
Smalltalk Implementation

Harry Porter, October 2009

Smalltalk Implementation:
Memory Management

and Garbage Collection

Prof. Harry Porter
Portland State University

1

Smalltalk Implementation

Harry Porter, October 2009 2

The Object Manager
A separate section of the VM.

Encapsulates all memory management.
Includes the garbage collector.

Interface from rest of VM:
Called to allocate new space, new objects
May impose constraints on
pointer dereferencing
(i.e., chasing pointers, fetching OOPs from object memory)
pointer stores
(i.e., copying an OOP into a variable)

Garbage Collector…
Called implicitly when allocating new objects
No more free space? Run the garbage collector.
Try again
Still not enough space? Crash!
May by called periodically to “keep on top of the problem”

Smalltalk Implementation

Harry Porter, October 2009 3

Object Manager Interface
• Create a new object

• Retrieve an object’s field

• Update an object’s field

• Get an object’s size

• Get an object’s class pointer

• Support “become:” operation

• Enumerate objects… “allInstancesDo:”

Smalltalk Implementation

Harry Porter, October 2009

Example

 The “root” object
Defines what is reachable

May be several root pointers
• From the calling stack
• Registers, etc.

4

a

 h

d
b

 e

g

f

c

root

Smalltalk Implementation

Harry Porter, October 2009

Example

 Mark every reachable object
starting with the root object(s).

5

a

 h

d
b

 e

g

f

c

root

Smalltalk Implementation

Harry Porter, October 2009

Example

 Mark every reachable object
starting with the root object(s).

6

a

 h

d
b

 e

g

f

c

root

Smalltalk Implementation

Harry Porter, October 2009

Example

 Mark every reachable object
starting with the root object(s).

7

a

 h

d
b

 e

g

f

c

root

Smalltalk Implementation

Harry Porter, October 2009

Example

 Mark every reachable object
starting with the root object(s).

8

a

 h

d
b

 e

g

f

c

root

Smalltalk Implementation

Harry Porter, October 2009

Example

 Mark every reachable object
starting with the root object(s).

9

a

 h

d
b

 e

g

f

c

root

Smalltalk Implementation

Harry Porter, October 2009

Example

 Mark every reachable object
starting with the root object(s).

10

a

 h

d
b

 e

g

f

c

root

Smalltalk Implementation

Harry Porter, October 2009

Example

Everything else is garbage
Delete the garbage

“reclaim the memory space”

11

a

 h

d
b

 e

g

f

c

root

Smalltalk Implementation

Harry Porter, October 2009

Example

Everything else is garbage
Delete the garbage

“reclaim the memory space”

12

a

d g

f

c

root

Smalltalk Implementation

Harry Porter, October 2009

Example

 Step 2: Compact the memory.

13

a

d g

f

c

root

Smalltalk Implementation

Harry Porter, October 2009

Example

 Step 2: Compact the memory.

14

a

 h

d
b

 e

g

f

c

root

Smalltalk Implementation

Harry Porter, October 2009

Example

 Step 2: Compact the memory.

15

a

 h

d
b

 e

g

f

c

root

Memory

g

a

h

b

c

d

e

f

Smalltalk Implementation

Harry Porter, October 2009

Example

 Step 2: Compact the memory.

16

a

 h

d
b

 e

g

f

c

root

Memory

g

a

h

b

c

d

e

f

Smalltalk Implementation

Harry Porter, October 2009

Example

 Step 2: Compact the memory.

17

a

 h

d
b

 e

g

f

c

root

Memory

g

a

h

b

c

d

e

f

Smalltalk Implementation

Harry Porter, October 2009

Example

 Step 2: Compact the memory.

18

a

 h

d
b

 e

g

f

c

root

Memory

g

a

h

bc

d

e

f

Smalltalk Implementation

Harry Porter, October 2009

Example

 Step 2: Compact the memory.

19

a

 h

d
b

 e

g

f

c

root

Memory

g

a

h

bc

d

e

f

Smalltalk Implementation

Harry Porter, October 2009

e

Example

 Step 2: Compact the memory.

20

a

 h

d
b

 e

g

f

c

root

Memory

g

a

h

bc

d
f

Smalltalk Implementation

Harry Porter, October 2009

Example

 Step 2: Compact the memory.

21

a

 h

d
b

 e

g

f

c

root

Memory

g

a

bc

d
f

Smalltalk Implementation

Harry Porter, October 2009 22

Just Use Virtual Memory???
Idea: Avoid G.C. and just use virtual memory

Page objects out to disk.
Worry about collecting later (perhaps at night?)

Smalltalk Statistics:
Average size of new objects: 20 bytes

Minimum object size: 4 bytes
Object allocation rate:

1 object per 80 bytecodes executed
(= 1/4 bytes allocated per bytecodes executed)

The Numbers:
Execution rate: 4,000,000 bytecodes/sec
Disk Size: 10 Gbyte
Result: Disk fills up in 80 minutes

(And how long to collect 10 Gbyte on disk?)

Conclusion: We cannot ignore G.C.

Smalltalk Implementation

Harry Porter, October 2009 23

Major Garbage Collection Algorithms
• Mark-Sweep

Simple

• Baker’s Semi-Space Algorithm
Good intro. to Generation Scavenging

• Generation Scavenging (David Ungar)
Fast
Widespread use

• Reference Counting
No longer used in Smalltalk

Ongoing research:
Performance tuning, variations, …

Smalltalk Implementation

Harry Porter, October 2009 24

Mark-Sweep Garbage Collection

Associate a single bit with each object
The “mark” bit

Part of the object’s header
Initially, all “mark” bits are clear

• Phase 1:
Set the “mark” bit for every reachable object

• Phase 2:
Compact the object space

(and clear the “mark” bit for next time)
Will move objects.
Need to adjust all pointers.

