
Project 1 Operating Systems

Programming Project 1:
Introduction to the BLITZ Tools

Due Date: ______________________________
Duration: One Week

Overview and Goal

In this course you will be creating an operating system kernel. You’ll be using the BLITZ software
tools, which were written for this task. The goals of this project are to make sure that you can use the
BLITZ tools and to help you gain familiarity with them.

Step 1: Print the Documentation

There are a number of documents describing the BLITZ tools. You may obtain the documents by going
to the BLITZ homepage:

http://www.cs.pdx.edu/~harry/Blitz/index.html

From there you can access pdf versions. Print out the following documents:

An Overview of the BLITZ System (7 pages)
An Overview of the BLITZ Computer Hardware (8 pages)
The BLITZ Architecture (71 pages)
Example BLITZ Assembly Program (7 pages)
BLITZ Instruction Set (4 pages)
The BLITZ Emulator (44 pages)
An Overview of KPL, A Kernel Programming Language (66 pages)
Context-Free Grammar of KPL (7 pages)
BLITZ Tools: Help Information (13 pages)
The Format of BLITZ Object and Executable Files (12 pages)

Step 2: Read the Overview Document

Read the first document (“An Overview of the BLITZ System”) before proceeding to Step 3.

Page 1

Project 1 Operating Systems

Step 3: Choose Your Host Platform

You will develop your operating system code on a “host” computer and you will be running the BLITZ
tools on that host computer. You should decide now which host computer you will be using.

The BLITZ tools run on the follow host platforms:
Apple Macintosh, OS X, either PPC-based or Intel-based machines
Sun Solaris
Unix / Linux Systems
Windows, using Cygwin which emulates the Unix POSIX interface (see www.cygwin.com)

For the following host platforms, the tools are precompiled and you can simply download the
executables:

Apple Macintosh, OS X, Intel-based machines
Apple Macintosh, OS X, PPC-based machines
Sun Solaris

For other systems, you can download the tools (which are written in “C” and “C++”. You must then
compile them on your computer.

The source code for all the BLITZ tools is available, but you should not need to look at it. Nevertheless,
it is available for anyone who is interested.

The BLITZ Tools

Here are the programs that constitute the BLITZ tool set.

kpl
The KPL compiler

asm
The BLITZ assembler

lddd
The BLITZ linker

blitz
The BLITZ machine emulator (the virtual machine and debugger)

diskUtil
A utility to manipulate the simulated BLITZ “DISK” file

dumpObj
A utility to print BLITZ .o and a.out files

hexdump
A utility to print any file in hex

check
A utility to run through a file looking for problem ASCII characters

endian
A utility to determine if this machine is Big or Little Endian

Page 2

Project 1 Operating Systems

These tools are listed more-or-less in the order they would be used. You will probably only need to use
the first 4 or 5 tools and you may pretty much ignore the remaining tools. (The last three tools are only
documented by the comments at the beginning of the source code files, which you may read if
interested.)

Organization of the Course Material

The BLITZ system is accessible via the following URL:

http://www.cs.pdx.edu/~harry/Blitz/
 The Blitz directory contains the following material:

Blitz/
BlitzDoc/

...files containing the documents mentioned above...
BlitzBin/

MacIntel/
...executables for the Mac/Intel host platform...

MacPPC/
...executables for the Mac/PPC host platform...

Sun/
...executables for the Sun/Solaris host platform...

BlitzSrc/
...source code for the BLITZ tools...

OSProject/
p1/

...files related to project 1...
p2/

...files related to project 2...
...etc...

You may access this material through the BLITZ Home page. You should also be able to “ftp” directly
to these directories.

Step 4A: For Mac Users...

Step 1: Create a directory to put the BLITZ tools into. For example, you may wish to create a
directory called BlitzTools in your home directory:

/Users/YourUserName/BlitzTools

Page 3

Project 1 Operating Systems

Then copy all the files from

www.cs.pdx.edu/~harry/Blitz/BlitzBin/MacIntel
to your BlitzTools directory. These are binary files, not text files.

(I use an application called “Fetch” (www.fetchsoftworks.com) to do “ftp” file transfers.)

People using an older PPC-based Mac should use this directory instead:

www.cs.pdx.edu/~harry/Blitz/BlitzBin/MacPPC
Step 2: Set the protection bits on these programs to include “executable”, with a command such as:

chmod ugo+rx BlitzTools/*

Step 4B: For Portland State University Students...

See section 4C.

Step 4C: For Users in a Shared Environment...

This section applies to users who have an account on a shared system, such as a Sun/Solaris system.

It is assumed that the BLITZ tools have already been downloaded by someone else and are available
in some shared directory. All you need to do is modify your PATH variable so that your shell will
search the appropriate directory.

