
The Parser Converter Loader:

An Implementation Of The Computational Chemistry

Output Language (CCOL)

ABSTRACT

A necessity of managing scientific data is the ability to maintain experimental legacy

information without continually modifying the applications that create and use the

information. By facilitating the management of scientific data we hope to give scientist

the ability to effectively use additional modeling applications and experimental data. We

have demonstrated that an extensible interpreter, using a series of stored directives,

allows the loading of data from computational chemistry applications into a generic

database. Extending the interpreter to support a new application involves adding a list of

directives for each piece of information to be loaded. This research confirms that an

extensible interpreter can be used to load computational chemistry experimental data into

a generic database. This procedure may be applicable to the loading and retrieving of

other types of experimental data without requiring modifications of the loading and

retrieving applications.

The Parser Converter Loader:

An Implementation Of The Computational

Chemistry Output Language (CCOL)

By: Donald Randall Abel

(drabel@cs.pdx.edu)

January 19, 1995, Revision 9

2

Contents

1. INTRODUCTION..

1.1 PROBLEM OVERVIEW...
1.2 CCDB - PROPOSED SOLUTION...
1.3 THE PCL INTERPRETER...

2. RELATED WORK..

2.1 DATA REUSE...
2.1.1 Legacy Applications And Legacy Data..

2.2 CONVERSION PROGRAMS -- EXPRESS..
2.3 CONVERSION APPLICATIONS -- THE PCL...
2.4 A COMPARISON OF EXPRESS AND THE PCL...
2.5 ALTERNATIVE SYSTEMS...

3. THE PCL FUNCTIONAL REQUIREMENTS AND SPECIFICATION..

3.1 CONCEPTUAL, DATA MODEL AND PHYSICAL INCOMPATIBILITY..
3.2 CUSTOMIZED LOADING OF EXPERIMENTAL DATA TO A DATABASE...

3.2.1 Customized Creation Of Data Representation...
3.2.2 Customized Locating Of Data...
3.2.3 Customized Reading Of Data...
3.2.4 Customized Converting Of Data...
3.2.5 Customized Loading Of Data..

3.3 THE PCL LOADING OF EXPERIMENTAL DATA TO A DATABASE...
3.3.1 The PCL Creation Of Data Representation -- Creation Directives..
3.3.2 The PCL Locating Of Data -- Parsing Directives..
3.3.3 The PCL Reading Of Data..
3.3.4 The PCL Converting Of Data -- Conversion Directives..
3.3.5 The PCL Loading Of Data..
3.3.6 The PCL Loading Experiment Run Data -- Example...

3.4 THE PCL AND DATA INCOMPATIBILITY...
3.4.1 The PCL And A Conceptual Model..
3.4.2 Conceptual Model Support For Data Model Compatibility..

4. THE PCL DESIGN..

4.1 EXTENSIBILITY IN A CONVERSION SYSTEM..
4.2 CONCEPTUAL AND BASE OBJECTS...
4.3 OPERATION OF THE PCL...

4.3.1 Operation Of The PCL Creation Directives...
4.3.2 Operation Of The PCL Parsing Directives..
4.3.3 Operation Of The PCL Conversion Directives..
4.3.4 Operation Of The PCL With A Complex Conceptual Hierarchy...

4.4 CREATION DIRECTIVES..
4.5 PARSING DIRECTIVES...

4.5.1 Positional Parsing Directives...
4.5.2 Positional Parsing Directives Example..
4.5.3 Reformatting Parsing Directives..
4.5.4 Reformatting Parsing Directives Example...

4.6 CONVERSION DIRECTIVES..

5. THE PCL IMPLEMENTATION...

3

5.1 OBJECT-ORIENTED PROGRAMMING..
5.2 OBJECT-ORIENTED SOLUTIONS TO DEVELOPMENT PROBLEMS..
5.3 LANGUAGE AND DATABASE SELECTION..
5.4 STRUCTURE OF CONCEPTUAL AND BASE OBJECTS...
5.5 STRUCTURE OF THE PCL DIRECTIVES...
5.6 PROCESSING OF CREATION DIRECTIVES...
5.7 PROCESSING OF PARSING DIRECTIVES..
5.8 CONVERSION DIRECTIVES..
5.9 OPERATION OF THE PCL...
5.10 TIMING OF THE PCL...

6. EVALUATION AND CONCLUSIONS...

6.1 CONFIRMATION OF CONCEPT...
6.2 CONCEPTUAL SYSTEM STRUCTURE..

7. ANALYSIS AND RETROSPECTIVE...

7.1 INNOVATIVE DESIGN AND IMPLEMENTATION...
7.2 DESIGN AND IMPLEMENTATION TRADE OFFS...

8. FUTURE WORK...

8.1 COMPUTATIONAL DISCIPLINE EXTENSIONS...
8.2 OBJECT HIERARCHY EXTENSIONS..
8.3 DIRECTIVE SPECIFICATION EXTENSIONS...
8.4 DIRECTIVE PROCESSING EXTENSIONS...

9. REFERENCES...

10. APPENDIX...

10.1 GAUSSIAN CREATION DIRECTIVES..
10.2 GAUSSIAN PARSING DIRECTIVES..
10.3 GAUSSIAN OUTPUT..
10.4 GAMMES CREATION DIRECTIVES..
10.5 GAMMES PARSING DIRECTIVES..
10.6 GAMMES OUTPUT..

4

List Of Figures

COMPONENTS OF A COMPUTATIONAL CHEMISTRY APPLICATION..

ONE EXPERIMENT ITERATION..
EXAMPLE STEPS OF AN EXPERIMENTAL RUN...
COMPONENTS OF COMPUTATIONAL PROXY..
COMPONENTS OF COMPUTATIONAL PROXY WITH CCDB CLIENT...
DATA SERVICES..
DATA SERVICES INCLUDING CHEMISTRY LANGUAGES..
COMPUTATIONAL SERVICES...
STEPS OF PROPOSED EXPERIMENTAL MODEL RUN...
CCDB COMPUTATIONAL LANGUAGES...
CCDB COMPUTATIONAL LANGUAGES...
PARSING, LOADING, AND CONVERTING EXPERIMENT RUN DATA FROM SEVERAL APPLICATIONS..................
STEP ONE -- CUSTOMIZED CREATION OF DATA REPRESENTATION..
STEP TWO -- CUSTOMIZED LOCATION OF DATA...
STEP THREE -- CUSTOMIZED READING OF DATA..
STEP FOUR -- CUSTOMIZED DATA CONVERSION...
STEP FIVE -- CUSTOMIZED LOADING OF DATA..
FIVE CUSTOMIZED STEPS OF LOADING EXPERIMENTAL DATA..
CREATION DIRECTIVE PROCESSING STAGE FOR THE LOADING OF A GAMESS EXPERIMENT RUN...............
PARSING DIRECTIVE PROCESSING STAGE FOR THE LOADING OF A GAMESS EXPERIMENT RUN..................
CONVERSION DIRECTIVE PROCESSING STAGE FOR THE LOADING OF A GAMESS EXPERIMENT RUN...........
FIVE FUNCTIONAL SPECIFICATIONS FOR THE PCL SYSTEM..
DEVELOPMENT TIME COMPARISON FOR GENERIC AND CUSTOMIZED CONVERSION SYSTEMS........................
CONCEPTUAL MODEL AND INFORMATIONAL MODEL FOR "ATOM"...
THE "MOLECULE" CONCEPTUAL OBJECT WITH ATTRIBUTES "NAME" AND "FINAL ENERGY"........................
AN EXAMPLE OF TWO BASE OBJECTS...
CONCEPTUAL OBJECT "ATOM" WITH FOUR POSSIBLE BASE OBJECT REPRESENTATIONS...............................
CONCEPTUAL OBJECT HIERARCHY FOR A MOLECULE WITH TWO ATOMS..
CREATION DIRECTIVE LOOK UP FOR A MOLECULE...
CREATION DIRECTIVE PROCESSING FOR A MOLECULE...
PARSING DIRECTIVE LOOK UP FOR THE STRING ATTRIBUTE OF MOLECULE...
PARSING DIRECTIVE PROCESSING FOR STRING ATTRIBUTE OF MOLECULE..
READING VALUE FOR STRING ATTRIBUTE OF MOLECULE USING THE PCL..
CONVERSION DIRECTIVE LOOK UP FOR DOUBLE ATTRIBUTE OF MOLECULE..
CONVERSION DIRECTIVE PROCESSING FOR THE DOUBLE ATTRIBUTE OF MOLECULE....................................
CONCEPTUAL OBJECT HIERARCHY FOR MOLECULE WITH AN APPLICATION-SPECIFIC MODEL

REPRESENTATION..
PROCESSING STEPS FOR THE LOADING OF A CONCEPTUAL OBJECT HIERARCHY..
CONCEPTUAL OBJECTS WITH APPLICATION-SPECIFIC REPRESENTATION...
TEXTUAL REPRESENTATION OF ENERGY FOR GAMESS COMPUTATIONAL APPLICATION..............................
A FOLDED MATRIX BEFORE AND AFTER TRANSFORMATION..
PARAMETERS USED IN THE UNFOLD MATRIX DIRECTIVE...
MATRIX REPRESENTATION AFTER THE UNFOLD MATRIX DIRECTIVE PROCESSING..
ELIMINATION OF WHITE SPACE BETWEEN TWO STRINGS...
DENORMALIZATION OF DATA IN THE ROW HEADER..
FINAL WELL FORMED MATRIX..
CONVERSION OF APPLICATION-SPECIFIC REPRESENTATION INTO GENERIC DATABASE REPRESENTATION......
CONVERSION OF APPLICATION-SPECIFIC REPRESENTATION ONTO GENERIC DATABASE REPRESENTATION.....