Smalltalk Implementation

Harry Porter, October 2009 25

Mark-Sweep Garbage Collection
How to set the “mark” bit?

Option 1: A recursive algorithm
But this requires a stack (and memory is full!)
Option 2:

Option 3:

Smalltalk Implementation

Harry Porter, October 2009 26

Mark-Sweep Garbage Collection
How to set the “mark” bit?

Option 1: A recursive algorithm
But this requires a stack (and memory is full!)
Option 2:
REPEAT
 LOOP through all objects
 IF the object’s mark is set THEN
 LOOP through the object’s fields
 Set the mark bit of all objects it points to
 ENDLOOP
 ENDIF
 ENDLOOP
UNTIL no more changes

Repeated loops through memory? SLOW!
Option 3:

Smalltalk Implementation

Harry Porter, October 2009 27

Mark-Sweep Garbage Collection
How to set the “mark” bit?

Option 1: A recursive algorithm
But this requires a stack (and memory is full!)
Option 2:
REPEAT
 LOOP through all objects
 IF the object’s mark is set THEN
 LOOP through the object’s fields
 Set the mark bit of all objects it points to
 ENDLOOP
 ENDIF
 ENDLOOP
UNTIL no more changes

Repeated loops through memory? SLOW!
Option 3:
Keep a “to-do list”.

Smalltalk Implementation

Harry Porter, October 2009 28

Mark-Sweep Garbage Collection
Desired Algorithm:

When we mark an object, push it on a stack.
Repeat: Pop next object off of stack

Mark all reachable objects
… until stack is empty

Unfortunately:
The stack may be arbitrarily deep.
No extra memory when the G.C. is running!

Solution:
Allocate one extra word per object.
Use this “extra” pointer to maintain a linked list of objects

(the stack)
When an object is found to be reachable...

Set its “mark” bit
Add it to the linked list

extra ptr
size/flags
class

header

Smalltalk Implementation

Harry Porter, October 2009 29

Mark-Sweep Garbage Collection

Mark root object
Add root object to the linked list
LOOP
 Remove an element from the list
 Look at each of its fields...
 FOR EVERY object it points to
 IF it is not already marked THEN
 Mark it
 Add it to the list
 ENDIF
 ENDFOR
UNTIL list is empty

extra ptr
size/flags
class

header

Smalltalk Implementation

Harry Porter, October 2009 30

Mark-Sweep Garbage Collection

Advantages:
• Will identify all true garbage
• Very little space overhead
• Simple Easy to program

Disadvantages:
• The marking phase can be slow!

- Must look at every field
(in every non-garbage object)

- Must check the “tag” bit
OOP follow the pointer
SmallInteger ignore

• Causes lengthy interruptions (periodically)
Annoying for interactive applications

Smalltalk Implementation

Harry Porter, October 2009 31

Baker’s Semi-Space Algorithm
Memory is divided into 2 (equal-sized) spaces

FROM-SPACE
TO-SPACE

Normal Operation:
• All objects are in FROM-SPACE
• TO-SPACE is unused
• New objects are allocated in FROM-SPACE

(typically like a stack)

When FROM-SPACE is exhausted…

next

FROM-
SPACE

TO-
SPACE

Smalltalk Implementation

Harry Porter, October 2009 32

Baker’s Semi-Space Algorithm
Memory is divided into 2 (equal-sized) spaces

FROM-SPACE
TO-SPACE

Normal Operation:
• All objects are in FROM-SPACE
• TO-SPACE is unused
• New objects are allocated in FROM-SPACE
(typically like a stack)

When FROM-SPACE is exhausted…
• Copy the root object to TO-SPACE
• Copy all reachable objects
from the FROM-SPACE
to the TO-SPACE
• All the garbage objects are left behind in FROM-SPACE
• Abandon FROM-SPACE and continue processing in TO-SPACE

next

FROM-
SPACE

TO-
SPACE

Smalltalk Implementation

Harry Porter, October 2009 33

Baker’s Semi-Space Algorithm
During normal operation

root
object

a

c

b

Smalltalk Implementation

Harry Porter, October 2009 34

Baker’s Semi-Space Algorithm
During normal operation

Use one pointer in FROM-SPACE
next-free-location

next free location

FROM-SPACE

root
object

a

c

b

Smalltalk Implementation

Harry Porter, October 2009 35

Baker’s Semi-Space Algorithm
During normal operation

Use one pointer in FROM-SPACE
next-free-location

root object

next free location

FROM-SPACE

a

b

c

root
object

a

c

d

e

b

Smalltalk Implementation

Harry Porter, October 2009 36

Baker’s Semi-Space Algorithm
During normal operation

Use one pointer in FROM-SPACE
next-free-location

root object

next free location

FROM-SPACE

a

b

c

root
object

a

c

d

e

b

Smalltalk Implementation

Harry Porter, October 2009 37

Baker’s Semi-Space Algorithm
During garbage collection…

Copy all reachable objects to TO-SPACE
First copy the root object.

root object

next free location

FROM-SPACE

a

b

c

root
object

a

c

d

e

b

Smalltalk Implementation

Harry Porter, October 2009 38

Baker’s Semi-Space Algorithm
During garbage collection…

Copy all reachable objects to TO-SPACE
First copy the root object.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c

next unscanned
 location

root
object

a

c

d

e

b

Smalltalk Implementation

Harry Porter, October 2009 39

Baker’s Semi-Space Algorithm
During garbage collection…

Copy all reachable objects to TO-SPACE
First copy the root object.
Then scan the next object
and copy the objects it points to.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c

next unscanned
 location

root
object

a

c

d

e

b

Smalltalk Implementation

Harry Porter, October 2009 40

Baker’s Semi-Space Algorithm
During garbage collection…

Copy all reachable objects to TO-SPACE
First copy the root object.
Then scan the next object
and copy the objects it points to.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