For example, students at Portland State University who have an account on the shared Sun/Solaris
system can find the executables in this directory:

~harry/public_html/Blitz/BlitzBin/Sun
Students at other institutions can find the executables in this directory:

Step 4D: For Unix/Linux Users...

This section applies to users who have a Unix/Linux box and wish to download and re-compile the
BLITZ tools for their machine.

Page 4

Project 1 Operating Systems

Step 1: Create a directory to put the BLITZ source code into. For example, you may wish to create
a directory called BlitzSrc in your home directory:

~YourUserName/BlitzSrc
Then copy all the files from

www.cs.pdx.edu/~harry/Blitz/BlitzSrc
to your BlitzSrc directory.

Step 2: Compile the programs in

~YourUserName/BlitzSrc
There is a “makefile” so you should be able to execute the following commands to compile the tools.

cd ~YourUserName/BlitzSrc
make

This will invoke the “C” and “C++” compilers to produce the following executables:

kpl
asm
lddd
blitz
diskUtil
dumpObj
hexdump
check
endian

Step 3: Create a directory for the executables and move them into it:

mkdir ~YourUserName/BlitzTools
cd ~YourUserName/BlitzSrc
mv kpl asm lddd blitz diskUtil dumpObj hexDump check endian \

~YourUserName/BlitzTools

Step 4E: For Windows Users...

Consult the document:

www.cs.pdx.edu/~harry/Blitz/OSProject/p1/BlitzOnWindows.pdf
www.cs.pdx.edu/~harry/Blitz/OSProject/p1/BlitzOnWindows.htm

Page 5

Project 1 Operating Systems

Step 5: Modify Your Search Path and Verify the Tools are Working

You must add the BlitzTools directory to your shell’s search path so that when you type in the name of a
BLITZ tool (such as kpl or blitz), your shell can locate the executable file and execute it.

The Unix “shell” program maintains a “shell variable” called PATH which it uses to locate an
executable whenever a command name is typed. Details of how to change the PATH variable will vary
between the different shells.

One approach might be to alter the .aliases file in your home directory.

For example, this file may already contain a line that looks something like this:

setenv PATH ${PATH}:${HOME}/bin
(Between each colon (:) is a directory specification. The above command sets PATH to whatever it was
before followed by the bin directory in your home directory.)

What you need to do is add the BLITZ tools directory in front of whatever else is in the PATH.

Unix / Linux / Mac users who have placed the executables into a subdirectory in their home directory
might add the following command to prepend the appropriate directory to the front of the PATH.

setenv PATH ${HOME}/BlitzTools:${PATH}
Users in a shared Sun/Solaris environment will need to know the shared directory containing the tools.
Assume it is:

~instructorUserid/BlitzTools

Be sure to get the exact directory name, then add the following command after the last place PATH is
set.

setenv PATH ~instructorUserid/BlitzTools:${PATH}
Portland State University students can add the following command after the last place PATH is set.

setenv PATH ~harry/public_html/Blitz/BlitzBin/Sun:${PATH}
The “bash” shell is a little different; these people should add something like this to .bashaliases:

export PATH=${HOME}/BlitzTools:${PATH}

Page 6

Project 1 Operating Systems

The shell builds an internal hash table that speeds up the location of programs whenever you type a
command. After changing your PATH, you’ll need to restart your shell so that it uses the new PATH
when it builds this hash table.

You can do this several ways. A Mac user can quit the “Terminal” application and then restart
“Terminal”. A Unix / Linux / Solaris user can log out and log back in. In some shells you can simply
type the command “source .aliases” instead.

Next, verify that whatever you did to the PATH variable worked.

At the UNIX/Linux prompt, type the command.

kpl
You should see the following:

***** ERROR: Missing package name on command line
********** 1 error detected! **********

If you see this, good. If you see anything else, then something is wrong.

Step 6: Set up a Directory for Project 1

Create a directory in which to place all files concerned with this class. We recommend a name matching
your course number, for example:

~YourUserName/cs333
Create a directory in which to place the files concerned with project 1. We recommend the following
name:

~YourUserName/cs333/p1
Copy all files from:

http://www.cs.pdx.edu/~harry/Blitz/OSProject/p1/
to your cs333/p1 directory.

Page 7

Project 1 Operating Systems

The BLITZ Assembly Language

In this course you will not have to write any assembly language. However, you will be using some
interesting routines which can only be written in assembly. All assembly language routines will be
provided to you, but you will need to be able to read them.

Take a look at Echo.s and Hello.s to see what BLITZ assembly code looks like.

Step 7: Assemble, Link, and Execute the “Hello” Program

The p1 directory contains an assembly language program called “Hello.s”. First invoke the assembler
(the tool called “asm”) to assemble the program. Type:

asm Hello.s
This should produce no errors and should create a file called Hello.o.

