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Programming Project 8:
The Serial I/O Device Driver

Due Date: ______________________________
Project Duration:  One week

Overview and Goal

In this project, you will implement a device driver and will modify the syscall interface to allow application
programs to access this device, which is the serial terminal interface.  The goals include learning how the
kernel makes the connection between syscalls and device drivers and gaining additional experience in
concurrent programming in the context of an OS kernel.

With the addition of serial I/O to the kernel, your growing OS will now be able to run a “shell” program.
This will give you the ability to interact with the OS in the same way Unix users interact with a Unix shell.

Download New Files

The files for this project are available in:

http://www.cs.pdx.edu/~harry/Blitz/OSProject/p8/

The following files are new to this project:

TestProgram5.h
TestProgram5.c
sh.h
sh.c
cat.h
cat.c
hello.h
hello.c
fileA
fileB
fileC
fileD
script
help
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The following files have been modified from the last project:

makefile
DISK

The makefile has been modified to compile the new programs.  The DISK file has been enlarged, since the
previous version was too small to accommodate all these new files.

All remaining files are unchanged from the last project.

Changes to the Syscall Interface

In this project, you will alter a couple of the syscalls to allow the user program to access the serial device.
The serial device is an ASCII “dumb” terminal; individual characters can be sent and received
asynchronously, one-by-one.  Characters sent as output to the BLITZ serial device will appear directly on
the screen (in the window where the emulator is being run) and characters typed at the keyboard will appear
as input to the BLITZ serial device.

Unix divides all I/O into 2 class called “character” and “block.”  In Unix, user programs can operate
character-oriented devices (like keyboards, dumb terminals, tapes, etc.) using the same syscalls as for block
devices (like the disk).  Your kernel will also use the same syscalls, so in this project you will not add any
new syscalls.

To send or receive characters to/from the serial terminal device, the user program will first invoke the Open
syscall to get a file descriptor.  Then the user program will invoke Read to get several characters or Write
to put several characters to the terminal.

In the last project, the Open syscall was passed a filename.  In this project, the behavior of Open will be
modified slightly: if the filename argument happens to be the special string “terminal”, your kernel will
not search the disk for a file with that name; instead your kernel will return a file descriptor that refers to the
serial terminal device.  Sometimes we call this the “terminal file,” but it is not really a file at all.

The Close syscall is passed a file descriptor.  When Close is passed a file descriptor referring to the
terminal “file,” it will work pretty much the same (from the user-level view) as with a disk file.  The file
descriptor will be marked as unused and free and any further attempt to read or write with that file
descriptor will cause errors.

It is an error to use the Seek syscall on the terminal file.  If passed a file descriptor referring to the terminal
file, Seek should return –1.

When the Read syscall is applied to the terminal file, it will return characters up to either the sizeInBytes
of the buffer or to the next newline character (\n), whichever occurs first.  Read will return the number of
characters gotten, including the newline character.  Read will wait for characters to be typed, if necessary.

When the Write syscall is applied to the terminal file, it will send the characters in the buffer to the serial
terminal device, so they will appear on the screen.

The Create syscall will not be implemented this term.  (It would need to disallow the creation of a file
called “terminal”.)
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Resources

The following sections from the document titled “The BLITZ Emulator” are relevant:

Emulating the BLITZ Input/Output Devices (page 25)
Memory-Mapped I/O (page 25)
The Serial I/O Device (page 27)
Echoing and Buffering of Raw and Cooked Serial Input (page 28)

You might want to stop and read this material before continuing with this document.

Implementation Hints

In this section, we will make some suggestions about how you might implement the required functionality.
You are free to follow our design but you might want to stop here and think about how you might design it,
before you read about the design we are providing.  You may have some very different—and better—ideas.
It may also be more rewarding and fun to work through your own design.

Here are the changes our design would require you to make to Kernel.h.  These will be discussed below as
we describe our suggested approach, but all the changes are given here, for your reference.

