
March 13, 2006 Page C-1

The BLITZ Architecture
Harry H. Porter III

Computer Science Department
Portland State University

Abstract

This document provides an overview of the BLITZ architecture and instruction
set. The BLITZ microprocessor is designed specifically to support Computer
Science education. The architecture is similar to contemporary RISC
microprocessor architectures, but is simplified appropriately for student use. The
BLITZ processor will normally be implemented by software emulation, although
a hardware implementation of the CPU architecture presented here is also
possible.

Basic Terminology

In this document, we use the terms “byte”, “halfword”, “word”, and “doubleword” to refer to
various sizes of binary data.

 number number
 of bytes of bits example (in hex)
 ======== ======= =================
 byte 1 8 A4
 halfword 2 16 C4F9
 word 4 32 AB12CD34
 doubleword 8 64 01234567 89ABCDEF

The bits within an 8-bit byte are numbered from 0 (least significant) to 7 (most significant).

 7654 3210
 ==== ====
 0000 0000

The bits within a 16-bit halfword are numbered from 0 (least significant) to 15 (most significant).

 15 12 8 4 0
 ==== ==== ==== ====
 0000 0000 0000 0000

The bits within a 32-bit word are numbered from 0 (least significant) to 31 (most significant).

 31 28 24 20 16 12 8 4 0
 ==== ==== ==== ==== ==== ==== ==== ====
 0000 0000 0000 0000 0000 0000 0000 0000

The bits within a 64-bit doubleword are numbered from 0 (least significant) to 63 (most
significant).

The BLITZ Architecture

March 13, 2006 Page C-2

 63 60 ... 20 16 12 8 4 0
 ==== ==== ==== ==== ==== ==== ====
 0000 ... 0000 0000 0000 0000 0000 0000

A single hex digit can be used to represent 4 bits (half a byte, sometimes called a “nibble”), as
follows.

 Binary Hex
 ====== ===
 0000 0
 0001 1
 0010 2
 0011 3
 0100 4
 0101 5
 0110 6
 0111 7
 1000 8
 1001 9
 1010 A
 1011 B
 1100 C
 1101 D
 1110 E
 1111 F

The 8 bits within a byte are conveniently expressed with two hex digits:

 8-bit byte In Hex
 ========== ========
 1010 0100 A4

The 32 bits in a word are given with 8 hex digits.

 32-bit word In Hex
 === ========
 1010 1011 0001 0010 1100 1101 0011 0100 AB12CD34

The 64 bits (8 bytes) in a doubleword are conveniently expressed with 16 hex digits.

Other architectures use “quadwords” of 128 bits, but the BLITZ architecture does not provide
instructions for manipulating quadword data.

Memory

Main memory is byte addressable. Addresses are 4 bytes (i.e., 32 bits) long, allowing for up to 4
gigabytes to be addressed.

Memory can be viewed either as a sequence of bytes:

The BLITZ Architecture

March 13, 2006 Page C-3

 address data
 (in hex) (in hex)
 ======== ========
 00000000 89
 00000001 AB
 00000002 CD
 00000003 EF
 00000004 01
 00000005 23
 00000006 45
 00000007 67

 FFFFFFFC E0
 FFFFFFFD E1
 FFFFFFFE E2
 FFFFFFFF E3

or as a sequence of words:

 address data
 (in hex) (in hex)
 ======== ========
 00000000 89ABCDEF
 00000004 01234567

 FFFFFFFC E0E1E2E3

Both are equivalent and show the same memory contents.

Alignment

A “word-aligned address” is an address that is a multiple 4. The last 2 bits of an aligned address
will always be zeros.

Word-sized data and doubleword-sized data must always be stored in word-aligned memory
locations. Every instruction is one word (i.e., 4 bytes) long. All instructions must be stored at
word-aligned addresses.

Any violation of these alignment requirements will result in an error exception. For example, the
load and store instructions will cause an error exception if an attempt is made to move a word to
or from an address that is not divisible by 4.

Byte-sized data may be stored at any location in memory; there is no alignment requirement.

This architecture uses only word-alignment; there is no “halfword” or “doubleword” alignment”
requirement. Henceforth, whenever we say “alignment”, it is understood that we mean “word-
alignment”.

Big Endian

The BLITZ architecture is “Big Endian”, meaning that when a word-sized quantity is stored in 4
bytes of memory, the most significant byte is stored in the first byte (i.e., lowest numbered
address) and the least significant byte is stored in the last byte (i.e., the byte with the greatest

The BLITZ Architecture

March 13, 2006 Page C-4

address). In other words, if a word is stored at address x, the most significant byte will be stored
in byte x and the least significant byte will be stored in address x+3.

Some other (non-BLITZ) computers use “Little Endian” order, in which the least significant byte
is stored in the lowest numbered address.

Load Store Architecture

The BLITZ uses a “load-store” architecture. Operations (such as arithmetic and logical
functions) can only be performed on data stored in registers. It is necessary to move the data
from memory to registers (load it) and back to memory (store it) with separate instructions. The
instructions in the following example are not exactly BLITZ instructions, but they give you the
idea of load-store architectures. Here, “x”, “y”, and “z” are the names of some memory locations
and “r1”, “r2”, and “r3” are the names of registers.

 load x,r1
 load y,r2
 add r1,r2,r3
 store r3,z

The first instruction moves data from memory into register “r1”. The second instructions moves
a number into register “r2”. The third instruction adds the values in “r1” and “r2”, placing the
result into register “r3”. The final instruction moves data from register “r3” back to main
memory.

BLITZ is a Reduced Instruction Set Computer (RISC) architecture. In a RISC architecture, each
instruction is kept very simple, so that instructions may be executed at a fast clock rate. Of
course, certain operations are inherently complex, so a couple of instructions may be required in
a RISC machine, whereas in another architecture the same operation may require only a single
instruction.

Each BLITZ instruction either does a memory access or does a computation. The idea is that
each instruction will be executed in one machine (clock) cycle. The goal is to keep each
instruction simple so that a faster clock rate can be used, thereby speeding the overall
performance of the CPU.

(The BLITZ machine is expected to be emulated in software. When emulated, the RISC
architecture may not translate into any increase in speed.)

The BLITZ Register Set

The state of the BLITZ CPU is given by the following registers.

The BLITZ Architecture

March 13, 2006 Page C-5

User Registers:
===============
 r0 - Always zero
 r1
 r2
 ...
 r13
 r14 - Frame Pointer
 r15 – Stack Pointer

System Registers:
=================
 r0 - Always zero
 r1
 r2
 ...
 r13
 r14 - Frame Pointer
 r15 – Stack Pointer

Floating-Point Registers:
=========================
 f0
 f1
 f2
 ...
 f15

Miscellaneous Registers:
========================
 PC - Program Counter (32 bits)
 PTBR - Page Table Base Register (32 bits)
 PTLR - Page Table Length Register (32 bits)
 SR - Status Register (32 bits-see below)

Status Register (32 bits):
==========================
 31 28 24 20 16 12 8 4 0
 ---- ---- ---- ---- ---- ---- ---- ----
 0000 0000 0000 0000 0000 0000 00IS PZVN

 I = Interrupts Enabled (1=Enabled, 0=Disabled)
 S = System Mode (1=System, 0=User)
 P = Paging Enabled (1=Enabled, 0=Disabled)
 Z = Zero (1=Result was zero)
 V = Overflow (1=Overflow occurred)
 N = Negative (1=Result was negative)
 (All other bits are unused.)

The Registers

Each running process can access 16 general purpose registers and 16 floating-point registers.

Each general purpose register contains one word (32 bits) of data. These registers are numbered
from 0 to 15 and are named r0, r1, ..., r15. They typically contain signed integer values.

The BLITZ Architecture

March 13, 2006 Page C-6

Sometimes the general purpose registers are called the “integer registers” to distinguish them
from the floating-point registers.

The floating-point registers each contain two words (64 bits) of data. They are numbered from 0
to 15 and are named f0, f1, ..., f15. Each floating point register contains a double-precision
floating point number, stored in the IEEE standard format.

Almost all instructions use at least one of the general purpose integer registers, and some use two
or three integer registers. Where ever an integer register is used, any of the 16 registers may be
specified. Most integer registers are identical and which register is used is a question for the
programmer to determine. However, some registers (in particular, registers r0, r14, and r15) have
special uses and functions, as described later.

A subset of instructions (called the “floating-point instructions”) access and modify data in the
floating-point registers. These instructions all begin with the letter “f”. For example there are two
addition operations. The integer operation is named “add” and the floating-point operation is
named “fadd”.

User Registers and System Registers

There are two sets of general purpose registers. Each set has 16 registers. One set is called the
“User” register set and the other is called the “System” register set. In each set, the registers are
numbered 0 through 15 and named “r0”, “r1”, ... , “r15”.

At any time, the BLITZ processor is executing either in “User Mode” or “System Mode”. When
the processor is in User Mode, the User Registers are used; when the processor is in System
Mode, the System Registers are used.

The use of two sets of integer registers allows kernel traps (for example, “syscall” system calls)
to be executed quickly. The user-level process will execute in User mode and will use the User
registers. The kernel will execute in System Mode and will use the System registers. During the
“syscall” processing, no register saving is necessary; the processor simply changes the Mode to
switch to the other register set.

There is only one set of floating-point registers. This set is shared among between User and
System processes.

Register r0

Register r0 is special. Its value is always zero. Any attempt to read from this register will result
in zero being returned. Any attempt to store data into this register is perfectly legal; the data will
simply be discarded.

Register r14 - The Frame Pointer

By convention, register r14 is used as a “frame pointer”. The frame-pointer register is used in the
standard subroutine calling sequence. In conjunction with r15 (the stack pointer), it is used to
locate activation records (i.e., “stack frames”) in the activation calling stack.

The BLITZ Architecture

March 13, 2006 Page C-7

There is no direct architectural support for the frame pointer. In other words, no instruction treats
r14 any differently than any other register. In fact, any register could be used with no change to
the assembler or machine emulator.

Register r15 - The Stack Pointer

By convention, register r15 points to a stack in memory. This stack is used during procedure
calls and returns. This stack is also used during interrupt processing. The “push” and “pop”
instructions also use the stack. The push and pop instructions will actually work with any
register, but synthetic versions of “push” and “pop” make the use of r15 more convenient.
(Synthetic instructions are implemented entirely within the assembler and serve as shorthand for
other instructions. They are discussed later.)

By convention, the stack grows downward (toward lower-numbered addresses) from high
memory. Register r15 points to the item at the “top” of the stack, i.e., r15 points to the lowest
numbered byte that contains stack data. Thus, during a “push” operation, the stack-top register
will be decremented before the item is moved to memory, whereas during a pop operation, the
data will be moved from memory before the stack-top register is incremented.

 address memory

 00000000: | |
 00000001: | |
 00000002: | |
 | |
 | |
 | |
 | AA | <-- r15
 | BB |
 | CC |
 FFFFFFFF: | DD |

Normally, the kernel will maintain its own stack, which will be indexed by the stack-top pointer
stored in register r15 in the System Register set. Each user-level process will presumably have its
own stack, although this is an operating system issue, not a processor feature. Each user-level
process will have a set of User Registers, and its stack-top register r15 will index its stack.

Status Register (and Condition Codes)

The Status Register is defined as a 32 bit register; however, only six of the bits are actually used.
When the Status Register is stored as part of the syscall / interrupt processing, the unused bits are
set to zero. When the Status Register is loaded during a return from interrupt (the “reti”
instruction), the unused bits are ignored.

Three of the status bits (Z=Zero, V=Overflow, and N=Negative) are referred to as the “Condition
Codes”. These bits are set during certain arithmetic operations to reflect the nature of the
computed result. The following instructions modify the condition codes:

 add, sub, mul, div, sll, srl, sra, or, and, andn, xor, rem

The BLITZ Architecture

March 13, 2006 Page C-8

Note that the following synthetic instructions are shorthand for some of these instructions.
Therefore, they also modify the condition codes:

 mov, cmp, neg, not, clr, btst, bset, bclr, btog

Of course the “reti” instruction also modifies the condition codes since it reloads the entire Status
Register.

The condition code bits are tested with the various branch instructions, which will conditionally
jump according to how these bits are set. Thus, the program can test the result of an operation,
such as a “cmp” instruction, and can branch accordingly.

I = Interrupts Enabled (1=Enabled, 0=Disabled)
==

If this bit is set, then interrupts will be processed. If this bit is zero, then interrupts are disabled
and incoming interrupts will not be processed; instead they will remain pending until interrupts
are once again enabled. At that time, a pending interrupt (if any) will be processed. Only
maskable interrupts can be disabled and remain pending. Unmaskable interrupts will always be
processed, regardless of the state of this bit, and will never remain pending.

This bit may only be changed by the kernel. That is, this bit may only be changed by privileged
instructions, and privileged instructions can only be executed in System Mode.

S = System Mode (1=System, 0=User)
==================================

At any time, the BLITZ processor is executing in either System Mode or in User Mode and this
bit determines which mode the processor is in. Presumably the operating system kernel will
execute in System Mode and all user-level programs will execute in User Mode. All instructions
may be executed when in System Mode. In User Mode, some instructions are forbidden. (The
forbidden instructions are called “privileged” instructions.) An attempt to execute a privileged
instruction while in User Mode will cause a Privileged Instruction exception and will trap into
System Mode.

This bit may only be changed by the kernel. That is, it may only be changed by privileged
instructions, which may only be executed in System Mode.

P = Paging Enabled (1=Enabled, 0=Disabled)
==

The BLITZ architecture provides support for virtual memory via a page table with automatic
address translation. If this bit is set, then address translation will occur whenever the program
accesses main memory. Whenever an instruction accesses memory, the address it provides will
be interpreted as a “logical” address (also called a “virtual” address). This logical address will be
translated into a physical address by the CPU’s translation hardware before being used. The
physical address will then be used to determine which bytes in memory are examined or
modified by the instruction. If this bit is zero, then every memory address generated by an
instruction will be used as is, with no translation. Presumably, an operating system kernel will
run with paging disabled and user-level programs will run with paging enabled.

This bit may only be changed by the kernel. That is, it may only be changed by privileged
instructions, which may only be executed in System Mode.

The BLITZ Architecture

March 13, 2006 Page C-9

Z = Zero (1=Result was zero)
============================

If the result of the arithmetic operation is zero (i.e., all bits are zero), then this bit will be set to 1.
Otherwise, it will be cleared to zero.

V = Overflow (1=Overflow occurred)
==================================

If the execution of the arithmetic operation caused overflow, then this bit will be set to 1.
Otherwise, it will be cleared to zero. Overflow may occur for add, sub, mul, div, rem, and fcmp.

N = Negative (1=Result was negative)
====================================

If the result of the arithmetic operation is negative (i.e., the most significant bit is “1”), then this
bit will be set. Otherwise, it will be cleared to zero.

