in basic type
names. I recommend creating some global static variables, one for each of the following strings:

nil
true
false
integer
real
boolean
_string
_nilType

(The last two will be useful in project 6.)

So, in class Checker consider adding fields like this:

String nilString;
String trueString;
...

You’ll need to initialize these variables and the logical place is in checkAst, where the code will be
executed exactly once at the beginning of the type-checking phase.

For each string, you’ll need to look it up in the StringTable. If it is not there, you’ll need to add
it. In either case, you’ll set the variable to point to the one shared object.

A subroutine might be appropriate here to simplify our code. Let’s call it uniqueString. It is
passed a pointer to a String and it returns a pointer to the shared canonical version of the String.
Here is some pseudo-code:

String uniqueString (String str) {
 i = StringTable.lookupToken (str)
 if i == -1
 StringTable.insert (str, Token.ID)
 return StringTable.lookupString (str)
}

Then, in checkAst, you can initialize pointers to the canonical versions easily:

CS-321 Compiler Design

Page 15

nilString = uniqueString (“nil”);
trueString = uniqueString (“true”);
...

Processing Declarations
Type, variable, and procedure declarations may refer to a type declared elsewhere. In the following
legal code, type t is used before its definition is encountered:

var x: t := ...
procedure f (... :t ...) is ... t ... end;
type s is record

f: t;
...

 end;
type t is ...

Therefore, the type declarations of a Body must be entered into the symbol table before the types,
variables, and procedures can be checked. We must begin processing a Body by first running
through all the TypeDecls and enter()-ing them into the symbol table so they will be available
when we need them.

After we have entered all the types in the body into the symbol table at the current scope, we can
then run through the TypeDecl list and check those same type definitions. Making two passes
over this list allows us to handle recursive types and forward references, as in the following legal
code:

type t1 is record
f1: t1;
f2: t2;

 end;
type t2 is ...;

When we recursively check procedures, we may encounter forward references and recursive
references to types, procedures, and variables defined in the body. This code is legal:

procedure f1 () is
 ... t ... x ... f1 ... f2
end;
var x: integer := ...;
type t is ...;
procedure f2 () is ...;

Thus, we can’t check ProcDecls until after we have entered all types, variables, and procedures into
the symbol table.

With VarDecls, we do not allow forward references. The following code is illegal:

var x: integer := y;
var y: integer := ...;

We will execute the initializing expressions in exactly the order given and don’t want to use what
would be an uninitialized variable. Thus, we must perform the checking of the variables in parallel
with enter()-ing them into the symbol table. To accomplish this, we will walk the VarDecl list just

CS-321 Compiler Design

Page 16

once. For each VarDecl, we will check its type expression (if any) and check its initializing
expression. Then, after checking it, we will enter() that variable into the symbol table.

After all this, we are free to check the statement list. Here is an order of processing that satisfies
these constraints:

void checkBody (Ast.Body body) {
 enterTypeDecls (body.typeDecls);
 checkTypeDecls (body.typeDecls);
 enterProcDecls (body.procDecls);
 enterAndCheckVarDecls (body.varDecls);
 checkProcDecls (body.procDecls);
 checkStmts (body.stmts);
}

Note that the call to checkTypeDecls() could be moved around a little. If, for example, you called
it a little later, this program:

program is
 var x := 1;
 type t is x;
begin end;

would change the error on line 3 from “X is undefined” to “X is not a type.” The order shown
above is what I used in the black box, so this program would produce the “X is undefined” error
message when run through my code.

Scopes in Procedures
Consider the following code:

var x ...;
procedure foo (...a...) is
 var b ...;
 begin
 ...c...
 end;
...

Here foo and x are different names, but if they had been the same, it is an “already defined” error.
Thus, procedure names must be enter()-ed into the symbol table in the scope of the enclosing
block—before openScope() is called—and not within the inner scope of the procedure.