The following should already be in your Kernel.h file:

const
  SERIAL_IN_BUFFER_SIZE = 10
  SERIAL_OUT_BUFFER_SIZE = 10

enum FILE, TERMINAL, PIPE

The following should also be there; uncomment it.

var
  serialDriver: SerialDriver

Add a new global variable:

var
  serialHasBeenInitialized: bool

Add a new class called SerialDriver:
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------------------------  SerialDriver  ----------------------------
--
--  There is only one instance of this class.
--
const
  SERIAL_CHARACTER_AVAILABLE_BIT                 = 0x00000001
  SERIAL_OUTPUT_READY_BIT                        = 0x00000002
  SERIAL_STATUS_WORD_ADDRESS                     = 0x00FFFF00
  SERIAL_DATA_WORD_ADDRESS                       = 0x00FFFF04

class SerialDriver
  superclass Object
  fields
    serial_status_word_address: ptr to int
    serial_data_word_address: ptr to int
    serialLock: Mutex
    inBuffer: array [SERIAL_IN_BUFFER_SIZE] of char
    inBufferSize: int
    inBufferNextIn: int
    inBufferNextOut: int
    inCharacterAvail: Condition
    outBuffer: array [SERIAL_OUT_BUFFER_SIZE] of char
    outBufferSize: int
    outBufferNextIn: int
    outBufferNextOut: int
    outBufferSem: Semaphore
    serialNeedsAttention: Semaphore
    serialHandlerThread: Thread
  methods
    Init ()
    PutChar (value: char)
    GetChar () returns char
    SerialHandler ()
endClass

The following field should already be present in class FileManager:

serialTerminalFile: OpenFile

The following field should already be present in class OpenFile:

kind: int               -- FILE, TERMINAL, or PIPE

The serial device driver code will go into the class SerialDriver, of which there will be exactly one instance
called serialDriver.  In analogy to the disk driver, the single SerialDriver object should be created in
Main at startup time and the Init method should be called during startup to initialize it.  You’ll need to
modify Main.c accordingly.

The SerialDriver has many fields, but basically it maintains two FIFO queues called outBuffer and
inBuffer.  The outBuffer contains all the characters that are waiting to be printed and the inBuffer
contains all the characters that have been typed but not yet requested by a user program.  The inBuffer
allows users to type ahead.
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There will be only two methods that users of the serial device will invoke: PutChar and GetChar.
PutChar is passed a character, which it will add to the outBuffer queue.  If the outBuffer is full, the
PutChar method will block; otherwise it will return immediately after buffering the character.  PutChar
will not wait for the I/O to complete.

The GetChar method will get a character from the inBuffer queue and return it.  If the inBuffer queue is
empty (i.e., there is no type-ahead), GetChar will block and wait for the user to type a character before
returning.

The Read syscall handler should invoke the GetChar method and the Write syscall handler should
invoke the PutChar method.

Each of these buffers is a shared resource and the SerialDevice class is a monitor, regulating concurrent
access by several threads.  The buffers will be read and updated in the GetChar, PutChar and
SerialHandler methods, so the data must be protected from getting corrupted.  To regulate access to the
shared data in the SerialDriver, the field serialLock  is a mutex lock which must be acquired before
accessing either of the buffers.  (Our design uses only one lock for both buffers, but using two locks
would allow more concurrency.)

Look at inBuffer first.  The GetChar routine is an entry method.  As such it must acquire the serialLock
as its first operation.  The variables bufferSize, inBufferIn, and inBufferOut describe the status of the
buffer.

Here is an inBuffer containing “abc”.  The next character to be fetched by GetChar is “a”.  The most
recently typed character is “c”.

If the inBufferSize is zero, then GetChar must wait on the condition inCharacterAvail, which will be
signaled after a new character is received from the device and added to the buffer.  After getting a character,
GetChar must adjust inBufferNextOut and inBufferSize before releasing serialLock and returning the
character.

0 1 2 3 4 5 6 7 8 9
a b c

inBufferNextOut=2 inBufferNextIn=5

inBufferSize=3
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Next look at PutChar.  There is a similar outBuffer.  Here is an example containing “xyz”.

