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The Object Manager
A separate section of the VM.

Encapsulates all memory management.
Includes the garbage collector.

Interface from rest of VM:
Called to allocate new space, new objects
May impose constraints on 
pointer dereferencing
(i.e., chasing pointers, fetching OOPs from object memory)
pointer stores
(i.e., copying an OOP into a variable)

Garbage Collector…
Called implicitly when allocating new objects
No more free space?  Run the garbage collector.
Try again
Still not enough space?  Crash!
May by called periodically to “keep on top of the problem”
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Object Manager Interface
• Create a new object

• Retrieve an object’s field

• Update an object’s field

• Get an object’s size

• Get an object’s class pointer

• Support “become:” operation

• Enumerate objects…  “allInstancesDo:”
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Example

 The “root” object
Defines what is reachable

May be several root pointers
• From the calling stack
• Registers, etc.
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Example

 Mark every reachable object
starting with the root object(s).
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Example

 Mark every reachable object
starting with the root object(s).
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Example

Everything else is garbage
Delete the garbage

“reclaim the memory space”
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Example

Everything else is garbage
Delete the garbage

“reclaim the memory space”

12

a

d g

f

c

root



Smalltalk Implementation

Harry Porter, October 2009

Example

 Step 2: Compact the memory.
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 Step 2: Compact the memory.
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 Step 2: Compact the memory.

17

a

  h

d
b

  e

g

f

c

root

Memory

g

a

h

b

c

d

e

f



Smalltalk Implementation

Harry Porter, October 2009

Example

 Step 2: Compact the memory.
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Example

 Step 2: Compact the memory.
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 Step 2: Compact the memory.
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 Step 2: Compact the memory.
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Just Use Virtual Memory???
Idea:  Avoid G.C. and just use virtual memory

Page objects out to disk.
Worry about collecting later (perhaps at night?)

Smalltalk Statistics:
Average size of new objects: 20 bytes

Minimum object size: 4 bytes
Object allocation rate:

1 object per 80 bytecodes executed
(= 1/4 bytes allocated per bytecodes executed)

The Numbers:
Execution rate: 4,000,000 bytecodes/sec
Disk Size: 10 Gbyte
Result: Disk fills up in 80 minutes

(And how long to collect 10 Gbyte on disk?)

Conclusion: We cannot ignore G.C.
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Major Garbage Collection Algorithms
• Mark-Sweep

Simple

• Baker’s Semi-Space Algorithm
Good intro. to Generation Scavenging

• Generation Scavenging (David Ungar)
Fast
Widespread use

• Reference Counting
No longer used in Smalltalk

Ongoing research:
Performance tuning, variations, … 
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Mark-Sweep Garbage Collection

Associate a single bit with each object
The “mark” bit

Part of the object’s header
Initially, all “mark” bits are clear

• Phase 1:
Set the “mark” bit for every reachable object

• Phase 2:
Compact the object space

(and clear the “mark” bit for next time)
Will move objects.
Need to adjust all pointers.
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Mark-Sweep Garbage Collection
How to set the “mark” bit?

Option 1: A recursive algorithm
But this requires a stack (and memory is full!)
Option 2:

 
Option 3:
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Mark-Sweep Garbage Collection
How to set the “mark” bit?

Option 1: A recursive algorithm
But this requires a stack (and memory is full!)
Option 2:
REPEAT
  LOOP through all objects
    IF the object’s mark is set THEN
      LOOP through the object’s fields
        Set the mark bit of all objects it points to
      ENDLOOP
    ENDIF
  ENDLOOP
UNTIL no more changes

Repeated loops through memory?  SLOW!
Option 3:
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Mark-Sweep Garbage Collection
How to set the “mark” bit?

Option 1: A recursive algorithm
But this requires a stack (and memory is full!)
Option 2:
REPEAT
  LOOP through all objects
    IF the object’s mark is set THEN
      LOOP through the object’s fields
        Set the mark bit of all objects it points to
      ENDLOOP
    ENDIF
  ENDLOOP
UNTIL no more changes

Repeated loops through memory?  SLOW!
Option 3:
Keep a “to-do list”.
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Mark-Sweep Garbage Collection
Desired Algorithm: 

When we mark an object, push it on a stack.
Repeat: Pop next object off of stack

Mark all reachable objects
… until stack is empty

Unfortunately:
The stack may be arbitrarily deep.
No extra memory when the G.C. is running!

Solution:
Allocate one extra word per object.
Use this “extra” pointer to maintain a linked list of objects

(the stack)
When an object is found to be reachable...

