
Project 1 Operating Systems

Programming Project 1:
Introduction to the BLITZ Tools

Due Date: ______________________________
Duration: One Week

Overview and Goal

In this course you will be creating an operating system kernel. You’ll be using the BLITZ software
tools, which were written for this task. The goals of this project are to make sure that you can use the
BLITZ tools and to help you gain familiarity with them.

Step 1: Print the Documentation

There are a number of documents describing the BLITZ tools. You may obtain the documents by going
to the BLITZ homepage:

http://www.cs.pdx.edu/~harry/Blitz/index.html

From there you can access pdf versions. Print out the following documents:

An Overview of the BLITZ System (7 pages)
An Overview of the BLITZ Computer Hardware (8 pages)
The BLITZ Architecture (67 pages)
Example BLITZ Assembly Program (7 pages)
BLITZ Instruction Set (3 pages)
The BLITZ Emulator (42 pages)
An Overview of KPL, A Kernel Programming Language (66 pages)
Context-Free Grammar of KPL (7 pages)
BLITZ Tools: Help Information (11 pages)
The Format of BLITZ Object and Executable Files (13 pages)

Step 2: Read the Overview Document

Read the first document (“An Overview of the BLITZ System”) before proceeding to Step 3.

Step 3: Choose Your Host Platform

Page 1

Project 1 Operating Systems

You will develop your operating system code on a “host” computer and you will be running the BLITZ
tools on that host computer. You should decide now which host computer you will be using.

The BLITZ tools run on either Apple Macintosh (OS X) and run on either PowerPC-based or Intel-
based machine. The tools are all compiled and the executables may be downloaded and used directly.

The BLITZ tools are also pre-compiled for the Sun Solaris system and may be downloaded and used
directly.

If you have access to any other Big-Endian, Unix-based system, you may compile the tools on that
machine and use it.

The BLITZ tools have not been ported to Little-Endian architectures, so you cannot use a PC.

The source code for all the BLITZ tools is available, but you should not need to look at it.
Nevertheless, it is available for anyone who is interested.

The BLITZ Tools

Here are the programs that constitute the BLITZ tool set.

kpl
The KPL compiler

asm
The BLITZ assembler

lddd
The BLITZ linker

blitz
The BLITZ machine emulator (the virtual machine and debugger)

diskUtil
A utility to manipulate the simulated BLITZ “DISK” file

dumpObj
A utility to print BLITZ .o and a.out files

hexdump
A utility to print any file in hex

check
A utility to run through a file looking for problem ASCII characters

endian
A utility to determine if this machine is Big or Little Endian

These tools are listed more-or-less in the order they would be used. You will probably only need to use
the first 4 or 5 tools and you may pretty much ignore the remaining tools. (The last three tools are only
documented by the comments at the beginning of the source code files, which you may read if
interested.)

Page 2

Project 1 Operating Systems

Organization of the Course Material

The BLITZ system is accessible via the following URL:

http://www.cs.pdx.edu/~harry/Blitz/
 The Blitz directory contains the following material:

Blitz/
...files containing the documents mentioned above...
BlitzBin/

Mac/
...executables for the Mac host platform...

Sun/
...executables for the Sun host platform...

BlitzSrc/
...source code for the BLITZ tools...

OSProject/
p1/

...files related to project 1...
p2/

...files related to project 2...
...etc...

You may access this material through the BLITZ Home page. You should also be able to “ftp” directly
to this material.

Step 4A: For Mac Users...

Step 1: Create a directory to put the BLITZ tools into. For example, you may wish to create a
directory called BlitzTools in your home directory:

/Users/YourUserName/BlitzTools
Then copy all the files from

www.cs.pdx.edu/~harry/Blitz/BlitzBin/Mac
to your BlitzTools directory. These are binary files, not text files.

(I use an application called “Fetch” (www.fetchsoftworks.com) to do “ftp” file transfers.)

Step 2: Set the protection bits on these programs to include “executable”, with a command such as:

chmod ugo+rx BlitzTools/*

Page 3

Project 1 Operating Systems

Step 3: Add the BlitzTools directory to your search path.

