
Smalltalk Implementation

Harry Porter, October 2009

Smalltalk Implementation:
Optimization Techniques

Prof. Harry Porter
Portland State University

1

Smalltalk Implementation

Harry Porter, October 2009

Optimization Ideas
• Just-In-Time (JIT) compiling

When a method is first invoked, compile it into native code.

• Caching the Method Dictionary
Method Look-up will be speeded up.

• Inline Method Sending
Will turn many SENDs into native CALL instructions

• Use the hardware calling stack
MethodContexts  activation records allocated on a stack

• Code the VM directly in Smalltalk
Automatic translation into “C”

2

Smalltalk Implementation

Harry Porter, October 2009

Misc Points
Porting the Smalltalk Interpreter

The virtual machine is implemented in Smalltalk!
Using a subset of Smalltalk, called “Slang”

The image also includes a translator / compiler
Slang “C”

Steps to porting:
• Produce automatically generated interpreter in “C”
• Hand-code the machine-dependent parts in “C”
• Compile
• Use any existing image

3

Smalltalk Implementation

Harry Porter, October 2009

Misc Points
Porting Images

Each VM executes the same bytecodes.
Any image can be executed on by any VM.

EXAMPLE: An image produced on MAC OS X
 can be executed on Windows.

Porting Code Fragments

4

Smalltalk Implementation

Harry Porter, October 2009

Misc Points
Porting Images

Each VM executes the same bytecodes.
Any image can be executed on by any VM.

EXAMPLE: An image produced on MAC OS X
 can be executed on Windows.

Porting Code Fragments
Also, code fragments can be filed out

… and filed in to another image

Will it work?
The Smalltalk language is uniform.
What pre-existing classes does the code use?

5

Smalltalk Implementation

Harry Porter, October 2009

Misc Points
Hash Values

Some classes rely on “hash values”.
Dictionary, Set, etc.

 Every object must be capable of providing its hash value:
i := x hashValue.

6

Smalltalk Implementation

Harry Porter, October 2009

Misc Points
Hash Values

Some classes rely on “hash values”.
Dictionary, Set, etc.

 Every object must be capable of providing its hash value:
i := x hashValue.

Two objects can contain exactly the same values.
They differ only in where they are in memory

…and GC will move objects around

7

Smalltalk Implementation

Harry Porter, October 2009

Misc Points
Hash Values

Some classes rely on “hash values”.
Dictionary, Set, etc.

 Every object must be capable of providing its hash value:
i := x hashValue.
Two objects can contain exactly the same values.
They differ only in where they are in memory
…and GC will move objects around

 Need special VM support for hash values!
 • Each object contains a hash value.
 • 12 bits
 • Stored in it header
 • Initialized when the object is created

8

Smalltalk Implementation

Harry Porter, October 2009 9

Optimizations to the Interpreter

Virtual Machine
Does not match underlying hardware well
Examples:

OOP/SmallInteger Tagging
Registers versus Stacks in Context objects

Bytecodes vs. Machine Instructions
The bytecodes are interpreted

Fetch-decode-execute done at two levels.
Difficult to optimize bytecodes

Bytecodes are complex operations
Corresponding to several machine level instructions

Smalltalk Implementation

Harry Porter, October 2009 10

“Just in Time” Compiling

Translate bytecodes into native machine language
… and execute them directly

Do it “on the fly”
… on individual methods

Source  bytecodes  machine instructions

When the method is first invoked…
• Call the JIT compiler
• Translate bytecodes to native instructions
• Save the native code for next time.

Smalltalk Implementation

Harry Porter, October 2009 11

“Just in Time” Compiling

Benefits:
• Optional

Compatible with existing system
• Still have bytecodes

(for the debugging tools)
• Can perform many optimizations at the native code level
• Can do it just to frequently invoked methods
• Running out of memory?

Throw away some of the compiled methods

Smalltalk Implementation

Harry Porter, October 2009 12

“Just in Time” Compiling
Problem:

Activation records are user-visible
MethodContexts, BlockContexts

Activation record contains a pointer to the current
bytecode

“instructionPointer” = “Program Counter (PC)”
Used by the debugging tools!

Solution:

Smalltalk Implementation

Harry Porter, October 2009 13

“Just in Time” Compiling
Problem:

Activation records are user-visible
MethodContexts, BlockContexts

Activation record contains a pointer to the current
bytecode

“instructionPointer” = “Program Counter (PC)”
Used by the debugging tools!

Solution:
Whenever an activation record becomes user-visible…

Map the native code PC back into a bytecode PC

Smalltalk Implementation

Harry Porter, October 2009 14

Allocating Contexts on the Hardware Stack
The hardware supports stacks & procedure CALLs well.

“stack frame” = “activation record”

Smalltalk Implementation

Harry Porter, October 2009 15

Allocating Contexts on the Hardware Stack
The hardware supports stacks & procedure CALLs well.