The PutChar method must first wait until there is space in the buffer.  To handle this, You can use the
semaphore called outBufferSem.  This semaphore is initialized with

outBufferSem.Init (SERIAL_OUT_BUFFER_SIZE)

which starts the semaphore with one excess signal per available buffer entry.  Each time a character is
removed from the buffer, it will create an additional space, so every time a character is removed (by the
SerialHandler method, discussed later), the semaphore will be signaled.  By waiting on the semaphore,
PutChar ensures that there is at least one free space.  Then it acquires the serialLock.  (Note that even
though other threads may sneak in and run between the completion of the Wait and the acquisition of the
serialLock, there will always be at least one free space.)

PutChar will then add its character to the next “in” spot in the buffer and adjust outBufferNextIn and
outBufferSize.  Then it will release the lock.  Finally, before returning, it will signal another semaphore,
called serialNeedsAttention, which will wake up the SerialHandler thread.

In our design, the serial device will be controlled by a kernel thread called “SerialHandler”.  Every time the
serial device interrupts the CPU, this thread will be awakened.  Also, every time PutChar adds a character
to the outBuffer, this thread will be awakened.

The SerialHandler thread has two tasks.  (1)  If a new character has been received (i.e., the user has
pressed a new key), the new character must be fetched from the device and moved into the inBuffer.  (2) If
the serial transmission channel is free (i.e., done transmitting the previous character) and there are more
characters waiting in outBuffer to be printed, the outputting of the next character must be started.  The
thread must also wake up any other threads waiting on the inBuffer (becoming non-empty) and the
outBuffer (becoming non-full).

In the SerialDriver class there is a semaphore called serialNeedsAttention, which will be signaled to
wake up the SerialHandler thread.  The code for SerialHandler is an infinite loop which waits on the
semaphore, then checks things, and then repeats (going to sleep until the next time the semaphore is
signaled).

The SerialInterruptHandler routine should be modified to signal the serialNeedsAttention semaphore
and thereby wake up the serial handler thread.  Unfortunately, this semaphore will not be initialized when
the OS first begins.  Although the semaphore will be initialized as part of the OS startup, serial interrupts
may occur from the very beginning.  An attempt to signal a semaphore that has not yet been initialized will
result in an “uninitialized object” error.  You don’t want that!

0 1 2 3 4 5 6 7 8 9
x y z

outBufferNextOut=2 outBufferNextIn=5

outBufferSize=3
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To deal with serial interrupts that might occur before the semaphore has been initialized, You can add a new
global variable

serialHasBeenInitialized: bool

In KPL, global variables are always initialized to their zero values; for a boolean this is “false”.  The code
in SerialDriver.Init should create the semaphore and initialize it.  As the last thing it does, Init should set

serialHasBeenInitialized = true

Here is the code for the SerialInterruptHandler function:

currentInterruptStatus = DISABLED
if serialHasBeenInitialized
  serialDriver.serialNeedsAttention.Signal()
endIf

Next let’s look at SerialDriver.Init.  First it might want to print the message “Initializing Serial
Driver...”  The two fields called serial_status_word_address and serial_data_word_address are
pointers to the memory-mapped addresses of the two serial device registers.  They should be initialized
here and will never change.  (KPL cannot handle “const” values that are pointers, so instead, you can make
them fields of SerialDriver.)

Next, Init must initialize the serialLock.  Then Init must initialize the fields associated with the input
buffer.  They are: inBuffer, inBufferSize, inBufferNextIn, inBufferNextOut, and the
InCharacterAvail condition.  Next, Init must initialize the fields associated with the output buffer:
outBuffer, outBufferNextIn, outBufferNextOut, and the outBufferSem semaphore.  As mentioned
above, the argument to outBufferSem.Init indicates one initial signal per buffer slot.  Next, Init must
initialize the serialNeedsAttention semaphore.

Then Init must create a new thread (a kernel thread) which will monitor the serial terminal device.  This is
the serialHandlerThread field in SerialDriver.  As you know, the Thread.Fork function requires a
pointer to a function and a single integer argument.  You should create a function (called
SerialHandlerFunction) which ignores the integer argument and immediately invokes
serialDriver.SerialHandler method.  This method contains all the code and it never returns.

Finally, the Init method should set serialHasBeenInitialized to true and return.