5

INTERFACE FOR THE MOLECULE OBJECT...
MOLECULE OBJECT'S PROCESSING OF THE TOTAL MASS MESSAGE..
THE PROCESS OF FACTORING A METHOD TO A PARENT CLASS...
THE PROCESS OF PARENT FACTORING...
PARSABLE OBJECT WITH DERIVED CONCEPTUAL AND BASE OBJECTS...
GENERIC DIRECTIVE LOOK UP PROCEDURE...
CREATION DIRECTIVE LOOK UP FOR A MOLECULE...
PARSING DIRECTIVE LOOK UP FOR THE STRING ATTRIBUTE OF MOLECULE...
C++ INPUT OPERATOR FOR CONCEPTUAL OBJECT ATOM...
TIME REQUIRED TO PROCESS MOLECULAR ORBITAL CREATION AND PARSING DIRECTIVES..........................

6

1Introduction

The primary focus of our work, the PCL interpreter, is part of an overall project to assist

computational chemists with data and experiment management. Section 1.1 of the

introduction surveys the overall problem. Section 1.2 surveys CCDB, which is our

proposed solution to the problem. Section 1.3 describes the primary contribution of this

thesis, namely the PCL interpreter.

1.1Problem Overview

The objective of the Computational Chemistry Database project (CCDB) at the Oregon

Graduate Institute is to assist computational chemists with the management of data and

experiments. This work is being led by Judith Cushing under the direction of David

Maier with the assistance of Meenakshi Rao, and the author. Additional data on the

CCDB project can be found in [2] and [5]. This objective is worthwhile because it will

promote the leveraging of past research in future exploration. CCDB specifically

addresses the difficulties of computational chemists. However, problems of the other

computational sciences are similar.

Computational chemists mathematically model the characteristics of molecules. They

accomplish this with powerful computers and specialized software. Results from

7

promising experiment runs are implemented in the laboratory. Laboratory results are

compared to the optimized molecular configuration predicted by the model.

Computational chemists speed the development of new experiments by examining the

optimized molecular configurations from experiment runs. Figure 1-1 shows the

components found in a computational chemistry experiment.

Initial Molecular
Configuration

Estimate

Experiment With
Initial Estimate

Optimized
Molecular

Configuration

H2O

1.3, 4.2, 1.4
4.2, 3.8, 9.5
8.1, 5.9, 2.1

H2O

1.5, 4.0, 1.5
4.3, 5.8, 4.3
1.5, 4.0, 1.5

Specialized
Software

e. g. GAMESS

Personal
Scientific Insight

Past Experiments

Figure 1-1 Components Of A Computational Chemistry Application

A molecular configuration is a set of parameters that mathematically describe a molecule

and includes data on where specific atoms are located in the molecule and the nature of

their bonding. A chemist estimates an initial molecular configuration either through

personal scientific insight, or by referring to molecular configurations from past

experiment runs. Chemists then submit these estimates to modeling experiment

programs.

8

Computational Chemistry Modeling programs, such as GAMESS, Gaussian, and

HONDO, use the molecular estimate to optimize the molecular configuration through

iteration. Iteration is the process of repeatedly applying a calculation to an

approximation in order to calculate a successively closer approximation. Each iteration

step is referred to as an iteration. This process is shown in Figure 1-2. Under favorable

circumstances the calculation will converge. In unfavorable situations the estimates will

diverge. The process of having an experiment adequately optimize an initial molecular

configuration is called an experiment run.

Molecular
Configuration

Estimate Iteration X

Experiment
Iteration With

Estimate

Optimized Molecular
Configuration
Iteration X+1

H2O

1.3, 4.2, 1.4
4.2, 3.8, 9.5
8.1, 5.9, 2.1

H2O

1.5, 4.0, 1.5
4.3, 5.8, 4.3
1.5, 4.0, 1.5

Specialized
Software

e. g. GAMESS

Next Iteration

Figure 1-2 One Experiment Iteration

The process of performing an experiment is elaborate and involves numerous steps. We

illustrate these steps in Figure 1-3. Before optimizing a molecular configuration estimate

the computational chemist must select a program on which to perform the experiment.

There are numerous programs that model molecules. Each program has features that

9

distinguish it from other programs. Some systems quickly calculate the total energy of

the molecule but run more slowly. Other programs have extremely accurate calculations.

The scientist may, for example, first want to produce a experiment run with GAMESS

and review the total energy results before calculating an optimized molecular

configuration with the program HONDO. Our example will involve a experiment run of

the molecule Ethylene and the GAMESS application.

10

Programs Available:
GAMESS
HONDO

System Resources Available:
Memory: 32 Megabytes

Disk Space: 120 Megebytes

Programs Available:
GAUSSIAN
GAMESS

System Resources Available:
Memory: 64 Megabytes

Disk Space: 340 Megabytes

1) Find First Computer with GAMESS Program Installed, Alpha
2) Check Memory and Disk Space Availability, Not Sufficent

 3) Find Another Computer with GAMESS Application, Beta
 4) Check Memory and Disk Space Avaliablity, Sufficent
 5) Create an Initial Molecular Configuration for the
 Experiment
 6) Log on to Beta
 7) Transfer Initial Molecular Configuration Estimate From
 Gamma to Beta
 8) Start Model Experiment Run on Beta
 9) Periodically Log on to Beta
10) Check Run Status of The Experiment on Beta
13) Review the Results of Experiment

11) Log on to Beta
12) Transfer Optimized Molecular
 Configuration and Results
 From Beta to Gamma

Computer: Alpha

Computer: Beta

Computer: Gamma

Figure 1-3 Example Steps Of An Experimental Run

The first step of an experiment involves locating a computer that has the necessary

software, in our example GAMESS. In our example search for a system, we find that the

computer named Alpha has GAMESS installed. Finding a computer that has the required

11

program installed does not necessarily mean that the experiment run can be performed on

that computer. The computational scientist must estimate the amount of disk space and

memory required to perform the run. There are several factors that influence the amount

of memory and disk space required: the program, the type of experiment run, the

molecule being modeled, and the experiment input parameters. As with the molecular

configuration estimates, a chemist can either arrive at the memory and disk space

requirements through personal scientific insight or by referring to past experiments. This

determination is shown as step two in Figure 1-3. By referring to past experiments we

estimate that ours will require 48 Megabytes of memory and 8 Megabytes of disk space

for results. Note that the computer Alpha had the GAMESS program installed, but, did

not have enough memory to perform the run. In our example another computer needed

to be located which had the GAMESS application installed, 48 Megabytes of memory,

and 8 Megabytes of disk space. The computer named Beta is found to fulfill these

requirements in steps three and four.

If all these requirements are confirmed, the molecular configuration estimate must be

created and transferred to the computer that is performing the experiment run. In the

example this requires logging in to the computer named Beta and transferring the

molecular configuration estimate for the molecule Ethylene. In the example these are

steps five, six, and seven. The molecular configuration estimate that is transferred

contains data about the molecule being modeled. This data can be several megabytes in

size. It includes estimates on where specific electrons are located in the molecule.

12

The programs that model a molecule use this data to calculate characteristics of the

molecule and the iterative modeling can continue for days. The molecular model run can

now be started with the molecular configuration estimate. The GAMESS program is

started with the Ethylene molecular configuration estimate in step eight. Depending on

initial configuration estimates, the program can converge to an answer quickly or not at

all. To ensure that the experimental run is converging toward an answer, long running

experiments must be periodically checked. In steps nine and ten, the experiment run is

checked by logging into the computer named Beta and browsing the intermediate results

of the run. We assume the intermediate results of our example run indicate that it is

converging.

At some point the experiment run completes or is terminated by the computational

chemist. The scientist then transfers the experimental data to the original computer and

reviews the experimental data. Experiments may need to be rerun several time before

deciding that the results are adequate. When checking on the experiment run for a

second time we find that the experiment has finished. Steps eleven, twelve, and thirteen

transfer the experimental results back to our original computer for analysis.

If this experiment run was a success, the scientist may desire to model the molecule with

another program in an attempt to gather additional data. Using an optimized molecular

configuration estimate from a previous experiment run will help the new model converge

13

quickly. However, accomplishing this sharing of data is difficult. Currently the

modeling programs do not share a common file format or common representation of the

data in the molecular configuration estimate. For example, one program may represent

an atom’s location as three coordinates in three-space, while another program may

represent it as a length and two angles. While one representation can be transformed into

another, they cannot be used interchangeably. Such differences prevent one program’s

results from being directly used in another program. The computational scientist has two

choices: convert and format the experiment run into a structure that the new program will

be able to use, or enter new estimates for the new program leaving behind the results of

previous work.

Cushing [2] notes computational chemists manage large experimental data from many

different runs. A computational chemist could have tens of experiment runs progressing

and the results of hundreds of experimental runs. Our goal is to facilitate and automate

the management and reuse of experiment run data. By automating the management of

this scientific data the computational chemists will be more effective. In addition, the

sharing of experiment run data can have a synergistic effect on other researchers by

simplifying the exchange of scientific data.