Set its “mark” bit
Add it to the linked list

extra ptr
size/flags
class

header
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Mark-Sweep Garbage Collection

Mark root object
Add root object to the linked list
LOOP
   Remove an element from the list
   Look at each of its fields...
   FOR EVERY object it points to
      IF it is not already marked THEN
         Mark it
         Add it to the list
      ENDIF
   ENDFOR
UNTIL list is empty

extra ptr
size/flags
class

header
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Mark-Sweep Garbage Collection

Advantages:
• Will identify all true garbage
• Very little space overhead
• Simple  Easy to program

Disadvantages:
• The marking phase can be slow!

-  Must look at every field
(in every non-garbage object)

-  Must check the “tag” bit
OOP  follow the pointer
SmallInteger  ignore

• Causes lengthy interruptions (periodically)
Annoying for interactive applications
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Baker’s Semi-Space Algorithm
Memory is divided into 2 (equal-sized) spaces

FROM-SPACE
TO-SPACE

Normal Operation:
• All objects are in FROM-SPACE
• TO-SPACE is unused
• New objects are allocated in FROM-SPACE

(typically like a stack)

When FROM-SPACE is exhausted…

next

FROM-
SPACE

TO-
SPACE
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Baker’s Semi-Space Algorithm
Memory is divided into 2 (equal-sized) spaces

FROM-SPACE
TO-SPACE

Normal Operation:
• All objects are in FROM-SPACE
• TO-SPACE is unused
• New objects are allocated in FROM-SPACE
(typically like a stack)

When FROM-SPACE is exhausted…
• Copy the root object to TO-SPACE
• Copy all reachable objects
from the FROM-SPACE
to the TO-SPACE
• All the garbage objects are left behind in FROM-SPACE
• Abandon FROM-SPACE and continue processing in TO-SPACE

next

FROM-
SPACE

TO-
SPACE
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Baker’s Semi-Space Algorithm
During normal operation

root 
object
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Baker’s Semi-Space Algorithm
During normal operation

Use one pointer in FROM-SPACE
next-free-location

next free location

FROM-SPACE

root 
object

a

c

b



Smalltalk Implementation

Harry Porter, October 2009 35

Baker’s Semi-Space Algorithm
During normal operation

Use one pointer in FROM-SPACE
next-free-location

root object

next free location

FROM-SPACE
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Baker’s Semi-Space Algorithm
During normal operation

Use one pointer in FROM-SPACE
next-free-location

root object

next free location

FROM-SPACE
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Baker’s Semi-Space Algorithm
During garbage collection…

Copy all reachable objects to TO-SPACE
First copy the root object.

root object

next free location

FROM-SPACE
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Baker’s Semi-Space Algorithm
During garbage collection…

Copy all reachable objects to TO-SPACE
First copy the root object.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a
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c

next unscanned
     location

root 
object

a

c

d

e

b
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Baker’s Semi-Space Algorithm
During garbage collection…

Copy all reachable objects to TO-SPACE
First copy the root object.
Then scan the next object
and copy the objects it points to.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c

next unscanned
     location

root 
object

a

c

d

e

b
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Baker’s Semi-Space Algorithm
During garbage collection…

Copy all reachable objects to TO-SPACE
First copy the root object.
Then scan the next object
and copy the objects it points to.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

root 
object

a

c

d

e
next unscanned
     location

b
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Baker’s Semi-Space Algorithm
During garbage collection…

Copy all reachable objects to TO-SPACE
First copy the root object.
Then scan the next object
and copy the objects it points to.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

b

root 
object

a

c

d

e
next unscanned
     location

b
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Baker’s Semi-Space Algorithm
During garbage collection…

Copy all reachable objects to TO-SPACE
First copy the root object.
Then scan the next object
and copy the objects it points to.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

b

root 
object

a

c

d

e next unscanned
     location

b
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Baker’s Semi-Space Algorithm
During garbage collection…

Copy all reachable objects to TO-SPACE
First copy the root object.
Then scan the next object
and copy the objects it points to.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a
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c a

b
c

next unscanned
     location

root 
object
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Baker’s Semi-Space Algorithm
During garbage collection…

Copy all reachable objects to TO-SPACE
First copy the root object.
Then scan the next object
and copy the objects it points to.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a
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c a

b
c

next unscanned
     location

root 
object

a

c

d

e

b



Smalltalk Implementation

Harry Porter, October 2009 45

Baker’s Semi-Space Algorithm
During garbage collection…

Copy all reachable objects to TO-SPACE
First copy the root object.
Then scan the next object
and copy the objects it points to.
Until the pointers meet.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

b
c

next unscanned
     location

root 
object

a

c

d

e

b
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Baker’s Semi-Space Algorithm
During garbage collection…