root
object

a

c

d

e
next unscanned
 location

b

Smalltalk Implementation

Harry Porter, October 2009 41

Baker’s Semi-Space Algorithm
During garbage collection…

Copy all reachable objects to TO-SPACE
First copy the root object.
Then scan the next object
and copy the objects it points to.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

b

root
object

a

c

d

e
next unscanned
 location

b

Smalltalk Implementation

Harry Porter, October 2009 42

Baker’s Semi-Space Algorithm
During garbage collection…

Copy all reachable objects to TO-SPACE
First copy the root object.
Then scan the next object
and copy the objects it points to.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

b

root
object

a

c

d

e next unscanned
 location

b

Smalltalk Implementation

Harry Porter, October 2009 43

Baker’s Semi-Space Algorithm
During garbage collection…

Copy all reachable objects to TO-SPACE
First copy the root object.
Then scan the next object
and copy the objects it points to.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

b
c

next unscanned
 location

root
object

a

c

d

e

b

Smalltalk Implementation

Harry Porter, October 2009 44

Baker’s Semi-Space Algorithm
During garbage collection…

Copy all reachable objects to TO-SPACE
First copy the root object.
Then scan the next object
and copy the objects it points to.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

b
c

next unscanned
 location

root
object

a

c

d

e

b

Smalltalk Implementation

Harry Porter, October 2009 45

Baker’s Semi-Space Algorithm
During garbage collection…

Copy all reachable objects to TO-SPACE
First copy the root object.
Then scan the next object
and copy the objects it points to.
Until the pointers meet.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

b
c

next unscanned
 location

root
object

a

c

d

e

b

Smalltalk Implementation

Harry Porter, October 2009 46

Baker’s Semi-Space Algorithm
During garbage collection…

Copy all reachable objects to TO-SPACE
First copy the root object.
Then scan the next object
and copy the objects it points to.
Until the pointers meet.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

b
c

root
object

a

c

d

e

b

Smalltalk Implementation

Harry Porter, October 2009 47

Baker’s Semi-Space Algorithm
During garbage collection…

Copy all reachable objects to TO-SPACE
First copy the root object.
Then scan the next object
and copy the objects it points to.
Until the pointers meet.
Then swap spaces.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

b
c

root
object

a

c

d

e

b

Smalltalk Implementation

Harry Porter, October 2009 48

Baker’s Semi-Space Algorithm
During garbage collection…

Copy all reachable objects to TO-SPACE
First copy the root object.
Then scan the next object
and copy the objects it points to.
Until the pointers meet.
Then swap spaces.

root object root object

next free location
a

b

c a

b
c

root
object

a

c

d

e

TO-SPACE FROM-SPACE

b

Smalltalk Implementation

Harry Porter, October 2009 49

Baker’s Semi-Space Algorithm
During garbage collection…

Copy all reachable objects to TO-SPACE
First copy the root object.
Then scan the next object
and copy the objects it points to.
Until the pointers meet.
Then swap spaces.

TO-SPACE
root object

next free location

FROM-SPACE

a

b
c

root
object

a

c

b

Smalltalk Implementation

Harry Porter, October 2009 50

Baker’s Semi-Space Algorithm

Details:

We also need to update all the pointers in the objects.

Whenever we copy an object…
Leave a “forwarding pointer” behind in the old object.
Point to the copy in TO-SPACE.

Storage overhead?
OK to overwrite other fields (e.g., size, class)

Will need one bit per object
0 = object not copied (yet)
1 = object moved; use forwarding pointer

Smalltalk Implementation

Harry Porter, October 2009 51

Baker’s Semi-Space Algorithm
Will show forwarding pointers this time:

root object

FROM-SPACE

a

b

c

root
object

a

c

d

e

b

0
1

Smalltalk Implementation

Harry Porter, October 2009 52

Baker’s Semi-Space Algorithm
Will show forwarding pointers this time:

root object

FROM-SPACE

a

b

c

root
object

a

c

d

e

b

0

0
0

0

0
0
0

1

Smalltalk Implementation

Harry Porter, October 2009 53

Baker’s Semi-Space Algorithm
First copy the root object.

root object

FROM-SPACE

a

b

c

root
object

a

c

d

e

b

0
0

0

0
0
0

Smalltalk Implementation

Harry Porter, October 2009 54

Baker’s Semi-Space Algorithm
First copy the root object.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c

next unscanned
 location

root
object

a

c

d

e

b

0
0

0

0
0
0

Smalltalk Implementation

Harry Porter, October 2009 55

Baker’s Semi-Space Algorithm
First copy the root object.

Mark it and leave a fowarding pointer

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c

next unscanned
 location

root
object

a

c

d

e

b

0
0

0

0
0
0

Smalltalk Implementation

Harry Porter, October 2009 56

Baker’s Semi-Space Algorithm
First copy the root object.

Mark it and leave a fowarding pointer

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c

next unscanned
 location

root
object

a

c

d

e

b

0
0

0

0
0
1

Smalltalk Implementation

Harry Porter, October 2009 57

Baker’s Semi-Space Algorithm
The object contains pointers

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c

next unscanned
 location

root
object

a

c

d

e

b

0
0

0

0
0
1

Smalltalk Implementation

Harry Porter, October 2009 58

Baker’s Semi-Space Algorithm
The object contains pointers

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c

next unscanned
 location

root
object

a

c

d

e

b

0
0

0

0
0
1

Smalltalk Implementation

Harry Porter, October 2009 59

Baker’s Semi-Space Algorithm
Scan the next object, looking for pointers

into FROM-SPACE
Copy these objects.
Leave behind forwarding pointers.
Update the pointers in this object.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c

next unscanned
 location

root
object

a

c

d

e

b

0
0

0

0
0
1

Smalltalk Implementation

Harry Porter, October 2009 60

Baker’s Semi-Space Algorithm
Scan the next object, looking for pointers

into FROM-SPACE
Copy these objects.
Leave behind forwarding pointers.
Update the pointers in this object.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