14

1.2CCDB - Proposed Solution

We now discuss our proposal for the management and reuse of this scientific data. We

then demonstrate our proposal with the example experiment run above.

Cushing’s Ph.D. Thesis [2] has suggested that object-oriented databases and

“computational proxies” be used to manage computational scientific data. A

computational proxy consists of two parts: computational services and data services.

These components can be seen in Figure 1-4.

Computational Services Data Services

Object Oriented Database

Figure 1-4 Components Of Computational Proxy

The services provided are requested by a computational scientist through a graphical user

interface, a CCDB client. This is shown in Figure 1-5. This client allows the scientist to

specify at a high level what experimental data is desired. For example, a scientist could

request that the client retrieve experiment runs that involve Ethylene. The client is

responsible for breaking down complex high level requests into simpler requests of

services provided by the computational proxy. The client plays an important role in

facilitating the work performed by the computational scientists. However because, it is

not a part of the computational proxy its specification and design will not be discussed

here.

15

CCDB Client

Computational Services Data Services

Object Oriented Database

Figure 1-5 Components Of Computational Proxy With CCDB Client

We will now provide a brief summary of each portion of the proxy. After this

explanation we will clarify our points with an example. The example will show the

interaction a chemist would have with the CCDB client when performing the

experimental run from Figure 1-3.

The data services are the first part of the computational proxy. The data services are

responsible for managing a database of experiment runs. One service provided is making

optimized molecular configurations from past experiment runs available as input to new

runs. We refer to this service as a Molecule Configuration Dump. The converse of this

service is placing the optimized molecular configurations from complete experiment runs

into the database for later review and reuse. This functionality is referred to as a

Molecule Configuration Load. In addition to these services, data on specific molecules

in the database can be requested from the manager. The last service is named Database

Queries. An example would be to have the data services retrieve experiment runs

involving the molecule Ethylene. After reviewing data on the requested experimental

16

runs, the chemist can select one experimental run to serve as the initial molecular

configuration estimate to a new run. These three services are shown in Figure 1-6.

Data Services

Molecule Configuration Load Database Queries Molecule Configuration Dump

Object Oriented Datbase

Figure 1-6 Data Services

The process of loading and dumping molecule configuration data sounds straight-

forward; however, it is not a simple task. If data is to be transferred between an

application and the database, the formats of this data must be the same. There are two

possible situations when the two formats do not match. The first is when the data created

by an application program does not match the format of the database. The other situation

is when the experimental data stored in the database is not in the format required by the

application.

In general, the loading and dumping of experiment run data may require several

conversions. These conversions are performed in the molecule configuration load and

dump components of the data services. Experiment run data in the database may need to

be converted into a format that is expected by the application performing the experiment

run. On the other hand, an optimized molecular configuration may need to be changed

17

into a form that matches the database schema before being loaded into the database. A

method of providing this functionality was described in Cushing’s work [2]. Two

languages were described that allow the specification of how data is to be converted.

One language, called the Computational Chemistry Input Language (CCIL), specified

how the experiment run data in the database needed to be formatted so that it could be

used as a molecular configuration estimate for a run. The other language, the

Computational Chemistry Output Language (CCOL), specified how the data services

would parse optimized molecular configurations so that this data could be put in the

database. The CCIL language is used to leverage the data of past experiment runs and

facilitate new runs. The CCOL is used to return the results from experiment runs into the

database. Figure 1-7 shows where the CCIL and CCOL fit in the data services.

Data Services

Molecule Configuration Load Database Queries Molecule Configuration Dump

Computational Chemistry
Output Language

Computational Chemistry Input
Language

Object Oriented Datbase

Figure 1-7 Data Services Including Chemistry Languages

The computational services are the second part of the computational proxy. The

computational services are responsible for starting, querying, and, stopping experiment

18

runs. When a chemist has specified that an experimental run is to be performed, the

computational services will locate a host computer on which the experiment can be

performed. The computer must have the application installed, and must also have

enough memory and disk space to conduct the experiment. Once this has been confirmed

the initial molecular configuration data is requested from the data services. This data is

then transferred to the host computer and the experiential model run started.

Periodically, a chemist may request the status of a experiment run in order to check that

it is proceeding correctly. The computational services will retrieve the current status of

the experiment run and make it available to the scientist. The last portion of the

computational services are the administering of completed experiment runs. When a

experiment run completes, the computational services retrieve the optimized molecular

configuration results and instructs the data services that the results can be placed in the

database. The chemist can review the results when they have been placed in the

database. Figure 1-8 presents the salient points of the computational services.

Additional data on the computational services can be found in Rao [5].

Computational Services

Stop Experimental Run Start Experimental Run Query Experimental Run

Object Oriented Datbase

Figure 1-8 Computational Services

19

These two parts of the computational proxy form an data infrastructure that automates

the management and reuse of experiment run data. The computational proxy

accomplishes our goal of facilitating and automating the management and reuse of

experiment run data.

The computational proxy infrastructure can help alleviate the difficulties associated with

the management of scientific data. Working through the example originally shown in

Figure 1-3 with the proposed infrastructure will help demonstrate its usefulness. As

previously mentioned, the computational chemist does not directly use the computational

and data services. The interaction is carried out through an intermediate piece of

software, the CCDB client. For the purpose of this example we will assume that this

interface is available.

Figure 1-9 shows the steps required to allow a experiment run to be performed with the

computational proxy infrastructure. The first step in performing a experiment run is the

selection of the application that will computationally model the molecule. When

selecting an application the CCDB client will request that the data services retrieve the

names of all the applications available. The data services will then query the database.

All the appropriate applications names will be returned to the client. The client will

show the applications names in a list that the computational chemist can browse. The

application selection is accomplished by making a choice from this list.

20

CCDB Client

Computational Services Data Services

Object Oriented Database
Programs Available:

GAMESS
HONDO

System Resources Available:
Memory: 32 Megabytes

Disk Space: 120 Megebytes

Programms Available:
GAUSSIAN
GAMESS

System Resources Available:
Memory: 64 Megabytes

Disk Space: 340 Megabytes

1) Select an Application to Model the Run, GAMESS
2) Select an Initial Molecular Configuration for the Run
3) Start the Model Experiment Run
4) Periodically Query the Status of the Run
5) Review the Results of the Run

The manual steps shown in Figure 1-3 are automatically
handled by the computational and data services.

Computer: Alpha

Computer: Beta

Computer: Gamma

Figure 1-9 Steps Of Proposed Experimental Model Run

21

At this point the molecular configuration estimate is needed. (See step two.) The

scientist can request data on previous experiments in the database. This is accomplished

by entering a query in the client. A limited type of requests can be made in a data

manipulation language like SQL [3], or, Query By Example [9] and then mapped to an

object-oriented query. The CCDB client sends a request to the data services and the

requested data is retrieved. This experimental data can then be shown to the scientist and

reviewed. Once an acceptable molecular configuration estimate is selected by the

scientist, the client asks the data services to retrieve the data from the database. When

this data is found it is in the database's format. The data services will look in the

database for the CCIL instructions that explain how to convert the data into a form

readily acceptable by the application. This molecular configuration estimate is then

converted and presented to the client in a file to be used as input to the application. The

scientist is allowed to review and modify the data in the file.

After the computational chemist has completed browsing and modifying the molecular

configuration estimate, the experiment run can be started. The computational services

can then begin the steps necessary for locating a suitable location for the run.

The computational services first will query the database and locate where the requested

application is installed. These sites are potential run locations. The run location list can

then be further limited by reviewing the memory and disk space requirements of the

experimental run. To do this the computational services will locate the experimental run

22

that was used to create the molecular configuration estimate and use its final memory and

disk space usage. Each computer in the list of potential run locations is queried to see if

it meets the memory and disk space requirements. Once a computer is located that

fulfills the requirements for the run, it is selected as the host computer. Additional

requirements such as current load could be used to select a computer. Additional

selection criteria can help the balancing of experiment runs across a network of

machines, but this optimization is not central to the required functionality.

Once the experiment run has been started, a proxy of the experiment is placed in the

database. The proxy is a place holder that contains current data on the partially

completed experiment.

During the course of the application’s running of the experiment, the computational

chemist may wish to check that the run is converging. The chemist can start the CCDB

client and request a list of currently running experiment runs. A group of experiment

runs can then be selected and the status of each requested. In order to retrieve the status

of a experiment run, the client sends a request to the computational services. The

computational service can review the data in the proxy and locate the computer that is

computing the model. The computational services will transfer the current output of the

run along with additional data, such as the CPU time accrued. This data will be used to

update the status of the proxy and then presented to the client for review.

23

If, after reviewing the experimental run, the scientist deems that the run should be

terminated, the run can be selected and stopped. This would be accomplished similarly

to how the status of an experimental run was requested.

When the model run finishes, the computational services are notified that the run has

completed. The results of the experiment run are then transferred back to the computer

holding the database. The computational services then requests that the data services

load the data into the database. The data services will look in the database for the CCOL

instructions that explain how to convert the data into a form readily acceptable by the

database. After this conversion is complete the scientist is notified that the experiment

run has completed and the results can be reviewed.