Copy all reachable objects to TO-SPACE
First copy the root object.
Then scan the next object
and copy the objects it points to.
Until the pointers meet.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a
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c

root 
object

a

c

d

e

b
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Baker’s Semi-Space Algorithm
During garbage collection…

Copy all reachable objects to TO-SPACE
First copy the root object.
Then scan the next object
and copy the objects it points to.
Until the pointers meet.
Then swap spaces.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a
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c a
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c

root 
object
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b
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Baker’s Semi-Space Algorithm
During garbage collection…

Copy all reachable objects to TO-SPACE
First copy the root object.
Then scan the next object
and copy the objects it points to.
Until the pointers meet.
Then swap spaces.

root object root object

next free location
a

b

c a

b
c

root 
object

a

c

d

e

TO-SPACE FROM-SPACE

b
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Baker’s Semi-Space Algorithm
During garbage collection…

Copy all reachable objects to TO-SPACE
First copy the root object.
Then scan the next object
and copy the objects it points to.
Until the pointers meet.
Then swap spaces.

TO-SPACE
root object

next free location

FROM-SPACE

a

b
c

root 
object

a

c

b
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Baker’s Semi-Space Algorithm

Details:

We also need to update all the pointers in the objects.

Whenever we copy an object… 
Leave a “forwarding pointer” behind in the old object.
Point to the copy in TO-SPACE.

Storage overhead?
OK to overwrite other fields (e.g., size, class)

Will need one bit per object
0 = object not copied (yet)
1 = object moved; use forwarding pointer
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Baker’s Semi-Space Algorithm
Will show forwarding pointers this time:

root object

FROM-SPACE

a

b

c

root 
object
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d

e
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0
1
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Baker’s Semi-Space Algorithm
Will show forwarding pointers this time:

root object

FROM-SPACE
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Baker’s Semi-Space Algorithm
First copy the root object.

root object

FROM-SPACE

a
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c

root 
object
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0
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0
0
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Baker’s Semi-Space Algorithm
First copy the root object.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c

next unscanned
     location

root 
object

a

c

d
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0

0
0
0
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Baker’s Semi-Space Algorithm
First copy the root object.

Mark it and leave a fowarding pointer

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c

next unscanned
     location

root 
object

a

c

d

e

b

0
0

0

0
0
0
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Baker’s Semi-Space Algorithm
First copy the root object.

Mark it and leave a fowarding pointer

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c

next unscanned
     location

root 
object

a

c

d

e

b

0
0

0

0
0
1
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Baker’s Semi-Space Algorithm
The object contains pointers

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c

next unscanned
     location

root 
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Baker’s Semi-Space Algorithm
The object contains pointers

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c

next unscanned
     location

root 
object

a

c

d

e

b

0
0

0

0
0
1



Smalltalk Implementation

Harry Porter, October 2009 59

Baker’s Semi-Space Algorithm
Scan the next object, looking for pointers

into FROM-SPACE
Copy these objects.
Leave behind forwarding pointers.
Update the pointers in this object.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c

next unscanned
     location

root 
object

a

c

d

e

b

0
0

0

0
0
1
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Baker’s Semi-Space Algorithm
Scan the next object, looking for pointers

into FROM-SPACE
Copy these objects.
Leave behind forwarding pointers.
Update the pointers in this object.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

root 
object

a

c

d

e
next unscanned
     location

b

0
0

0

0
0
1
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Baker’s Semi-Space Algorithm
Scan the next object, looking for pointers

into FROM-SPACE
Copy these objects.
Leave behind forwarding pointers.
Update the pointers in this object.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

root 
object

a

c

d

e
next unscanned
     location

b

0
0

1

0
0
1
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Baker’s Semi-Space Algorithm
Scan the next object, looking for pointers

into FROM-SPACE
Copy these objects.
Leave behind forwarding pointers.
Update the pointers in this object.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

root 
object

a

c

d

e
next unscanned
     location

b

0
0

1

0
0
1
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Baker’s Semi-Space Algorithm
Scan the next object, looking for pointers

into FROM-SPACE
Copy these objects.
Leave behind forwarding pointers.
Update the pointers in this object.
(Note: the copied objects contain pointers

into FROM-SPACE.)