root
object

a

c

d

e
next unscanned
 location

b

0
0

0

0
0
1

Smalltalk Implementation

Harry Porter, October 2009 61

Baker’s Semi-Space Algorithm
Scan the next object, looking for pointers

into FROM-SPACE
Copy these objects.
Leave behind forwarding pointers.
Update the pointers in this object.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

root
object

a

c

d

e
next unscanned
 location

b

0
0

1

0
0
1

Smalltalk Implementation

Harry Porter, October 2009 62

Baker’s Semi-Space Algorithm
Scan the next object, looking for pointers

into FROM-SPACE
Copy these objects.
Leave behind forwarding pointers.
Update the pointers in this object.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

root
object

a

c

d

e
next unscanned
 location

b

0
0

1

0
0
1

Smalltalk Implementation

Harry Porter, October 2009 63

Baker’s Semi-Space Algorithm
Scan the next object, looking for pointers

into FROM-SPACE
Copy these objects.
Leave behind forwarding pointers.
Update the pointers in this object.
(Note: the copied objects contain pointers

into FROM-SPACE.)

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

root
object

a

c

d

e
next unscanned
 location

b

0
0

1

0
0
1

Smalltalk Implementation

Harry Porter, October 2009 64

Baker’s Semi-Space Algorithm
Scan the next object, looking for pointers

into FROM-SPACE
Copy these objects.
Leave behind forwarding pointers.
Update the pointers in this object.
(Note: the copied objects contain pointers

into FROM-SPACE.)

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

root
object

a

c

d

e
next unscanned
 location

b

0
0

1

0
0
1

Smalltalk Implementation

Harry Porter, October 2009 65

Baker’s Semi-Space Algorithm
Scan the next object, looking for pointers

into FROM-SPACE
Copy these objects.
Leave behind forwarding pointers.
Update the pointers in this object.
(Note: the copied objects contain pointers

into FROM-SPACE.)

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

b

root
object

a

c

d

e
next unscanned
 location

b

0
0

1

0
0
1

Smalltalk Implementation

Harry Porter, October 2009 66

Baker’s Semi-Space Algorithm
Scan the next object, looking for pointers

into FROM-SPACE
Copy these objects.
Leave behind forwarding pointers.
Update the pointers in this object.
(Note: the copied objects contain pointers

into FROM-SPACE.)

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

b

root
object

a

c

d

e
next unscanned
 location

b

0
0

1

0
0
1

Smalltalk Implementation

Harry Porter, October 2009 67

Baker’s Semi-Space Algorithm
Scan the next object, looking for pointers

into FROM-SPACE
Copy these objects.
Leave behind forwarding pointers.
Update the pointers in this object.
(Note: the copied objects contain pointers

into FROM-SPACE.)

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

b

root
object

a

c

d

e
next unscanned
 location

b

1
0

1

0
0
1

Smalltalk Implementation

Harry Porter, October 2009 68

Baker’s Semi-Space Algorithm
Scan the next object, looking for pointers

into FROM-SPACE
Copy these objects.
Leave behind forwarding pointers.
Update the pointers in this object.
(Note: the copied objects contain pointers

into FROM-SPACE.)

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

b

root
object

a

c

d

e
next unscanned
 location

b

1
0

1

0
0
1

Smalltalk Implementation

Harry Porter, October 2009 69

Baker’s Semi-Space Algorithm
Now we are done with this object.
Move on to next object.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

b

root
object

a

c

d

e

b

1
0

1

0
0
1 next unscanned

 location

Smalltalk Implementation

Harry Porter, October 2009 70

Baker’s Semi-Space Algorithm
Now we are done with this object.
Move on to next object.

root object

FROM-SPACE
root object

next free location

TO-SPACE

a

b

c a

b

root
object

a

c

d

e

b

1
0

1

0
0
1

next unscanned
 location

Smalltalk Implementation

Harry Porter, October 2009 71

Baker’s Semi-Space Algorithm
Now we are done with this object.
Move on to next object.

root object

FROM-SPACE
root object

TO-SPACE

a

b

c a

b

root
object

a

c

d

e

b

1
0

1

0
0
1

next unscanned
 location

next free locationc

Smalltalk Implementation

Harry Porter, October 2009 72

Baker’s Semi-Space Algorithm
Now we are done with this object.
Move on to next object.

root object

FROM-SPACE
root object

TO-SPACE

a

b

c a

b

root
object

a

c

d

e

b

1
0

1

1
0
1

next unscanned
 location

next free locationc

Smalltalk Implementation

Harry Porter, October 2009 73

Baker’s Semi-Space Algorithm
Now we are done with this object.
Move on to next object.

root object

FROM-SPACE
root object

TO-SPACE

a

b

c a

b

root
object

a

c

d

e

b

1
0

1

1
0
1

next unscanned
 location

next free locationc

Smalltalk Implementation

Harry Porter, October 2009 74

Baker’s Semi-Space Algorithm
Now we are done with this object.
Move on to next object.

root object

FROM-SPACE
root object

TO-SPACE

a

b

c a

b

root
object

a

c

d

e

b

1
0

1

1
0
1

next unscanned
 location

next free locationc

Smalltalk Implementation

Harry Porter, October 2009 75

Baker’s Semi-Space Algorithm
“b” contains a pointer into FROM-SPACE

But that object is marked with 1.
It has already been copied.
Just update the pointer.

root object

FROM-SPACE
root object

TO-SPACE

a

b

c a

b

root
object

a

c

d

e

b

1
0

1

1
0
1

next unscanned
 location

next free locationc

Smalltalk Implementation

Harry Porter, October 2009 76

Baker’s Semi-Space Algorithm
“b” contains a pointer into FROM-SPACE

But that object is marked with 1.
It has already been copied.
Just update the pointer.