One might infer from the above discussion that the above scenario introduces many new

steps in managing experiment runs. However, a computational chemist using the CCDB

client has a small amount of work to manage an experiment. Reviewing the steps

required to produce a experiment run with the computational proxy, the computational

chemist must:

1. Select an application to model the run.

2. Select an initial molecular configuration for the run.

3. Start the experiment run.

4. Periodically query the status of the run.

24

5. Review the results of the run.

Compare the above steps to the procedure currently required:

1. Select an application to model the run.

2. Locate a computer with the application installed.

3. Check the memory and disk space availability.

4. Create an initial molecular configuration estimate for the experiment.

5. Log on to the computer.

6. Transfer the initial molecular configuration estimate to the computer.

7. Start the experiment run.

8. Periodically log on to the computer.

9. Check the status of the experiment.

10. Log on to the computer.

11. Transfer the optimized molecular configuration and results back.

12. Review the results of the experiment.

As computing resources become more and more inexpensive, the number and size of the

experiment runs that computational chemists desire to conduct will increase. In the years

to come the problem of scientific data management and data sharing will be exacerbated.

25

By allowing chemists to share data about modeling experiments, past optimized

molecular configurations can be used to give new experiment runs better initial molecule

configurations. The leveraging of the data from past experimental runs will allow new

runs to converge more quickly.

The above overview has specifically discussed computational chemistry. However, the

situation for other computational sciences is similar. Data management and data sharing

can benefit these areas.

1.3The PCL Interpreter

We now focus on the implementation of an interpreter for the language (CCOL) which

transforms output from specific applications to a generic database format.

Figure 1-10 shows how output from specific applications are transformed to and from the

object-oriented database schema. The PCL is responsible for transforming the

application specific output file into a equivalent generic format and placing it into the

database.

26

Output
File

Output File Descriptions
Written in CCOL

Input File Descriptions
Written in CCIL

Input
FilePCL Input File

Generator

CCDB
OODB

Application

Figure 1-10 CCDB Computational Languages

The PCL performs this translation by consulting a list of interpreter directives in the

database for the particular application. These directives express the type of information,

the location of the information in the output file, and any required conversion functions

that are to be performed on the information before being placed in the database. The

PCL uses these directives to load experimental data in a five step conversion process.

These five steps are the creation of data representation, locating of data, reading of data,

converting of data, and the loading of data. The first step, the creation of the data’s

representation, involves allocating storage for the data. The amount of storage allocated

is declared in the interpreter directive for the particular application. The second step , the

locating of data, entails positioning a parsing cursor by searching for specific patterns in

the output file. Reading data, the third step, involves loading data from the current

parsing cursor location into the allocated storage. The fourth step is converting the data

27

into a format that matches the generic database format. Placing the information into the

database is step five.

This thesis describes an implementation of the CCOL language called the Parser

Converter Loader (PCL) and part of the data services. The goal of this work is to address

the problem of loading incompatible experiment run file formats into the database. This

work is central to the ability of the CCDB project to reuse experimental data. The thesis

is organized as follows: Chapter Two discusses work related to the PCL. Chapter Three

offers the functional requirements and specification of the PCL project. The design of

the PCL is discussed in Chapter Four. Chapter Five considers the C++ implementation

of the project. Evaluations and conclusions from the project are explained in Chapter

Six. Chapter Seven provides analysis and retrospective of the PCL project. Future work

is contemplated in Chapter Eight.

28

2Related Work

2.1Data Reuse

When reviewing research literature we found two approaches to the problem of reusing

data from one application as input to another: preventive and permissive.

The preventive approach is that data is stored in compatible formats. In order to prevent

the problems associated with incompatibilities, application and platform independent file

formats are described and standardized for specific conceptual models. These

independent file formats are called Data Interchange Formats (DIF) [1]. Examples of

these standardized formats are the “Chemical Exchange Format” for Chemistry, the

“Abstract Syntax Notation One” for Genetics, and the “Planetary Data System” for Space

Mission Data.

The permissive approach accepts that data may be stored in incompatible formats. The

data is converted into the format required by an application by a conversion program.

The conversion program can be a customized program, that converts only from one

specific file format to another, or a generic conversion program that can convert data in

one file format to a common file format. An example of a conversion program with a

29

conversion language is the EXPRESS system developed by Shu and Housel and others

[7] at IBM.

The two approaches explained above attempt to solve the problem of data reuse using

one or more agreed-upon conceptual models. The conceptual model explains what

connotations can be associated with each data file. An example would be the meaning

associated with atomic mass. The mass could be for a particular isotope of an atom, or

the average mass of all the isotopes of the atom in its natural state. The Data Interchange

Formats (DIF) have a conceptual model clearly defined in the specification of the file

format. This specification states what data is represented in the file and the semantics of

that data. The conversion programs also have a unifying conceptual model. The

conversion programs are less stringent than the DIF in how the data is represented in the

file. The conversion programs require that the data be conceptually compatible. The

conversion programs deal with the problems associated with converting the

representation of the data.

It is important to note that without an agreement on a conceptual model neither of these

approaches will work. Data items may have several meanings and possible

interpretations. Some of these interpretations may be contradictory or may lead to

different results based on the interpretation. For example, if we wanted to calculate the

mass of carbon found in a sample, some additional data about the carbon atoms in the

sample is necessary. Does the sample contain only one particular isotope of carbon or

30

does the sample contain the carbon isotopes in their natural proportions? The results

calculated will be different based on which meaning we associate with the data.

2.1.1Legacy Applications And Legacy Data

Two major differences between the approaches taken by the conversion programs and the

DIFs are how legacy systems and legacy data are handled. Many of the programs used in

the scientific community are legacy applications. Some applications have been used for

tens of years and their particular file formats are well known by their users. During the

life of the application numerous experiment runs have been performed using them.

These experiment runs collectively form a warehouse of legacy experimental data.

The DIF approach to data reuse would require that all the applications of a particular

application type be changed to use the new standard DIF. While this seems plausible,

there may be several reasons why an application author may not make such a change.

First, the change to the application to support DIF may not be not trivial. Second, an

author might not support DIF because of a concern that users may migrate to another

program if they can easily transfer previous experimental results. Some pools of

scientific data are vast and have been accruing for tens of years. Users with a large

number of past experiments would not want to lose this data. An application author

would need to create a conversion program that would translate the past experiments into

the new DIF format.

31

The conversion program approach requires writing a program that can translate data in

one file format to another file format. The conversion program allows use of the

currently existing legacy application without modification. The data from past

experiment runs produced by these legacy applications are available for reuse by having

the conversion program manipulate the data.

2.2Conversion Programs -- EXPRESS

Conversion programs allow data created by one application to be translated into other

formats and then used by other applications. As described above, a conversion program

can be a customized program, that can convert only from one file format to another, or a

generic conversion program that can have an input and output file format described. The

customized programs are more common because they are easier to design and create than

generalized conversion programs. The price of this simplicity is paid when the

customized conversion program must support additional file formats. Cushing [2]

estimates that a general conversion program for a particular sub-domain will begin to

save development time over a customized program after support for the fourth file format

is added. The computational sciences use several different types of applications for

modeling and visualization. For this reason we will focus on work that involves generic

file conversion solutions.

32

The EXPRESS system developed by Shu and Housel [7] is an example of a generic

conversion application. EXPRESS is a system that transforms data in a hierarchical

format from one form into another. EXPRESS’s primary use was to migrate data from a

flat file or hierarchical database into a relational database. The two main design points of

EXPRESS were to allow its use with minimal training and to efficiently use the

computer resources while transforming the data. The goal of allowing the system to be

used with minimal training is achieved through the two transformation languages,

DEFINE and CONVERT. These languages are used to describe the transformations that

need to be applied to the data. The languages are non-procedural and thus specify what

transformations should occur, rather that state how the transformations should occur.

This allows the user to express the transformations in a natural way that is much easier

than traditional programming languages.

Because EXPRESS was expected to load large amounts of data, the efficiency of the

system was a major concern. The efficient use of computer resources was achieved

through concurrency and compilation. Concurrency was used to allow non-dependent

transformations to begin processing while other transformations were completing. In

addition, non-procedural descriptions of the transformations were compiled into a

program. This compilation allow the conversion to run more quickly that an interpreted

description.

33

2.3Conversion Applications -- The PCL

Like EXPRESS, the PCL is an example of a generic conversion program. The PCL is a

system that transforms data from one format to another, and loads data into an object-

oriented database. The PCL’s primary use is to allow the reuse of data in legacy

applications. The main design point of the PCL is to allow the system to adapt to new

applications, or to new releases of old applications.

The goal of allowing the system to adapt to new applications is achieved by making the

program table driven. Entries in three tables are used to control the transformation of

data from one format to another. We refer to these entries as “directives” because they

direct the transformation. The three types of directives are: creation, parsing, and

conversion. The three types of directives are used to adapt the PCL system to new

applications. This adaptation is performed by adding creation, parsing, and conversion

directives for an application to the PCL tables.

2.4A Comparison Of EXPRESS And The PCL

The PCL was influenced by the design of EXPRESS. This is to be expected as the

purpose of the two systems is similar. However, there are several differences that make a

comparison of the two systems interesting. We will focus on three requirements and the

design trade-offs they caused. The three requirements involved: the type of data

34

transformed, the amount of data transformed, and how often the transformation is

performed.

The type of data transformed by the two systems is different. EXPRESS support’s the

manipulation of basic business data, for example text and simple numeric values. The

PCL transformations support the manipulation of scientific data. This type of data has

complex hierarchies and is heavily interconnected. Both systems require that the

transformed data to be available for later reuse. EXPRESS uses a relational database to

accomplish this goal. The need to support highly interconnected complex hierarchies

caused us to select an object-oriented database for our repository. The PCL includes

functions that change data with one syntax into data with another syntax but equivalent

semantics. For example, a function could be written that converts a location from

Cartesian coordinates to Polar coordinates.