The Program Counter (PC) Register

There is a 32-bit register called the “PC”, which contains the address of the next instruction to
execute. It is modified with instructions that branch or transfer the flow of control.

The Page Table Base Register (PTBR) Register

The Page Table Base Register (“PTBR”) contains the address of the page table. The page table is
stored in main memory and this register will always contain a word-aligned address. This
register is used whenever the page table is consulted by the CPU’s address translation hardware.
In particular, when a virtual address is translated into a physical address, this register will be
used to locate the page table in main memory. This only happens when paging is enabled by the
“Paging Enabled” bit in the Status Register. If paging is disabled, this register is ignored. This
register will contain a physical address, not a virtual address.

This register can only be loaded with the “ldptbr” instruction, and it cannot be examined directly.

The Page Table Length Register (PTLR) Register

The Page Table Length Register (“PTLR”) is used in conjunction with the Page Table Base
Register. The page table consists of a number of entries, stored sequentially in memory. Each
entry is 4 bytes (one word) long. This register contains the number of bytes in the table and
therefore it will always be a multiple of 4.

This register can only be loaded with the “ldptlr” instruction, and it cannot be examined directly.

Instruction Formats

Every BLITZ instruction is 4 bytes long. The first byte of the instruction is the op-code,
indicating what the instruction is. The remaining 3 bytes are interpreted differently. Some
instructions have no operands, in which case the remaining 3 bytes are ignored. Other

The BLITZ Architecture

March 13, 2006 Page C-10

instructions take several operands, in which case the operands are encoded into the remaining 3
bytes. There are seven different instruction formats, named Format A, Format B, ... , Format G.

Here are the instruction formats. Each line shows how the 32 bits of an instruction are to be
interpreted.

 Format A:
 xxxx xxxx ---- ---- ---- ---- ---- ----

 Format B:
 xxxx xxxx cccc ---- ---- ---- ---- ----

 Format C:
 xxxx xxxx cccc aaaa ---- ---- ---- ----

 Format D:
 xxxx xxxx cccc aaaa bbbb ---- ---- ----

 Format E:
 xxxx xxxx cccc aaaa vvvv vvvv vvvv vvvv

 Format F:
 xxxx xxxx rrrr rrrr rrrr rrrr rrrr rrrr

 Format G:
 xxxx xxxx cccc ---- vvvv vvvv vvvv vvvv

The various fields in the instructions are given by the following legend:

 xxxx xxxx Op code (8 bits)
 aaaa Register A (4 bits)
 bbbb Register B (4 bits)
 cccc Register C (4 bits)
 vvvv vvvv vvvv vvvv Immediate value (16-bits, sign-extended)
 rrrr rrrr ... rrrr Relative displacement (24-bits, sign-extended)
 ---- (These bits are ignored)

There are 16 general purpose registers and they are encoded in the obvious way in 4-bit fields
(shown above as “aaaa”, “bbbb”, and “cccc”) in the instructions:

 0000 - Register r0
 0001 - Register r1
 0010 - Register r2
 ...
 1111 - Register r15

Many instructions take one or more general purpose registers as operands. These are referred to
as Register A, Register B, and Register C. For example, the general format of the multiply
instruction is:

 mul regA,regB,regC

A specific instance of this instruction might be:

 mul r7,r8,r13 ! Multiply r7 by r8 and place result in r13.

The BLITZ Architecture

March 13, 2006 Page C-11

In this instruction we have:

 aaaa = RegA = r7 = 0111
 bbbb = RegB = r8 = 1000
 cccc = RegC = r13 = 1101

The op code for the “mul” instruction (Format D) is 98 (in binary: 0110 0010). Thus, this
instruction would be encoded as:

 Format D:
 xxxx xxxx cccc aaaa bbbb ---- ---- ----
 0110 0010 1101 0111 1000 0000 0000 0000

 In hex:
 6 2 D 7 8 0 0 0

Some instructions operate on the floating-point registers instead of the general purpose registers.
An example is the floating-point multiply instruction:

 fmul fregA,fregB,fregC

A specific instance of this instruction might be:

 fmul f3,f4,f9 ! Multiply f3 by f4 and place result in f9.

There are 16 floating-point registers and (like the general purpose registers) they are encoded in
the obvious way in 4-bit fields (shown above as “aaaa”, “bbbb”, and “cccc”) in the instructions:

 0000 - Register f0
 0001 - Register f1
 0010 - Register f2
 ...
 1111 - Register f15

The floating-point instructions (like “fmul”) interpret the 4-bit register fields (aaaa, bbbb, and
cccc) as indicating floating-point registers; all other instructions interpret the 4-bit fields as
meaning general purpose registers. Thus, the bit pattern

 0101

may mean either “r5” or “f5”, depending on which instruction it is used in.

The op-codes are assigned in such a way that the first 3 bits of the op-code indicate the format of
the instruction.

 op-code op-code
 format range in binary
 ====== ======= =========
 A 0-31 000- ----
 B 32-63 001- ----
 C 64-95 010- ----
 D 96-127 011- ----
 E 128-159 100- ----
 F 160-191 101- ----
 G 192-223 110- ----
 - 224-255 111- ----

The BLITZ Architecture

March 13, 2006 Page C-12

16-Bit Sign-Extended Immediate Values

Many of the instructions allow for an immediate (or “literal”) value to be included directly in the
instruction. (In particular, all Format E and Format G instructions allow it.) For example, the
subtract instruction may include a value directly:

 sub r3,27,r4

This instruction subtracts 27 from the value stored in register r3 and stores the result in r4. The
data (27) is specified immediately; it is not stored in a register. Instructions such as these include
a 16 bit field in the instruction to contain the value. When executed, the 16 bits are interpreted as
a signed integer. Thus, the 16 bit value is “sign-extended”. In other words, the most significant
bit (bit 15) is duplicated to fill the value out to 32 bits. This means that any value between -
32768 and 32767 can be specified literally. If you wish to subtract a number outside this range,
you can not use a literal value; you will have to first place the value in a register of its own. (For
example, you might use the “set” instruction to accomplish this.)

Note that the logical operations (such as shift left logical “sll” and exclusive-or “xor”) can also
take 16-bit immediate values. These values are also treated as signed integers and are signed-
extended to 32 bits before being used. Any attempt to use an out-of-range number, as in the
following example, will be caught by the assembler and flagged as an error.

 xor r3,0xAB12CD34,r4 ERROR!

The programmer must be careful in situations like the following. Presumably the programmer is
trying to flip a single bit (bit 15).

 xor r3,0x8000,r4

The assembler will not flag this as an error and will produce the same code as for this instruction:

 xor r3,0xFFFF8000,r4

One exception to the sign-extension rule is for the “sethi” and “setlo” instructions. These
instructions are Format G instructions, so they contain a 16-bit immediate value. However, in
these instructions, the value is not sign-extended before use.

24-Bit Relative Displacements

Format F instructions are concerned with branching and jumping. The following instructions
have Format F version: the “call” instruction, the “jmp” instruction, and the conditional branch
instructions (such as “bne”, “bl”, and “bge”).

Format F instructions contain a 24-bit field, which gives a displacement (also called an “offset”).
This displacement is relative to the current location. More precisely, the 24-bit offset is sign-
extended to 32-bits. This is then added to the address of the instruction (not the address
following the instruction, as in some architectures) to give the target address. The target address
is the address to be jumped to. If the branch is taken, the next instruction to be executed will be
the instruction stored at the target address.

In the BLITZ architecture, logical (i.e., virtual) address spaces are limited to 16M bytes. (Recall
that any byte in a 16M byte address space can be addressed with 24 bits.) Therefore, any byte in

The BLITZ Architecture

March 13, 2006 Page C-13

the logical address space may be addressed using a 24-bit relative displacement in a Format F
instruction located anywhere in that address space. The address computation (adding the current
address to the 24-bit displacement) is done using 32-bit arithmetic, but any bits beyond 24 are
simply ignored when paging is enabled.

The benefit of using relative displacements instead of absolute addresses is that the code can be
relocated (i.e., moved) from one area of memory to another, without having to be modified. As
long as the relative separation of the Format F (branch) instruction and the target instruction of
the branch remains unchanged, no modification of the branch instruction is necessary.

Consider the following code, for example:

 loop: add r5,5,r5
 add r3,1,r3
 cmp r3,17
 ble loop

The branch instruction will contain a displacement of -12, meaning that the target instruction is
12 bytes before the branch instruction. At runtime, this code may be loaded at any address. For
example, it might be loaded at addresses starting at 0x65432100:

 6543 2100 loop: add r5,5,r5
 6543 2104 add r3,1,r3
 6543 2108 cmp r3,17
 6543 210C ble loop

When the processor executes the branch instruction, it takes the current value of the program
counter (6543210C) and adds the relative offset in the instruction (i.e., -12), giving the address
of the instruction labeled “loop”. Obviously, if this code had been loaded at some other address
at run-time, it would still work correctly.

To be precise, the 24 bit displacement is signed extended to 32 bits. Then this value is added to
the address of the branch instruction. This means that the target of a branch instruction must lie
within –8,388,608 to 8,388,607 bytes of the branch instruction. If the machine is operating with
paging enabled, then the target address is a virtual address. It will be truncated to 24 bits before
being translated into a 32-bit physical address.

(Since the branch instruction must be at an aligned address and since the target address must be
aligned, the displacement in a branch instruction should also be divisible by 4. Therefore, the last
2 bits of any 24-bit displacement in a Format F instruction should be zero; if the displacement is
not divisible by 4, an Alignment Exception will occur.)

Addressing Memory

In order to fetch or store data to / from memory, the address must first be placed in a register.
The “set” instruction is ideal for moving the address into a register. For example, the following
code first moves the address of “myVar” into register r1. Then it uses that register to fetch from
memory. This code increments the word whose address is “myVar”.

 set myVar,r1 ! Move address of myVar into r1
 load [r1],r2 ! Move data from myVar into r2
 add r2,1,r2 ! Increment r2
 store r2,[r1] ! Store data back, using same address

The BLITZ Architecture

March 13, 2006 Page C-14

A second addressing mode allows an integer offset to be added to a register to compute the
effective address. For example, assume “myArr” is the address of the first element of an array of
words. We wish to increment the sixth element of this array. We will need an offset of 20, since
each element is 4 bytes long.

 set myArr,r1
 load [r1+20],r2
 add r2,1,r2
 store r2,[r1+20]

A third addressing mode allows us to add the contents of two registers together to compute the
effective address. For example, if the offset into the array has been computed and placed in
register r3, then we can use the following code to access the desired element.

 set myArr,r1
 load [r1+r3],r2
 add r2,1,r2
 store r2,[r1+r3]

A common thing to do is to access fields in the activation record (or “frame”). Assume that
variable x is a local variable stored at offset -12 in the frame. Then the following code would be
used to increment x.

 load [r14-12],r2
 add r2,1,r2
 store r2,[r14-12]

In this example, we assume that the “standard subroutine calling conventions” have been
followed and that “r14” points into the frame stored on the top of the stack. In the standard
calling conventions, which are described elsewhere, the frame pointer will point into the middle
of the frame, not to the lowest byte in the frame. The local variables will actually be stored in the
frame at negative offsets from the frame pointer.

Synthetic Instructions

There are several “synthetic” instructions. Technically, these are not true BLITZ instructions.
Instead, they are introduced to make life easier for the programmer. Whenever the assembler
sees a “synthetic” instruction, it will translate it into one or two legal BLITZ instructions and will
use those instructions instead.

For example, “set” is a synthetic instruction. It will be expanded into two instructions. Consider
the following code:

 set myArr,r1
 load [r1],r2

The “set” instruction will be automatically expanded by the assembler into two instructions,
giving:

 sethi hi(myArr),r1
 setlo lo(myArr),r1
 load [r1],r2

The BLITZ Architecture

March 13, 2006 Page C-15

Here we are using “lo” and “hi” to indicate the lo-order and hi-order 16 bits of the full 32-bit
value given by the symbol “myArr”, although these are not really part of the assembler syntax.

The “sethi” and “setlo” instructions are discussed later, but in short, “sethi” moves 16 bits of data
into the register, and the “setlo” instruction brings in the remaining 16 bits of data.

You might consider the following code sequence, which would be more efficient. However, this
code sequence is subject to a very subtle bug.

 sethi hi(myArr),r1 ! Warning: This code sequence
 load [r1+lo(myArr)],r2 ! may not do what you expect.

Recall that the 16-bit immediate value “lo(myArr)” in the load instruction would be sign-
extended. The above instruction sequence will work only if the most significant bit of
“lo(myArr)” was zero; otherwise it would be sign-extended, causing the address computation to
result in a very different address. Since code may be relocated during linking, it is difficult to
know whether this condition would be met. Therefore, the “setlo” instruction should always be
used when moving 32-bit constant values.

Assembler Comments

The exclamation point (!) is used to begin comments. The comment runs through the end-of-line.
As a point of style, every line of assembler code should probably be commented.

When a single comment applies to several instructions, I prefer to use a period as demonstrated
below to indicate that a multi-line comment applies to several instructions.

 set myVal,r1 ! Increment myVal
 load [r1],r2 ! . by one
 add r2,1,r2 ! .
 store r2,[r1] ! .
 cmp r2,47 ! If myVal >= 47
 bge loop ! . then goto loop

Labels and White Space

Each instruction may be preceded by an optional label. This label may then be the target of a
“branch” or “call” instruction. Data locations in memory may also be labeled, in which case the
label could be used in “load” or “store” instructions.

If a label is present, it must be at the beginning of the line and must be followed by a colon. The
instruction op-code is separated from the label by some white-space (usually a single tab
character). The instruction op-code is followed by white space (usually a tab or two) and the
operands. These can optionally be followed by some white space and a comment.

A label may also appear on a line by itself, in which case it applies to the current location
counter, and will therefore be set to the address of the next instruction (notwithstanding things
like “.align” pseudo-ops that may change the location counter). Op-codes (both legal BLITZ
instructions and pseudo-ops) must be preceded by white space, typically a tab or two.

The convention is to try to make things line up neatly. For example:

The BLITZ Architecture

March 13, 2006 Page C-16

 myLoop: ! myLoop:
 set myVal,r1 ! Increment myVal
 load [r1],r2 ! . by one
 add r2,1,r2 ! .
 store r2,[r1] ! .
 cmp r2,47 ! If myVal >= 47
 bge myLoop ! . then goto myLoop
 ...
 myVal: .word 0 ! myVal: counter of things

The Program Counter

Every computer processor contains a register called the Program Counter (or “PC”) which
contains the address of the next instruction to be executed. In the simplest model of computer
operation, the processor repeatedly executes this algorithm:

 pc := 0;
 loop
 fetch next instruction from memory[pc];
 pc := pc + 4;
 execute the instruction:
 Decode the instruction
 Fetch operands from memory or registers
 Perform computation
 Store results back into memory or registers
 endLoop

Sometimes the instruction will modify the flow of control (a “call” or “branch” instruction). For
such instructions, a “result” will be stored into the PC register, causing the next instruction to be
fetched from a new address.