A shell variable called PATH is maintained by your shell program and is used by the shell to locate
an executable whenever a command is typed in. Details of how this variable is changed vary
between the different shells. For example, the following command will get the job done for the
“tcsh” shell:

setenv PATH ${HOME}/BlitzTools:${PATH}
Between each colon (:) is a directory specification. This command adds the BLITZ tools directory
in front of whatever else is in the PATH. A command like this should be added to a file such as
your .login file so that it will be executed every time you login.

The shell builds an internal hash table that speeds up the location of programs whenever you type a
command. After changing your PATH variable, you’ll need to restart your shell so that it uses the
new PATH when builds this hash table. (Quit the “Terminal” application and then start “Terminal”
back up.)

Step 4B: For Portland State University Students...

This section applies to PSU students who have an account on the shared Sun/Solaris system. All
you need to do is modify your PATH variable so that your shell will search the directory containing
the Blitz executables.

A shell variable called PATH is maintained by your shell program and is used by the shell to locate
an executable whenever a command is typed in. Details of how this variable is changed vary
between the different shells.

One approach might be to alter your .aliases file. You may already have a line that looks
something like this:

setenv PATH ${PATH}:${HOME}/bin
The exact details for you may differ. (Perhaps your .aliases file does not even set the PATH
variable.) Between each colon (:) is a directory specification. What you want to do is add the
BLITZ tools directory in front of everything else.

Add the following command after the last place PATH is set.

setenv PATH ~harry/public_html/Blitz/BlitzBin/Sun:${PATH}
The shell builds an internal hash table that speeds up the location of programs whenever you type a
command. After changing your PATH, you’ll need to restart your shell so that it uses the new
PATH when builds this hash table. You can log out and log back in. (In some shells you can use
the command “source .aliases” instead.)

Page 4

Project 1 Operating Systems

Step 4C: For Users in a Shared Solaris Environment...

This section applies to users who have an account on a shared Sun/Solaris system. It is assumed that
the BLITZ tools have already been downloaded by someone else and are available in some shared
directory. All you need to do is modify your PATH variable so that your shell will search the
appropriate directory.

A shell variable called PATH is maintained by your shell program and is used by the shell to locate
an executable whenever a command is typed in. Details of how this variable is changed vary
between the different shells.

One approach might be to alter your .aliases file. You may already have a line that looks
something like this:

setenv PATH ${PATH}:${HOME}/bin
The exact details for you may differ. (Perhaps your .aliases file does not even set the PATH
variable.) Between each colon (:) is a directory specification. What you want to do is add the
BLITZ tools directory in front of everything else.

Assume that the directory with the BLITZ tools is called:

~instructorUserid/BlitzTools

Be sure to get the exact directory name before proceeding. Then add the following command after
the last place PATH is set.

setenv PATH ~instructorUserid/BlitzTools:${PATH}
The shell builds an internal hash table that speeds up the location of programs whenever you type a
command. After changing your PATH, you’ll need to restart your shell so that it uses the new
PATH when builds this hash table. You can log out and log back in. (In some shells you can use
the command “source .aliases” instead.)

Step 4D: For Users in Some Other Unix/Linux Environment...

This section applies to users who have a Unix/Linux box and wish to download and re-compile the
BLITZ tools for their machine.

Step 1: Create a directory to put the BLITZ source code into. For example, you may wish to create
a directory called BlitzSrc in your home directory:

~YourUserName/BlitzSrc

Page 5

Project 1 Operating Systems

Then copy all the files from

www.cs.pdx.edu/~harry/Blitz/BlitzSrc
to your BlitzSrc directory.

