
Instructor Notes Operating Systems

Page 1

Notes to Instructors

Concerning the BLITZ Projects

Harry H. Porter III, Ph.D.

Portland State University

April 14, 2006

Overview

The BLITZ System includes 8 student programming projects, which you may assign to

your students.

The projects are all pieces of a puzzle that, when fully assembled, will be an OS kernel

for the BLITZ machine. Many of the pieces of the kernel are provided by us, yet the

student will be required to add critical pieces and fully understand all the code.

The kernel that students will build is a simplified version of Unix and will have these

features:

• Multiple user-level processes

• Virtual memory using page tables

• A file system (on a simulated disk), containing user-level programs and other files

• A terminal, via which a user can communicate with a shell program

• System calls (including Fork, Join, Exec, Exit, Open, Close, Read, Write, Seek)

By the final project, students will be able to execute a simplified “shell” program, which

invokes “fork” and “exec” system calls to execute other programs, and even a sub-shell.

All projects come with the following:

• An assignment document (both in MSWord and PDF formats)

• A directory with all necessary files

In addition, some projects have:

• Example output

• Solution code

• PowerPoint slides, for class discussion

Instructor Notes Operating Systems

Page 2

• Grading forms, to facilitate grading

A lot of code is provided by us, but the students will write key portions and will need to

read over and understand the entire kernel in order to fit the pieces together. The code we

provide is given to the students a little bit at a time, over the 8 projects, rather than all at

once, so that they can understand it incrementally.

The projects are designed so they can be assigned as is; you can simply refer your

students to the BLITZ website. On the other hand, you are also free to edit the

assignment documents any way you want.

Each project is intended to take one week to complete, with the first project being

assigned at the first class meeting. Of course, you'll need to let your students know

exactly what day you want each project completed.

For a 10 week term, the approach of eight assignments, of one week each, will leave a

little time at the end of the term for extensions, etc.

Although many of my students are able to complete all 8 projects in a 10 week term, this

is clearly an ambitious undertaking for some students.

The assignment documents are rather lengthy, but are designed to include as much

information as necessary to complete the projects. The idea is to err on the side of

providing too much information, rather than too little.

Each project is broken into several tasks. Each task serves a specific purpose and the

intent is for all tasks to be assigned and completed, including those tasks in the early

projects that don’t seem to relate directly to building an OS kernel.

If you want to reduce the amount of programming required, I suggest you

• Extend the course from one term to two terms and double the project durations

• Eliminate the last one or two projects

I do not recommend simplifying or eliminating parts the projects, but you are certainly

free to use this material in any way you want. For example, might take a completed

version of the entire kernel (i.e., all 8 projects) and just give it to students to read and

study.

What Students Hand In: Each project instructs the students to print the code they write

and to print the output from running their code. They are asked to hand in hardcopy of

the code and its output.

Instructor Notes Operating Systems

Page 3

Required Prerequisites: Students are assumed to already know:

• How to use the Unix shell

• How to edit text files

• How to download files (e.g., ftp)

• How to print files

• Assembly language programming

No knowledge of any specific machine architecture is assumed, but familiarity with some

real CPU architecture is assumed. The BLITZ system includes some assembly code.

The students are encouraged to look over it, but are not required to write any assembly

code.

Students will be writing code. No knowledge of any specific programming language is

assumed, although knowledge of “C” or “C++” is most appropriate. A language called

KPL is used for the BLITZ projects. The first few projects are designed to introduce and

teach KPL. Of course there is a learning curve for KPL, but experience has shown it is

not a great barrier.

The language used in these projects, which is called KPL, was designed specifically for

the BLITZ project. KPL is similar in capabilities to C++. It has pointers, arrays, classes,

methods, interfaces, pointers to functions, the same expression syntax, and the ability to

link with assembly routines. The syntax (which happens to be LL(1)) was designed to

increase the readability of the code, and students will spend more time reading the code

than writing it. The error reporting is quite thorough, which really helps student

debugging. For example, null pointers and array-out-of-bounds are checked for and

reported.

Class Organization Thoughts: My preference is to encourage students to work

together—e.g. look at each other’s code and even help with debugging—but to require

each student to hand in a solution. I ask each student to write his/her own code, not to

simply copy someone else’s code. A reasonable alternative is to make this a group

project.

I also create an email mailing list for my class. I require all students to subscribe and

encourage students to post questions and answers to it. There is a lot of BLITZ

documentation, but in my experience, most student questions will be answered by other

students.