In the BLITZ processor, each instruction executes to completion before the next instruction
begins. There is no pipelining of instructions. (Not included in this discussion is the processing
of exceptions, asynchronous interrupts, or “syscall” traps. When such interrupts occur, the above
processing loop is more complex.)

The Location Counter

As the assembler scans and processes each line of code, it keeps track of the current memory
location into which each instruction will be placed. To do this, the assembler keeps a variable
called the “Location Counter”, which should not be confused with the “Program Counter”. The
location counter and the program counter are different.

It is important to understand that the location counter is an assembly-time concept; it does not
exist at run time. On the other hand, the program counter is a run-time register (named “PC”) and
only has a value when the program is running. When the assembler encounters a branch
instruction, it never “takes” the branch; instead it simply moves on to the next instruction in the
source file by incrementing the location counter. Later, at runtime, when the CPU encounters a
branch instruction, it may take the branch by modifying the PC.

Every time the assembler encounters an instruction, the location counter is advanced by 4 (i.e.,
by the size of the instruction). Even when a branch instruction is processed, the location counter

The BLITZ Architecture

March 13, 2006 Page C-17

is always advanced by 4 and the instruction on the line following the branch is then processed.
To repeat, a branch is never “taken” by the assembler.

When the assembler encounters a label, it adds a new definition to its symbol table, using the
current value of the location counter as the definition of the symbol. When the assembler
encounters a branch instruction or a load or store instruction using some label, it looks that label
up in the symbol table. It will use the value of that symbol in assembling the branch instruction.

Assemblers make two passes over the source program. In the first pass, the location counter is set
to zero, and the source code file is scanned line-by-line. Each time an instruction is encountered,
the location counter is advanced by the length of the instruction, but no code is generated in the
first pass. Whenever a label is encountered, it is entered into the symbol table, using the current
value of the location counter as the symbol’s definition.

In the second pass, the location counter is reset to zero. Then, the source code is examined again
line-by-line from beginning to end. This time, machine code is generated and written to the
output as each instruction is scanned.

This two-pass approach allows branches and other instructions to use labels that are defined
either before or after the instruction. As the second pass begins, all symbols are already defined.
As the second pass proceeds, the machine code for each instruction can be determined by
plugging in the symbols’ values as necessary.

Branch and call instructions in the BLITZ architecture are “relative”, and not “absolute”. Each
branch and call instruction contains a 24 bit field to specify the target address to be jumped to.
This 24 bit field does not contain the absolute address of the target instruction. Instead, this field
is interpreted as a signed number, which will be added to the current program counter at run-time
to give the target address. Although the assembler does not know where the program will
ultimately be loaded in memory, it is able to compute the relative distance between a branch
instruction and its target address. Thus, it can produce code containing the correct relative
displacement.

The assembler can be used to place data and instructions into different segments. The three
segments are named “.text”, “.data”, and “.bss”. The assembler maintains a distinct location
counter for each segment. Thus, there is a “.data” location counter, a “.text” location counter, and
a “.bss” location counter. At any one time, the assembler is “in” only one segment, as determined
by the .data, .text, and .bss pseudo-ops. For example, if the last pseudo-op was .text, all
generated data following it will be placed in the “.text” segment and the corresponding location
counter will be incremented.

Pseudo-Ops (Assembler Directives)

The following sections describe several “pseudo-operations”, which control and direct the
assembler in its task. Pseudo-ops are sometimes called “assembler directives”.

Pseudo-ops are included in the assembly language program file, mixed in among the real BLITZ
instructions. However, pseudo-ops are not executed at runtime; instead they tell the assembler
how to assemble other instructions and what to put into memory before program execution
begins. For example, a pseudo-op could be used to initialize a variable with some particular
value. The value can be coded using convenient (C-like) notation, freeing the programmer from
having to specify the precise bit-pattern used to represent the value.

The BLITZ Architecture

March 13, 2006 Page C-18

Pseudo-ops begin with a period to make it easy to distinguish them from BLITZ instructions.

Character Data

Here are examples of the “.ascii” pseudo-op:

 .ascii "abc"
 .ascii "BLITZ programming is fun!\n"

The “.ascii” pseudo-op places N bytes of data in memory, where N is the number of bytes in the
character string. A number of escapes (such as “\n”) can be used to place non-printable ASCII
codes in string.

The standard “C” string convention is to terminate every string of characters with the NULL
character. Note that the .ascii pseudo-op does not place a terminating NULL character in the
string. If this is what you want, you must include it explicitly. For example:

 .ascii "Hello, world.\n\0"

Data

 .byte expression
 .word expression

These pseudo-ops place data values in memory. In each case, arbitrary expressions may be
provided, as long as they can be fully evaluated at assembly-time. These expressions may
include many of the operators (such as + and *) available in the C language.

Double Constants

 .double value

This pseudo-op places an 8 byte (64 bit) double precision floating-point value in memory. Here
are some examples, showing the ways in which the value may be specified.

 .double 123.456
 .double -123.456
 .double +123.456
 .double 123.456e10
 .double 123.456e-10
 .double 123.456e+10
 .double 123.456E10

Alignment

The “.align” pseudo-op will force the location counter to be word aligned. In other words, one or
more bytes of padding may be inserted to round the location counter up to an address divisible
by 4.

 .align

The BLITZ Architecture

March 13, 2006 Page C-19

In the first line of the following example, up to 3 bytes will be inserted (if necessary) to bring the
location counter up to a multiple of 4. In the second line, 6 bytes will be allocated. In the next
line, 2 additional bytes will by allocated so the next word will be placed in an aligned address.

 .align
 .ascii “abcdef”
 .align
 .word 43
 .word "cs30"
 .word -1
 .word 0x0123abcd

If the location counter is already .aligned, this pseudo-op will insert no padding bytes. Thus, it
never hurts to place an .align pseudo-op directly before instructions that require a particular
alignment, and it is necessary if the preceding instructions may have left the alignment wrong.

Uninitialized Data Space

 .skip N

This pseudo-op skips over N bytes, where N is any expression. The assembler and linker will fill
these bytes with zeros.

Segment Control

A running process is loaded into main memory before execution begins. In Unix, a running
process is divided into four “segments”. These segments have the following names:

 .data
 .text
 .bss
 .stack

Before a program begins execution, initial data will be loaded into the “.data”, “.text”, and “.bss”
segments. The assembler is used to specify exactly what will be loaded into the “.data”, “.text”,
and “.bss” segments and how long they will be. For example, the “.data” segment might be
loaded with 100 bytes giving the initial values of several variables. The “.text” segment might be
loaded with 11,000 bytes of machine instructions. Often the “.bss” segment is not used and will
have a length of 0 bytes.

After loading, the OS will usually mark the bytes in the “.data” segment read/write, and the bytes
in the “.text” segment will be marked “read-only”. Any attempt at run-time to modify a byte in
the “.text” segment will result in an exception and the user-level program will be aborted by the
OS. Any attempt to access a byte outside of any segment will also result in a similar error.

The “.stack” segment will be marked read/write, and has no fixed size; instead any attempt to
access bytes beyond the end of the “.stack” segment will result in new pages being added to that
segment.

There are three pseudo-ops that allow control over which segment to place data and instructions
into. They are:

The BLITZ Architecture

March 13, 2006 Page C-20

 .data
 .text
 .bss

These pseudo-ops determine into which segment the following instructions and/or data will be
placed. Each “remains in effect” until a new .data or .text or .bss pseudo-op is encountered.

The .bss segment contains data that will be initialized to zero. Thus, no space will actually be
consumed in the executable “a.out” file; the file will merely contain information about which
bytes of the virtual address space must be initialized to zero before execution begins. As a
consequence, the .bss segment may contain only .align and .skip pseudo-ops. Instructions and
other pseudo-ops are not allowed in the .bss segment.

At assembly time, each of the three segments is assumed to start at location zero. Later, when the
program is loaded into main memory, an address will be selected. Also, the size of the segment is
rounded up to the nearest page boundary. In a machine with 8K byte pages, our “.data” segment
with 100 bytes would be rounded up to 8K bytes. The “.text” segment, with 11,000 bytes would
be rounded up to 16K bytes. Then an address is selected for each of the four segments and the
initial data is loaded into the appropriate memory locations.

Symbols

Symbols may be defined in several ways. The most common way is when an instruction is
labeled. Another way is when the location of data in memory is allocated (e.g., with a “.word”
pseudo-op) and a label is present.

When the assembler encounters a label, it makes a new entry in its symbol table, associating the
symbol with the current value of the location counter. It also makes a note in its symbol table of
which segment this address is in. Later, when the several separately-assembled pieces of the
program are linked together, each segment will be assigned a specific address. This will require
the value of the symbol to be adjusted. Furthermore, every instruction that uses the symbol must
be modified to reflect the fact that the symbol is being adjusted. Obviously, there is a lot of
information in the “.o” files that indicates which symbols are used as well as where and how they
are used, so that the linker can make these adjustments when the various segments are put
together.

Symbols may also be defined directly using the “=” pseudo-op. Here is an example:

 set myVal,r1 ! Increment myVal
 load [r1],r2 ! . by “incrAmt”
 add r2,incrAmt,r2 ! .
 store r2,[r1] ! .
 ...
 incrAmt = 3

Note that “=” is a pseudo-op (like “.align” or “.text”) although “=” differs in that it is not given
an alphabetic name beginning with a period.

In this example, we have introduced a symbol called “incrAmt” and set its value to 3. Such a
symbol is an assembly-time constant: it can never change. This symbol is absolute, which means
it is not relative to any segment. During linking, when the segments are assigned addresses, no

The BLITZ Architecture

March 13, 2006 Page C-21

adjustment will be needed to the “add” instruction. The value of 3 will be used. The symbol
“incrAmt” may be used any place the constant 3 may be used.

In this example, the operand of the “=” pseudo-op is “3”. In general, the operand can be any
expression, as long as it can be evaluated at assembly-time.

External Symbols

 .export localSymbol
 .import foreignSymbol

It is assumed that “localSymbol” is defined within the “.s” source file that contains the .export
pseudo-op. It is assumed that “foreignSymbol” is not defined in the file containing the “.import”
pseudo-op but is defined in some other file that is assembled at some other time and linked with
this file. The assembler and linker will check that .export and .import are used correctly.

When the assembler processes a “.s” source file and produces a “.o” object file, it will include
information in the “.o” file to identify the symbols used and give information about their values
(or about their locations, if they are labels). The .export pseudo-op will make “localSymbol”
visible to other “.o” files with which this file is linked. The .import pseudo-op will make a
symbol called “foreignSymbol” defined in some other file visible and usable within the current
file.

Consider this example:

 .export main
 .import printf
 ...
 main: add r1,234,r3
 ...
 call printf
 ...

When an imported symbol (such as “printf” in this example) is used in this file, the linker will
look for a definition of it in other “.o” files and will modify instructions (such as the “call”
instruction) in the executable file to point to it. In this example, a routine called “main” is
defined and exported. Thus, this routine can be called from other “.s” files which are assembled
separately.

It is a good idea to put an “.align” pseudo-op before the first instruction, in case a previous data
item left the location counter on a non-word aligned boundary.

 .align
 main:
 add r1,234,r3

Note that the following is in error since the symbol “main” would be set to point to the
“padding” bytes inserted by the “.align”.

 main:
 .align
 add r1,234,r3

The BLITZ Architecture

March 13, 2006 Page C-22

Interrupt Processing
In this document, we use the term “interrupt” very generally to refer to an interruption in the
normal sequential execution of instructions. We use the terms “exception” and “trap” more
specifically, as discussed next.

Asynchronous interrupts may occur at anytime. These are triggered by events outside of the
instruction processing sequence of the CPU. For example, a hardware device (such as a disk or
the interval timer) may suddenly require attention. The device will send an electrical signal to the
processor, which will trigger interrupt processing. This sort of interrupt is referred to as an
“asynchronous interrupt” or a “hardware interrupt”.

Synchronous interrupts occur as a result of executing instructions within the CPU. These can be
divided into two categories: those that are the result of problems and those that are specifically
intended. Interrupts that are the result of problems arising during instruction execution are called
“exceptions”. Examples include “Illegal Instruction” and “Alignment Exception”. In the case of
an exception, some unexpected event occurred during the execution of an instruction.

The only intentional interrupt is caused by the system call instruction (“syscall”). This sort of an
interrupt is often referred to as a “trap”, rather than as an “exception”. It is used by a user-level
program to enter (or invoke) the kernel of the operating system.

This table summarizes our terminology and lists all types of interrupts:

 Interrupt:
 Asynchronous Interrupts (Hardware):
 - PowerOnReset
 - TimerInterrupt
 - DiskInterrupt
 - SerialInterrupt
 - HardwareFault
 Synchronous Interrupts:
 Exceptions:
 - IllegalInstruction
 - Arithmetic
 - Address
 - PageInvalid
 - PageReadOnly
 - PrivilegedInstruction
 - Alignment
 - ExceptionDuringInterrupt
 Trap:
 - Syscall

When an interrupt occurs and is serviced, the following actions occur. (If the interrupt is not
serviced, it remains pending, as discussed later, and will be serviced at some other time.)

First, the currently executing instruction is finished. In the case of an asynchronous (hardware)
interrupt, the current instruction runs to completion and the PC is left pointing at the next
instruction. In the case of an exception, the instruction execution is preempted and the PC is left
pointing to the offending instruction. Furthermore, in the case of an exception, the offending
instruction has no effect; the state of the CPU and memory is not altered. It is as if the instruction
had never been attempted. In the case of a “syscall” trap, the PC is left pointing to the instruction
following the “syscall”.

The BLITZ Architecture

March 13, 2006 Page C-23

Second, an “exception info word” is pushed onto the stack. In the case of a PageInvalid or
PageReadOnly exception, the offending virtual memory address will be pushed onto the system
stack. In the case of a “syscall” trap, the “system trap number” will be pushed onto the system
stack. By pushed onto the system stack, we mean that System Register “r15” (not User Register
r15) will be used. For all other interrupt types, the “exception info word” will be all zeros.

Third, the Status Register will be pushed onto the system stack.

Fourth, the PC will be pushed onto the system stack. At this point, the system stack looks like
this:

 | |
 r15-->| Return Address |
 | Status Register |
 | Except. Info Word |
 | . |
 | . |
 | . |

Fifth, the following bits of the Status Register will be changed. This will change the CPU to
System Mode, disable subsequent interrupts, and disable address translation via the page table.