As mentioned before, the SerialHandler method contains an infinite loop.  The first thing in the loop is a
wait on the serialNeedsAttention semaphore.  This semaphore can be signaled by either the PutChar
method (when a new character is added to the output queue) or when a serial interrupt occurs.  In either
case, the thread will wake up, check things, and then go back to sleep, waiting for the next signal.

When awakened, the SerialHandler thread will need to look at the serial device to see if a character has
arrived at the device (i.e., a key has been pressed).  So it must query the serial device status register and
check the “character available” bit.  If set to 1, it must get the character from the serial device data register.
Then the SerialHandler must add it to the input buffer.  This requires first acquiring the serialLock.

It is possible that the input buffer is full and this must be checked for.  If the inBuffer is full, we have a
case of the user typing too many characters ahead, before the program has asked for them.  In our design,
the character is simply dropped (i.e., do not add it to the buffer).  Instead, you should print out a message
containing the character.  This will be very helpful in debugging.



Project 8 Operating Systems

Page 8

print ("\nSerial input buffer overrun - character '")
printChar (inChar)
print ("' was ingored\n")

After adding the character to the buffer, the SerialHandler needs to signal the inCharacterAvail
condition, then release the serialLock.

After dealing with the input stream, the SerialHandler needs to look at the output stream.  (It would also
be correct to handle the output before the input.)

First, you need to query the status register and check the “output ready” bit.  A 1 bit indicates the device is
ready to transmit another character, so next you need to check to see if there are any characters queued for
output.  Before you check outBufferSize, you’ll need to acquire the serialLock.  If there is at least one
character in the queue, you can remove it (adjusting outBufferSize and outBufferNextOut) and move it
into the serial device data register.  Finally, you’ll need to signal outBufferSem, to wake up any PutChar
threads waiting to add characters to a full buffer.  And don’t forget to release the serialLock no matter
what the code does or your OS will freeze up.

Regarding buffers and pointers, here is a little trick.  Assume you have the following code (not part
of this project):

var buffer: array [MAX_SIZE] of char = ...
    nextPos: int

To add an element to the buffer, you’ll need to increment the nextPos index variable.  The
following code uses the mod operator when it adds 1, which cause the buffer to be a “circular”
buffer.

buffer[nextPos] = x
nextPos = (nextPos + 1) % MAX_SIZE

If MAX_SIZE = 100, then this code will add 1, going from 99 back to 0.  The same trick works
when decrementing index values, although this design involves only incrementing:

nextPos = (nextPos - 1) % MAX_SIZE

The specification says that a user program can open “terminal” just like any other file.  The file descriptor
array associated with each process points to OpenFiles, with a null value indicating that the given file
descriptor is not an open file.

Since the Open syscall must assign a new file descriptor when called for “terminal” and the new file
descriptor must point to an OpenFile, you will need two kinds of OpenFile.  One kind is for files and one
is for the terminal.  Later, we mention the possibility of implementing pipes, so there are really three kinds
of OpenFiles, but we’ll ignore pipes for now.

The kind field in OpenFile will have one of the following values...

enum FILE, TERMINAL, PIPE

Since there is only one terminal, there will only be one OpenFile whose kind is TERMINAL.  Since
there is exactly one OpenFile for the terminal, you can pre-allocate this OpenFile object.  The logical
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place to do this is in FileManager.Init.  You can use the field called serialTerminalFile in the
fileManager object.  In Init, you can create this unique OpenFile object, set its kind to TERMINAL,
and make serialTerminalFile point to it.

The serialTerminalFile is pretty much a dummy place holder.  None of its other fields (currentPos, fcb,
numberOfUsers) will be needed.

The Open syscall handler requires very few changes.  Presumably in the previous project, you began by
copying the String argument (filename) from the virtual address space to a kernel buffer (and aborting if
problems).  Then you found the next free entry in the fileDescriptors array (and aborting if none).

At that point, you can check to see if the filename is equal to “terminal” (see the StrEqual function from
the System package).  If so, you can just make the fileDescriptor entry point to the OpenFile called
serialTerminalFile and return.