Managing the Documentation: The BLITZ documentation is available online as PDF

files. One possibility is for you to print all the material, deliver it to your local copy

shop, and suggest that students purchase a pre-printed, bound copy of everything. I

strongly recommend that my students purchase the packet from the copy shop, but if they

want to print it themselves, I recommend that print everything at once and then put it all

in a single binder.

Instructor Notes Operating Systems

Page 4

I, as copyright holder, hereby grant permission to freely copy and distribute the BLITZ

material.

Project 1: Intro. to the BLITZ Tools

Duration: 1 week

Document size: 12 pages

Goals: Make sure the students can execute the BLITZ software tools; Make sure students

realize the course has a programming component; Allow time for students to obtain

computer accounts, if necessary; Allow time for the lectures to introduce important

concepts before any substantive challenges are issued.

This project should be assigned at the first class meeting.

This is a warm-up project, which requires the students to perform the following steps:

• Print and begin reading the BLITZ documentation

• Make the tools usable

• Demonstrate the BLITZ framework for future projects

• Startup the BLITZ virtual machine emulator

• Compile, assemble, and execute some demo programs

• Examine some assembly code and some KPL code

• Practice a few commands in the debugger

This assignment is not difficult. There is a script and the students simply follow each

step in turn. This project verifies the students have familiarity with the necessary Unix

tools. No OS-specific knowledge is needed to complete this project.

This project should be graded pass-fail and should take 1 or 2 hours. The only reason to

fail is that the student didn’t do it or lacks the prerequisite knowledge.

Project 2: Threads and Interprocess Communication

Duration: 1 week

Document size: 10 pages

Goals: Start to learn the KPL language; Learn about threads (ready-list, idle process,

thread switching, thread status, round-robin scheduling) and functions like sleep and

yield; Learn about interprocess communication (semaphores, mutex locks, and monitors);

Instructor Notes Operating Systems

Page 5

Confront two classic IPC exercises (Producer-Consumer and Dining Philosophers);

Provide motivation to understand the monitor concept.

In this project, students will mostly read code. They will begin to use KPL by filling in

the bodies of some methods. Little design freedom is given and much of the code can be

written by analogy with existing code, which they will need to study.

In this project, we give the students a completely functional round-robin thread scheduler,

an implementation of semaphores and an implementation of condition variables. The

project is divided into these tasks:

• Examine existing code, looking at the thread scheduler, the implementations of

fork, yield and sleep and sample multi-threaded code that uses these functions

• Perform several experiments with this existing code to understand thread switching

• Implement mutex locks (using the technique of disabling interrupts, invoking sleep,

and moving threads onto the ready-list)

• Implement a Producer-Consumer solution using semaphores

• Implement a Dining Philosophers solution using monitors

By implementing mutex locks, students are encouraged to look at and understand how

semaphores are implemented. Their implementation of mutex locks will be needed later

on. [As part of project 3, two implementations of mutex are distributed (one which

disables interrupts and one which uses semaphores) in case the student was unable to

complete this step.]

In the Producer-Consumer task, students are asked to implement a solution to the

bounded-buffer producer-consumer problem with several producer and several consumer

threads. A solution is given in the Tanenbaum textbook and the students are asked to

recode this in KPL.

In the Dining Philosophers task, students are asked to implement a solution to the Dining

Philosophers task using the monitor construct. This task is much harder. The

Tanenbaum text contains a solution using mutexes and semaphores and it is fairly

straightforward to re-code this in KPL. However, the student’s are asked to use monitors

in their solution. At this point, students are still grappling with threads, mutex locks and

semaphores so the monitor concept is overly challenging. Nonetheless, this difficult task

gets the students to play close attention to the solution, which should be discussed in

class. In later projects, they will need to implement monitors (e.g., to manage frames), so

this is the first step is really about understanding the importance of the monitor concept.

We provide PowerPoint slides giving a solution to the Dining Philosophers task, which

should be covered in lecture after the assignment is collected. The solution to the mutex

problem is distributed with the code for the next project, since it is critical that mutex

locks are implemented correctly.

Instructor Notes Operating Systems

Page 6

A testing framework for mutexes, Producer-Consumer and Dining Philosophers is

included. We also provide sample output (as a PDF file) showing students what correct

output looks like, which may help in grading.