 I := 0
 S := 1
 P := 0

Sixth, the PC will be loaded with the address of one of the Interrupt Vector entries. This has the
effect of causing a branch to the appropriate interrupt handler code. The interrupt vector consists
of several words stored in low memory, as shown below. In particular, there is one word for each
type of interrupt. The table below gives the addresses of the table entries (in hex). (Normally, the
OS would have stored into each word of this table a “jump” instruction, which will branch to the
first instruction of the interrupt handler for that type of interrupt.) In this step, the PC is simply
loaded with the corresponding address from the following table.

 Interrupt Vector in Low Memory

 Address Description Maskable
 ======= ========================== ========
 000000 Power On Reset No
 000004 Timer Interrupt Yes
 000008 Disk Interrupt Yes
 00000C Serial Interrupt Yes
 000010 Hardware Fault No
 000014 Illegal Instruction No
 000018 Arithmetic Exception Yes
 00001C Address Exception No
 000020 Page Invalid Exception No
 000024 Page Readonly Exception No
 000028 Privileged Instruction No
 00002C Alignment Exception No
 000030 Exception During Interrupt No
 000034 Syscall Trap Yes

The BLITZ Architecture

March 13, 2006 Page C-24

To repeat what happens, given the type of the interrupt, the corresponding address (from the
above table) is moved into the PC. This will cause a transfer of control directly into the table.
Normally, each table entry will hold a “jump” instruction; if so, this jump instruction will be
executed on the following instruction cycle, causing a second transfer of control to the correct
interrupt handler routine.

Some interrupts can be handled simply by the interrupt handler routine and a return to the
interrupted process can be made fairly quickly. (For example, a Serial Interrupt may indicate that
the user has pressed a character key on the keyboard. It may be adequate to simply query the
device and save the character in some sort of a buffer before returning to the interrupted process.
The details are operating system dependent.)

The Return From Interrupt instruction (the “reti” instruction) would normally be used to return
from an interrupt handler routine to the interrupted process. The “reti” instruction works as
follows. First, the “reti” instruction will restore the PC by popping the top value from the from
system stack and moving it into the PC, thereby preparing a return in the flow-of-control back to
the interrupted process. Then, “reti” will restore the Status Register, by popping the next value
from the from system stack into the Status Register. Then, “reti” will pop and discard the next
value (the exception info word) from the system stack. After “reti” has completed, instruction
execution will then resume in the interrupted process.

Generally, the interrupted process will be a user-level process and so will have been executing in
User Mode, although sometimes interrupts will occur while the kernel itself is executing. If a
User Mode process was interrupted, none of its registers will have been modified while the
handler routine serviced the interrupt, since the interrupt handler executed in System Mode. If
the handler routine was written correctly, the interrupted process will be entirely unaffected and
unaware that it was interrupted.

For example, if the interrupt was a PageInvalid or PageReadOnly exception, then presumably the
necessary page will have been moved into a memory frame during the execution of the interrupt
handler. The PC will have been left pointing to the instruction that caused the exception. Upon
return, the interrupted instruction will be re-tried and will succeed this time (unless another
different interrupt occurs first).

Masking Interrupts

Some interrupt types are said to be “maskable” and the rest are “unmaskable”. When an
unmaskable interrupt occurs, it will be serviced as soon as possible, namely on the next
instruction cycle. Maskable interrupts may be serviced either immediately or at some later time,
when the software is ready to deal with the interrupt. (By “serviced”, we mean that the interrupt
processing sequence discussed above will be performed. Three words will be pushed onto the
system stack and a branch will be made to the interrupt handling routine.)

The Interrupt Enabled bit (the “I” bit) in the Status Register determines whether a maskable
interrupt will be serviced when it occurs. If the “I” bit is set to one, then the interrupt will be
serviced immediately, without delay (i.e., within the current or next instruction cycle) and a
transfer will be made to the handler routine.

If the interrupt type is unmaskable, then interrupt processing will occur regardless of the state of
the “I” bit. The interrupt cannot be masked or disabled. If the interrupt is signaled, the interrupt
sequence will occur and a transfer will be made to the corresponding handler.

The BLITZ Architecture

March 13, 2006 Page C-25

If the interrupt type is maskable, and the “I” was previously cleared to zero, then the interrupt
servicing sequence will not occur. No transfer to the handler routine will be made and instruction
execution will continue without interruption. Furthermore, the interrupt will remain “pending”.
That is, the moment that interrupts are re-enabled (by setting the “I” bit to one), the interrupt
servicing sequence will be initiated and a transfer to the interrupt handler will occur.

There may be several interrupts pending, but within a single interrupt type, there will be at most
one pending interrupt. For example, there could be a Disk Interrupt and a Timer Interrupt both
pending, but there can be at most one Disk Interrupt pending. Of course the disk device may
repeatedly request a Disk Interrupt after the first has been fully serviced (and the “I” has been
reset to one, re-enabling interrupts) causing the handler to be invoked a second time.

Exception During Interrupt
During interrupt servicing, data is pushed onto the system stack. If system register “r15” is not
aligned properly or points to an invalid address, there are going to be problems. In other words,
an “Address Exception” or an “Alignment Exception” can occur during the processing of
interrupts.

(Note that an exception may occur during the servicing of an exception. To be precise and avoid
infinite regress, we should probably avoid saying that “an exception occurs during the servicing
of an exception” and just talk about what happens.)

What happens when we have problems while servicing an interrupt? The current interrupt is
abandoned and the PC is loaded with the address of the ExceptionDuringInterrupt entry in the
low-memory interrupt vector. While processing the original interrupt, the processor may have
successfully pushed one or two words onto the system stack before encountering a problem. In
any event, no further attempt to push words onto the stack is made. Instead, the branch is
immediately made to the ExceptionDuringInterrupt handler.

Presumably, an ExceptionDuringInterrupt indicates a catastrophic software failure of the
operating system itself and will be handled by printing a final message before terminating the
operating system.

Virtual Memory Address Translation and The Page Table
The Paging Enabled bit in the Status Register (the “P” bit) tells whether virtual memory address
translation is turned on or not. If the “P” bit is cleared to zero, then there is no address
translation. Every address generated during instruction execution is used “as is” as an index into
physical memory. By “physical memory”, we mean the main memory of the processor.

Physical addresses are a full 32 bits. If a physical address is beyond the end of the installed
memory, then an Address Exception occurs and interrupt servicing begins (as discussed later). A
32 bit address allows up to 4G bytes to be installed and addressed, although since I/O devices are
memory-mapped, several addresses will be unavailable for use. The Interrupt vector lies in low
memory and memory-mapped I/O devices will be mapped into the highest addresses in the
physical address space.

The BLITZ processor includes a Memory Management Unit (MMU), which is either enabled or
disabled, as determined by the “P” bit. When enabled, the MMU provides a simple page-table

The BLITZ Architecture

March 13, 2006 Page C-26

based translation scheme, which may be used by an operating system to implement virtual
memory.

As a program is running and instructions are being executed one after another, “logical”
addresses are generated. Every instruction must be fetched from memory, so the execution of
each instruction always begins by fetching a 32-bit word from memory. The current value of the
PC is used as the logical address of the word to fetch. Many instructions will not access memory
again; all of their action will be done using CPU registers only. However, several instructions
(such as “load” and “store”) will go to memory a second time. The “load” instruction will fetch
from memory and the “store” will write data to memory. One instruction, the “test and set”
(“tset”) instruction, will go to memory two more times. The tset instruction will fetch a word and
then will store data to that same word. Regardless of which instruction is being executed, the
CPU will generate a stream of “logical” addresses that will be used to fetch and store data
from/to memory. Logical addresses are 32-bits long.

When address translation is disabled, the “logical” addresses will be used as “physical” addresses
directly. There will be no translation: the address will be used as is.

When address translation is enabled, the logical address will be broken into three fields, denoted
“xxx”, “ppp”, and “ooo” below. The full 32-bit logical address is shown below, with the bits
numbered.

 31 28 24 20 16 12 8 4 0
 ==== ==== ==== ==== ==== ==== ==== ====
 xxxx xxxx pppp pppp pppo oooo oooo oooo

 xxxxxxxx - high order bits (8 bits)
 ppppppppppp - page number (11 bits)
 ooooooooooooo - offset (13 bits)

 Page Size = 8K bytes
 Page Table Entry = 4 bytes (32-bits)
 Max Page Table Size = 2K entries = 8K bytes

The high-order 8 bits of a logical address (“xxx”) are ignored and zeros are used. This limits the
amount of addressable memory to 16M bytes, i.e., the amount that can be addressed with only 24
bits of address. This limits each logical address space to 16M bytes. Since the upper bits are
ignored, it is not an error to address bytes outside the 16M byte limit; instead wrap-around
occurs with no fanfare. Note that with a 24-bit offset (as is provided in all Format F instructions),
every byte within the logical address space can be addressed.

The logical address space is broken into “pages” and each page is 8K bytes long. Since the
logical address space is 16M bytes long, there are 2K (i.e., 2048) pages in each logical address
space. The “ppp” field is 11 bits long and is used to select the page. Since each page is 8K bytes
long, 13 bits are needed to select the individual byte within the page. This is given by the “ooo”
(offset) field in the logical address.

Physical memory is divided into “frames” and each frame is 8K bytes long. Frames always begin
on even (8K) boundaries. Each frame can hold exactly one page, but there need not be a simple
one-to-one mapping between the pages in a logical address space and the frames in physical
memory. (In a simple one-to-one mapping, frame 0 holds page 0, frame 1 holds page 1, frame 2
holds page 2, and so on.) The page table allows the mapping to be more complex.

The BLITZ Architecture

March 13, 2006 Page C-27

A page table is an array of “page table entries”. Each page table entry is one word (32 bits) long.
A page table may have up to 2K entries, but it may have fewer (possibly zero) entries as well.
(Note that a page table of the maximum size will exactly fit into a single page/frame.)

A page table is stored in memory, not in special MMU registers. In fact, the MMU has no visible
state or registers of its own, beyond the “Page Table Base Register” and the “Page Table Length
Register”. At any one time, there is a current page table and this is given by the contents of these
two registers. If paging is disabled, these registers and the table they point to are ignored. If
paging is enabled, then these two registers define the current page table, which is used during
address translation. An operating system may store other page tables in memory, but these are
ignored by the hardware. Only the current table counts and it is only used if paging is enabled.

The format of an entry in a page table is given by the following fields:

 31 28 24 20 16 12 8 4 0
 ==== ==== ==== ==== ==== ==== ==== ====
 ffff ffff ffff ffff fff- ---- ---- DRWV

 fffffffffffffffffff - frame number (19 bits)
 D - Dirty bit (1=updated, 0=not updated)
 R - Referenced bit (1=referenced, 0=not referenced)
 W - Writable bit (1=writable, 0=read-only)
 V - Valid bit (1=valid, 0=not valid)
 (other bits) - unused (9 bits)

The frame number serves to address the frame in physical memory. 19 bits can select one out of
512K frames. (Each frame is 8K bytes. This allows addressing any byte in physical memory,
since 512K * 8K bytes = 4G bytes.)

The Valid bit is checked during translation; it must be set to one. If not, a Page Invalid Exception
will occur. If the CPU is trying to store into memory, the Writable bit will also be checked; it
must be set to one. If not, a Page Read-Only exception will occur. The Referenced bit will be set
to one by the MMU when a page is either queried or updated. The Dirty bit will be set whenever
a page is updated.

The remaining 9 bits are not examined or updated. The operating system is free to store
information in these bits if desired.

When presented with a logical address, if paging is enabled, the MMU will perform the
following functions.

First, the appropriate entry from the current page table will be fetched into an internal (hidden
and unnamed) register within the MMU. If the Valid bit is zero, a Page Invalid exception will be
signaled and no further processing will be done on this instruction. If this is an attempt to store
into memory, the Writable bit will be tested. If it is zero, a Page Read-Only exception will be
signaled and no further processing will be done on this instruction. If both bits are OK, the frame
number will be concatenated with the offset, to give the following physical address:

 31 28 24 20 16 12 8 4 0
 ==== ==== ==== ==== ==== ==== ==== ====
 ffff ffff ffff ffff fffo oooo oooo oooo

If this is an illegal address in physical memory, an Address exception will be signaled and no
further processing will be done on this instruction. Otherwise, the data will be either fetched
from or stored into memory at this physical address. (In the case of the “tset” instruction, a word

The BLITZ Architecture

March 13, 2006 Page C-28

will be both fetched and written to the selected address.) The Referenced bit will then be set to
one and, if data was stored into memory, the Dirty bit will also be set to one. All other bits will
be unchanged. Finally, the page table entry will be written back to memory from the internal
MMU register.

The BLITZ architecture is designed to accommodate shared memory multiprocessing, although
it will be mostly used as a uniprocessor. With shared memory multiprocessing, several
concurrently executing CPUs will share a single physical memory. Multiprocessor interaction
and frame locking are discussed next.

Note that when the CPU generates a single memory operation (for example, an instruction fetch)
there are actually several reads and writes performed on main memory. A typical memory access
will include (1) a read from the page table, (2) a read and/or write to the target frame, and (3) a
final update to the page table. Technically, the write back to the page table entry will occur
before the actual target location is queried or updated.

In the case of a multiprocessor system, we have the possibility of interleaving of memory
accesses from several processors. For example, one processor might conceivably change a page
table entry that is being used by another processor.

There are several design choices in how the various memory operations are interleaved in a
multi-processor system. Here are several options that were considered in the design of the
BLITZ architecture.

First, an architecture might specify that the memory accesses are done independently, with no
coordination or synchronization. The only thing that would be done atomically is the read-write
pair performed by the “tset” instruction. Unfortunately, with this design option, it is possible that
a page table entry may not be updated correctly. For example, assume that some page table entry
has its Dirty bit clear. Assume two processors both fetch the same entry, more or less
simultaneously. Next, one processor updates the entry first, writing back an entry in which the
Dirty bit has been changed to one. Then, the second processor writes back its version of the
entry, in which the Dirty bit is still clear. The problem is that the update to the Dirty bit is lost.
This is clearly unacceptable.

Second, an architecture might specify that all memory accesses (from (1) the initial read from the
page table, through (2) the read and/or write to the target frame, and to (3) the final update to the
page table) will be executed atomically, without interference from other processors. This could
be implemented by locking each of the page frames involved. Up to two frames may be involved
in a single CPU-initiated memory operation: the frame containing the page table and the target
frame containing the data to be fetched and/or updated. If the architecture specifies that a
processor will first get a lock on the frame containing the page table entry and then will try to get
a lock on the frame containing the data before releasing the first lock, there is the possibility of
deadlock. Two processors could each hold a lock on their first page while waiting to acquire a
lock held by the other processor. Another serious problem with this design option is that for
every single memory operation, the MMU holds a lock on a frame containing a page table entry
longer than absolutely necessary, and this could slow performance whenever two processors try
to run in the same logical address space.