root object

FROM-SPACE
root object

TO-SPACE

a

b

c a

b

root
object

a

c

d

e

b

1
0

1

1
0
1

next unscanned
 location

next free locationc

Smalltalk Implementation

Harry Porter, October 2009 77

Baker’s Semi-Space Algorithm
“b” contains a pointer into FROM-SPACE

But that object is marked with 1.
It has already been copied.
Just update the pointer.

root object

FROM-SPACE
root object

TO-SPACE

a

b

c a

b

root
object

a

c

d

e

b

1
0

1

1
0
1

next unscanned
 location

next free locationc

Smalltalk Implementation

Harry Porter, October 2009 78

Baker’s Semi-Space Algorithm
“b” contains a pointer into FROM-SPACE

But that object is marked with 1.
It has already been copied.
Just update the pointer.

root object

FROM-SPACE
root object

TO-SPACE

a

b

c a

b

root
object

a

c

d

e

b

1
0

1

1
0
1

next unscanned
 location

next free locationc

Smalltalk Implementation

Harry Porter, October 2009 79

Baker’s Semi-Space Algorithm
When they meet, we are done.
Continue processing.

…using the TO-SPACE for new objects.

root object

FROM-SPACE
root object

TO-SPACE

a

b

c a

b

root
object

a

c

d

e

b

1
0

1

1
0
1

next unscanned
 location

next free locationc

Smalltalk Implementation

Harry Porter, October 2009 80

Baker’s Semi-Space Algorithm
When they meet, we are done.
Continue processing.

…using the TO-SPACE for new objects.

root object

TO-SPACE

a

b

root
object

a

c

b

next free locationc

Smalltalk Implementation

Harry Porter, October 2009 81

Baker’s Semi-Space Algorithm
Advantages:

No time wasted with dead objects.
Running time proportional to live objects.
Increases locality of reference in TO-SPACE.
(Objects are placed near objects that point to them)

Disadvantages:
Wastes 50% of memory
Exhibits horrible behavior when there are lots of live objects.
i.e., right before memory fills up!

Real-Time Applications:
Goal: eliminate the long copy phase!
Modification:
Every time a new object is allocated…
Do a little collecting.
Whenever a pointer is dereferenced…
Check for a forwarding pointer.

Smalltalk Implementation

Harry Porter, October 2009 82

Ballard’s Observations
• Most objects are small.

≈ 0-5 fields
≈ 0-20 bytes

• A few objects are very large.
Examples: bitmaps, also large character strings

≈ 128 Kbytes
Do not contain OOPs (except for class ptr)

• Large objects tend to persist (through several collections).
• Short-lived objects tend to be small.

Example: Activation Records

The Semi-Space Algorithm wastes a lot of time on these big objects,
copying them back and forth.

Idea:
Put these large objects in a separate memory region.
Collect them less often.

... using a different algorithm (e.g., Mark-Sweep)

Smalltalk Implementation

Harry Porter, October 2009 83

Generation Scavenging
“Young objects die young and old objects continue to live.”

– David Ungar

Smalltalk Implementation

Harry Porter, October 2009 84

Generation Scavenging
“Young objects die young and old objects continue to live.”

– David Ungar

Idea: Divide memory into two regions.

Smalltalk Implementation

Harry Porter, October 2009 85

Generation Scavenging
“Young objects die young and old objects continue to live.”

– David Ungar

Idea: Divide memory into two regions.
A large region holds...

Objects that have been around for a while

A smaller region holds...
Recently allocated objects

Smalltalk Implementation

Harry Porter, October 2009 86

Generation Scavenging
“Young objects die young and old objects continue to live.”

– David Ungar

Idea: Divide memory into two regions.
A large region holds...

Objects that have been around for a while
The “tenured” generation
Collected less frequently

A smaller region holds...
Recently allocated objects

Smalltalk Implementation

Harry Porter, October 2009 87

Generation Scavenging
“Young objects die young and old objects continue to live.”

– David Ungar

Idea: Divide memory into two regions.
A large region holds...

Objects that have been around for a while
The “tenured” generation
Collected less frequently

A smaller region holds...
Recently allocated objects
The “new” generation
Collected frequently
Most of the garbage objects will be here

Most of the garbage will get collected

Smalltalk Implementation

Harry Porter, October 2009 88

Generation Scavenging
“Young objects die young and old objects continue to live.”

– David Ungar

Idea: Divide memory into two regions.
A large region holds...

Objects that have been around for a while
The “tenured” generation
Collected less frequently

A smaller region holds...
Recently allocated objects
The “new” generation
Collected frequently
Most of the garbage objects will be here

Most of the garbage will get collected

After a new object has survived several collections,
move it to the tenured region.

Smalltalk Implementation

Harry Porter, October 2009 89

Generation Scavenging
The Basic Approach
Divide memory into several regions.

Tenured
Objects

New
Objects

Smalltalk Implementation

Harry Porter, October 2009 90

Generation Scavenging
The Basic Approach
Divide memory into several regions.

Tenured
Objects

New
Objects

Use semi-space algorithm here

Smalltalk Implementation

Harry Porter, October 2009 91

Generation Scavenging
The Basic Approach
Divide memory into several regions.

Tenured
Objects

New
Objects

Smalltalk Implementation

Harry Porter, October 2009 92

Generation Scavenging
The Basic Approach
Divide memory into several regions.

TENURED

Tenured
Objects

Survivor
Objects FROM TO

NEW

Smalltalk Implementation

Harry Porter, October 2009 93

Generation Scavenging
The Basic Approach
Divide memory into several regions.

TENURED

Tenured
Objects

Survivor
Objects FROM TO

NEW

FROM

NEW

TENURED

Smalltalk Implementation

Harry Porter, October 2009 94

Generation Scavenging
The Basic Approach
Divide memory into several regions.