There is a single subdirectory called

www.cs.pdx.edu/~harry/Blitz/BlitzSrc/kpl
so your BlitzSrc directory will also have a subdirectory, called:

~YourUserName/BlitzSrc/kpl
Step 2: Compile the “C” programs in:

~YourUserName/BlitzSrc
There are two “makefiles” available, called

~YourUserName/BlitzSrc/makefile-Mac
~YourUserName/BlitzSrc/makefile-Solaris

They are quite similar. For example, if you are working on a Solaris system, you’ll want to use the
Solaris makefile, so type:

mv makefile-Solaris makefile
Next, type:

make
This should invoke the “C” compiler to produce the following executables:

asm
lddd
blitz
diskUtil
dumpObj
hexdump
check
endian

Next, go into the kpl subdirectory and compile the kpl compiler:

cd kpl
mv makefile-Solaris makefile

Page 6

Project 1 Operating Systems

make

This should invoke the C++ compiler to produce a single executable called:

kpl
Step 3: Create a directory to put the executables into:

mkdir ~YourUserName/BlitzTools
Move all the executables into the directory you just created:

cd ~YourUserName/BlitzSrc
mv asm lddd blitz diskUtil dumpObj hexDump check endian \

~YourUserName/BlitzTools
cd ~YourUserName/BlitzSrc/kpl
mv kpl ~YourUserName/BlitzTools

Step 4: Add the BlitzTools directory to your search path.

A shell variable called PATH is maintained by your shell program and is used by the shell to locate
an executable whenever a command is typed in. Details of how this variable is changed vary
between the different shells. For example, the following command will get the job done for the
“tcsh” shell:

setenv PATH ${HOME}/BlitzTools:${PATH}
Between each colon (:) is a directory specification. This command adds the BLITZ tools directory
in front of whatever else is in the PATH. A command like this should be added to a file such as
your .login file so that it will be executed every time you login.

The shell builds an internal hash table that speeds up the location of programs whenever you type a
command. After changing your PATH variable, you’ll need to login again, so your shell will use
the new PATH when builds this hash table.

Step 5: Verify the Tools Work

At the UNIX prompt, type the command.

kpl
You should see the following:

***** ERROR: Missing package name on command line
********** 1 error detected! **********

Page 7

Project 1 Operating Systems

If you see this, good. If you see anything else, then something is wrong.

Step 6: Set up a Directory for Project 1

Create a directory in which to place all files concerned with this class. We recommend a name
matching your course number, for example:

~YourUserName/cs333
Create a directory in which to place the files concerned with project 1. We recommend the following
name:

~YourUserName/cs333/p1
Copy all files from:

http://www.cs.pdx.edu/~harry/Blitz/OSProject/p1/
to your cs333/p1 directory.

The BLITZ Assembly Language

In this course you will not have to write any assembly language. However, you will be using some
interesting routines which can only be written in assembly. All assembly language routines will be
provided to you, but you will need to be able to read them.

Take a look at Echo.s and Hello.s to see what BLITZ assembly code looks like.

Step 7: Assemble, Link, and Execute the “Hello” Program

The p1 directory contains an assembly language program called “Hello.s”. First invoke the assembler
(the tool called “asm”) to assemble the program. Type:

asm Hello.s
This should produce no errors and should create a file called Hello.o.

The Hello.s program is completely stand-alone. In other words, it does not need any library functions
and does not rely on any operating system. Nevertheless, it must be linked to produce an executable
(“a.out” file). The linking is done with the tool called “lddd”. (In UNIX, the linker is called “ld”.)

lddd Hello.o –o Hello

Page 8

Project 1 Operating Systems

Normally the executable is called a.out, but the “-o Hello” option will name the executable Hello.

Finally, execute this program, using the BLITZ virtual machine. (Sometimes the BLITZ virtual
machine is referred to as the “emulator.”) Type:

blitz –g Hello
The “-g” option is the “auto-go” option and it means begin execution immediately. You should see:

 Beginning execution...
 Hello, world!

 **** A 'debug' instruction was encountered *****
 Done! The next instruction to execute will be:
 000080: A1FFFFB8 jmp 0xFFFFB8 ! targetAddr = main

 Entering machine-level debugger...
 ==
 ===== =====
 ===== The BLITZ Machine Emulator =====
 ===== =====
 ===== Copyright 2001-2006, Harry H. Porter III =====
 ===== =====
 ==

 Enter a command at the prompt. Type 'quit' to exit or 'help' for
 info about commands.
 >

At the prompt, quit and exit by typing “q” (short for “quit”). You should see this:

 > q
 Number of Disk Reads = 0
 Number of Disk Writes = 0
 Instructions Executed = 1705
 Time Spent Sleeping = 0
 Total Elapsed Time = 1705

This program terminates by executing the debug machine instruction. This instruction will cause the
emulator to stop executing instructions and will throw the emulator into command mode. In command
mode, you can enter commands, such as quit. The emulator displays the character “>” as a prompt.