In the BLITZ architecture, a lock is associated with each frame in memory. The lock on a frame
may be acquired and released by the MMU during its operation. To perform a memory access,
the MMU will first obtain a lock on the frame containing the page table entry, waiting for other
processors to release locks on this frame, if necessary. The MMU will then fetch the page table
entry, update it, determine if any exceptions will be signaled, write the entry back, and release
the lock on the frame. Only after the lock is released, will the MMU perform the memory

The BLITZ Architecture

March 13, 2006 Page C-29

operation to the target address. Then, if necessary, a lock will be acquired on the second frame
(containing the target address) with the CPU waiting again, if necessary. Finally, the memory
operation will be performed and the second lock released. If the operation is to fetch a word or a
fetch a byte, or update a word, the second lock (on the target frame) may be unnecessary if all
transfers to and from the memory are in units of 32-bit words. If the memory operation is the
“tset” instruction, a second lock on the target frame must be acquired. If the memory only moves
data in units of words, then an update to a single byte (e.g., the “storeb” instruction) will require
a lock on the target frame as well, since an entire word must be fetched, the selected portion of
the word updated, and the entire word written back to memory. Without using locks, it is
possible that a second processor simultaneously updating a byte in the very same word will cause
one of the updates to be lost, which is clearly unacceptable.

Note that the “fload” and “fstore” instructions read and write a doubleword (8 bytes) at a time.
The “fload” instruction fetches a doubleword from memory and places it in a floating-point
register. The “fstore” instruction copies a doubleword from a floating-point register to memory.
In both instructions, the doubleword is moved in two separate steps, which each move a word (4
bytes). There is no locking between the two word-length operations. In a multi-processor system,
there may be interleaving of these operations. As an example, consider two processors
simultaneously attempting to store different doublewords into the very same address; it is
possible that the words are stored in such a way that the final two-word result gets its first word
from one processor and its second word from the other processor, due to interleaving of memory
operations.

Exceptions Common to All Instructions
Note that all instructions may cause the following exceptions:

 Page Invalid
 Address Exception

When an instruction is fetched, a word from memory must be read to obtain the instruction. If
Paging is enabled, then the processor will first consult the Page Table to determine which frame
in memory contains the data. If the page containing the instruction is not currently in memory, a
page fault will occur, resulting in a Page Invalid exception.

Regardless of whether or not paging is enabled, a physical address will be produced before the
instruction word is fetched. If this physical address points to a word that is not in the memory
supplied on the specific machine (for instance, the memory address exceeds the amount of
installed memory), then an Address Exception will occur.

Since these two exceptions may occur for every instruction, they are not listed separately under
each instruction. However, if either of these exceptions could also be caused by attempts to fetch
or store operands, that exception is listed explicitly.

Also, any of the asynchronous (hardware) interrupts or the ExceptionDuringInterrupt may occur
during any instruction, so these are not listed individually for each instruction.

Alignment Exceptions
Every BLITZ instruction is 32-bits long and must be stored in a word-aligned address in
memory.

The BLITZ Architecture

March 13, 2006 Page C-30

There are several ways that different architectures may enforce such an alignment restriction.
The design options are: (1) Check for alignment on every instruction fetch and have Alignment
Exceptions always possible. (2) Check for alignment whenever the PC is loaded (e.g., for the
“jmp”, “call”, “bxx”, and “reti” instructions) and have an Alignment Exception only for these
instructions. (3) Never check for alignment; simply ignore the last 2 bits whenever the PC is
loaded or used.

Option (1) requires the overhead of checking the PC on every instruction fetch. This is often
wasted effort: if the previous instruction did not cause an Alignment Exception, then the next
sequentially fetched instruction cannot possibly cause an exception. Option (3) requires the least
overhead: since nothing is ever checked, an Alignment Exception will never occur.

The BLITZ architecture uses option (2). Any instruction that loads the PC will cause an
Alignment Exception if the value being loaded into the PC is not divisible by 4. Due to a bug in
some user program, it is possible that an attempt will be made to branch to an address that is not
the address of a valid instruction sequence. If the bad address happens to be unaligned, it will
cause an Alignment Exception and the kernel can then abort the program. (Of course it is
possible that an erroneous target of a branching instructions happens to be aligned properly, in
which case instruction execution will continue. What happens next depends on what data
happens to lie at the target address.)

Several instructions query or modify data in memory. Some instructions move bytes and other
instructions move words. Whenever a word is moved to or from memory, the address must be
aligned; if it is not, these instructions will cause an Alignment Exception.

The following instructions may cause Alignment Exceptions:

 load (Format E)
 loadv (Format E)
 store (Format E)
 storev (Format E)
 call
 jmp
 bxx
 push
 pop
 reti
 ret
 tset
 readu (Format E)
 writeu (Format E)
 ldptbr
 ldptlr
 fload (Format E)
 fstore (Format E)

PowerOnReset and HardwareFault
When first powered on, the BLITZ CPU begins with a PowerOnReset interrupt. At this time,
volatile memory may or may not contain meaningful values, and the code that is branched to as a
result of the PowerOnReset should lie in non-volatile memory. Typically, this will be “boot”
code stored in read-only memory (ROM).

The BLITZ Architecture

March 13, 2006 Page C-31

When the BLITZ emulator is used, the memory will be preloaded with a program (e.g., the OS
kernel). When execution is initiated (e.g., with the “go” command), the PowerOnReset interrupt
processing will occur.

During normal CPU execution, the BLITZ hardware may continually perform a sequence of
error and consistency checks in parallel with normal instruction execution. Normally, the
software will be unaware of these checks. However, if a problem is detected by this error-
checking hardware, it will be signaled by the generation of a HardwareFault interrupt. The
interrupt handler might, for example, attempt a graceful shutdown of the operating system and
display a message that a hardware fault has been detected.

In both the PowerOnReset and HardwareFault interrupts, we cannot assume that the system stack
register has been properly initialized. An attempt to push onto this stack might result in an
ExceptionDuringInterrupt. Thus, for both PowerOnReset and HardwareFault, nothing will be
pushed onto the stack and the stack pointer (“r15”) will be ignored. This makes any return to the
interrupted process impossible. (Of course, with a PowerOnReset, there will not even be an
interrupted process.)

Also, in the case of both PowerOnReset and HardwareFault interrupts, any other pending
interrupts are ignored and cancelled. This is done to prevent the code invoked by the interrupt
from being immediately interrupted by another interrupt, which is a distinct possibility in the
case of the HardwareFault. Of course another interrupt may occur just after the HardwareFault
handler begins execution, thereby confounding the shutdown sequence. To prevent this, the
expectation is that the electrical signal that generates the PowerOnReset and HardwareFaults will
be sent simultaneously as a “reset” signal to all peripheral devices capable of generating
interrupts.

Synthetic Instructions
Several instructions documented below are called “synthetic” instructions. These instructions are
not actually part of the BLITZ architecture. Instead, they are simple abbreviations for other
BLITZ instructions. Normal, non-synthetic BLITZ instruction are referred to as “true”
instructions.

Synthetic instructions are processed entirely by the Assembler. The assembler recognizes and
accepts the synthetic instructions. The assembler produces a similar true BLITZ instruction,
which performs the desired operation. Synthetic instructions are provided merely to make the
programming task easier for assembly language programmers. This approach is intended to
reduce the size and complexity of the BLITZ processor design and implementation.

For some instructions, there is a synthetic version in addition to one or more true BLITZ forms.
The example, the “load word” instruction has the following two “true” formats:

 load [regA+regB],regC ! Format D
 load [regA+data16],regC ! Format E

In addition, the following synthetic form is accepted by the assembler:

 load [regA],regC

For this instruction, the assembler will produce a Format D instruction, using register “r0”
(which always contains zero) for the missing regB. In other words, the assembler will output the
following instruction.

The BLITZ Architecture

March 13, 2006 Page C-32

 load [regA+r0],regC

For other instructions, there is only a synthetic form and no “true” form. For example, the “move
into register” instruction is translated by the assembler into an “or” instruction, using register
“r0” as the second operand. (Since “r0” contains zeros, and since “x OR zero” is always just x,
this simply moves the value unchanged.) The “move into register” instruction has the following
two forms:

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 mov regA,regC or regA,r0,regC
 mov data16,regC or r0,data16,regC

One synthetic instruction (namely “set”) is assembled into two true BLITZ instructions, namely
“sethi” and “setlo”. All other synthetic instructions are assembled into a single true BLITZ
instruction.

Although synthetic instructions are not true BLITZ instructions, they are described in this
document for convenience. BLITZ processors and emulators are completely ignorant of synthetic
instructions; they see only true instructions.

Software tools (primarily the debugger) will occasionally disassemble memory contents,
working in the reverse direction of an assembler by taking a 32-bit word, interpreting it as a
BLITZ instruction, and attempting to produce a human-readable form. One consequence of using
synthetic instructions is that a debugger will show only “true” instructions, not the synthetic
instructions originally coded by the programmer.

The BLITZ Instruction Set: Notation

The next sections describe the instructions available in the BLITZ architecture.

Each section describes one, or several related, instructions. In the discussion, we use a number of
abbreviations:

 regA
 regB
 regC
 data16
 data24

The terms “regA”, “regB”, and “regC” stand for any of the general purpose registers, namely
registers “r0”, “r1”, ... , “r15”.

In general, the destination register or the register that is modified is denoted by “regC” and the
data movement tends to be from left to right. For example, in this instruction:

 add regA,regB,regC

the values in the first two registers are added and moved into the last register. This instruction is
given in general form; examples of this instruction include the following:

The BLITZ Architecture

March 13, 2006 Page C-33

 add r5,r9,r2
 add r7,r2,r0

Instructions in formats E and G contain a 16-bit field for an immediate value. Instructions in
format F contain a 24-bit field for immediate data. These are denoted in the instruction
descriptions with “data16” and “data24”. In most cases, the data in the fields will be sign-
extended, but there are exceptions. Consult the specific instruction descriptions.

When a field is sign-extended, its most significant bit is copied into the high-order bits to fill it
out to a full 32 bits. This means that the immediate fields can hold a signed value. In the case of
“data16”, the value must lie between –32,768 and +32,767. In the case of “data24”, the value
must lie between –8,388,608 and +8,388,607.

In some cases, the value is used as is, after being sign-extended. In this case, the data is
considered to be “absolute” (i.e., will not change, even if the program and data are relocated to
another area in memory).

In other cases, the immediate value is first added to a register before being used. For some
instructions, this will be a general purpose register. For other instructions, the value will be
signed-extended and added to the current value of the PC register, giving a “relative” address in
memory, since the actual value used will change if the program and data are relocated to another
area in memory.

Note that many of the instructions do not query or modify memory, while a few of the
instructions will query or modify memory. The instructions that access memory all contain
brackets around those operands that specify the address to be queried or modified. For example,
the following instruction will store into memory; the address portion of the instruction is in
brackets.

 store r7,[r4+24]

If you see brackets, you know the instruction will read or update memory; if there are no
brackets, memory will not be used to execute the instruction. The only exception to this rule is
the short forms of the “push” and “pop” instructions.

 push r7 ! Modifies memory
 pop r3 ! Queries memory at location [r14]

The BLITZ Architecture

March 13, 2006 Page C-34

Add
 add regA,regB,regC
 add regA,data16,regC

The contents of register regB or the immediate data value is added to the contents of regA and
the result is placed in register regC. The immediate value is encoded as a sign-extended 16-bit
value; therefore it must lie between –32768 and 32767. The 32-bit result of binary addition is the
same regardless of whether the data is interpreted as signed or unsigned. The condition codes are
set based on signed arithmetic. If the mathematically correct result of the addition is not
representable as a 32-bit two’s complement integer, the overflow bit in the Status Register will
be set.

Condition Codes:
 Modified
Privileged:
 No
Opcodes:
 Format D: 96 (hex 60)
 Format E: 128 (hex 80)
Possible Exceptions:
 None

Subtract
 sub regA,regB,regC
 sub regA,data16,regC

The contents of register regB or the immediate data value is subtracted from the contents of regA
and the result is placed in register regC. The immediate value is encoded as a sign-extended 16-
bit value; therefore it must lie between –32768 and 32767. The 32-bit result of binary subtraction
is the same regardless of whether the data is interpreted as signed or unsigned. The condition
codes are set based on signed arithmetic. If the mathematically correct result of the subtraction is
not representable as a 32-bit two’s complement integer, the overflow bit in the Status Register
will be set.

Condition Codes:
 Modified
Privileged:
 No
Opcodes:
 Format D: 97 (hex 61)
 Format E: 129 (hex 81)
Possible Exceptions:
 None

Multiply
 mul regA,regB,regC
 mul regA,data16,regC

The contents of register regB or the immediate data value is multiplied by the contents of regA
and the result is placed in register regC. The immediate value is encoded as a sign-extended 16-

The BLITZ Architecture

March 13, 2006 Page C-35

bit value; therefore it must lie between –32768 and 32767. All values are treated as signed
quantities. The 32-bit result will be stored in regC. (In general, the multiplication of two 32-bit
signed numbers will result in a 64-bit quantity, however this instruction only retains 32 bits of
result.) The condition codes will be set according to the result of the computation. In particular,
if the result of the multiplication is not representable as a 32-bit two’s complement integer, the
overflow bit in the Status Register will be set.

Condition Codes:
 Modified
Privileged:
 No
Opcodes:
 Format D: 98 (hex 62)
 Format E: 130 (hex 82)
Possible Exceptions:
 None

Divide
 div regA,regB,regC
 div regA,data16,regC

The contents of register regB or the immediate data value is divided into the contents of regA
and the result is placed in register regC. The immediate value is encoded as a sign-extended 16-
bit value; therefore it must lie between –32768 and 32767. All values are treated as signed
quantities. The condition codes will be set according to the result of the computation.

The “div” and “rem” instructions are passed two integers (“a” and “b”). They divide a by b to get
a quotient (“q”) and remainder (“r”). The “div” instruction moves “q” into regC and the “rem”
instruction moves “r” into regC.

Integer division is defined such that the following is always true:

 a = b*q + r

Furthermore, the remainder follows the mathematical definition of the “modulo” operator,
namely that the remainder will have the same sign as b and that

 0 <= abs(r) < abs(b)

Another way to look at this is that the quotient is the real quotient, rounded down to the nearest
integer.

For example:

 a b q r a = b * q + r a/b rounded
 == == == == ================= ==== =======
 7 3 2 1 7 = 3 * 2 + 1 2.3 2
 -7 3 -3 2 -7 = 3 * -3 + 2 -2.3 -3
 7 -3 -3 -2 7 = -3 * -3 + -2 -2.3 -3
 -7 -3 2 -1 -7 = -3 * 2 + -1 2.3 2

With this definition of “q” and “r”, problems can and will occur in exactly two situations.