Coordination with lectures: This project is intended to be given at the beginning of the

second week of class and due at the beginning of the third week. In order to give

students enough information to complete this project on this schedule, the lectures must

cover the following topics within the first two weeks: Concurrency and threads,

ready/running/blocked, race conditions, critical sections, mutual exclusion, mutex locks,

semaphores (both semantics and implementation), a producer-consumer solution using

semaphores, discussion of the dining philosopher scenario, monitors and condition

variables.

In my class, I cover all this by the end of the second week, and then give students the

weekend to complete the project. In actuality, most students don’t fully grasp monitors

or condition variables, but are really primed for looking at the solution code for Dining

Philosophers at the beginning of the third week.

Project 3: Barbers and Gamblers

Duration: 1 week

Document size: 6 pages

Goals: Reinforce the concepts related to multi-thread synchronization: mutexes,

semaphores, condition variables and monitors; Gain additional proficiency in KPL and

learn to create entire classes from scratch.

This project is divided into two tasks:

• Implement a solution to the Sleeping Barber IPC problem

• Implement a solution to the Gaming Parlor IPC problem, using a monitor

Students will use the same thread scheduler as the previous project and really start to

understand the concepts introduced in the previous project. This time the students are not

given any portion of the solution. They will need to create new classes and new threads

on their own.

The Tanenbaum text provides a solution to the Sleeping Barber problem, which the

students must translate into KPL. The Tanenbaum text does not discuss the Gaming

Parlor problem.

As part of the assignment, we provide sample output and discuss how the students might

structure their output.

Instructor Notes Operating Systems

Page 7

We also provide a solution to the Gaming Parlor task (as PowerPoint slides), which

should be covered in lecture after the assignment is collected. No solution code for the

Sleeping Barber task is provided.

We should note that the Gaming Parlor monitor is very close to what the students will

need for the next project, in particular the “FrameManager.” After working on the

previous problems (Producers-Consumers, Dining Philosophers and Sleeping Barbers),

some students will be in a position to complete the Gaming Parlor task successfully. But

more importantly for the ongoing project, most students should be ready after the Gaming

Parlor to correctly implement the monitors needed to manage kernel resources (e.g.,

process-control-blocks and memory-frames) in the next project.

Project 4: Kernel Resource Management

Duration: 1 week

Document size: 16 pages

Goals: Cement the concepts of thread synchronization, including mutex locks,

semaphores, condition variables, and monitors; Introduce concepts like process control

block and page frames; Create three monitors which will be used to manage kernel

resources; Explore the differences between Hoare semantics and Mesa semantics for

monitor condition variables.

This project is divided into these tasks:

• Create a monitor to manage the Thread objects

• Create a monitor to manage the Process objects

• Create a monitor to manage the Frames

• Implement Hoare semantics for monitor condition variables

Each thread in our OS will be represented by an object of class “Thread.” These objects

are a limited kernel resource which will be managed by a monitor called

“ThreadManager.”

Likewise, each process will be represented by an object of the “ProcessControlBlock”

class. The ProcessControlBlocks are also kernel resources which will be managed by a

monitor called “ProcessManager.”

Physical memory will be divided into frames and each user-level process will require a

virtual address space made of pages. Each page will be stored in a frame. The frames are

a critical resource which will be managed by a monitor called “FrameManager.”

Instructor Notes Operating Systems

Page 8

The last task of this project—to implement “Hoare Semantics” for condition

variables—is not strictly necessary and is included as an additional challenge for the

better students.

We are including code to test the first three tasks, but students are asked to figure out how

to test the last task. Since the first three tasks are critical to the ongoing project, our

testing code really hammers on these monitors in an attempt to break them.

Nothing prevents students from extracting the sample output from the PDF files we are

distributing and simply submitting that. However, since the thread switching should be

occurring at random times, each students’ output should differ slightly. Anyone who

hands in output that exactly matches the given output has some explaining to do.

Project 5: User-Level Processes

Duration: 1 week

Document size: 30 pages (including 2 pages of sample output)

Goals: Implement a single user-level process running in its own address space; Introduce

system calls and the distinction between kernel and user code; Introduce the page table

hardware; Introduce the DISK and its device driver and the file system connections.

This project is divided into these tasks:

• Get a user-level process running

• Setup the system-call interface

• Implement system call Exec

The operating system we are creating will implement these system calls (although only

Exec will be implemented in this project).