TENURED

Tenured
Objects

Survivor
Objects FROM TO

NEW

FROM

NEW

TENURED

Put new objects here

Smalltalk Implementation

Harry Porter, October 2009 95

Generation Scavenging
The Basic Approach
Divide memory into several regions.

TENURED

Tenured
Objects

Survivor
Objects FROM TO

NEW

FROM

NEW

TENURED

Full: Need to collect

Smalltalk Implementation

Harry Porter, October 2009 96

Generation Scavenging
The Basic Approach
Divide memory into several regions.

FROM TO

TENURED

Tenured
Objects

NEW

Survivor
Objects FROM

NEW

TENURED

Smalltalk Implementation

Harry Porter, October 2009 97

Generation Scavenging
The Basic Approach
Divide memory into several regions.

FROM TO

TENURED

Tenured
Objects

NEW

Survivor
Objects FROM TO

NEW

TENURED

Smalltalk Implementation

Harry Porter, October 2009 98

Generation Scavenging
The Basic Approach
Divide memory into several regions.

FROM TO

TENURED

Tenured
Objects

NEW

Survivor
Objects TO

TENURED

Smalltalk Implementation

Harry Porter, October 2009 99

Generation Scavenging
The Basic Approach
Divide memory into several regions.

FROM TO

TENURED

Tenured
Objects

NEW

Survivor
Objects TO

TENURED

Smalltalk Implementation

Harry Porter, October 2009 100

Generation Scavenging
The Basic Approach
Divide memory into several regions.

FROM TO

TENURED

Tenured
Objects

NEW

Survivor
Objects TO

TENURED

Resume allocating objects

Smalltalk Implementation

Harry Porter, October 2009 101

Generation Scavenging
The Basic Approach
Divide memory into several regions.

FROM TO

TENURED

Tenured
Objects

NEW

Survivor
Objects TO

TENURED

NEW
Resume allocating objects

Smalltalk Implementation

Harry Porter, October 2009 102

Generation Scavenging
The Basic Approach
Divide memory into several regions.

FROM TO

TENURED

Tenured
Objects

NEW

Survivor
Objects TO

TENURED

NEW

Smalltalk Implementation

Harry Porter, October 2009 103

Generation Scavenging
The Basic Approach
Divide memory into several regions.

FROM TO

TENURED

Tenured
Objects

NEW

Survivor
Objects TO

TENURED

NEW

Smalltalk Implementation

Harry Porter, October 2009 104

Generation Scavenging

FROM TO

TENURED

Tenured
Objects

NEW

Survivor
Objects

TENURED

Smalltalk Implementation

Harry Porter, October 2009 105

Generation Scavenging
For each object, keep a count of how many times it has been copied.
The “generation”.
After several generations,
 copy it to TENURED area.

FROM TO

TENURED

Tenured
Objects

NEW

Survivor
Objects

TENURED

Smalltalk Implementation

Harry Porter, October 2009 106

Generation Scavenging
For each object, keep a count of how many times it has been copied.
The “generation”.
After several generations,
 copy it to TENURED area.

FROM TO

TENURED

Tenured
Objects

NEW

Survivor
Objects

TENURED

Smalltalk Implementation

Harry Porter, October 2009 107

Generation Scavenging

FROM TO

TENURED

Tenured
Objects

NEW

Survivor
Objects

TENURED

Smalltalk Implementation

Harry Porter, October 2009 108

Generation Scavenging
Once tenured, the object will be ignored.
When the TENURED area fills up…
Perform a full
 MARK-SWEEP collection.

FROM TO

TENURED

Tenured
Objects

NEW

Survivor
Objects

TENURED

Smalltalk Implementation

Harry Porter, October 2009 109

Generation Scavenging

FROM TO

TENURED

Tenured
Objects

NEW

Survivor
Objects

TENURED

Smalltalk Implementation

Harry Porter, October 2009

FROM

NEW

FROM

NEW

110

Generation Scavenging
Complication:

Tenured objects may point to newer objects.

TO

TENURED

Tenured
Objects

Survivor
Objects

TENURED

Smalltalk Implementation

Harry Porter, October 2009 111

Generation Scavenging: Policy Issues

How big to make each space?

An object is moved into the TENURED area after it
survives K collections.
What value for K?

The system cannot run during GC.
GC will cause a short pause.
(e.g., 1 msec)

Is it better to collect more frequently than necessary?
The collections will be faster.
The pauses will be shorter.
When to schedule GC?

Smalltalk Implementation

Harry Porter, October 2009 112

The “become:” Operation
Exchange the identities of 2 objects

Example: A collection needs to grow itself.
Example: Adding an instance variable to a class.

Must go through all existing instances and “grow” them.

Smalltalk Implementation

Harry Porter, October 2009 113

The “become:” Operation
Exchange the identities of 2 objects

Example: A collection needs to grow itself.
Example: Adding an instance variable to a class.

Must go through all existing instances and “grow” them.

Implementation:
Easy with an “object table”
With direct pointers:

Need to scan all objects and change all pointers!

Smalltalk Implementation

Harry Porter, October 2009 114

The “become:” Operation
Exchange the identities of 2 objects

Example: A collection needs to grow itself.
Example: Adding an instance variable to a class.

Must go through all existing instances and “grow” them.

Implementation:
Easy with an “object table”
With direct pointers:

Need to scan all objects and change all pointers!

Solution:
• Re-write many classes to avoid using “become:”

Make indirection explicit.
• The primitive is available to walk through memory.

Check (and possibly update) every pointer in memory.
• To save time, the primitive can do several at once

(A B C) elementsForwardIdentityTo: (X Y Z)

Smalltalk Implementation

Harry Porter, October 2009 115

Squeak Object Format

What goes into an object’s header?