The BLITZ Architecture

March 13, 2006 Page C-36

The first problem is if “b” is zero (i.e., an attempt to divide by zero). There are no integers “q”
and “r” that will satisfy the equations listed above. In this case, an Arithmetic Exception will be
raised.

The second problem occurs with the following values:

 a = -2147483648
 b = -1

The mathematically correct answer is:

 q = +2147483648
 r = 0

Unfortunately, this value of q is not representable as a 32-bit two’s complement integer. In this
case, the following values will be used and the overflow bit in the Status Register will be set.

 q = -2147483648
 r = 0

Condition Codes:
 Modified
Privileged:
 No
Opcodes:
 Format D: 99 (hex 63)
 Format E: 131 (hex 83)
Possible Exceptions:
 Arithmetic Exception

Remainder
 rem regA,regB,regC
 rem regA,data16,regC

The contents of register regB or the immediate data value is divided into the contents of regA
and the remainder is placed in register regC. The immediate value is encoded as a sign-extended
16-bit value; therefore it must lie between –32768 and 32767. All values are treated as signed
quantities. The condition codes will be set according to the result of the computation

See the comments under the “div” instruction.

Condition Codes:
 Modified
Privileged:
 No
Opcodes:
 Format D: 115 (hex 73)
 Format E: 149 (hex 95)
Possible Exceptions:
 Arithmetic Exception

The BLITZ Architecture

March 13, 2006 Page C-37

Shift Left Logical

 sll regA,regB,regC
 sll regA,data16,regC

The contents of register regA is shifted left by N bits and the result is placed in regC. N is a
number from 0 through 31 and may be in register regB or may be specified literally. All bits
except the least significant 5 bits are ignored, giving a number between 0 and 31. If N is zero, the
data is not shifted. Zeros will be shifted in from the right. The condition codes will be set
according to the result of the computation.

Condition Codes:
 Modified
Privileged:
 No
Opcodes:
 Format D: 100 (hex 64)
 Format E: 132 (hex 84)
Possible Exceptions:
 None

Shift Right Logical

 srl regA,regB,regC
 srl regA,data16,regC

The contents of register regA is shifted right by N bits and the result is placed in regC. N is a
number from 0 through 31 and may be in register regB or may be specified literally. All bits
except the least significant 5 bits are ignored, giving a number between 0 and 31. If N is zero, the
data is not shifted. Zeros will be shifted in from the left. The condition codes will be set
according to the result of the computation.

Condition Codes:
 Modified
Privileged:
 No
Opcodes:
 Format D: 101 (hex 65)
 Format E: 133 (hex 85)
Possible Exceptions:
 None

Shift Right Arithmetic

 sra regA,regB,regC
 sra regA,data16,regC

The contents of register regA is shifted right by N bits and the result is placed in regC. N is a
number from 0 through 31 and may be in register regB or may be specified literally. All bits
except the least significant 5 bits are ignored, giving a number between 0 and 31. If N is zero, the
data is not shifted. The sign bit will be duplicated and shifted in from the left, thus preserving the
sign of the value and implementing a signed divide by a power of 2. The condition codes will be
set according to the result of the computation.

The BLITZ Architecture

March 13, 2006 Page C-38

Condition Codes:
 Modified
Privileged:
 No
Opcodes:
 Format D: 102 (hex 66)
 Format E: 134 (hex 86)
Possible Exceptions:
 None

Or

 or regA,regB,regC
 or regA,data16,regC

The contents of register regB or the immediate data value is logically ORed with the contents of
regA and the result is placed in register regC. Note that the immediate value is encoded as a sign-
extended 16-bit value; therefore it must lie between –32768 and 32767. The condition codes will
be set according to the result of the computation.

Condition Codes:
 Modified
Privileged:
 No
Opcodes:
 Format D: 103 (hex 67)
 Format E: 135 (hex 87)
Possible Exceptions:
 None

And

 and regA,regB,regC
 and regA,data16,regC

The contents of register regB or the immediate data value is logically ANDed with the contents
of regA and the result is placed in register regC. Note that the immediate value is encoded as a
sign-extended 16-bit value; therefore it must lie between –32768 and 32767. The condition codes
will be set according to the result of the computation.

Condition Codes:
 Modified
Privileged:
 No
Opcodes:
 Format D: 104 (hex 68)
 Format E: 136 (hex 88)
Possible Exceptions:
 None

The BLITZ Architecture

March 13, 2006 Page C-39

And-Not

 andn regA,regB,regC
 andn regA,data16,regC

The contents of register regB or the immediate data value is first logically NEGATEDed. The
resulting 32-bit value is then logically ANDed with the contents of regA and the result is placed
in register regC. Note that the immediate value is encoded as a sign-extended 16-bit value;
therefore it must lie between –32768 and 32767. The condition codes will be set according to the
result of the computation.

Condition Codes:
 Modified
Privileged:
 No
Opcodes:
 Format D: 105 (hex 69)
 Format E: 137 (hex 89)
Possible Exceptions:
 None

Exclusive-Or

 xor regA,regB,regC
 xor regA,data16,regC

The contents of register regB or the immediate data value is logically EXCLUSIVE-ORed with
the contents of regA and the result is placed in register regC. Note that the immediate value is
encoded as a sign-extended 16-bit value; therefore it must lie between –32768 and 32767. The
condition codes will be set according to the result of the computation.

Condition Codes:
 Modified
Privileged:
 No
Opcodes:
 Format D: 106 (hex 6A)
 Format E: 138 (hex 8A)
Possible Exceptions:
 None

Compare

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 cmp regA,regB sub regA,regB,r0
 cmp regA,data16 sub regA,data16,r0

In the first form, the contents of regA are compared to the contents of register regB. In the
second form, a 16-bit immediate value is sign extended to 32 bits. Register regA is compared
with this value.

The BLITZ Architecture

March 13, 2006 Page C-40

This instruction will normally be following by a conditional branch instruction. In the following
example code, the branch to “label” would be taken if the value in register r4 is less than 100.

 cmp r4,100
 bl label

Condition Codes:
 Modified to reflect the comparison
Privileged:
 No
Opcodes:
 (see the "sub" instruction)
Possible Exceptions:
 None

Arithmetic Negation

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 neg regB,regC sub r0,regB,regC
 neg regC sub r0,regC,regC

This instruction negates a word, using 2’s complement, 32-bit arithmetic. In the first form, the
value in register regB is negated and is moved into register regC. In the second form, the value in
register regC is negated and returned to the same register. In either case, the condition codes are
set to reflect the result.

Note that an attempt to negate the most negative value (0x80000000) will result in the same
value, rather than the mathematically correct answer. (Due to the nature of 2’s complement
arithmetic, there is always one more negative integer than there are positive integers; thus one
integer, when negated, cannot be represented in the same number of bits.)

Condition Codes:
 Modified
Privileged:
 No
Opcodes:
 (see the "sub" instruction)
Possible Exceptions:
 None

Logical Negation

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 not regA,regC xor regA,0xFFFF,regC
 not regC xor regC,0xFFFF,regC

This instruction logically negates a 32-bit word, flipping each bit. In the first form, the value in
register regA is negated and is moved into register regC. In the second form, the value in register
regC is negated and returned to the same register. In either case, the condition codes are set to
reflect the result.

The BLITZ Architecture

March 13, 2006 Page C-41

Condition Codes:
 Modified
Privileged:
 No
Opcodes:
 (see the "xor" instruction)
Possible Exceptions:
 None

Clear

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 clr regC or r0,r0,regC

This instruction moves 32 bits of zeros into register regC.

Condition Codes:
 Modified (Z:=1, N:=0, V:=0, C:=0)
Privileged:
 No
Opcodes:
 (see the "or" instruction)
Possible Exceptions:
 None

Bit Test

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 btst regA,regB and regA,regB,r0
 btst data16,regB and regB,data16,r0

This instruction tests bits in register regB to see if any are set to “1” and sets the condition codes
accordingly. In the first form, register regA should contain a “mask” with a “1” in every bit
position of interest. In the second form, the instruction contains 16-bits of immediate data and
these comprise the mask.

After the test, a “be” branch will be taken if ALL the bits selected by the mask were zero, while a
“bne” branch will be taken if ANY of the bits selected by the mask were one.

Note that in the second form, the immediate value will be sign-extended before being used.

Condition Codes:
 Modified
Privileged:
 No
Opcodes:
 (see the "and" instruction)
Possible Exceptions:
 None

The BLITZ Architecture

March 13, 2006 Page C-42

Bit Set

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 bset regB,regC or regC,regB,regC
 bset data16,regC or regC,data16,regC

This instruction sets selected bits in register regC. In the first form, register regB should contain
a “mask” with a “1” in every bit position of interest. In the second form, the instruction contains
16-bits of immediate data and these comprise the mask. All bits in register regC that were
selected by the mask will be set to “1”, while the other bits in register regC will remain
unchanged.

Note that in the second form, the immediate value will be sign-extended before being used.

Condition Codes:
 Modified
Privileged:
 No
Opcodes:
 (see the "or" instruction)
Possible Exceptions:
 None

Bit Clear

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 bclr regB,regC andn regC,regB,regC
 bclr data16,regC andn regC,data16,regC

This instruction clears selected bits in register regC. In the first form, register regB should
contain a “mask” with a “1” in every bit position of interest. In the second form, the instruction
contains 16-bits of immediate data and these comprise the mask. All bits in register regC that
were selected by the mask will be cleared to “0”, while the other bits in register regC will remain
unchanged.

Note that in the second form, the immediate value will be sign-extended before being used.

Condition Codes:
 Modified
Privileged:
 No
Opcodes:
 (see the "andn" instruction)
Possible Exceptions:
 None

The BLITZ Architecture

March 13, 2006 Page C-43

Bit Toggle

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 btog regB,regC xor regC,regB,regC
 btog data16,regC xor regC,data16,regC

This instruction flips selected bits in register regC. In the first form, register regB should contain
a “mask” with a “1” in every bit position of interest. In the second form, the instruction contains
16-bits of immediate data and these comprise the mask. All bits in register regC that were
selected by the mask will be flipped from “0” to “1” or vice versa, while the other bits in register
regC will remain unchanged.

Note that in the second form, the immediate value will be sign-extended before being used.

Condition Codes:
 Modified
Privileged:
 No
Opcodes:
 (see the "xor" instruction)
Possible Exceptions:
 None

Move Into Register

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 mov regA,regC or regA,r0,regC
 mov data16,regC or r0,data16,regC

In the first form, the contents of regA are moved into register regC. In the second form, a 16-bit
immediate value is sign extended to 32 bits and moved into register regC.

Condition Codes:
 Modified to reflect the value moved
Privileged:
 No
Opcodes:
 (see the "or" instruction)
Possible Exceptions:
 None

Load Word

 load [regA+regB],regC
 load [regA+data16],regC

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 load [regA],regC load [regA+r0],regC

In the first form, the contents of regA and regB are added together to give an address. In the
second form, a 16-bit immediate value is sign extended and added to the contents of regA to give

The BLITZ Architecture

March 13, 2006 Page C-44

an address. In either case, the address must be word aligned, or an alignment exception will
occur. A 32-bit (4 byte) word is moved from the memory location given by the address into
register regC.

Condition Codes:
 Not affected
Privileged:
 No
Opcodes:
 Format D: 107 (hex 6B)
 Format E: 139 (hex 8B)
Possible Exceptions:
 Address Exception
 Page Invalid
 Alignment

Load Byte

 loadb [regA+regB],regC
 loadb [regA+data16],regC

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 loadb [regA],regC loadb [regA+r0],regC

In the first form, the contents of regA and regB are added together to give an address. In the
second form, a 16-bit immediate value is sign extended and added to the contents of regA to give
an address. A single byte is moved from the memory location given by the address into the least
significant bits of register regC. The high-order 24-bits of the register are cleared to zero.

Condition Codes:
 Not affected
Privileged:
 No
Opcodes:
 Format D: 108 (hex 6C)
 Format E: 140 (hex 8C)
Possible Exceptions:
 Address Exception
 Page Invalid

Load Word Virtual

 loadv [regA+regB],regC
 loadv [regA+data16],regC

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 loadv [regA],regC loadv [regA+r0],regC

In the first form, the contents of regA and regB are added together to give an address. In the
second form, a 16-bit immediate value is sign extended and added to the contents of regA to give
an address. In either case, the address must be word aligned, or an alignment exception will

The BLITZ Architecture

March 13, 2006 Page C-45

occur. A 32-bit (4 byte) word is moved from the memory location given by the address into
register regC.

The operation of this instruction differs from the “load” instruction only when the Page Table is
disabled. When the Page Table is disabled, the “load” instruction will generate an address which
will be used as a physical address to access physical memory directly; no address translation will
occur. However, the “loadv” instruction will perform address translation, even though the Page
Table is disabled. The instruction is intended to be used by the kernel to fetch arguments and
other data from the logical address space of a user-level program. It will cause a Page Invalid
exception if there are problems in accessing the virtual address space.

Condition Codes:
 Not affected
Privileged:
 Yes
Opcodes:
 Format D: 109 (hex 6D)
 Format E: 141 (hex 8D)
Possible Exceptions:
 Address Exception
 Page Invalid
 Alignment
 Privileged Instruction

Load Byte Virtual

 loadbv [regA+regB],regC
 loadbv [regA+data16],regC

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 loadbv [regA],regC loadbv [regA+r0],regC

In the first form, the contents of regA and regB are added together to give an address. In the
second form, a 16-bit immediate value is sign extended and added to the contents of regA to give
an address. A single byte is moved from the memory location given by the address into the least
significant bits of register regC. The high-order 24-bits of the register are cleared to zero.

The operation of this instruction differs from the “loadb” instruction only when the Page Table is
disabled. When the Page Table is disabled, the “loadb” instruction will generate an address
which will be used as a physical address to access physical memory directly; no address
translation will occur. However, the “loadbv” instruction will perform address translation, even
though the Page Table is disabled. The instruction is intended to be used by the kernel to fetch
arguments and other data from the logical address space of a user-level program. It will cause a
Page Invalid exception if there are problems in accessing the virtual address space.

The BLITZ Architecture

March 13, 2006 Page C-46

Condition Codes:
 Not affected
Privileged:
 Yes
Opcodes:
 Format D: 110 (hex 6E)
 Format E: 142 (hex 8E)
Possible Exceptions:
 Address Exception
 Page Invalid
 Privileged Instruction

Store Word

 store regC,[regA+regB]
 store regC,[regA+data16]

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 store regC,[regA] store regC,[regA+r0]

In the first form, the contents of regA and regB are added together to give an address. In the
second form, a 16-bit immediate value is sign extended and added to the contents of regA to give
an address. In either case, the address must be word aligned, or an alignment exception will
occur. A 32-bit (4 byte) word is moved from register regC to the memory location given by the
address. A Page Read-only exception will occur if the Page Table is enabled and the page
containing the address is marked read-only.