The syscall handler for Close is straightforward.  You’ll need to reclaim the entry in the fileDescriptors
array, but that is all.  In particular, FileManager.Close should not do anything if called on
serialTerminalFile.  Or perhaps you simply avoid ever invoking FileManager.Close on the
serialTerminalFile.

Modifying the Read syscall handler will require a little more effort.  Presumably in the last project your
Handle_Sys_Read function began by checking the fileDesc argument and locating the OpenFile in
question (and aborting if problems).  After possibly dealing with a sizeInBytes of zero or less, you can
insert code to see if you are dealing with the serialTerminalFile object, instead of a regular disk file.

If so, you’ll need to call SerialDriver.GetChar once to get each character from the device.  We’ll leave
the details to you, but perhaps you’ll use a single loop which calls GetChar once per iteration.  You’ll
need to keep track of the virtual address in which to store the next incoming character.  You’ll need to
perform the virtual-to-physical translation and check to make sure (1) that the virtual page number is
between 0 and the top legal page in the address space, (2) that the page is valid (In this project all pages
should be valid, since we haven’t yet implemented paging to disk.), and (3) that the page is writable.  You’ll
also need to set the page to dirty and referenced, under the assumption that this would be needed if we were
swapping out pages.  The Read syscall must return the number of characters gotten from the input stream
and moved into the user-space buffer.  The reading will stop just after a newline (\n) character, but the user
program will always get at least one character (unless there was an error with the arguments to the syscall).

The modifications to the Write syscall handler are quite similar.  A single loop can call
SerialDriver.PutChar once per iteration.  You’ll need to have the same checks on the arguments and the
same checks on the virtual address pointer.  Of course the code should not set the page to dirty for write
operation.

The KEYBOARD-WAIT-TIME Simulation Constant

One of the simulation constants used by the emulator is

KEYBOARD_WAIT_TIME

The value of this number tells the emulator how fast the serial terminal device is.  In particular, it tells about
how many instructions are to be executed between serial interrupts.
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If, for some reason, your kernel does not retrieve an incoming character from the terminal device fast
enough, the character might get lost when the next character comes in.  If this happens, the emulator (which
checks for various program errors) will notice that your OS is failing to get incoming characters fast
enough and will print out a message such as:

ERROR: The serial input character "g" was not fetched in a timely way and has been lost!

If you see this message, it indicates that your kernel has an error.  It is not getting the incoming characters
when it should.

The default value for KEYBOARD_WAIT_TIME (30,000) should be more than enough to give your
device driver time to process each character and add it to the type-ahead buffer.  If you run into this error,
the solution is to fix your kernel, not modify the simulation constant!

Of course the user program may fail to call Write fast enough to prevent the type-ahead buffer from
overflowing, but that is a different problem.

Raw and Cooked Input

Review the material in the document “The BLITZ Emulator” regarding “raw” and “cooked” input.  You
should play around with your program using both “raw” and “cooked” mode.  See the raw and cooked
commands or the –raw command line option.

In cooked mode, which is the default, the host Unix system will echo all characters as you type them.  Only
after you hit the “enter” key will any characters get delivered to the emulator and hence to the BLITZ serial
device and to your BLITZ kernel code.

In general, cooked mode is very nice because it lets the user edit his/her input (using the backspace key)
and relieves most Unix programs from the burden of echoing keystrokes and dealing with the backspace
character.

But be aware that with cooked mode, the BLITZ emulator may get frozen, waiting for you to hit the enter
key.  Or it may not.  Since this may be rather confusing, the BLITZ emulator will print a message whenever
it stops executing BLITZ code and is just waiting for user input.

The emulator takes a command line parameter –wait that tells it what to do when there is nothing more to
do.  If you go back and look at the code in the thread scheduler, you’ll see that when a thread goes to sleep
and there are no remaining threads on the ready list, the “idle thread” will execute the “wait” instruction,
which suspends CPU execution and waits on an interrupt.

In the past projects, we did not use the –wait option, so when a “wait” instructions was executed, the
emulator would print out the familiar message:

A 'wait' instruction was executed and no more interrupts are
scheduled... halting emulation!

With this project, the user is now able to type input so we don’t want the emulator to just quit. We want the
kernel to wait for incoming events—keystrokes, in particular—wake up, service the interrupts, and possibly
resume execution in some user-level thread.