After the debug instruction, the Hello program branches back to the beginning. Therefore, if you
resume execution (with the go command), it will result in another printout of “Hello, world!”.

Step 8: Run the “Echo” Program

Type in the following commands:

asm Echo.s

Page 9

Project 1 Operating Systems

lddd Echo.o –o Echo
blitz Echo

On the last line, we have left out the auto-go “-g” option. Now, the BLITZ emulator will not
automatically begin executing; instead it will enter command mode. When it prompts, type the “g”
command (short for “go”) to begin execution.

Next type some text. Each time the ENTER/RETURN key is pressed, you should see the output
echoed. For example:

> g
Beginning execution...
abcd
abcd
this is a test
this is a test
q
q
**** A 'debug' instruction was encountered *****
Done! The next instruction to execute will be:
 cont:
0000A4: A1FFFFAC jmp 0xFFFFAC ! targetAddr = loop
>

(For clarity, the material entered on the input is underlined.)

This program watches for the “q” character and stops when it is typed. If you resume execution with
the go command, this program will continue echoing whatever you type.

The Echo program is also a stand-alone program, relying on no library functions and no operating
system.

The KPL Programming Language

In this course, you will write code in the “KPL” programming language. Begin studying the document
titled “An Overview of KPL: A Kernel Programming Language”.

Step 9: Compile and Execute a KPL Program called “HelloWorld”

Type the following commands:

 kpl -unsafe System
 asm System.s
 kpl HelloWorld
 asm HelloWorld.s

Page 10

Project 1 Operating Systems

 asm Runtime.s
 lddd Runtime.o System.o HelloWorld.o -o HelloWorld

There should be no error messages.

Take a look at the files HelloWorld.h and HelloWorld.c. These contain the program code.

The HelloWorld program makes use of some other code, which is contained in the files System.h and
System.c. These must be compiled with the “-unsafe” option. Try leaving this out; you’ll get 17
compiler error messages, such as:

System.h:39: ***** ERROR at PTR: Using 'ptr to void' is unsafe;
 you must compile with the 'unsafe' option
 if you wish to do this

Using the UNIX compiler convention, this means that the compiler detected an error on line 39 of file
System.h.

KPL programs are often linked with routines coded in assembly language. Right now, all the assembly
code we need is included in a file called Runtime.s. Basically, the assembly code takes care of:

Starting up the program
Dealing with runtime errors, by printing a message and aborting
Printing output (There is no mechanism for input at this stage... This system really needs an

OS!)

Now execute this program. Type:

blitz –g HelloWorld
You should see the “Hello, world...” message. What happens if you type “g” at the prompt, to resume
instruction execution?

The “makefile”

The p1 directory contains a file called makefile, which is used with the UNIX make command.
Whenever a file in the p1 directory is changed, you can type “make” to re-compile, re-assemble, and re-
link as necessary to rebuild the executables.

Notice that the command

kpl HelloWorld
will be executed whenever the file System.h is changed. In KPL, files ending in “.h” are called “header
files” and files ending in “.c” are called “code files.” Each package (such as HelloWorld) will have
both a header file and a code file. The HelloWorld package uses the System package. Whenever the

Page 11

Project 1 Operating Systems

header file of a package that HelloWorld uses is changed, HelloWorld must be recompiled. However,
if the code file for System is changed, you do not need to recompile HelloWorld. You only need to re-
link (i.e., you only need to invoke lddd to produce the executable).

Consult the KPL documentation for more info about the separate compilation of packages.

Step 10: Modify the HelloWorld Program

Modify the HelloWorld.c program by un-commenting the line

--foo (10)

In KPL, comments are “--” through end-of-line. Simply remove the hyphens and recompile as
necessary, using “make”.