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

root 
object

a

c

d

e
next unscanned
     location

b

0
0

1

0
0
1
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Baker’s Semi-Space Algorithm
Scan the next object, looking for pointers

into FROM-SPACE
Copy these objects.
Leave behind forwarding pointers.
Update the pointers in this object.
(Note: the copied objects contain pointers

into FROM-SPACE.)

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

root 
object

a

c

d

e
next unscanned
     location

b

0
0

1

0
0
1
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Baker’s Semi-Space Algorithm
Scan the next object, looking for pointers

into FROM-SPACE
Copy these objects.
Leave behind forwarding pointers.
Update the pointers in this object.
(Note: the copied objects contain pointers

into FROM-SPACE.)

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

b

root 
object

a

c

d

e
next unscanned
     location

b

0
0

1

0
0
1
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Baker’s Semi-Space Algorithm
Scan the next object, looking for pointers

into FROM-SPACE
Copy these objects.
Leave behind forwarding pointers.
Update the pointers in this object.
(Note: the copied objects contain pointers

into FROM-SPACE.)

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

b

root 
object

a

c

d

e
next unscanned
     location

b

0
0

1

0
0
1
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Baker’s Semi-Space Algorithm
Scan the next object, looking for pointers

into FROM-SPACE
Copy these objects.
Leave behind forwarding pointers.
Update the pointers in this object.
(Note: the copied objects contain pointers

into FROM-SPACE.)

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

b

root 
object

a

c

d

e
next unscanned
     location

b

1
0

1

0
0
1
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Baker’s Semi-Space Algorithm
Scan the next object, looking for pointers

into FROM-SPACE
Copy these objects.
Leave behind forwarding pointers.
Update the pointers in this object.
(Note: the copied objects contain pointers

into FROM-SPACE.)

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

b

root 
object

a

c

d

e
next unscanned
     location

b

1
0

1

0
0
1
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Baker’s Semi-Space Algorithm
Now we are done with this object.
Move on to next object.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

b

root 
object

a

c

d

e

b

1
0

1

0
0
1 next unscanned

     location
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Baker’s Semi-Space Algorithm
Now we are done with this object.
Move on to next object.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

b

root 
object

a

c

d

e

b

1
0

1

0
0
1

next unscanned
     location
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Baker’s Semi-Space Algorithm
Now we are done with this object.
Move on to next object.

root object

FROM-SPACE
root object

TO-SPACE

a

b

c a

b

root 
object

a

c

d

e

b

1
0

1

0
0
1

next unscanned
     location

next free locationc
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Baker’s Semi-Space Algorithm
Now we are done with this object.
Move on to next object.

root object

FROM-SPACE
root object

TO-SPACE

a

b

c a

b

root 
object

a

c

d

e

b

1
0

1

1
0
1

next unscanned
     location

next free locationc
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Baker’s Semi-Space Algorithm
Now we are done with this object.
Move on to next object.

root object

FROM-SPACE
root object

TO-SPACE

a

b

c a

b

root 
object

a

c

d

e

b

1
0

1

1
0
1

next unscanned
     location

next free locationc
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Baker’s Semi-Space Algorithm
Now we are done with this object.
Move on to next object.

root object

FROM-SPACE
root object

TO-SPACE

a

b

c a

b

root 
object

a

c

d

e

b

1
0

1

1
0
1

next unscanned
     location

next free locationc
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Baker’s Semi-Space Algorithm
“b” contains a pointer into FROM-SPACE

But that object is marked with 1.
It has already been copied.
Just update the pointer.

root object

FROM-SPACE
root object

TO-SPACE

a

b

c a

b

root 
object

a

c

d

e

b

1
0

1

1
0
1

next unscanned
     location

next free locationc
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Baker’s Semi-Space Algorithm
“b” contains a pointer into FROM-SPACE

But that object is marked with 1.
It has already been copied.
Just update the pointer.

root object

FROM-SPACE
root object

TO-SPACE

a

b

c a

b

root 
object

a

c

d

e

b

1
0

1

1
0
1

next unscanned
     location

next free locationc
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Baker’s Semi-Space Algorithm
“b” contains a pointer into FROM-SPACE

But that object is marked with 1.
It has already been copied.
Just update the pointer.

root object

FROM-SPACE
root object

TO-SPACE

a

b

c a

b

root 
object

a

c

d

e

b

1
0

1

1
0
1

next unscanned
     location

next free locationc
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Baker’s Semi-Space Algorithm
“b” contains a pointer into FROM-SPACE

But that object is marked with 1.
It has already been copied.
Just update the pointer.

root object

FROM-SPACE
root object

TO-SPACE

a

b

c a

b

root 
object

a

c

d

e

b

1
0

1

1
0
1

next unscanned
     location

next free locationc
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Baker’s Semi-Space Algorithm
When they meet, we are done.
Continue processing.