The Hello.s program is completely stand-alone. In other words, it does not need any library functions
and does not rely on any operating system. Nevertheless, it must be linked to produce an executable
(“a.out” file). The linking is done with the tool called “lddd”. (In UNIX, the linker is called “ld”.)

lddd Hello.o –o Hello
Normally the executable is called a.out, but the “-o Hello” option will name the executable Hello.

Finally, execute this program, using the BLITZ virtual machine. (Sometimes the BLITZ virtual
machine is referred to as the “emulator.”) Type:

blitz –g Hello
The “-g” option is the “auto-go” option and it means begin execution immediately. You should see:

Page 8

Project 1 Operating Systems

 Beginning execution...
 Hello, world!

 **** A 'debug' instruction was encountered *****
 Done! The next instruction to execute will be:
 000080: A1FFFFB8 jmp 0xFFFFB8 ! targetAddr = main

 Entering machine-level debugger...
 ==
 ===== =====
 ===== The BLITZ Machine Emulator =====
 ===== =====
 ===== Copyright 2001-2007, Harry H. Porter III =====
 ===== =====
 ==

 Enter a command at the prompt. Type 'quit' to exit or 'help' for
 info about commands.
 >

At the prompt, quit and exit by typing “q” (short for “quit”). You should see this:

 > q
 Number of Disk Reads = 0
 Number of Disk Writes = 0
 Instructions Executed = 1705
 Time Spent Sleeping = 0
 Total Elapsed Time = 1705

This program terminates by executing the debug machine instruction. This instruction will cause the
emulator to stop executing instructions and will throw the emulator into command mode. In command
mode, you can enter commands, such as quit. The emulator displays the character “>” as a prompt.

After the debug instruction, the Hello program branches back to the beginning. Therefore, if you
resume execution (with the go command), it will result in another printout of “Hello, world!”.

Step 8: Run the “Echo” Program

Type in the following commands:

asm Echo.s
lddd Echo.o –o Echo
blitz Echo

Page 9

Project 1 Operating Systems

On the last line, we have left out the auto-go “-g” option. Now, the BLITZ emulator will not
automatically begin executing; instead it will enter command mode. When it prompts, type the “g”
command (short for “go”) to begin execution.

Next type some text. Each time the ENTER/RETURN key is pressed, you should see the output echoed.
For example:

> g
Beginning execution...
abcd
abcd
this is a test
this is a test
q
q
**** A 'debug' instruction was encountered *****
Done! The next instruction to execute will be:
 cont:
0000A4: A1FFFFAC jmp 0xFFFFAC ! targetAddr = loop
>

(For clarity, the material entered on the input is underlined.)

This program watches for the “q” character and stops when it is typed. If you resume execution with the
go command, this program will continue echoing whatever you type.

The Echo program is also a stand-alone program, relying on no library functions and no operating
system.

The KPL Programming Language

In this course, you will write code in the “KPL” programming language. Begin studying the document
titled “An Overview of KPL: A Kernel Programming Language”.

Step 9: Compile and Execute a KPL Program called “HelloWorld”

Type the following commands:

 kpl -unsafe System
 asm System.s
 kpl HelloWorld
 asm HelloWorld.s
 asm Runtime.s
 lddd Runtime.o System.o HelloWorld.o -o HelloWorld

Page 10

Project 1 Operating Systems

There should be no error messages.

Take a look at the files HelloWorld.h and HelloWorld.c. These contain the program code.

The HelloWorld program makes use of some other code, which is contained in the files System.h and
System.c. These must be compiled with the “-unsafe” option. Try leaving this out; you’ll get 17
compiler error messages, such as:

System.h:39: ***** ERROR at PTR: Using 'ptr to void' is unsafe;
 you must compile with the 'unsafe' option
 if you wish to do this

Using the UNIX compiler convention, this means that the compiler detected an error on line 39 of file
System.h.

KPL programs are often linked with routines coded in assembly language. Right now, all the assembly
code we need is included in a file called Runtime.s. Basically, the assembly code takes care of:

Starting up the program
Dealing with runtime errors, by printing a message and aborting
Printing output (There is no mechanism for input at this stage... This system really needs an OS!)

Now execute this program. Type:

blitz –g HelloWorld
You should see the “Hello, world...” message. What happens if you type “g” at the prompt, to resume
instruction execution?

The “makefile”

The p1 directory contains a file called makefile, which is used with the UNIX make command.
Whenever a file in the p1 directory is changed, you can type “make” to re-compile, re-assemble, and re-
link as necessary to rebuild the executables.