So in this project you’ll need to use –wait on the command line, e.g.,
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% blitz –g os –wait

or

% blitz –g os –wait -raw

Now, you’ll might see a different message:

Execution suspended on 'wait' instruction; waiting for additional
user input

When you see this message, the emulator has stopped executing instructions and is waiting for you to enter
something.  This message only appears when the emulator is running in cooked mode; in raw mode the
emulator will just quietly wait for the next keystroke.

But now there is another problem: How can you stop the emulator?  The answer is by hitting control-C.

Hitting control-C once will suspend BLITZ instruction emulation and put you back in the debugging
command line loop.  You might see something like this:

Beginning execution...
==================  KPL PROGRAM STARTING  ==================
Initializing Thread Scheduler...
Initializing Process Manager...
Initializing Thread Manager...
Initializing Frame Manager...

*****  Control-C  *****
Done!  The next instruction to execute will be:
026C5C: A3FFFFF8    bne   0xFFFFF8   ! targetAddr = _Label_168_2
>

Control-C behaves a little funny when in “cooked” mode.  You may need to hit the ENTER/RETURN key
one or two times after hitting control-C before you see the “>” prompt.

Hitting control-C twice in a row will terminate the BLITZ emulator, which could be useful if the emulator
has a bug.  (As if...!)

Dealing With \n and \r

In the Read syscall handler, you should replace any incoming \r characters by \n and treat the character
just like the \n character (i.e., return from the Read syscall immediately without waiting for additional
characters).

Why?  Because if you are running the emulator in “raw” mode, some terminals will send a \r character
whenever the key marked “enter” or “return” is struck.  By substituting \n for \r, the BLITZ user-level
program will never see a \r character and can work only with \n characters.

In the Write syscall handler, whenever the user-level program tries to send the \n character to the serial
device, you should insert an additional call to send a \r as well.  Perhaps this code will work:
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if ch == '\n'
  serialDriver.PutChar ('\r')
endIf
serialDriver.PutChar (ch)

This may be helpful in raw mode and should not have any effect in cooked mode.  You might enjoy
experimenting to see what your terminal does if this additional \r is left out.  (Try hitting control-J which
will send a \n to your program.  Try hitting control-M which will send \r to your program.)

Ideally, an OS would perform character editing and everything associated with cooked mode in the terminal
driver code.  Ideally, you would run your kernel using the –raw option in the emulator and your driver
would perform all echoing and character editing.  You might wish to experiment with such modifications,
but they are not part of the assignment.

The “Print” Functions

Up to now, you have been using functions such as print, printInt, printIntVar, and printHex to assist
in debugging your kernel code.  These functions do not work like normal I/O on any real computer.
Instead, these functions all make use of a BLITZ instruction called “debug2” which would not be found
on any real computer.  This magic little instruction will cause some string or number to be immediately
printed out.  There are no devices to interface with, no delays, and no interrupts.  The output occurs
“atomically” (i.e., all at once, with no intervening instructions) which turns out to be very, very useful in
being able to read output from concurrent programs.

In a real kernel, there is a similar mechanism for printing to facilitate debugging.  However, the output is
written to an in-memory buffer (rather than displayed), where it can be examined (after the kernel has
crashed) by some simpler program that copies the “output” sitting in memory to somewhere where it can
be read by a human.  A real nuisance, but debugging kernel code is only for the strongest of programmers!

In order for user-level programs to print, they should call Write on the serial terminal file.  Technically, any
use of the “debug2” instruction ought to be removed, but we have left it in.  The print, printInt,
printIntVar, etc. functions are for debugging use only; they are not like anything found in a real kernel.
To print, a user-level program needs to call a function (such as printf in C) which in turn will invoke the
Write syscall.

In our test programs, we will dispense with library functions like printf which call Write and just invoke
Write directly.  Likewise, we will not get around to implementing input functions like scanf, but will just
invoke the Read syscall directly.