The two systems transform different amounts of data. EXPRESS is optimized to

transform large amounts of data from one file format to another. In an effort to facilitate

this conversion two steps were taken: the use of concurrency and the compilation of

conversion instructions. The PCL system converts smaller amounts of experimental data

and is concerned with the system’s ability to adapt to new application formats. The

speed of the conversion was a secondary concern for two reasons. One reason was that

the amount of data being converted was relatively small, on the order of several

megabytes. The other reason was that producing experimental results takes days or

35

weeks of computation and, a few additional minutes during the conversion was deemed

insignificant. For these reasons we selected an interpreter to execute our conversion

instructions and delayed the contemplation of concurrency during the conversion process.

An additional benefit of using an interpreter was that the PCL could be moved to

different hardware platforms without needing to change the source code.

The specification and execution of the transformation occur with different frequencies in

the two systems. Shu and Housel [7] note that “[i]n practice database conversion is not a

‘one shot’ process. Rather, application systems and their data are moved gradually as the

application programs are rewritten.” Conversions in the PCL occur whenever a

experiment completes. This can occur tens of times per day, which is much more

frequently than anticipated in the EXPRESS system. The EXPRESS system expects the

specification and execution of the conversion to occur several times. The PCL, on the

other hand, expects changes to specifications of the conversion to occur seldom and the

conversions to be invoked frequently. These differences lead to diverse conversion

languages. The authors of EXPRESS, expecting the conversion language to be specified

often, created non-procedural languages. On the other hand, expecting that the

conversion language would be specified less often, we believed that a procedural

language would be adequate for a prototype conversion program.

36

2.5Alternative Systems

We considered if existing pattern-matching tools could reformat the experimental output

so that it could be loaded by the computational proxy. Several tools such as PERL[10]

and AWK[11] were considered. Both programs were able to handle the reformatting

necessary for single-valued objects, however, the scripts to handle the reformatting of

complex objects become elaborate. The other problem we encountered was that we saw

no direct method of linking reformatted objects generated by PERL and AWK with

database objects without creating an intermediate language. For these reasons we did not

use alternative pattern-matching tools.

The PCL combines an interesting mixture of ideas: database conversion and loading,

complex and highly interconnected scientific data models, and support for unmodified

legacy application and data. This blend of ideas permits several design tradeoffs

explained above. While the PCL has similarities to existing systems, it addresses the

problem of scientific data reuse in several unique and innovative ways.

37

3The PCL Functional Requirements And

Specification

In this section we will explain several types of data incompatibility. This discussion

helps clarify what incompatibilities can addressed by a software system. After this

discussion, we contrast a customized method with the PCL method of loading

incompatible experiment run data into the database. Once the PCL method is presented

we will discuss the importance of a shared conceptual model to the PCL solution.

3.1Conceptual, Data Model and Physical Incompatibility

When attempting to address the problems of data incompatibility it is important to define

what data level we are discussing. Maier in a paper entitled Object Data Models For

Shared Molecular Structures[4], defines three levels of data incompatibility: the

conceptual, data model, and physical levels. The conceptual level can be thought of as

the connotation of terms and concepts. An example is the meaning of the atomic mass of

an element. The atomic mass can be thought of as an average of all the isotopes of an

element or as the mass of a particular isotope. The data model conveys how a conceptual

idea is represented. An example is how a bond between two elements can be

represented. The bond can be represented as a pair of Cartesian coordinates or it can be

represented a pair of Polar coordinates. Each of these representations contains the same

38

data (semantically), it is merely represented differently (syntactically). The final level of

incompatibility is the physical level. The physical level is the way data is stored in the

computer system. An example of this type of incompatibility is the different byte

orderings that computers use. We discuss how each level relates to the PCL below.

The PCL addresses two of these three, namely the physical and data model levels. The

conceptual level is not addressed by the PCL, but we assume that a common conceptual

model can represent the inputs and outputs of the application of interest.

Agreement at the conceptual level is a precursor to any attempt at supporting

informational model or physical compatibility. Maier states “There is no point in

discussing physical compatibility of data if there is fundamental disagreement on the

meaning or interpretation of that data.” [4]

Incompatibility at the data model level is addressed by the PCL directives. Creation

directives allow the creation of application-specific representations of conceptual

structures. Parsing directives allow the parsing of data into these representations.

Finally, conversion directives allow these representations to be transformed into a

common type maintained in the database. These directives all assume common

conceptual structures.

39

The CCDB as a whole deals with incompatibility at the physical level when data is

retrieved from the database. The database converts stored data into the byte ordering

required by the requesting computer system. The PCL need not address incompatibility

at the physical level since it parses the ASCII files output by the application.

3.2Customized Loading Of Experimental Data To A Database

In this section we describe the functional requirements and specification of the Parser

Converter Loader (PCL). The PCL is an implementation of the Computational

Chemistry Output Language (CCOL) as shown in Figure 3-1. The goal of the PCL is to

load incompatible experiment run file formats into the database.

Output
File

Output File Descriptions
Written in CCOL

Input File Descriptions
Written in CCIL

Input
FilePCL Input File

Generator

CCDB
OODB

Application

Figure 3-1 CCDB Computational Languages

40

After listing the requirements for the PCL we will explain each in more detail. The

requirement of the PCL system is that it retrieve data from the output file produced by a

model run and place this data into the database for reuse, see Figure 3-2 below.

Computational Chemistry Datbase

Generic Experiments

C9H22O4

1.3, 4.2, 1.4
4.2, 3.8, 9.5
8.1, 5.9, 2.1

C18H24O2

1.3, 4.2, 1.4
4.2, 3.8, 9.5
8.1, 5.9, 2.1

HNO2

1.3, 4.2, 1.4
4.2, 3.8, 9.5
8.1, 5.9, 2.1

CHO4

1.3, 4.2, 1.4
4.2, 3.8, 9.5
8.1, 5.9, 2.1

Parser Converter Loader

GAMESS HONDO GAMESS GAMESS

C9H22O4 C18H24O2 CHO4 HNO2

Output Files in
Various Formats

Figure 3-2 Parsing, Loading, and Converting Experiment Run Data From Several Applications

The loading of experimental data could be achieved by writing a customized database

loader for each computational application. Each database loader would place data

generated by a particular computational application into the database. However, this

requires that a new database loader program be written whenever a new application is

used. Notice that conceptually all the loader programs would share similar processing

needs. The database loaders can be thought of as making this transformation in the five

generic steps shown in Figure 3-3 through Figure 3-7.

41

3.2.1Customized Creation Of Data Representation

The first step in loading the experimental data into the database involves allocating

storage to hold experimental data that is in the application’s format before it is placed

into the database. This can be seen in Figure 3-3. In our example, the GAMESS

experiment has five attributes; molecule name, application name, three arrays X, Y, and

Z. Each of these has a domain associated with it. The molecule name and application

name have the domain of string, and the three arrays have the domain array of double

with three elements each.

C9H22O4

1.3, 4.2, 1.4
4.2, 3.8, 9.5
8.1, 5.9, 2.1

GAMESS

GAMESS Experiment

 Molecule Name: String
 X: Array[3] Doubles
 Y: Array[3] Doubles
 Z: Array[3] Doubles

 Application Name:
 String

1) Allocate storage to hold the
 experimental data that is in the
 application format.

String is a domain.

Application Name is an attribute.
Experiment

Output PCL Representation

Figure 3-3 Step One -- Customized Creation Of Data Representation

3.2.2Customized Locating Of Data

Step two entails locating the data to be placed in the database. The data is located in the

experiment run output. This data is usually located by finding a particular keyword or

42

title. In our example in Figure 3-4 the string desired was the first string in the file and no

positioning was required. The arrow in the experiment output points to the data that has

been located in the GAMESS experiment run.

C9H22O4
 

1.3, 4.2, 1.4
4.2, 3.8, 9.5
8.1, 5.9, 2.1

GAMESS

2) Locating data in the experiment
 output that needs to be
 placed in the database.

GAMESS Experiment

 Molecule Name: String
 X: Array[3] Doubles
 Y: Array[3] Doubles
 Z: Array[3] Doubles

 Application Name:
 String

Current Location in File

Figure 3-4 Step Two -- Customized Location Of Data

3.2.3Customized Reading Of Data

In step three the data located is placed in the area allocated. The process of locating data

in the experiment output and then placing it in the allocated space continues until all the

data have been located and read. Figure 3-5 shows the completed results of out searching

and loading.

43

GAMESS Experiment

 Molecule: C9H22O4
 X: 1.3, 4.2, 1.4
 Y: 4.2, 3.8, 9.5
 Z: 8.1, 5.9, 2.1

 Application: GAMESS

3) Data located is read into the
 storage allocated.

C9H22O4

1.3, 4.2, 1.4
4.2, 3.8, 9.5
8.1, 5.9, 2.1

GAMESS

Figure 3-5 Step Three -- Customized Reading Of Data

3.2.4Customized Converting Of Data

The application’s representation of data may not agree with the representation in the

database schema. In these cases a conversion needs to be applied to transform the data

into the format required for loading it into the database. Even if the domain of the

application attribute and the database attribute match (i.e. have the same type) there may

need to be conversion, For example simply changing the units of measure for a reading.