Notice that the command

kpl HelloWorld
will be executed whenever the file System.h is changed. In KPL, files ending in “.h” are called “header
files” and files ending in “.c” are called “code files.” Each package (such as HelloWorld) will have
both a header file and a code file. The HelloWorld package uses the System package. Whenever the
header file of a package that HelloWorld uses is changed, HelloWorld must be recompiled. However,

Page 11

Project 1 Operating Systems

if the code file for System is changed, you do not need to recompile HelloWorld. You only need to re-
link (i.e., you only need to invoke lddd to produce the executable).

Consult the KPL documentation for more info about the separate compilation of packages.

Step 10: Modify the HelloWorld Program

Modify the HelloWorld.c program by un-commenting the line

--foo (10)

In KPL, comments are “--” through end-of-line. Simply remove the hyphens and recompile as
necessary, using “make”.

The foo function calls bar. Bar does the following things:

Increment its argument
Print the value
Execute a “debug” statement
Recursively call itself

When you run this program it will print a value and then halt. The keyword debug is a statement that
will cause the emulator to halt execution. In later projects, you will probably want to place debug in
programs you write when you are debugging, so you can stop execution and look at variables.

If you type the go command, the emulator will resume execution. It will print another value and halt
again. Type go several times, causing bar to call itself recursively several times. Then try the st
command (st is short for “stack”). This will print out the execution stack. Try the fr command (short
for “frame”). You should see the values of the local variables in some activation of bar.

Try the up and down commands. These move around in the activation stack. You can look at different
activations of bar with the fr command.

Step 11: Try Some of the Emulator Commands

Try the following commands to the emulator.

Page 12

Project 1 Operating Systems

quit (q)
help (h)
go (g)
step (s)
t
reset
info (i)
stack (st)
frame (fr)
up
down

Abbreviations are shown in parentheses.

The “step” command will execute a single machine-language instruction at a time. You can use it to
walk through the execution of an assembly language program, line-by-line.

The “t” command will execute a single high-level KPL language statement at a time. Try typing “t”
several times to walk through the execution of the HelloWorld program. See what gets printed each
time you enter the “t” command.

The i command (short for info) prints out the entire state of the (virtual) BLITZ CPU. You can see the
contents of all the CPU registers. There are other commands for displaying and modifying the registers.

The h command (short for help) lists all the emulator commands. Take a look at what help prints.

The reset command re-reads the executable file and fully resets the CPU. This command is useful
during debugging. Whenever you wish to re-execute a program (without recompiling anything), you
could always quit the emulator and then start it back up. The reset command does the same thing but is
faster.

Make sure you get familiar with each of the commands listed above; you will be using them later. Feel
free to experiment with other commands, too.

The “DISK” File

The KPL virtual machine (the emulator tool, called “blitz”) simulates a virtual disk. The virtual disk is
implemented using a file on the host machine and this file is called “DISK”. The programs in project 1
do not use the disk, so this file is not necessary. However, if the file is missing, the emulator will print a
warning. We have included a file called “DISK” to prevent this warning. For more information, try the
“format” command in the emulator.

Page 13

Project 1 Operating Systems

What to Hand In

Complete all the above steps.

To verify that you did all this, create a transcript of a terminal session showing what happened. In
particular, please include the output associated with the following steps in what you hand in.

Step 7
Step 8
Step 9
Step 11

We do not need to see the other steps.

Hand in a hardcopy print-out showing what happened. If you do not know about creating a script file,
check out the UNIX script command by typing

man script
In LARGE BLOCK LETTERS, write your full name.

Note that if you try to use a text editor while running script, a bunch of garbage characters may be put
into the file. Please do not do this. After you have created your script file, it is okay to edit it to remove
the entire editing session. We really don’t want to see a transcript of your editing session. Alternately,
you can start and stop script, creating several script files and then concatenate them.

PLEASE STAPLE ALL PAGES!

Grading for this Project

This project will be graded pass/fail.

Page 14

	Overview and Goal
	Step 1: Print the Documentation
	Step 2: Read the Overview Document
	Step 3: Choose Your Host Platform
	The BLITZ Tools
	Organization of the Course Material
	Step 4A: For Mac Users...
	Step 4B: For Portland State University Students...
	Step 4C: For Users in a Shared Environment...
	Step 4D: For Unix/Linux Users...
	Step 4E: For Windows Users...
	Step 5: Modify Your Search Path and Verify the Tools are Working
	Step 6: Set up a Directory for Project 1
	The BLITZ Assembly Language
	Step 7: Assemble, Link, and Execute the “Hello” Program
	Step 8: Run the “Echo” Program
	The KPL Programming Language
	Step 9: Compile and Execute a KPL Program called “HelloWorld”
	The “makefile”
	Step 10: Modify the HelloWorld Program
	Step 11: Try Some of the Emulator Commands
	The “DISK” File
	What to Hand In
	Grading for this Project