If x and a are the same name it is okay. The declaration of a formal will override declarations from
the surrounding scope since we are now within a new scope. A use at point c will refer to the
formal declared at point a and not to something with the same name from the surrounding scope.

If variable b has the same name as x, it is okay since b is in the inner scope and x is in the outer
scope. But if b has the same name as formal a, it is an “already defined” error. There is only one
new scope for each procedure and both formals and local variables are both enter()-ed at the same
scope level. A reference at point c will refer either to the formal a or to the local b, since they must
have different names.

CS-321 Compiler Design

Page 17

Setting ‘lexLevel’ and ‘currentLevel’
In PCAT, variables are introduced in var declarations and when used as formal parameters in
procedure definitions. In the following example, variables a and b are introduced on lines 2 and 3.

1. program is
2. var a: ... ;
3. procedure foo (b: real) is
4. begin
5. ... XXX ...
6. end;
7. begin
8. ... YYY ...
9. end;

Corresponding to the declaration of each variable, there will be a VarDecl or a Formal node in the
AST. These nodes have a field, called lexLevel, which should be set to be the current lexical level
at the point the variable is declared.

In addition to being declared, variables will also be “used.” For example, a may be used at points
XXX and YYY. The variable b may be used at point XXX, but use of b at point YYY would be
illegal. The lexical level at the point a variable is used may be equal or greater than the lexical level
at which the variable was defined. In this example, the foo procedure creates a new scope and
therefore increase the lexical level by one. The variable a is declared at lexical level 0 and b is
declared at level 1. Any use at point XXX would be at level 1. Any use at point YYY would be at
level 0.

At every place a variable is used (as opposed to declared), we will have a Variable node. The
Variable node includes a field called currentLevel, which must be set to the lexical level at the
time the variable is used.

In class, we’ll discuss in detail why we need this information. In summary, each variable will be
stored in an “activation record” (also called a “stack frame”). The variable may be stored in the
frame at the top of the stack (i.e., in the activation record of the currently executing routine), or it
may be stored in a frame buried in the stack (i.e., in the activation record of a routine that is
currently suspended during a call to another routine). Knowing both the currentLevel and lexical
level at which the variable was defined will allow us (during code generation, next term) to generate
code to locate the correct activation record and hence to find the memory location of the variable.

Big Hint
In this project, you must write a collection of routines that walk the Abstract Syntax Tree. Note that
the routines in PrettyPrint.java do exactly this. One approach would be to start with the
PrettyPrint.java file and modify it as follows:

0. Read over PrettyPrint.java to be sure you understand how it works.
1. Create a file Checker.java from the starter file. Then copy and paste PrettyPrint.java

into Checker.java.
2. Change the names of all methods from “ppXXX” to “checkXXX.” For example,

ppIfStmt() becomes checkIfStmt().
3. Remove all print statements and everything relating to printing and indentation. (Don’t just

comment it out; get rid of it!!!)

CS-321 Compiler Design

Page 18

4. Change all comments to reflect the fact that the methods perform type checking, not
printing.

5. Insert code to perform the required operations to check symbol usage and set the new
fields.

Details...
It is considered cheating to decompile or look inside any .class or .jar file I provide. If you have
questions about what these files do, please ask me!

As before, email your completed program as a plain-text attachment to:

cs321-01@cs.pdx.edu

Don’t forget to use a subject like:

Proj 5 - John Doe

DO NOT EMAIL YOUR PROGRAM TO THE CLASS MAILING LIST!!!

Your code should behave in exactly the same way as my code. If there is any question about the
exact functionality required,

(1) Use my code (the “black box” .jar file) on test files of your own creation, to see how it
performs.

(2) Please ask or talk to me!!! I will be happy to clarify any of the requirements. If there are
any problems with the assignment, I would like to alert other students and/or modify my
documents or files. If my test data can be improved, please let me know.

Don’t submit multiple times. Be sure to keep an unmodified copy of your file on Sirius with the
timestamp intact. Work independently: you must write this program by yourself.