Exit

Shutdown

Yield

Fork

Join

Exec

Create

Open

Read

Write

Seek

Close

Instructor Notes Operating Systems

Page 9

In this project we supply code for a minimal file system, using the (emulated) disk. The

user-level programs are written in KPL and compiled on the host platform, just like the

kernel itself, and we provide a utility to initialize the emulated disk and copy files from

the host to the emulated disk and vice versa.

In the second task, students will put together the system call interface. Although each

syscall is an unimplemented stub in the kernel, this step assures that the user-level code

can invoke kernel functions.

In the last task, students implement the Exec kernel routine, which will read a new

executable program from disk and copy it into the address space of the process which

invoked the Exec and then begin executing it. This task requires the students to

understand the virtual memory software and the file system software.

Students are given just enough of the file system to achieve the task without having to

modify the file system code; the remainder of the file system will be addressed in Project

7.

The simulated disk will contain some user-level test programs we supply. The students

are instructed to run these tests and hand in the results.

Project 6: Multiprogramming With Fork

Duration: 1 week

Document size: 18 pages (including 6 pages of sample output)

Goals: Implement the following system calls: Fork, Join , Exit and Yield; Gain additional

familiarity with the system call interface and with the semantics of these system calls;

Understand the parent-child relationship between processes; Understand

multiprogramming; Understand simple synchronization between Unix processes using

Exit and Join; Understand the complexities of managing shared kernel resources.

This project is divided into two tasks:

• Implement Fork

• Implement Join, Exit and Yield

In order to implement Fork, the students will have to look more carefully at exactly how

the system call interface works. There are also a number of deadlock and race conditions

that must be avoided.

The simulated disk will contain some user-level test programs we supply. The students

are instructed to run these tests and hand in the results.

Instructor Notes Operating Systems

Page 10

Project 7: File-Related Syscalls

Duration: 1 week

Document size: 7 pages

Goals: Implement and understand the following system calls: Open, Read, Write, Seek

and Close; Understand the Unix file model; Understand how the kernel buffers

information between the disk and processes.

This project asks students to implement these system calls:

• Open

• Read

• Write

• Seek

• Close

The simulated disk will contain some user-level test programs we supply. The students

are instructed to run these tests and hand in the results.

Sample output is provided in a separate file called DesiredOutput.pdf.

Project 8: The Serial I/O Device Driver

Duration: 1 week

Document size: 15 pages

Goals: Implement a device driver for a serial character-oriented terminal; Integrate the

new device into the file system syscalls; Understand the difference between block and

character devices; Understand and execute a shell program.

This project asks the students to implement a device driver for a serial ASCII terminal

and integrate it into the existing system call interface (e.g., Open, Read, Write, etc.) This

will allow the user to communicate directly with user-level programs by providing a

“stdin” and “stdout” for file system calls to use.

With the completion of this project, everything is in place for a “shell” program and a

simple shell program is provided by us. This shell is capable of executing commands and

of redirecting the stdin/stdout from the terminal to files, using the Unix < and >

redirection operators. We also provide a program called “cat,” which is essentially the

Instructor Notes Operating Systems

Page 11

Unix “cat” command, and some other files. The shell is (naturally!) capable of executing

script files by recursively invoking itself recursively with I/O redirection.

As an extension, we mention that the students might consider implementing “pipes,” but

aside from some minimal discussion, no further code is provided.

The simulated disk will contain some user-level test programs we supply. The students

are instructed to run these tests and hand in the results.

Sample output is provided in a separate file called DesiredOutput.pdf.

Extensions / Additional Project Ideas

Adding Unix “pipes,” as discussed in project 8, might constitute a separate project.

In our kernel, each process has exactly one thread. This could be generalized to allow

each process to have more than one thread, opening up some design choices about what

sort of concurrency control primitives the kernel ought to provide.

The file system used in this project is pretty rudimentary. For example, new files may

not be created. (All files are placed on the disk by a BLITZ utility before the kernel

begins.) Files may not be enlarged and are allocated in contiguous sectors. There is only

a single-level directory. All of this could be improved.

There is no concept of security or userids, and this could be added.

The kernel implements virtual memory using the page tables and a process’s address

space may be scattered all over physical memory. However there is no swapping of

pages out to disk: all the pages of an address space must fit into memory. Paging to disk

could be added.

In this kernel, address spaces are copied during Fork. Another idea is to add the ability to

share pages between processes and/or copy-on-write semantics.

As another idea, it would be interesting to implement the kernel calls needed in a

message-passing kernel like Mach.