Condition Codes:
 Not affected
Privileged:
 No
Opcodes:
 Format D: 111 (hex 6F)
 Format E: 143 (hex 8F)
Possible Exceptions:
 Address Exception
 Page Invalid
 Page Read-only
 Alignment

Store Byte

 storeb regC,[regA+regB]
 storeb regC,[regA+data16]

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 storeb regC,[regA] storeb regC,[regA+r0]

In the first form, the contents of regA and regB are added together to give an address. In the
second form, a 16-bit immediate value is sign extended and added to the contents of regA to give
an address. A single byte is moved from register regC to the memory location given by the

The BLITZ Architecture

March 13, 2006 Page C-47

address. A Page Read-only exception will occur if the Page Table is enabled and the page
containing the address is marked read-only.

Condition Codes:
 Not affected
Privileged:
 No
Opcodes:
 Format D: 112 (hex 70)
 Format E: 144 (hex 90)
Possible Exceptions:
 Address Exception
 Page Invalid
 Page Read-only

Store Word Virtual

 storev regC,[regA+regB]
 storev regC,[regA+data16]

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 storev regC,[regA] storev regC,[regA+r0]

In the first form, the contents of regA and regB are added together to give an address. In the
second form, a 16-bit immediate value is sign extended and added to the contents of regA to give
an address. In either case, the address must be word aligned, or an alignment exception will
occur. A 32-bit (4 byte) word is moved from register regC to the memory location given by the
address.

The operation of this instruction differs from the “store” instruction only when the Page Table is
disabled. When the Page Table is disabled, the “store” instruction will generate an address which
will be used as a physical address to access physical memory directly; no address translation will
occur. However, the “storev” instruction will perform address translation, even though the Page
Table is disabled. The instruction is intended to be used by the kernel to store results and other
data into the logical address space of a user-level program. It will cause a Page Invalid exception
or a Page Read-only exception if there are problems in accessing the virtual address space.

Condition Codes:
 Not affected
Privileged:
 Yes
Opcodes:
 Format D: 113 (hex 71)
 Format E: 145 (hex 91)
Possible Exceptions:
 Address Exception
 Page Invalid
 Page Read-only
 Alignment
 Privileged Instruction

The BLITZ Architecture

March 13, 2006 Page C-48

Store Byte Virtual

 storebv regC,[regA+regB]
 storebv regC,[regA+data16]

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 storebv regC,[regA] storebv regC,[regA+r0]

In the first form, the contents of regA and regB are added together to give an address. In the
second form, a 16-bit immediate value is sign extended and added to the contents of regA to give
an address. A single byte is moved from register regC to the memory location given by the
address.

The operation of this instruction differs from the “storeb” instruction only when the Page Table
is disabled. When the Page Table is disabled, the “storeb” instruction will generate an address
which will be used as a physical address to access physical memory directly; no address
translation will occur. However, the “storebv” instruction will perform address translation, even
though the Page Table is disabled. The instruction is intended to be used by the kernel to store
results and other data into the logical address space of a user-level program. It will cause a Page
Invalid exception or a Page Read-only exception if there are problems in accessing the virtual
address space.

Condition Codes:
 Not affected
Privileged:
 Yes
Opcodes:
 Format D: 114 (hex 72)
 Format E: 146 (hex 92)
Possible Exceptions:
 Address Exception
 Page Invalid
 Page Read-only
 Privileged Instruction

Call

 call regA+regC
 call data24

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 call regA call regA+r0

In the first form, the contents of regA and regB are added together to give a target address. In the
second form, a 24-bit immediate value is sign extended and added to the address of the “call”
instruction itself to give a target address.

This instruction is used to invoke a subroutine. First, this instruction pushes the address of the
instruction following the “call” instruction onto the stack. Then the “call” instruction moves the
target address into the program counter (PC). Therefore, the next instruction to be executed will
be the first instruction of the subroutine.

The BLITZ Architecture

March 13, 2006 Page C-49

The target address should be word-aligned; if it is not divisible by 4, this instruction will cause
an Alignment Exception.

Condition Codes:
 Not affected
Privileged:
 No
Opcodes:
 Format C: 64 (hex 40)
 Format F: 160 (hex A0)
Possible Exceptions:
 Alignment
 Address Exception
 Page Invalid
 Page Read-only

Jmp

 jmp regA+regC
 jmp data24

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 jmp regA jmp regA+r0

In the first form, the contents of regA and regB are added together to give a target address. In the
second form, a 24-bit immediate value is sign extended and added to the address of the “jmp”
instruction itself to give a target address.

This instruction is the unconditional “goto” instruction. This instruction moves the target address
into the program counter (PC), causing control to transfer to this address.

The target address should be word-aligned; if it contains a value not divisible by 4, this
instruction will cause an Alignment Exception.

Condition Codes:
 Not affected
Privileged:
 No
Opcodes:
 Format C: 65 (hex 41)
 Format F: 161 (hex A1)
Possible Exceptions:
 Alignment

Return

 ret

This instruction is used to return from a subroutine call. (We assume that, when the routine was
originally called, the “call” instruction pushed the return address onto the stack. This was the
address of the instruction following the “call” instruction.) The “ret” instruction will pop the top
of the stack into the PC, thereby effecting a transfer of control back to the calling routine.

The BLITZ Architecture

March 13, 2006 Page C-50

The stack pointer should be word-aligned. If register r15 contains a value not divisible by 4, this
instruction will cause an Alignment Exception. All instructions must be word aligned. If the
address popped into PC is not divisible by 4, it will cause an Alignment Exception.

Condition Codes:
 Not affected
Privileged:
 No
Opcode:
 Format A: 9 (hex 09)
Possible Exceptions:
 Alignment
 Address Exception
 Page Invalid
 Page Read-only

Conditional Branching

 bxx regA+regC
 bxx data24

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 bxx regA bxx regA+r0

There are 36 different branch instructions (such as “be”, “bne”, “bl”, “ble”, and so on). The
above forms are schematic: there is no “bxx” instruction.

In the first form, the contents of regA and regB are added together to give a target address. In the
second form, a 24-bit immediate value is sign extended and added to the address of the branch
instruction itself to give a target address.

Each branch instruction is a conditional “goto”. The instruction first tests the condition. (Each
instruction tests for a different condition. See the table below.) If the condition is true, the
instruction moves the target address into the program counter (PC), causing control to transfer to
the target address. If the condition is false, the PC is incremented as normal, causing the next
sequential instruction to be executed.

All instructions must be word aligned. If register r15 contains a value not divisible by 4, this
instruction will cause an Alignment Exception. The Alignment Exception will only occur if the
branch is taken.

In the following table, I, S, P, Z, V, and N represent the values of the various bits in the status
register.

The BLITZ Architecture

March 13, 2006 Page C-51

 opcode condition tested meaning
 ====== ==================== ==
 be Z equal to, equal to zero
 bne NOT Z not equal to, not equal to zero
 bl N XOR V less than, negative
 ble Z OR (N XOR V) less than or equal to, negative or zero
 bg NOT (Z OR (N XOR V)) greater than, positive
 bge NOT (N XOR V) greater than or equal to, positive or zero
 bvs V overflow occurred
 bvc NOT V overflow did not occur
 bns N negative result
 bnc NOT N non-negative result
 bss S in system mode
 bsc NOT S in user mode
 bis I interrupts enabled
 bic NOT I interrupts disabled
 bps P page table enabled
 bpc NOT P page table disabled

Condition Codes:
 Not changed
Privileged:
 No
Opcodes:
 Format C: 66-83 (hex 42-53)
 Format F: 162-179 (hex A2-B3)
Possible Exceptions:
 Alignment

Push

 push regC,[--regA]

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 push regC push regC,[--r15]

This instruction first decrements the contents of register regA by 4. Then, it moves the contents
of register regC into the memory word addressed by the new value of regA.

The push and pop instructions are used to support stacks that grow downward in memory, from
higher addresses toward low memory. Register regA is the “stack top” pointer; it always points
to the last item pushed onto the stack. The push instruction decrements the stack top pointer
before writing a word to memory, while the pop instruction retrieves a word from memory
before incrementing the stack top pointer.

By convention, register r15 will point to a stack used during procedure call and return, although
nothing prevents other registers from being used simultaneously to address other stacks. To
support the use of r15 as a stack register, the assembler provides a synthetic version of push and
pop that specifies r15 implicitly.

Note that the push and pop instructions have utility beyond just stack operations. These
instructions may also be used to walk through an array of words, while simultaneously adjusting

The BLITZ Architecture

March 13, 2006 Page C-52

a pointer to the next word. The push instruction can be used to both store a word of data and
decrement the pointer in one operation, working downwards through the array (towards low
memory). The pop instruction can be used to fetch a word of data and increment a pointer in one
operation, working upwards through the array (towards high memory).

The stack should always be word-aligned. If register regA is not word aligned, an Alignment
Exception will be raised.

Condition Codes:
 Not affected
Privileged:
 No
Opcode:
 Format C: 84 (hex 54)
Possible Exceptions:
 Address Exception
 Page Invalid
 Page Read-only
 Alignment

Pop

 pop [regA++],regC

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 pop regC pop [r15++],regC

This instruction moves the contents of the word pointed to by register regA into register regC. It
then increments register regA by 4.

See the comments about stacks under the pop instruction.

The stack should always be word-aligned. If register regA is not word aligned, an Alignment
Exception will be raised.

Condition Codes:
 Not affected
Privileged:
 No
Opcode:
 Format C: 85 (hex 55)
Possible Exceptions:
 Address Exception
 Page Invalid
 Alignment

Setlo

 setlo data16,regC

This instruction moves the 16 bits of immediate data into the low-order (least significant) 16 bits
of register regC. The high-order 16 bits of the register are unchanged.

The BLITZ Architecture

March 13, 2006 Page C-53

Condition Codes:
 Not affected
Privileged:
 No
Opcode:
 Format G: 193 (hex C1)
Possible Exceptions:
 None

Sethi

 sethi data16,regC

This instruction moves the 16 bits of immediate data into the high-order (most significant) 16
bits of register regC. The low-order 16 bits of the register are unchanged.

Note that the assembler expects a 32-bit value in this instruction. It will use only the hi-order 16
bits and will ignore the lo-order bits. For example, the instruction

 sethi 0x12340000,r5

will load the data 0x1234 into the register as desired, while the instruction

 sethi 0x1234,r5

will load only zeros, which is probably not intended. This approach allows the programmer to
use external symbols, as in:

 sethi myExtSym,r5
 setlo myExtSym,r5

Condition Codes: Not affected
Privileged:
 No
Opcode:
 Format G: 192 (hex C0)
Possible Exceptions:
 None

Set

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 set data32,regC sethi HI(data32),regC
 setlo LO(data32),regC

This instruction moves a 32-bit immediate value into register regC. It is a synthetic instruction
which expands into two BLITZ instructions. Here, we use “HI(data32)” and “LO(data32)” to
mean the high-order 16 bits, and the low-order 16 bits, of the immediate 32 bit value given. No
sign extension is performed.

The BLITZ Architecture

March 13, 2006 Page C-54

Condition Codes:
 Not affected
Privileged:
 No
Opcodes:
 (see the "sethi" and "setlo" instructions)
Possible Exceptions:
 None

Load Address

 ldaddr data16,regC

This instruction is provided with a 16 bit immediate value. This value is sign-extended and added
to the contents of the PC. Specifically, it is added to the PC before it is incremented; i.e., it is
added to the address of the ldaddr instruction itself. The result is placed in register regC.

Condition Codes:
 Not affected
Privileged:
 No
Opcode:
 Format G: 194 (hex C2)
Possible Exceptions:
 None

System Call

 syscall regC+data16

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 syscall regC syscall regC+0
 syscall data16 syscall r0+data16

The immediate 16 bit value is sign-extended to 32 bits and is then added to the contents of
register regC. This value is called the “system trap number”. A “syscall” trap then occurs, as
follows:

First, a copy is made of the current status register and the current PC (after being incremented to
point to the instruction following the “syscall” instruction)

Then, the following bits in the status register are changed:

I := 0 (Interrupts are disabled)
S := 1 (Mode is changed to System)
P := 0 (Paging is turned off)

Then, the system trap number is pushed onto the system stack. (Since the Mode has been
changed to System Mode, all pushes will be onto the system stack, pointed to by system register
r15.) Then the old value of the status register is pushed onto the stack. Then the old value of the
PC (after being incremented to point to the instruction following the “syscall” instruction) is
pushed onto the system stack.

The BLITZ Architecture

March 13, 2006 Page C-55

Finally, a branch into the interrupt vector in low memory is made. In other words, the PC is set to
point to the “syscall” entry in the interrupt vector. Presumably, this word will contain a “jump”
instruction and execution will branch to the “syscall” interrupt handler.

If problems arise during the “syscall” sequence, then an ExceptionDuringInterrupt will occur. (In
other words, even if an Address Exception or Alignment Exception occurs while pushing
information onto the system stack, these exceptions will not be signaled.)

Condition Codes:
 Not affected
Privileged:
 No
Opcode:
 Format G: 195 (hex C3)
Possible Exceptions:
 Syscall
 ExceptionDuringInterrupt

No-op

 nop

This instruction does nothing beyond taking up a little time.

Condition Codes:
 Not affected
Privileged:
 No
Opcode:
 Format A: 0 (hex 00)
Possible Exceptions:
 None

Wait

 wait

This instruction causes the CPU to suspend instruction execution. The CPU will then remain
dormant in a low-power state, waiting for interrupts. If and when an interrupt occurs, execution
will resume according to the normal exception handling sequence.

Condition Codes:
 Not affected
Privileged:
 Yes
Opcode:
 Format A: 1 (hex 01)
Possible Exceptions:
 Privileged Instruction

The BLITZ Architecture

March 13, 2006 Page C-56

Debug

 debug

This instruction is only used in conjunction with a virtual machine BLITZ instruction emulator.
When running on a real machine, this instruction is equivalent to the “nop” instruction and has
no effect. When running on an emulator, this instruction will cause the emulation to be
interrupted and a debugger to be invoked.

Condition Codes:
 Not affected
Privileged:
 No
Opcode:
 Format A: 2 (hex 02)
Possible Exceptions:
 None

Debug2

 debug2

This instruction is only used in conjunction with a virtual machine BLITZ instruction emulator.
When running on a real machine, this instruction is equivalent to the “nop” instruction and has
no effect.

This instruction performs an “upcall” to the emulator, much as a syscall instruction performs an
upcall from a user process to the kernel. This instruction is provides kernel code a quick and easy
way to print debugging messages from anywhere, including interrupt handlers, without the
overhead required of interfacing with an I/O device. This instruction will take a single clock
cycle, like other instructions, and execution will continue after this instruction, unless some error
occurs.