…using the TO-SPACE for new objects.

root object

FROM-SPACE
root object

TO-SPACE

a

b

c a

b

root 
object

a

c

d

e

b

1
0

1

1
0
1

next unscanned
     location

next free locationc
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Baker’s Semi-Space Algorithm
When they meet, we are done.
Continue processing.

…using the TO-SPACE for new objects.

root object

TO-SPACE

a

b

root 
object

a

c

b

next free locationc
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Baker’s Semi-Space Algorithm
Advantages:

No time wasted with dead objects.
Running time proportional to live objects.
Increases locality of reference in TO-SPACE.
(Objects are placed near objects that point to them)

Disadvantages:
Wastes 50% of memory
Exhibits horrible behavior when there are lots of live objects.
i.e., right before memory fills up!

Real-Time Applications:
Goal: eliminate the long copy phase!
Modification:
Every time a new object is allocated… 
Do a little collecting.
Whenever a pointer is dereferenced… 
Check for a forwarding pointer.
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Ballard’s Observations
• Most objects are small.

≈ 0-5 fields
≈ 0-20 bytes

• A few objects are very large.
Examples:  bitmaps, also large character strings

≈ 128 Kbytes
Do not contain OOPs (except for class ptr)

• Large objects tend to persist (through several collections).
• Short-lived objects tend to be small.

Example: Activation Records

The Semi-Space Algorithm wastes a lot of time on these big objects,
copying them back and forth.

Idea:
Put these large objects in a separate memory region.
Collect them less often.

... using a different algorithm (e.g., Mark-Sweep)
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Generation Scavenging
“Young objects die young and old objects continue to live.”

– David Ungar
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Generation Scavenging
“Young objects die young and old objects continue to live.”

– David Ungar

Idea: Divide memory into two regions.
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Generation Scavenging
“Young objects die young and old objects continue to live.”

– David Ungar

Idea: Divide memory into two regions.
A large region holds...

Objects that have been around for a while
 
 

A smaller region holds...
Recently allocated objects
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Generation Scavenging
“Young objects die young and old objects continue to live.”

– David Ungar

Idea: Divide memory into two regions.
A large region holds...

Objects that have been around for a while
The “tenured” generation
Collected less frequently

A smaller region holds...
Recently allocated objects
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Generation Scavenging
“Young objects die young and old objects continue to live.”

– David Ungar

Idea: Divide memory into two regions.
A large region holds...

Objects that have been around for a while
The “tenured” generation
Collected less frequently

A smaller region holds...
Recently allocated objects
The “new” generation
Collected frequently
Most of the garbage objects will be here

Most of the garbage will get collected
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Generation Scavenging
“Young objects die young and old objects continue to live.”

– David Ungar

Idea: Divide memory into two regions.
A large region holds...

Objects that have been around for a while
The “tenured” generation
Collected less frequently

A smaller region holds...
Recently allocated objects
The “new” generation
Collected frequently
Most of the garbage objects will be here

Most of the garbage will get collected

After a new object has survived several collections,
move it to the tenured region.
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Generation Scavenging
The Basic Approach
Divide memory into several regions.

Tenured
Objects

New
Objects
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Generation Scavenging
The Basic Approach
Divide memory into several regions.

Tenured
Objects

New
Objects

Use semi-space algorithm here
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Generation Scavenging
The Basic Approach
Divide memory into several regions.

Tenured
Objects

New
Objects
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Generation Scavenging
The Basic Approach
Divide memory into several regions.

TENURED

Tenured
Objects

Survivor
Objects FROM TO

NEW
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Generation Scavenging
The Basic Approach
Divide memory into several regions.

TENURED

Tenured
Objects

Survivor
Objects FROM TO

NEW

FROM

NEW

TENURED
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Generation Scavenging
The Basic Approach
Divide memory into several regions.

TENURED

Tenured
Objects

Survivor
Objects FROM TO

NEW

FROM

NEW

TENURED

Put new objects here
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Generation Scavenging
The Basic Approach
Divide memory into several regions.

TENURED

Tenured
Objects

Survivor
Objects FROM TO

NEW

FROM

NEW

TENURED

Full: Need to collect
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Generation Scavenging
The Basic Approach
Divide memory into several regions.