• Size in bytes (up to 24 bits, max object size = 16 Mbytes)
• Class of object (32 bit pointer)
• Hash code (12 bits)
• Format of object (4 bits)

- contains pointer/raw bits
- contains indexable fields or not
- data is byte / word addressable
- object is a CompiledMethod

• Bits used by garbage collector

Smalltalk Implementation

Harry Porter, October 2009 116

Object Format

Idea: Encode more common values in fewer bits.

Option 1:
size = 0 .. 64 words (6 bits)
class = 0 .. 32 (5 bits) 82%

Option 2:
size = 0 .. 64 words (6 bits) 17%
any class

Option 3:
Most general format 1%

header 00

classPtr 01
header 01

header 10
classPtr 10
objSize 10

Smalltalk Implementation

Harry Porter, October 2009 117

Header Word

Format: This object contains…
0000 - no fields at all
0001 - fixed pointer fields only (a normal object)
0010 - indexed pointer fields
0011 - both fixed fields and indexed pointer fields
0100 - (unused)
0101 - (unused)
0110 - indexed word data, but no pointer fields
0111 - (unused)
10xx - indexed byte fields, but no pointer fields (xx = rest of size in bytes)
11xx - a compiled method (xx = rest of size in bytes)

3-bits 12-bits 5-bits 4-bits 6-bits
0 0

G.C. bits Hash Value Class Format Size Tag
(in words)

Smalltalk Implementation

Harry Porter, October 2009

Generation Scavenging:

Additional detail.
Ignore these slides.

118

Smalltalk Implementation

Harry Porter, October 2009 119

Generation Scavenging: ConceptsNew Objects
Allocated recently; likely to become garbage soon
Must collect them quickly

Survivor Objects
These objects have survived a few collections
There is a probability they may live for a very long time

Tenured Objects
The oldest objects.
They have been around so long we assume they will never die.
(Considered to be “permanent”)
Don’t bother trying to collect them at all.
GS will occasionally give objects “tenure”
Some tenured objects may become unused / unreachable.
GS will not identify them as garbage.
Must collect tenured objects offline
Use Mark-Sweep occasionally
… when generation scavenging finally fails

Smalltalk Implementation

Harry Porter, October 2009 120

Generation Scavenging: Memory Regions
• Tenured Area --

Contains the permanent objects
These objects act as the “roots” of reachability

The “Remembered Set”:
Tenured objects which point to non-tenured objects

• New Space
Allocate new objects here
If objects survive the first collection,
move them into Past Survivor Space

• Past Survivor Space
These objects have survived several collections
After K collections, move them into Tenured Area

• Future Survivor Space
Used only during GS collection

Smalltalk Implementation

Harry Porter, October 2009 121

Generation Scavenging: Memory Regions

TENURED-AREA 980 Kbytes
NEW-SPACE 140 Kbytes
PAST-SURVIVOR-SPACE 28 Kbytes
FUTURE-SURVIVOR-SPACE 28 Kbytes

NEW-
 SPACE

PAST-
 SURVIVOR-
 SPACE

TENURED-
 AREA

FUTURE-
 SURVIVOR-
 SPACE

The Remembered-Set

Smalltalk Implementation

Harry Porter, October 2009 122

Generation Scavenging: Algorithm
When NEW-SPACE fills up, stop and collect.

The “root” objects in NEW-SPACE, PAST-SURVIVOR-SPACE?
Every object pointed to by…

Objects in the Remembered-Set
The interpreter registers, activation-record stack, etc.

Copy all root objects into FUTURE-SURVIVOR-SPACE.

Pull all reachable objects over (as in Baker’s Algorithm):
 Scan all pointers in the FUTURE-SURVIVOR-SPACE.

For every referenced object
(in NEW-SPACE or PAST-SURVIVOR-

SPACE)
Copy into FUTURE-SURVIVOR-SPACE

Switch the PAST- and FUTURE-SURVIVOR-SPACES.
Resume Processing.

Smalltalk Implementation

Harry Porter, October 2009 123

Generation Scavenging: Algorithm
Do not need to copy FUTURE-SURVIVOR-SPACE

back to PAST-SURVIVOR-SPACE.
(We can update the Remembered-Set as we scan it for root objects.)

Must keep the Remembered-Set up to date.
Every time we store a pointer in the TENURED-AREA

We may need to update the Remembered-Set
Each pointer looks like this

When we overwrite a pointer with a different GEN, update Remembered-Set.

1 GEN memory address

Smalltalk Implementation

Harry Porter, October 2009 124

Tenuring Policy
Problem: When to promote an object into the TENURED-AREA?

Associate an “age” with each untenured object.
Increment it whenever the object is copied during G.C.
After the object survives K collections,

Move it into the TENURED-AREA

Problem: Premature Tenuring:
An object is promoted and then dies relatively soon!

Solution:
• Generalize to multiple generations
• Keep track of how old each object is
• At certain ages (2 seconds, 10 seconds, 1 minute, 1 day, …)

Promote objects to the next older generation
• Scavenge younger generations more frequently.

Smalltalk Implementation

Harry Porter, October 2009 125

Squeak: Garbage Collection
Uses both:

• Generation Scavenging for most collections (0.5 msec)
• Mark-Sweep, when Gen Scavenging fails (75 msec)

Mark-Sweep Algorithm
Will perform compaction in place.

To compact all objects: Must redirect all pointers.
Need space for forwarding pointers

But no object table!

Solution:
“Relocation Entries”

Contains info about where an object is being moved to
Pre-allocate an array of 1000 relocation entries.

Can always move at least 1000 objects.
Put at top of heap; if more space available, use it too for additional entries.
Make multiple passes if not enough room for relocation entries (rare).

Smalltalk Implementation

Harry Porter, October 2009 126

Squeak: Garbage Collection
Generation Scavenging

G.S. looks at only NEW and SURVIVING objects
… Not the TENURED (old) objects
Copies them into NEW-SURVIVOR space
(Compacting these objects immediately)
Not too many of them --> can be done quickly.