The foo function calls bar. Bar does the following things:

Increment its argument
Print the value
Execute a “debug” statement
Recursively call itself

When you run this program it will print a value and then halt. The keyword debug is a statement that
will cause the emulator to halt execution. In later projects, you will probably want to place debug in
programs you write when you are debugging, so you can stop execution and look at variables.

If you type the go command, the emulator will resume execution. It will print another value and halt
again. Type go several times, causing bar to call itself recursively several times. Then try the st
command (st is short for “stack”). This will print out the execution stack. Try the fr command (short
for “frame”). You should see the values of the local variables in some activation of bar.

Try the up and down commands. These move around in the activation stack. You can look at different
activations of bar with the fr command.

Step 11: Try Some of the Emulator Commands

Try the following commands to the emulator.

quit (q)
help (h)
go (g)
step (s)
t
reset
info (i)

Page 12

Project 1 Operating Systems

stack (st)
frame (fr)
up
down

Abbreviations are shown in parentheses.

The “step” command will execute a single machine-language instruction at a time. You can use it to
walk through the execution of an assembly language program, line-by-line.

The “t” command will execute a single high-level KPL language statement at a time. Try typing “t”
several times to walk through the execution of the HelloWorld program. See what gets printed each
time you enter the “t” command.

The i command (short for info) prints out the entire state of the (virtual) BLITZ CPU. You can see the
contents of all the CPU registers. There are other commands for displaying and modifying the registers.

The h command (short for help) lists all the emulator commands. Take a look at what help prints.

The reset command re-reads the executable file and fully resets the CPU. This command is useful
during debugging. Whenever you wish to re-execute a program (without recompiling anything), you
could always quit the emulator and then start it back up. The reset command does the same thing but is
faster.

Make sure you get familiar with each of the commands listed above; you will be using them later. Feel
free to experiment with other commands, too.

The “DISK” File

The KPL virtual machine (the emulator tool, called “blitz”) simulates a virtual disk. The virtual disk is
implemented using a file on the host machine and this file is called “DISK”. The programs in project 1
do not use the disk, so this file is not necessary. However, if the file is missing, the emulator will print a
warning. We have included a file called “DISK” to prevent this warning. For more information, try the
“format” command in the emulator.

What to Hand In

Complete all the above steps.

To verify that you did all this, create a transcript of a terminal session showing what happened. In
particular, please include the output associated with the following steps in what you hand in.

Step 7
Step 8
Step 9

Page 13

Project 1 Operating Systems

Step 11

We do not need to see the other steps.

Hand in a hardcopy print-out showing what happened. If you do not know about creating a script file,
check out the UNIX script command by typing

man script
In LARGE BLOCK LETTERS, write your full name.

Note that if you try to use a text editor while running script, a bunch of garbage characters may be put
into the file. Please do not do this. After you have created your script file, it is okay to edit it to
remove the entire editing session. We really don’t want to see a transcript of your editing session.
Alternately, you can start and stop script, creating several script files and then concatenate them.

Grading for this Project

This project will be graded pass/fail.

Page 14

	Overview and Goal
	Step 1: Print the Documentation
	Step 2: Read the Overview Document
	Step 3: Choose Your Host Platform
	The BLITZ Tools
	Organization of the Course Material
	Step 4A: For Mac Users...
	Step 4B: For Portland State University Students...
	Step 4C: For Users in a Shared Solaris Environment...
	Step 4D: For Users in Some Other Unix/Linux Environment...
	Step 5: Verify the Tools Work
	Step 6: Set up a Directory for Project 1
	The BLITZ Assembly Language
	Step 7: Assemble, Link, and Execute the “Hello” Program
	Step 8: Run the “Echo” Program
	The KPL Programming Language
	Step 9: Compile and Execute a KPL Program called “HelloWorld”
	The “makefile”
	Step 10: Modify the HelloWorld Program
	Step 11: Try Some of the Emulator Commands
	The “DISK” File
	What to Hand In
	Grading for this Project