Register “r1” must contain a function code. Additional arguments may be passed in other
registers; details will depend on the function code in r1. The following functions are
implemented.

Register r1 = 1: PrintInt. Register “r2” will contain an integer. The emulator will immediately
print this value on the terminal.

Register r1 = 2: Print. Register “r2” will contain a pointer to a string of characters and register r3
will contain a count. The emulator will immediately print this string on the terminal.

Register r1 = 3: PrintChar. Register “r2” will contain a character. The emulator will immediately
print this character on the terminal.

Register r1 = 4: PrintDouble. Register “f0” will contain a double. The emulator will immediately
print this value on the terminal.

Register r1 = 5: PrintBool. Register “r2” should contain either 0x00000000 or 0x00000001. The
emulator will immediately print this value as either FALSE or TRUE.

The BLITZ Architecture

March 13, 2006 Page C-57

Register r1 = 6: PrintHex. Register “r2” will contain an integer. The emulator will immediately
print this value in hex, e.g., 0x000012AB.

Condition Codes:
 Not affected
Privileged:
 No
Opcode:
 Format A: 10 (hex 0A)
Possible Exceptions:
 None

Clear Interrupt Flag

 cleari

This instruction disables interrupt servicing by clearing the “I” bit in the Status Register to zero.
In other words, any maskable interrupt occurring after this instruction is executed will not be
serviced, but will remain pending. The servicing of unmaskable interrupts will be unaffected by
this instruction.

Condition Codes:
 Not affected
Privileged:
 Yes
Opcode:
 Format A: 3 (hex 03)
Possible Exceptions:
 Privileged Instruction

Set Interrupt Flag

 seti

This instruction enables interrupt servicing by setting the “I” bit in the Status Register to one. If a
maskable interrupt is pending when this instruction is executed, interrupt servicing will occur
immediately after this instruction completes.

Condition Codes:
 Not affected
Privileged:
 Yes
Opcode:
 Format A: 4 (hex 04)
Possible Exceptions:
 Privileged Instruction

The BLITZ Architecture

March 13, 2006 Page C-58

Clear Paging Flag

 clearp

This instruction disables paging (i.e., virtual memory address translation) by clearing the “P” bit
in the Status Register to zero.

Condition Codes:
 Not affected
Privileged:
 Yes
Opcode:
 Format A: 5 (hex 05)
Possible Exceptions:
 Privileged Instruction

Set Paging Flag

 setp

This instruction enables paging (i.e., virtual memory address translation) by setting the “P” bit in
the Status Register to one.

Condition Codes:
 Not affected
Privileged:
 Yes
Opcode:
 Format A: 6 (hex 06)
Possible Exceptions:
 Privileged Instruction

Clear System Mode Flag

 clears

This instruction returns to User Mode by clearing the “S” bit in the Status Register to zero.
Another way to return to User Mode is via the “reti” (return from interrupt) instruction.

(Note that there is no corresponding “sets” instruction; the only way to move from User Mode to
System Mode is via an interrupt (e.g., a “syscall” trap). Any instruction to change the System
Mode bit ought to be a privileged instruction; but there is no point in a “sets” instruction since
any attempt to set the bit would result in a PrivilegedInstruction exception unless the bit was
already set.)

The BLITZ Architecture

March 13, 2006 Page C-59

Condition Codes:
 Not affected
Privileged:
 Yes
Opcode:
 Format A: 7 (hex 07)
Possible Exceptions:
 Privileged Instruction

Return From Interrupt

 reti

This instruction can be used after an interrupt handler has finished its work. First, the “reti”
instruction pops the saved PC off of the stack. (Since “reti” is a privileged instruction, all
popping will be done from the system stack, not the user stack.) Then the saved Status Register
is popped from the stack. Finally, an additional word (the “exception info word”) is popped and
discarded. The PC and Status Register are then loaded from the popped values, which will cause
a return to the interrupted process. Reloading the Status Register may change the processor from
System Mode to User Mode and may also re-enable Interrupts and re-enable Paging.

Condition Codes:
 Reloaded
Privileged:
 Yes
Opcode:
 Format A: 8 (hex 08)
Possible Exceptions:
 Alignment
 Privileged Instruction
 Address Exception

Test and Set

 tset [regA],regC

Register regA contains the address of a word in memory. This instruction moves the contents of
this word into register regC. Then, it writes the value 0x00000001 into the same word in
memory. This is done atomically; there will be no interrupts or exceptions between the reading
of memory and the subsequent writing to memory.

This instruction may be used as a synchronization primitive in multiprocessor architectures. In
multiprocessor implementations of the BLITZ architecture, no other processors are allowed to
query or alter the value of the word of memory during the operation of this instruction. This
instruction may also be used for synchronization control in a single processor architecture with
multiple threads.

The address in register regA should be word-aligned. If register regA is not word aligned, an
Alignment Exception will be raised.

The BLITZ Architecture

March 13, 2006 Page C-60

Condition Codes:
 Not affected
Privileged:
 No
Opcode:
 Format C: 88 (hex 58)
Possible Exceptions:
 Address Exception
 Page Invalid
 Page Read-only
 Alignment

Read From User Register

 readu regC,regA
 readu regC,[regA+data16]

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 readu regC,[regA] readu regC,[regA+0]

This instruction is used to retrieve a 32-bit word from a User Register (regC) while running in
System Mode. This instruction is privileged. Normally, when running in System Mode, all
references to registers will query or modify the System Registers. In the case of this instruction,
however, regC refers to a User Register. (Register regA still refers to a System Register.) This
instruction might be used, for example, by the kernel to obtain arguments to a system call
directly from the user-level process’s registers.

In the first form, the word is moved from the User Register regC into System Register regA.

In the second form, the immediate 16-bit value is sign-extended to 32 bits and added to the
contents of System Register regA to give an address. The word retrieved from the User Register
is moved into this location in memory. In this form, the address should be word-aligned; if not,
an Alignment Exception will be raised.

Condition Codes:
 Not affected
Privileged:
 Yes
Opcodes:
 Format C: 86 (hex 56)
 Format E: 147 (hex 93)
Possible Exceptions:
 Privileged Instruction
Possible Exceptions caused by Format E (regC,[regA+data16]) only:
 Alignment
 Address Exception
 Page Invalid
 Page Read-only

The BLITZ Architecture

March 13, 2006 Page C-61

Write To User Register

 writeu regA,regC
 writeu [regA+data16],regC

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 writeu [regA],regC writeu [regA+0],regC

This instruction is used to store a 32-bit word into a User Register (regC) while running in
System Mode. This instruction is privileged. Normally, when running in System Mode, all
references to registers will query or modify the System Registers. In the case of this instruction,
however, regC refers to a User Register. (Register regA still refers to a System Register.) This
instruction might be used, for example, by the kernel to store results after a system call directly
into the user-level process’s registers.

In the first form, a 32-bit word is moved from System Register regA to the User Register regC.

In the second form, the immediate 16-bit value is sign-extended to 32 bits and added to the
contents of System Register regA to give an address. A 32-bit word is fetched from this address
and is moved into User Register regC. In this form, the address should be word-aligned; if not,
an Alignment Exception will be raised.

Condition Codes:
 Not affected
Privileged:
 Yes
Opcodes:
 Format C: 87 (hex 57)
 Format E: 148 (hex 94)
Possible Exceptions:
 Privileged Instruction
Possible Exceptions caused by Format E ([regA+data16],regC) only:
 Alignment
 Address Exception
 Page Invalid

Load Page Table Base Register

 ldptbr regC

This instruction moves the contents of register regC into the Page Table Base Register. The Page
Table must always be located on a word-aligned boundary; thus, the contents of register regC
should be divisible by 4. If the contents of register regC are not divisible by 4, an Alignment
Exception will occur.

Condition Codes:
 Not affected
Privileged:
 Yes
Opcode:
 Format B: 32 (hex 20)
Possible Exceptions:
 Alignment
 Privileged Instruction

The BLITZ Architecture

March 13, 2006 Page C-62

Load Page Table Length Register

 ldptlr regC

This instruction moves the contents of register regC into the Page Table Length Register. The
Page Table Length Register gives the size of the Page Table in bytes. Each Page Table entry is 4
bytes long; thus, the Page Table is always be an even multiple of 4 bytes in length. The contents
of register regC should be divisible by 4. If not, an Alignment Exception will occur..

Condition Codes:
 Not affected
Privileged:
 Yes
Opcode:
 Format B: 33 (hex 21)
Possible Exceptions:
 Alignment
 Privileged Instruction

Floating-Point to Integer Conversion
 ftoi fregA,regC

The floating-point value in floating-point register fregA is converted into an integer value and
the result is placed in integer register regC. The condition codes are not modified.

The conversion from a floating-point to an integer is done by truncating the value to the nearest
integer toward zero. Many double-precision values exceed the range of integers representable
with 32-bit integers; in this case the largest or smallest integer value will be used. These rules
can be summarized with these examples:

 4.9 --> 4
 -4.9 --> -4
 9e99 --> 2,147,483,647
 -9e99 --> -2,147,483,648

Condition Codes:
 Not affected
Privileged:
 No
Opcodes:
 Format C: 89 (hex 59)
Possible Exceptions:
 None

The BLITZ Architecture

March 13, 2006 Page C-63

Integer to Floating-Point Conversion
 itof regA,fregC

The integer value in integer register regA is converted into a floating-point value (with the same
numerical value) and the result is placed in floating-point register fregC. The condition codes are
not modified.

Note that every integer representable in 32-bits can be represented with exact precision with a
double-precision floating-point value. Therefore, this instruction will always produce an exactly
correct conversion, and never an approximately correct result.

Condition Codes:
 Not affected
Privileged:
 No
Opcodes:
 Format C: 90 (hex 5A)
Possible Exceptions:
 None

Floating-Point Add
 fadd fregA,fregB,fregC

The contents of the register fregB is added to the contents of fregA and the result is placed in
register fregC. All registers are floating-point registers. The condition codes are not modified.

Condition Codes:
 Not affected
Privileged:
 No
Opcodes:
 Format D: 116 (hex 74)
Possible Exceptions:
 None

Floating-Point Subtract
 fsub fregA,fregB,fregC

The contents of the register fregB is subtracted from the contents of fregA and the result is
placed in register fregC. All registers are floating-point registers. The condition codes are not
modified.

Condition Codes:
 Not affected
Privileged:
 No
Opcodes:
 Format D: 117 (hex 75)
Possible Exceptions:
 None

The BLITZ Architecture

March 13, 2006 Page C-64

Floating-Point Multiply
 fmul fregA,fregB,fregC

The contents of the register fregB is multiplied by the contents of fregA and the result is placed
in register fregC. All registers are floating-point registers. The condition codes are not modified.

Condition Codes:
 Not affected
Privileged:
 No
Opcodes:
 Format D: 118 (hex 76)
Possible Exceptions:
 None

Floating-Point Divide
 fdiv fregA,fregB,fregC

The contents of the register fregB is divided into the contents of fregA and the result is placed in
register fregC. All registers are floating-point registers. The condition codes are not modified. In
the case of divide-by-zero, the stored result will be NAN, PLUS_INF, or NEG_INF, as
appropriate.

Condition Codes:
 Not affected
Privileged:
 No
Opcodes:
 Format D: 119 (hex 77)
Possible Exceptions:
 None

Floating-Point Compare
 fcmp fregA,fregC

The contents of the register fregA is comapred to the contents of fregC. Both registers are
floating-point registers. Neither register is modified, but the condition codes are set to reflect the
relationship between the values. Normally, this instruction would be immediately followed by a
conditional branch instruction.

This instruction will set Z=1 if the values in fregA and fregC are equal. It will set N=1 if the
value in fregA is less than the value in fregC. It will set V=1 if either fregA or fregC contains
NAN (the “not-a-number” value).

The BLITZ Architecture

March 13, 2006 Page C-65

Condition Codes:
 Modified
Privileged:
 No
Opcodes:
 Format C: 91 (hex 5B)
Possible Exceptions:
 None

Floating-Point Square Root
 fsqrt fregA,fregC

This instruction computes the square root of the value in register fregA and stores the result in
fregC. Both registers are floating-point registers.

Condition Codes:
 affected
Privileged:
 No
Opcodes:
 Format C: 92 (hex 5C)
Possible Exceptions:
 None

Floating-Point Negation
 fneg fregA,fregC

This instruction computes the negative of the value in register fregA and stores the result in
fregC. Both registers are floating-point registers.

Condition Codes:
 Not affected
Privileged:
 No
Opcodes:
 Format C: 93 (hex 5D)
Possible Exceptions:
 None

Floating-Point Absolute Value
 fabs fregA,fregC

This instruction computes the absolute value of the value in register fregA and stores the result in
fregC. Both registers are floating-point registers.

The BLITZ Architecture

March 13, 2006 Page C-66

Condition Codes:
 Not affected
Privileged:
 No
Opcodes:
 Format C: 94 (hex 5E)
Possible Exceptions:
 None

Floating-Point Load

 fload [regA+regB],fregC
 fload [regA+data16],fregC

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 fload [regA],fregC fload [regA+r0],fregC

In the first form, the contents of regA and regB are added together to give an address. In the
second form, a 16-bit immediate value is sign extended and added to the contents of regA to give
an address. In either case, the address must be word aligned, or an alignment exception will
occur.

A 64-bit (8 byte) value is moved from the memory location given by the address into floating-
point register fregC. (Registers regA and regB are integer registers, while fregC is a floating-
point register.)

Condition Codes:
 Not affected
Privileged:
 No
Opcodes:
 Format D: 120 (hex 78)
 Format E: 150 (hex 96)
Possible Exceptions:
 Address Exception
 Page Invalid
 Alignment

Floating-Point Store

 fstore fregC,[regA+regB]
 fstore fregC,[regA+data16]

 Synthetic instruction: Assembled identically to:
 =========================== =========================
 fstore fregC,[regA] fstore fregC,[regA+r0]

In the first form, the contents of regA and regB are added together to give an address. In the
second form, a 16-bit immediate value is sign extended and added to the contents of regA to give
an address. In either case, the address must be word aligned, or an alignment exception will
occur.

The BLITZ Architecture

March 13, 2006 Page C-67

A 64-bit (8 byte) value is moved from register fregC to the memory location given by the
address. A Page Read-only exception will occur if the Page Table is enabled and the page
containing the address is marked read-only (Registers regA and regB are integer registers, while
fregC is a floating-point register.)

Condition Codes:
 Not affected
Privileged:
 No
Opcodes:
 Format D: 121 (hex 79)
 Format E: 151 (hex 97)
Possible Exceptions:
 Address Exception
 Page Invalid
 Alignment