When to perform G.S.?
When memory fills up --> bigger delay
Do it more often!
Keep a counter. Increment whenever an object is allocated.
When counter reaches threshhold, then do G.S.
Smaller delays, but more often (good)

When to grant tenure?
When the number of survivors reaches a threshhold, tenure them all.
(Just move the boundary up --> fast)

Eventually, we must do a full (mark-sweep) collection and compaction.

Smalltalk Implementation

Harry Porter, October 2009 127

Comparison of G.C. Algorithms

pause interval
CPU time between
overhead (sec) pauses (sec)

ref. counting 15-20% 1.3 60-1200

deferred ref. 11% 1.3 60-1200
 counting

Mark-Sweep 25-40% 4.5 74

Ballard’s 7% --- ---
 Algorithm

Generation 1.5-2.5% .38 30
 Scavenging

Smalltalk Implementation

Harry Porter, October 2009

Reference Counting

Not widely used.
Ignore these slides.

128

Smalltalk Implementation

Harry Porter, October 2009 129

Reference Counting
• For each object, store…

A count of “incoming pointers”

• Two operations:
INCREMENT the reference count
DECREMENT the reference count
Called by the bytecode interpreter
… every time a field is modified!

• When this count goes to zero…
The object is garbage.

• Maintain a list of unused garbage objects.
When the count goes to zero…
Add this object to the free list.
To allocate a new object, check the free list first.

• Periodically compact objects

refCount = 4
size
class

Smalltalk Implementation

Harry Porter, October 2009 130

Reference CountingAdvantages:
• The work is spread out over time.
• Good for real-time/interactive systems.
No long pauses.

Disadvantages:
• Will not identify all garbage!!!
Cyclic objects.

Must combine with another G.C. algorithm
(Usually mark-sweep)
• Count field is of limited size
Overflow? Sticks on the largest number

Root

Unidentified
 Garbage

Smalltalk Implementation

Harry Porter, October 2009 131

Reference Counting - Optimization
Deferred Reference Counting - The Deutsch-Bobrow Algorithm

“An efficient Incremental Automatic Garbage Collection Algorithm,” by L.P. Deutsch and D.G.
Bobrow, CACM 19:9, p. 522-526, Sept. 1976.

Observations:

• Fields in activation records (e.g., local variables) change rapidly.
• Activation records have short lifetimes.

ARs are created & destroyed frequently.
• Garbage collection occurs much less frequently.

Optimization:

• Don't modify reference counts every time
a local variable is modified.

• Thus, reference counts do not include pointers
from activation record stack.

• The activation record stack will be a second “reachability root”

Smalltalk Implementation

Harry Porter, October 2009 132

Incremental Reference Counting
• During normal operation, whenever a reference count goes to zero...

We can’t put it on the list of free objects.
So add it to a special list: The “Zero Count Table”

• When we run out of memory…
• Run thru the stack of activation records

For every pointer we find on the stack…
Increment the reference count of the object pointed to.

• Run through the Zero Count Table.
If the count is still zero…

The object is unreachable --> Add to free list

• Cleanup: Run thru the stack of activation records again.
For every pointer we find on the stack…

Decrement the reference count of the object pointed to.
If zero, add back to the Zero Count Table

Resume normal operation.

• Note: nothing is freed until the collector is run (although it may run faster).

Smalltalk Implementation

Harry Porter, October 2009

Object Table

No longer used in Smalltalk.
Ignore these slides.

133

Smalltalk Implementation

Harry Porter, October 2009 134

The Object Table (for 16-bit implementation)

Ø
Ø

Ø

Ø

Ø
Ø

32K
entries

size
class

flags

ref. count memory address

 Flags:
• Free table entry
• Used by garbage collection algorithm
• Object format:

OOPs, SmallIntegers only
ByteArray
WordArray

Smalltalk Implementation

Harry Porter, October 2009 135

 Each OOP points to a ObjectTable entry.
Every pointer is indirect.
Benefit? Easy to move an object

The Object Table

Ø
Ø

Ø

Ø

Ø
Ø

size
class

size
class

size
class A

C

B

Smalltalk Implementation

Harry Porter, October 2009 136

The “become:” Operation
Used to “grow” objects

Examples: OrderedCollection, Dictionary, …
Implementation:

Swap the object table entries

The Object Table

Ø
Ø

Ø

Ø

Ø
Ø

size
class

size
class

size
class

C

B

A

A become: B

Smalltalk Implementation

Harry Porter, October 2009 137

Unused Object Table Entries

Keep in a linked list

Smalltalk Implementation

Harry Porter, October 2009 138

Unused Object Table Entries

Keep in a linked list

NULL

	Smalltalk Implementation: Memory Management and Garbage Collection
	The Object Manager
	Object Manager Interface
	Example
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Just Use Virtual Memory???
	Major Garbage Collection Algorithms
	Mark-Sweep Garbage Collection
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Baker’s Semi-Space Algorithm
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Ballard’s Observations
	Generation Scavenging
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Generation Scavenging: Policy Issues
	The “become:” Operation
	Slide 113
	Slide 114
	Squeak Object Format
	Object Format
	Header Word
	Generation Scavenging:
	Generation Scavenging: Concepts
	Generation Scavenging: Memory Regions
	Slide 121
	Generation Scavenging: Algorithm
	Slide 123
	Tenuring Policy
	Squeak: Garbage Collection
	Slide 126
	Comparison of G.C. Algorithms
	Reference Counting
	Slide 129
	Slide 130
	Reference Counting - Optimization
	Incremental Reference Counting
	Object Table
	The Object Table (for 16-bit implementation)
	
	Slide 136
	Unused Object Table Entries
	Slide 138