FROM TO

TENURED

Tenured
Objects

NEW

Survivor
Objects FROM

NEW

TENURED
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Generation Scavenging
The Basic Approach
Divide memory into several regions.

FROM TO

TENURED

Tenured
Objects

NEW

Survivor
Objects FROM TO

NEW

TENURED
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Generation Scavenging
The Basic Approach
Divide memory into several regions.

FROM TO

TENURED

Tenured
Objects

NEW

Survivor
Objects TO

TENURED
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Generation Scavenging
The Basic Approach
Divide memory into several regions.

FROM TO

TENURED

Tenured
Objects

NEW

Survivor
Objects TO

TENURED
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Generation Scavenging
The Basic Approach
Divide memory into several regions.

FROM TO

TENURED

Tenured
Objects

NEW

Survivor
Objects TO

TENURED

Resume allocating objects
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Generation Scavenging
The Basic Approach
Divide memory into several regions.

FROM TO

TENURED

Tenured
Objects

NEW

Survivor
Objects TO

TENURED

NEW
Resume allocating objects
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Generation Scavenging
The Basic Approach
Divide memory into several regions.

FROM TO

TENURED

Tenured
Objects

NEW

Survivor
Objects TO

TENURED

NEW
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Generation Scavenging
The Basic Approach
Divide memory into several regions.

FROM TO

TENURED

Tenured
Objects

NEW

Survivor
Objects TO

TENURED

NEW
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Generation Scavenging
 

FROM TO

TENURED

Tenured
Objects

NEW

Survivor
Objects

TENURED
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Generation Scavenging
For each object, keep a count of how many times it has been copied.
The “generation”.
After several generations,
   copy it to TENURED area.

FROM TO

TENURED

Tenured
Objects

NEW

Survivor
Objects

TENURED
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Generation Scavenging
For each object, keep a count of how many times it has been copied.
The “generation”.
After several generations,
   copy it to TENURED area.

FROM TO

TENURED

Tenured
Objects

NEW

Survivor
Objects

TENURED
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Generation Scavenging
 

FROM TO

TENURED

Tenured
Objects

NEW

Survivor
Objects

TENURED
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Generation Scavenging
Once tenured, the object will be ignored.
When the TENURED area fills up…
Perform a full
   MARK-SWEEP collection.

FROM TO

TENURED

Tenured
Objects

NEW

Survivor
Objects

TENURED
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Generation Scavenging
 

FROM TO

TENURED

Tenured
Objects

NEW

Survivor
Objects

TENURED
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Generation Scavenging
Complication:

Tenured objects may point to newer objects.

TO

TENURED

Tenured
Objects

Survivor
Objects

TENURED
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Generation Scavenging: Policy Issues

How big to make each space?

An object is moved into the TENURED area after it
survives K collections.
What value for K?

The system cannot run during GC.
GC will cause a short pause.
(e.g., 1 msec)

Is it better to collect more frequently than necessary?
The collections will be faster.
The pauses will be shorter.
When to schedule GC?
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The “become:” Operation
Exchange the identities of 2 objects

Example: A collection needs to grow itself.
Example: Adding an instance variable to a class.

Must go through all existing instances and “grow” them.
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The “become:” Operation
Exchange the identities of 2 objects

Example: A collection needs to grow itself.
Example: Adding an instance variable to a class.

Must go through all existing instances and “grow” them.

Implementation:
Easy with an “object table”
With direct pointers:

Need to scan all objects and change all pointers!
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The “become:” Operation
Exchange the identities of 2 objects

Example: A collection needs to grow itself.
Example: Adding an instance variable to a class.

Must go through all existing instances and “grow” them.

Implementation:
Easy with an “object table”
With direct pointers:

Need to scan all objects and change all pointers!

Solution:
• Re-write many classes to avoid using “become:”

Make indirection explicit.
• The primitive is available to walk through memory.

Check (and possibly update) every pointer in memory.
• To save time, the primitive can do several at once

(A B C) elementsForwardIdentityTo: (X Y Z)
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Squeak Object Format

What goes into an object’s header?

• Size in bytes (up to 24 bits, max object size = 16 Mbytes)
• Class of object (32 bit pointer)
• Hash code (12 bits)
• Format of object (4 bits)

- contains pointer/raw bits
- contains indexable fields or not
- data is byte / word addressable
- object is a CompiledMethod

• Bits used by garbage collector
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Object Format

Idea: Encode more common values in fewer bits.