Conversion functions can be arbitrarily complex. The conversion of attributes in the

application’s representation into the format in the database’s schema occurs in step four.

Figure 3-6 shows the completed conversion process. The molecule name and application

name do not require any changes and are carried forward. The three arrays, X, Y, and Z,

however, are converted into the domain of the database schema.

44

Database Schema

MoleculeName: C9H22O4

 : 12.3, 26.1, 12.4
 : 7.2, 7.1, 15.8
 Application Name: GAMESS

4) Data in the application
 representation is converted into the
 database format.

GAMESS Experiment

 Molecule: C9H22O4
 X: 1.3, 4.2, 1.4
 Y: 4.2, 3.8, 9.5
 Z: 8.1, 5.9, 2.1

 Application: GAMESS

MoleculeName: String
 : Array [3] Of Double
 : Array [3] Of Double
 Application Name: String

Figure 3-6 Step Four -- Customized Data Conversion

3.2.5Customized Loading Of Data

The fifth step is loading the converted data into the database. This can be seen in Figure

3-7.

45

Database SchemaExperiment Database

5) The converted information is
 loaded into the database.

MoleculeName: C9H22O4
 : 12.3, 26.1, 12.4
 : 7.2, 7.1, 15.8
 Application Name: GAMESS

MoleculeName: C9H22O4
 : 12.3, 26.1, 12.4
 : 7.2, 7.1, 15.8
 Application Name: GAMESS

MoleculeName: String
 : Array [3] Of Double
 : Array [3] Of Double
 Application Name: String

Figure 3-7 Step Five -- Customized Loading Of Data

The five customized steps of loading experimental data are summarized in Figure 3.8.

1. Customized Creation Of Data Representation

2. Customized Locating Of Data

3. Customized Reading Of Data

4. Customized Converting Of Data

5. Customized Loading Of Data

Figure 3-8 Five Customized Steps Of Loading Experimental Data

46

3.3The PCL Loading Of Experimental Data To A Database

In order to avoid writing numerous loader programs, we decided to factor out the

common functionality of all such potential programs. Application-specific formats

would be communicated to this single program via “directives”. Directives are

instructions to the PCL that control the loading of experimental data. This generalization

is the conceptual basis of the PCL. The PCL processes directives that control each of the

five steps listed above for specific applications. The PCL has specific directives that

instruct it how to allocate storage. It also has directives that instruct it how to locate data

in the experiment run and how to convert data from one type to another. These

directives control how the PCL loads data from a experiment run into the database of

computational experiments.

An important goal of the PCL is that it be extensible. If the idea of factoring common

functionality out of numerous loader programs is to prove fruitful, the PCL must be able

to adapt easily to new applications and to changes in applications. If at all possible,

adaptations should be accommodated through the modification of the directives given to

the PCL, rather than through PCL code modifications. Code additions may be necessary

if new conceptual attributes or domains are introduced by a new application. Sections

3.3.1 through 3.3.5 constitute a program specification for the five steps shown in Figure

3-3 through Figure 3-7:

47

3.3.1The PCL Creation Of Data Representation -- Creation Directives

The allocation of storage for the experiment data is controlled by creation directives.

Creation directives are instructions used to specify, to the PCL, how much space needs to

be allocated for an attribute. This storage space is used to hold the experimental data that

is in the application’s format while it is being placed into the database. The creation

directives allow the allocation of storage for each experiment type to be uniquely defined

and controlled. The changing of the creation directives will allow the PCL to adapt to

new application types.

3.3.2The PCL Locating Of Data -- Parsing Directives

Locating data in the output file is controlled by parsing directives. Parsing directives are

instructions used to specify, to the PCL, how to locate data in the output file for the

experiment. The PCL maintains a current token location in the experiment run output.

As parsing directives are processed, the current token location is updated appropriately.

The parsing directives allow data for each experiment type to be uniquely defined and

controlled. Changing parsing directives allows the PCL to adapt to new application

types.

48

3.3.3The PCL Reading Of Data

The loading of data is implicitly performed by the PCL. When all the parsing directives

for an attribute have been processed, the PCL automatically reads in the attribute. When

reading in a data element the PCL uses the current token location to retrieve text.

3.3.4The PCL Converting Of Data -- Conversion Directives

The conversion of data to be placed in the database is controlled by conversion

directives. Conversion directives are instructions used to specify, to the PCL, the

transformations that need to be applied to a data element. If the representation and

meaning of the application data does not agree with the database schema, conversion

directives define the transformations to convert the data into the format required by the

database. The conversions allow a common semantics between the application and the

repository.

Once these transformations are completed, the application-specific data has been

converted into the database format. This form is the same as the database schema and

can be directly loaded into the database.

49

3.3.5The PCL Loading Of Data

The loading of the converted data is implicitly performed by the PCL. When all the

conversion directives for an attribute have been processed, the PCL automatically places

the attribute into the repository.

3.3.6The PCL Loading Experiment Run Data -- Example

Now that we have listed the five steps involved in loading experimental data we will

work through an example. The example will include the CCDB infrastructure steps that

precede the start of the PCL and will include how the PCL loads a experiment run into

the database. Of the five steps listed above, three are central to the extensibility of the

PCL, while the other two are automatically invoked and are not configurable. The three

central stages are the processing of the creation, parsing, and conversion directives.

These three stages are equivalent to steps one, two, and four listed above. We will refer

to them as the directive processing stages. They can be seen in Figure 3-9 through

Figure 3-11.

Recall from earlier that when a experiment run is complete, the computational

application creates a file that contains the results of the run. This output file is then

transferred by the computational proxy from the computer that determined the results to

the system that contains the repository. Once the results from the experiment model run

have been successfully returned where the PCL resides the PCL program is started. The

PCL program is charged with the responsibility of parsing, converting, and loading the

50

results of the experiment and placing this data into the database for reuse. For this

example, we assume that a GAMESS application has successfully completed and that the

experiment run data has been transferred back to be loaded by the PCL.

Experiment Database

Application Creation Directives

GAMESS-RHF: String, String, Array Of Double, Array
 Of Double, Array Of Double
GAMESS-XXX: String, String, Array Of Long, Array
 Of Double, Array Of Double

Generic Experiments

C9H22O4

1.3, 4.2, 1.4
4.2, 3.8, 9.5
8.1, 5.9, 2.1

Parser Converter Loader
(PCL)

GAMESS

GAMESS Experiment

 Molecule Name: String
 X: Array[3] Doubles
 Y: Array[3] Doubles
 Z: Array[3] Doubles

 Application Name:
 String

Final Experiment Application-Specific Representation

1.1) Determine Application
 And Experiment Type

1.2) Locate Application-Specific
 Creation Directives

1.3) Process Directives

Figure 3-9 Creation Directive Processing Stage For The Loading Of A GAMESS Experiment Run

51

The first stage involves creating an application-specific representation of the run. In our

example the application run was performed by the application GAMESS. The type of

application that produced the final experiment and the type of experimental run is passed

to the PCL by the CCDB proxy. This is shown in Figure 3-9 as stage 1.1. It may be

possible to infer this data directly from the output. This was not done because the data is

readily available in the proxy. In stage 1.2 of Figure 3-9 the creation directives for the

particular application and experiment type are located in the database by the PCL. These

directives are entered into the database once by an scientist well versed with the

applications whom we call the “registrar”. Creation directive data must be provided for

each possible application and experiment type combination supported by that application.

The creation directives located in the database explain the application-specific

representation of the data contained in the experiment run. We see that the GAMESS

application representation in Figure 3-9 has five attributes. The attributes are Molecule

Name, Application Name, X, Y, and Z, with domains string, string, and three arrays of

three doubles respectively. Once the application and the experiment type are located in

the database, each associated creation directive is processed by the PCL. Processing

these directives produces the application-specific representation of the experiment run

data. The results of this processing are shown in stage 1.3 of Figure 3-9. The

constructed application-specific representation of the experiment can now be filled.

52

Experiment Database

Application Parsing Directives

GAMESS-RHF-Molecule Name: Set Current Token
 At Begining Of File
GAMESS-RHF-X: Set Current Token At Begining Of
 File, Skip String

Generic Experiments

C9H22O4

1.3, 4.2, 1.4
4.2, 3.8, 9.5
8.1, 5.9, 2.1

Parser Converter Loader
(PCL)

GAMESS

Final Experiment Application-Specific Representation
Completely Created

2.1) Determine
 Application,
 Experiment Type, And
 Attribute

2.2) Locate Application-Specific
 Parsing Directives

2.3) Process Directives

GAMESS Experiment

 Molecule: C9H22O4
 X: 1.3, 4.2, 1.4
 Y: 4.2, 3.8, 9.5
 Z: 8.1, 5.9, 2.1

 Application: GAMESS

Figure 3-10 Parsing Directive Processing Stage For The Loading Of A GAMESS Experiment Run

The second stage of loading computational experiment data involves the locating and

parsing of data in the output file. In Stage 2.1 of Figure 3-10 the PCL is instructed to

locate and parse a particular attribute. The complete explanation of how the PCL is

53

instructed to locate and parse a experiment attribute is discussed in the PCL design

section. Assume, for the moment, that the PCL is instructed that a particular attribute

needs to be parsed. In order to locate and parse an attribute the PCL requires three pieces

of data: the application that produced the final experiment, the type of run, and the name

of the attribute. The PCL will use these three pieces of data to find the parsing directives

required to locate and parse the attribute. In Stage 2.2 of Figure 3-10 the parsing

directives for the particular application, experiment type, and attribute are located in the

database by the PCL. The parsing directives, like the creation directives, are entered into

the database once by the registrar. Parsing directive data needs to be provided for each

application, experiment type, and attribute combination supported by the application.