The Shell Program

After completing this project, your kernel will have enough functionality to support a Unix-like shell.  In
particular, your kernel can support the following features:

 (1) Print a prompt (such as %), read in the name of a program, and execute that program loaded.  For
example:

% prog
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The file called “prog” will be executed with file descriptor 0 (stdin) pointing at the terminal and file
descriptor 1 (stdout) pointing at the terminal.

(2) Redirect input using the < character, so that stdin comes from a file.  For example:

% cat < myFile

(3) Redirect stdout using the > character, so that stdout goes to a file.  For example:

% ls > temp

(4) Deal with stderr (file descriptor 2), perhaps using >2 for redirection.

(5) Deal with starting jobs, without waiting for their completion.  For example:

% cat < myFile > temp &
[1] 723
%

In this example, 723 is the process id.  We could also implement some other job-control functions like fg
and bg.

(7) Nested shell invocation, for example

% sh < script > output

(8) We even have enough to implement some fancy (and complex) features such as some shell
programming constructs and command-line editing and history.

(9)  If we include the implementation of pipes (as discussed below), we could also add the ability to pipe
the output of one program to another program.  For example:

% cat | wc

What we don’t have yet is any ability to pass command-line arguments to the program, as in:

% blitz –g os -raw

As part of the testing suite, we are providing a shell program called sh.  After finishing this project, see if
your kernel can execute this shell!

Pipes

As an extension (if you have enough time) you might consider adding pipes to your kernel.

You’ll need to add a new syscall, Pipe, which takes no arguments.  This syscall will create a new pipe and
return a file descriptor which refers to it.  It is much like the Open syscall.  It will need to allocate a new
OpenFile object.  The kind of this new OpenFile object will be neither FILE nor TERMINAL, but PIPE.
You’ll need to modify the OpenFile class to add some sort of a buffer to it.  (How many bytes should the
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buffer be?  Only one byte is really necessary but more will allow greater efficiency for programs using
pipes when a producer outruns a consumer.)

You’ll also need to add something to control the concurrency and synchronization between producers and
consumers.  (When the buffer is full, any process trying to write to it must be suspended.  When the buffer
is empty, any process trying to read from it must be suspended.)  The code in Read and Write will be
quite similar to the code for dealing with the terminal file.

What to Hand In

The p8 directory contains a new user-level program called:

TestProgram5

Please modify your code to load TestProgram5 as the initial process.

TestProgram5 is structured like the previous test programs, but in addition to the individual test functions,
it also contains a menu-driven interface.  Once you get the serial device code more-or-less functioning, you
can change the Main function to invoke the Menu function.  Then you can run the various tests
interactively from a menu, instead of recompiling each time.  This should make your life easier when
debugging and playing with raw and cooked modes.

After you have finished coding and debugging, please run each test (except Menu and Shell) and hand in
the output from each test.  A separate document, called DesiredOutput.pdf, shows what the correct output
should look like.  (Due to all the funny characters involved, a file created with script may be a little
confusing!)

For the tests named KeyTest and EchoTest, LineEchoTest, don’t obsess on getting your output to
exactly match the DesiredOutput; these tests are more for you to play around with to understand how
terminal I/O works.  For the other tests (BasicSerialTest, EOFTest, OpenCloseTest,
TerminalErrorTest) your output should match the DesiredOutput file.

Be sure to use the same code to execute all tests.  Please hand in only one copy of your Kernel.c code and
do not hand in any output that was produced by a different version of your code!

Do not change TestProgram5, except to uncomment one of the lines in the main function.

During your testing, it may be convenient to modify the tests as you try to see what is going on and get
things to work.  Before you make your final test runs, please recopy TestProgram5.c from our directory,
so that you get a fresh, unaltered version.

Please hand in hardcopy of your Kernel.c code.  You only need to hand in those functions and methods
that you created/modified.  This will probably include:

Handle_Sys_Open
Handle_Sys_Close
Handle_Sys_Read
Handle_Sys_Write
Handle_Sys_Seek
SerialInterruptHandler
All SerialDriver code
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Please circle or highlight the code you have written for this project.

Please attempt to run the sh shell program, but do not hand in any output from that.  Instead, please write
directly on your output something like...

The sh program ran okay.
or

I was unable to run the sh program.