Option 1:
size = 0 .. 64 words (6 bits)
class = 0 .. 32 (5 bits) 82%

Option 2:
size = 0 .. 64 words (6 bits) 17%
any class

Option 3:
Most general format 1%

header   00

classPtr 01
header   01

header   10
classPtr 10
objSize  10
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Header Word

Format:  This object contains… 
0000 - no fields at all
0001 - fixed pointer fields only (a normal object)
0010 - indexed pointer fields
0011 - both fixed fields and indexed pointer fields
0100 - (unused)
0101 - (unused)
0110 - indexed word data, but no pointer fields
0111 - (unused)
10xx - indexed byte fields, but no pointer fields (xx = rest of size in bytes)
11xx - a compiled method (xx = rest of size in bytes)

3-bits       12-bits            5-bits   4-bits     6-bits
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

G.C. bits        Hash Value                       Class       Format       Size           Tag
(in words)
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Generation Scavenging:

Additional detail.
Ignore these slides.

118
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Generation Scavenging: ConceptsNew Objects
Allocated recently; likely to become garbage soon
Must collect them quickly

Survivor Objects
These objects have survived a few collections
There is a probability they may live for a very long time

Tenured Objects
The oldest objects.
They have been around so long we assume they will never die.
(Considered to be “permanent”)
Don’t bother trying to collect them at all.
GS will occasionally give objects “tenure”
Some tenured objects may become unused / unreachable.
GS will not identify them as garbage.
Must collect tenured objects offline
Use Mark-Sweep occasionally
… when generation scavenging finally fails



Smalltalk Implementation

Harry Porter, October 2009 120

Generation Scavenging: Memory Regions
• Tenured Area -- 

Contains the permanent objects
These objects act as the “roots” of reachability

The “Remembered Set”:
Tenured objects which point to non-tenured objects

• New Space
Allocate new objects here
If objects survive the first collection,
move them into Past Survivor Space

• Past Survivor Space
These objects have survived several collections
After K collections, move them into Tenured Area

• Future Survivor Space
Used only during GS collection
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Generation Scavenging: Memory Regions

TENURED-AREA 980 Kbytes 
NEW-SPACE 140 Kbytes
PAST-SURVIVOR-SPACE   28 Kbytes
FUTURE-SURVIVOR-SPACE   28 Kbytes

NEW-
  SPACE

PAST-
  SURVIVOR-
  SPACE

TENURED-
  AREA

FUTURE-
  SURVIVOR-
  SPACE

The Remembered-Set
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Generation Scavenging: Algorithm
When NEW-SPACE fills up, stop and collect.

The “root” objects in NEW-SPACE, PAST-SURVIVOR-SPACE?
Every object pointed to by… 

Objects in the Remembered-Set
The interpreter registers, activation-record stack, etc.

Copy all root objects into FUTURE-SURVIVOR-SPACE.

Pull all reachable objects over (as in Baker’s Algorithm):
 Scan all pointers in the FUTURE-SURVIVOR-SPACE.

For every referenced object 
(in NEW-SPACE or PAST-SURVIVOR-

SPACE)
Copy into FUTURE-SURVIVOR-SPACE

Switch the PAST- and FUTURE-SURVIVOR-SPACES.
Resume Processing.
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Generation Scavenging: Algorithm
Do not need to copy FUTURE-SURVIVOR-SPACE

back to PAST-SURVIVOR-SPACE.
(We can update the Remembered-Set as we scan it for root objects.)

Must keep the Remembered-Set up to date.
Every time we store a pointer in the TENURED-AREA

We may need to update the Remembered-Set
Each pointer looks like this

When we overwrite a pointer with a different GEN, update Remembered-Set.

1 GEN memory address
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Tenuring Policy
Problem: When to promote an object into the TENURED-AREA?

Associate an “age” with each untenured object.
Increment it whenever the object is copied during G.C.
After the object survives K collections,

Move it into the TENURED-AREA

Problem: Premature Tenuring:
An object is promoted and then dies relatively soon!

Solution:
• Generalize to multiple generations
• Keep track of how old each object is
• At certain ages (2 seconds, 10 seconds, 1 minute, 1 day, … )

Promote objects to the next older generation
• Scavenge younger generations more frequently.
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Squeak: Garbage Collection
Uses both:

• Generation Scavenging for most collections (0.5 msec)
• Mark-Sweep, when Gen Scavenging fails (75 msec)

Mark-Sweep Algorithm
Will perform compaction in place.

To compact all objects: Must redirect all pointers.
Need space for forwarding pointers

But no object table!