The parsing directives located in the database explain how to locate and parse each

attribute contained in the experiment run. Once the application, experiment type, and

attribute are located in the database, each associated parsing directive is processed by the

PCL. By consulting the database we can see that the GAMESS application, performing a

RHF experiment type, with the attribute “Molecule Name” has one parsing directive.

This directive is “Set Current Token At Beginning Of File”. When this directive has

been processed by the PCL the “Molecule Name” attribute is ready to be loaded. By

looking at the final experiment run in Figure 3-10 we can validate the correctness of this

directive. If we processed the directive we would be at the beginning of the file. We

would then read the domain type of the attribute, which is a string. The molecule name

would be retrieved correctly.

54

The processing of these directives produces the parsed application-specific representation

of the experiment run data. The results of this processing are shown in Stage 2.3 of

Figure 3-10. The parsed application-specific representation of the run can now be

converted, if necessary.

55

Experiment Model Run Database

Application Conversion Directives

GAMESS-RHF-X: CartisianToPolar
GAMESS-RHF-Y: CartisianToPolar
GAMESS-RHF-Z: CartisianToPolar

Generic Experiment

MoleculeName: C9H22O4

 : 12.3, 26.1, 12.4
 : 7.2, 7.1, 15.8
 Application Name: GAMESS

Parser Converter Loader
(PCL)

Application-Specific Representation
Completely Created

3.1) Determine Application,
 Experiment Type, And
 Attribute

3.2) Locate Application-
 Specific Conversion
 Directives

3.3) Process Directives

GAMESS Experiment

 Molecule: C9H22O4
 X: 1.3, 4.2, 1.4
 Y: 4.2, 3.8, 9.5
 Z: 8.1, 5.9, 2.1

 Application: GAMESS

Figure 3-11 Conversion Directive Processing Stage For The Loading Of A GAMESS Experiment Run

The third and final stage involves converting and loading the parsed application-specific

representation of the experiment run. In Stage 3.1 of Figure 3-11 the PCL is instructed

to convert and load a particular attribute. Again, the complete explanation of how the

PCL is instructed to convert and load a experiment attribute is discussed in the PCL

56

design section. Assume that the PCL is instructed that a particular attribute needs to be

converted.

In order to load an attribute into the database the PCL first checks if the data needs to be

converted into another form. Checking for this conversion requires three pieces of data:

the application that produced the final experiment, the type of experimental run, and the

attribute. The PCL will use these three pieces of data to locate the conversion directives

required to convert and load the data. In Stage 3.2 of Figure 3-11 the conversion

directives for the particular application, experiment type, and attribute are located in the

database by the PCL. The conversion directives like the creation and parsing directives

are entered into the database once by the registrar. Parsing directive data needs to be

provided for each application, experiment type, and attribute combination.

The conversion directives located in the database explain what conversions to apply to

each attribute contained in the experiment run. Once the application, experiment type,

and attribute are located in the database, each associated conversion directive is

processed by the PCL. By consulting the database we can see that the GAMESS

application, performing a RHF experiment type, with the attribute X has one conversion

directive, Cartesian To Polar. When this directive has been processed by the PCL a new

database object is created, the X attribute is converted into polar coordinates, and this

value is loaded into the database.

57

In some cases the generic format may match the application-specific format, and thus no

conversion is required. In these cases no conversion directives are required. A new

database object is created, the value of the attribute is copied and this value is loaded

into the database. An example of an attribute that does not require any conversion

directives would be the molecule name. The GAMESS application representation of a

molecule name and the database’s match.

The processing of these directives completes the loading of the experiment run data into

the database. The result of this processing is shown in stage 2.3 of Figure 3-11. The

experiment run data can now be queried and reused in other experiment runs.

3.4The PCL And Data Incompatibility

3.4.1The PCL And A Conceptual Model

We now discuss why, when placing the results of experimental data from several

different programs into a database, all the programs must share a common conceptual

model. Without a common conceptual model the PCL would not be able to construct

application-specific representations of conceptual structures, as there would be no

common structure. The PCL would not be able to parse or convert these objects because

the common structure is used when performing these operations. Even if we assume that

these limitations could be addressed and this data could be loaded into the database, we

58

now have the problem of retrieving data with no common semantics. Data without a

meaning is clearly useless. Our work supports the conclusion that, “The key to

extensible computer-based chemistry systems and shared molecular structures lies in a

common conceptual model” [4].

The conceptual model is central to the ability to share meaningful data across

applications, but does not excessively limit those applications. The shared schema

represents the common data and theoretical basis that binds the applications. For

example, in the CCDB project all modeling programs must agree, at a conceptual level,

that a molecule has an energy and a collection of atoms of which it is comprised. The

applications must also agree that atoms are conceptually composed of an atom location

and an atom type. This agreement on a conceptual form does not describe or limit how

the components are actually modeled in the computational program. For example, all the

models can agree that an atom has an atom location. Each model can represent this

location in any way it sees fit. For example, the representation can be in polar or

Cartesian coordinates. Cushing notes in [2] that this common application domain is not

easily defined due to subtle nuances in the implied meaning of conceptual ideas.

3.4.2Conceptual Model Support For Data Model Compatibility

A central component of the PCL is the database schema. When created by the user the

schema represents a conceptual model (e. g. molecule). The PCL uses the conceptual

model to create a compatible data model. The PCL accomplishes this by using the

59

conceptual model as a template for the data model. The data model template is used by

the creation directives. The conceptual schema describes the generic object, while the

creation directives describe the particular representation of that conceptual object. The

creation directives are a statement of the data model in the CCOL. The conceptual

schema represents the conceptual objects of which the PCL creation directives create

complete application instances. In this manner the conceptual model is mapped to a

particular application data model. This mapping provides a level of indirection required

to support several data models on top of a single conceptual model.

The ability to support several data models on top of a single conceptual model allows the

experimental results from specific applications to be deposited into a generic repository

in a common format. Once in this store, experimental data can be view, queried, and

applied to a specific problem. A computational scientist who wishes to run an

experiment, can browse or query the databases for experiments involving molecules of a

similar class or type. Once these experiments have been located the scientist can be used

to produce initial guesses of the optimized molecular structure of a molecule.

Meaningful data can be gleaned from this warehouse of experimental data because of the

unified application schema.

60

4The PCL Design

In this section we will discuss the design of the PCL system. We will specifically discuss

why we chose to design and implement a generic parser rather than several application

specific parsers. We will also discuss how the PCL system supports the creation,

parsing, and conversion of data for arbitrary computational applications.

4.1Extensibility In A Conversion System

During the design phase of the project, the specification described in Chapter Three was

analyzed, and a design was outlined, and validated. The specification is outlined again in

Figure 4-1.

1. Creation of Data Representation

2. Locating of Data

3. Reading of Data

4. Converting of Data

5. Loading of Data

Figure 4-1 Five Functional Specifications For The PCL System

61

When designing the PCL we considered whether extensibility should be a major concern.

An extensible system will over the long term require less development effort than

customized conversion applications. The primary cost saving an extensible (i.e. generic)

system affords is a decrease in development and testing costs. Once a generic conversion

program is developed, the cost of supporting a new computational application is

incremental. The customized conversion program approach, on the other hand, requires

major components of the system to be redesigned, rewritten, and re-tested. As support

for additional applications are required, the incremental cost of development for an

extensible system overtakes the cost required for several customized conversion systems.

Dr. Judith Cushing is an experienced developer of complex computer systems. In her

thesis [2] she claims, based on her experience, that the initial development of a generic

conversion system would take 16 weeks. One week of additional work would be

required to modify table entries for each additional application. The customized

conversion system was estimated to take eight weeks for the first application. Four

weeks of development time would be required to develop additional customized

conversion applications. Figure 4-2 shows the amount of time required to support

different numbers of applications. The asterisk ‘*’ denotes the development break even

point, where the development cost of a customized system overtakes the cost of a generic

system.

62

Number Of

Applications

Supported

Generic Conversion

Application

Customized Conversion

Application

Development Time

Comparison

1 16 Weeks + 1 Week 8 Weeks 17-8

2 1 Week 4 Weeks 18-12

3 1 Week 4 Weeks 19-16

4 1 Week 4 Weeks 20-20 *

5 1 Week 4 Weeks 21-24

6 1 Week 4 Weeks 22-28

Figure 4-2 Development Time Comparison For Generic And Customized Conversion Systems

From Figure 4-2, we see that a generic conversion system is less expensive to develop

than a customized conversion application when support for four or more computational

applications are required. We expect that the computational legacy systems will continue

to be used and that the ability to easily use different applications will drive the scientist’s

desire to transfer this data to even more modeling and visualization applications. This

will increase the need for additional applications support.

For the above reasons we made extensibility a major concern in our design. We wanted

the ability to add support for new computational applications to the PCL without

requiring changes to, and recompilation of the source code. This goal was achieved by

using a table-driven approach. Our system design centered on using a table of directives

63

that control how the different steps in the conversion process are performed. Before

discussing how the table of directives are used in the conversion progress we will explain

conceptual and base objects.