“stack frame” = “activation record”

Smalltalk VM…
linked list of Context objects

Want to use the hardware stack
Want to store each Context as a “stack frame”

Contexts are usually allocated in LIFO (stack) order.
Not usually accessed as an object

Smalltalk Implementation

Harry Porter, October 2009 16

Allocating Contexts on the Hardware Stack
The hardware supports stacks & procedure CALLs well.

“stack frame” = “activation record”

Smalltalk VM…
linked list of Context objects

Want to use the hardware stack
Want to store each Context as a “stack frame”

Contexts are usually allocated in LIFO (stack) order.
Not usually accessed as an object

Exception: When debugging, the debugger
Asks for a pointer to the current context
Treats it as (non-stack) data

The Idea:

Smalltalk Implementation

Harry Porter, October 2009 17

Allocating Contexts on the Hardware Stack
The hardware supports stacks & procedure CALLs well.

“stack frame” = “activation record”

Smalltalk VM…
linked list of Context objects

Want to use the hardware stack
Want to store each Context as a “stack frame”

Contexts are usually allocated in LIFO (stack) order.
Not usually accessed as an object

Exception: When debugging, the debugger
Asks for a pointer to the current context
Treats it as (non-stack) data

The Idea:
Store stack frames on hardware stack, not as objects.
When a pointer is generated to the current context…

Convert the stack frame into a real object.

Smalltalk Implementation

Harry Porter, October 2009 18

Details
Converting a stack frame into a real object…

Allocate a new Context object and fill in its fields
Convert the program counter (PC)

absolute address  byte offset into a CompiledMethod
object

Contexts point to other Contexts
But other Contexts are still on hardware stack

Convert all frames into Objects…? No!

The Technique:
stack-frame

hybrid

MethodContext

Smalltalk Implementation

Harry Porter, October 2009

Caching the Method Dictionary
Method Lookup:

Given: • the receiver’s class
 • the message selector

Find:
 • the right CompiledMethod

The Idea:

Smalltalk Implementation

Harry Porter, October 2009 20

Caching the Method Dictionary
Method Lookup:

Given: • the receiver’s class
 • the message selector

Find:
 • the right CompiledMethod

The Idea:
Use a Hash Table
Maintained by the VM

(it is not an object)
Not in the hash table?

• Do a full method lookup
• Add an entry to the hash table

Rectangle #draw:on:

CompiledMethod

key

Smalltalk Implementation

Harry Porter, October 2009 21

Inline Method Caching
Assume methods are compiled into native code.

A routine that searches for
the proper method/routine

and then calls it.

A machine-language
CALL instruction

Smalltalk Implementation

Harry Porter, October 2009 22

Inline Method Caching
Assume methods are compiled into native code.

The Idea:
• Upon locating the correct routine…

Replace the CALL to the “MessageSend” routine
… with a CALL straight to the native code routine!

• Next time we execute the above code,
we CALL the right routine immediately.

• Gradually all message sends are replaced with
native code CALL instructions.

Smalltalk Implementation

Harry Porter, October 2009 23

Inline Method Caching
Problem:

Dynamic Look-Up
The receiver’s class determines which method to invoke.
Different class?  Different method!

Assumption:

Approach:

Smalltalk Implementation

Harry Porter, October 2009 24

Inline Method Caching
Problem:

Dynamic Look-Up
The receiver’s class determines which method to invoke.
Different class?  Different method!

Assumption:
Any particular SEND will invoke the same method

… almost always!

Approach:

Smalltalk Implementation

Harry Porter, October 2009 25

Inline Method Caching
Problem:

Dynamic Look-Up
The receiver’s class determines which method to invoke.
Different class?  Different method!

Assumption:
Any particular SEND will invoke the same method
… almost always!

Approach:
At the beginning of each method:
• Check the class of the receiver
• If it is what this method expects
… continue with this method.
• If the receiver has the wrong class…
• Perform a full method lookup.
• Overwrite the CALL (to jump to the correct method next time)
• Jump to the correct method.

Smalltalk Implementation

Harry Porter, October 2009 26

Effectiveness of Optimizations

space time

Straight
 interpreter 1.0 1.0

Compiler 2.3 .69

Compiler
 w/ inline caching 3.4 .62

Compiler
 w/ peephole 5.0 .56
 optimizer

Compiler
 w/ inline caching 5.0 .51
 w/ optimizer

	Smalltalk Implementation: Optimization Techniques
	Optimization Ideas
	Misc Points
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Optimizations to the Interpreter
	“Just in Time” Compiling
	Slide 11
	Slide 12
	Slide 13
	Allocating Contexts on the Hardware Stack
	Slide 15
	Slide 16
	Slide 17
	Details
	Caching the Method Dictionary
	Slide 20
	Inline Method Caching
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Effectiveness of Optimizations