Solution:
“Relocation Entries”

Contains info about where an object is being moved to
Pre-allocate an array of 1000 relocation entries.

Can always move at least 1000 objects.
Put at top of heap; if more space available, use it too for additional entries.
Make multiple passes if not enough room for relocation entries (rare).
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Squeak: Garbage Collection
Generation Scavenging

G.S. looks at only NEW and SURVIVING objects
… Not the TENURED (old) objects
Copies them into NEW-SURVIVOR space
(Compacting these objects immediately)
Not too many of them  --> can be done quickly.

When to perform G.S.?
When memory fills up  --> bigger delay
Do it more often!
Keep a counter.  Increment whenever an object is allocated.
When counter reaches threshhold, then do G.S.
Smaller delays, but more often (good)

When to grant tenure?
When the number of survivors reaches a threshhold, tenure them all.
(Just move the boundary up --> fast)

Eventually, we must do a full (mark-sweep) collection and compaction.
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Comparison of G.C. Algorithms

pause    interval
CPU  time    between
overhead (sec)  pauses (sec)

ref. counting 15-20% 1.3 60-1200

deferred ref. 11% 1.3 60-1200
  counting

Mark-Sweep 25-40% 4.5 74

Ballard’s 7% --- ---
  Algorithm

Generation 1.5-2.5% .38 30
  Scavenging
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Reference Counting

Not widely used.
Ignore these slides.
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Reference Counting
• For each object, store… 

A count of “incoming pointers”

• Two operations:
INCREMENT the reference count
DECREMENT the reference count
Called by the bytecode interpreter
… every time a field is modified!

• When this count goes to zero… 
The object is garbage.

• Maintain a list of unused garbage objects.
When the count goes to zero…
Add this object to the free list.
To allocate a new object, check the free list first.

• Periodically compact objects

refCount = 4
size
class
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Reference CountingAdvantages:
• The work is spread out over time.
• Good for real-time/interactive systems.
No long pauses.

Disadvantages:
• Will not identify all garbage!!!
Cyclic objects.

Must combine with another G.C. algorithm
(Usually mark-sweep)
• Count field is of limited size
Overflow?  Sticks on the largest number

Root

Unidentified
    Garbage
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Reference Counting - Optimization
Deferred Reference Counting - The Deutsch-Bobrow Algorithm

“An efficient Incremental Automatic Garbage Collection Algorithm,” by L.P. Deutsch and D.G. 
Bobrow, CACM 19:9, p. 522-526, Sept. 1976.

Observations:

• Fields in activation records (e.g., local variables) change rapidly.
• Activation records have short lifetimes.

ARs are created & destroyed frequently.
• Garbage collection occurs much less frequently.

Optimization:

• Don't modify reference counts every time
a local variable is modified.

• Thus, reference counts do not include pointers
from activation record stack.

• The activation record stack will be a second “reachability root”
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Incremental Reference Counting
• During normal operation, whenever a reference count goes to zero...

We can’t put it on the list of free objects.
So add it to a special list:  The “Zero Count Table”

• When we run out of memory… 
• Run thru the stack of activation records

For every pointer we find on the stack… 
Increment the reference count of the object pointed to.

• Run through the Zero Count Table.
If the count is still zero… 

The object is unreachable --> Add to free list

• Cleanup: Run thru the stack of activation records again.
For every pointer we find on the stack… 

Decrement the reference count of the object pointed to.
If zero, add back to the Zero Count Table

Resume normal operation.

• Note: nothing is freed until the collector is run (although it may run faster).
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Object Table

No longer used in Smalltalk.
Ignore these slides.
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The Object Table (for 16-bit implementation)

Ø
Ø

Ø

Ø

Ø
Ø

32K
entries

size
class

flags

ref. count memory address

      Flags:
• Free table entry
• Used by garbage collection algorithm
• Object format:

OOPs, SmallIntegers only
ByteArray
WordArray
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 Each OOP points to a ObjectTable entry.
Every pointer is indirect.
Benefit? Easy to move an object

The Object Table

Ø
Ø

Ø

Ø

Ø
Ø

size
class

size
class

size
class A

C

B
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The “become:” Operation
Used to “grow” objects

Examples:  OrderedCollection, Dictionary, … 
Implementation:

Swap the object table entries

The Object Table

Ø
Ø

Ø

Ø

Ø
Ø

size
class

size
class

size
class

C

B

A

A become: B
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Unused Object Table Entries

Keep in a linked list
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Unused Object Table Entries

Keep in a linked list

NULL
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