4.2Conceptual And Base Objects

As explained in Chapter Three, the PCL requires a conceptual model that is shared

among all the computational applications. The PCL’s goal of data reuse requires us to

resolve syntactic differences among particular applications with a shared conceptual

model. At one level there is the conceptual model, with which all the applications agree.

On the other hand, the data model level describes different implementational

representations of the data described by the conceptual model. (Computational

applications may represent data differently.) Figure 4-3 shows the difference between

the conceptual model and the informational model of an atom. All three representations

shown in the data model can be used to represent an atom uniquely.

64

Atom Conceptual
Model

Informational
Model

Atomic
Number

Atomic
Name

Atomic
Abbreviation

Figure 4-3 Conceptual Model And Informational Model For "Atom"

We call each abstraction “within” the conceptual model a conceptual object. Figure 4-4

shows an example of a molecule conceptual object. A conceptual object can be

composed of other conceptual objects. A conceptual object that is a sub-component of

another conceptual object X is called an attribute of X. For example, in Figure 4-4, the

attributes of the “Molecule” conceptual object are “Name” and ”Final Energy”.

Molecule

Name Final Energy

Figure 4-4 The "Molecule" Conceptual Object With Attributes "Name" And "Final Energy"

65

All computational applications represent the conceptual schema with conceptual objects

connected in analogous structure. We refer to this as a conceptual object hierarchy.

Each computational application can physically represent the conceptual objects

differently in the informational model. We will now discuss how conceptual objects are

represented.

The physical representation of conceptual objects are described by base objects. Base

objects are physical storage locations used to contain data. Base objects are used to

represent the particular data model an application uses to represent a conceptual object.

For example, Figure 4-5 shows two base objects, integer and double.

Integer Double

Figure 4-5 An Example Of Two Base Objects

These two types of objects can be used to allow a conceptual object’s representation to be

associated with arbitrary base objects. With this flexibility, the physical representation

of a conceptual object can be changed for different applications. Figure 4-6 shows an

example of how four different computational applications might represent the atom

conceptual object.

66

Integer
(Atomic Number)

String
(Atomic Name)

AtomAtomAtom

String
(Atomic Name)

Atom

Float
(Atomic Weight)

Figure 4-6 Conceptual Object "Atom" With Four Possible Base Object Representations

We designed these two types of objects so that an application can create an arbitrary

physical representation for the conceptual objects and thus support the required

extensibility. These two types of objects can be used to create a conceptual object in the

form represented by a particular computational application.

4.3Operation Of The PCL

We will now discuss how the components of the PCL operate, after which we will

discuss each directive type in detail.

Once a computational experiment has been transferred back to the host computer by the

computational proxy, the PCL is started. The computational proxy then notifies the PCL

of the output filename, the computational chemistry application that produced the results,

and the type of computational experiment that was conducted. The PCL uses this data to

initialize itself.

67

The PCL then allocates space for conceptual objects associated with the conceptual

model. The hierarchy of conceptual objects is permanent and all objects are allocated as

persistent database objects. This hierarchy forms the structure on which the application-

specific representation is hung. Figure 4-7 shows a simple hierarchy of conceptual

objects for a molecule. At this point in the processing of the computational experiment

results, the hierarchy of conceptual objects does not have an application-specific

representation.

The following discussions involve a single hierarchy of conceptual objects. However,

the PCL is not limited to a hierarchy with a single root node. Multiple hierarchies of

conceptual objects would be processed as if each were a single hierarchy. The root

object of each hierarchy would merely need to be processed as described below.

Molecule

Atom

Type

Atom

TypeLocation Location

Figure 4-7 Conceptual Object Hierarchy For A Molecule With Two Atoms

68

The process of loading data involves five steps elucidated earlier in Chapter Three:

1. Creation of Data Representation.

2. Locating of Data.

3. Reading of Data.

4. Converting of Data.

5. Loading of Data.

4.3.1Operation Of The PCL Creation Directives

We will use a single conceptual object -- molecule -- as our example, and generalize the

operation of the PCL in the next section. The PCL processing begins by invoking the

load function for the root of the conceptual object hierarchy. The molecule object then

starts the first step in the loading process. This step is the creation of the application

representation for each attribute of the molecule. To accomplish this task the molecule

needs to find out how the computational application that created the experiment output

represents a molecule. The molecule object does not have the data needed to make this

determination and defers this decision to the PCL by invoking the PCL look-up-creation-

directive function and passing it the conceptual object. The PCL knows the

computational application and experiment type used to create the output file, because the

computational proxy passed this data to it when it was started. Figure 4-8 shows the

process of locating the creation directives for the conceptual object molecule.

69

PCLMolecule

Object-Oriented Database

1) The PCL Invokes the
Molecule’s Load Function

2) The Molecule Invokes the PCL’s
Look Up Creation Directive Function
for Molecule

3) The PCL Looks in the Object-
Oriented Database And Retreives the
Creation Directives

Figure 4-8 Creation Directive Look Up For A Molecule

The PCL looks up the representation of the molecule in the database using three pieces of

data. (1) It retrieves a list of creation directives. (2) Each creation directive is processed

by allocating transitory space for a new base object of the type described in the directive.

(3) The transitory space allocated is converted and saved in persistent storage when the

application representation is converted into the database format. This new base object is

then attached to the conceptual object, and the PCL function returns. Figure 4-9 shows

this procedure.

70

Molecule’s Creation Directives
Retreived From the Database

PCLMolecule

Object-Oriented Database

1) String
2) Double

Double String

1) The Base Objects Listed in the Molecule’s
Creation Directives Are Created

2) The Newly Created Base Objects are
Attached to the Conceptual Object

3) When All the Directives Are
Processed the PCL Returns

Figure 4-9 Creation Directive Processing For A Molecule

4.3.2Operation Of The PCL Parsing Directives

The second step in the loading process involves the location of data to be stored in the

base objects. To accomplish this task the molecule needs to locate the data to be loaded

into each base object. The molecule does not have the data needed to make this

determination and defers to the PCL by invoking the PCL look-up-parsing-directive

function and passing it the conceptual object and the base object. Figure 4-10 shows the

process of locating the parsing directives for the base object molecule.

71

PCLMolecule

Object-Oriented Database

Double String

1) The Molecule Invokes the PCL Look
Up Parsing Directive Function for
Molecule - String

2) The PCL Looks in the Object
Oriented Database and Retreives the
Parsing Directives

Figure 4-10 Parsing Directive Look Up For The String Attribute Of Molecule

The PCL is instructed to look up the parsing directives that describe how to locate the

data for a base object. It retrieves a list of parsing directives. Each parsing directive is

processed by executing the interpreter’s function with the supplied parameters. The PCL

maintains the current location within the textual results with a parsing cursor. The

execution of the parsing directives can cause the movement of the parsing cursor and the

reformatting of complex text. When all the parsing directives have been processed, the

PCL function returns. Figure 4-11 shows this procedure.

72

Computational Experiment Output

PCLMolecule

Object-Oriented Database

Double String

1) The PCL Processes Each Directive
Retreived From the Database,
Repositioning the Parsing Cursor

2) When All Directives are
Processed the PCL Returns

Molecule - String Parsing Directives
Retreived From the Database

SkipForward “Molecule Name:” First

Application Version: 12.5
Total Memory Used: 12
CPU Time: 4:17
Molecule Name: Ethylene
 
Nuclear Repulsion Energy: 57.92014 kJ

Figure 4-11 Parsing Directive Processing For String Attribute Of Molecule

Upon return from the PCL, the molecule’s load function can safely assume that the PCL

parsing cursor is properly positioned to read in the base class. The reading of the textual

data is step three. The molecule then invokes the read function for the base class whose

parsing directives were just processed. The base class then instructs the PCL to read in

the text and passes the PCL its base class type. When reading the text the PCL knows

what format the text should be stored in because it knows the type of the base class. The

PCL uses its parsing cursor as the starting point from which to read the text. When the

73

PCL has read the data into the base class it updates the parsing cursor and returns to the

base class read function. The complete process can be seen in Figure 4-12.

Computational Experiment Output

PCLMolecule

Object-Oriented Database

Double String
“Ethylene”

3) The PCL Reads a String From the
Computational Experiment Output Using
the Current Location of the Parsing
Cursor and Places This Data in the Base
Object

2) The String Base Class Invokes
the PCL Read Function

Application Version: 12.5
Total Memory Used: 12
CPU Time: 4.17 s
Molecule Name: Ethylene
 
Nuclear Repulsion Energy: 57.92014 kJ

1) The Molecule Invokes the
String Read Function

5) The String Read Function Returns
to the Molecule Load Function

4) The PCL Returns to the String
Read Function

Figure 4-12 Reading Value For String Attribute Of Molecule Using The PCL

The processing of the parsing directive for the double base object occurs in a similar

manner as the string base object. We will continue the example with the processing of

the conversion directives.

74

4.3.3Operation Of The PCL Conversion Directives

The fourth step of the loading process involves converting data at each conceptual model

level into the generic representation in the database. The PCL is instructed to look up the

conversion directives that describe how to convert the data contained in the base objects

into the generic representation. The PCL retrieves a list of conversion directives for each

base object. This process is shown in Figure 4-13.

PCLMolecule

Object-Oriented Database

Double
“57.92014”

String
“Ethylene” 1) The Molecule Invokes the PCL’s Look

Up Conversion Directive Function for
Molecule - Double

2) The PCL Looks in the Object-
Oriented Database and Retreives the
Conversion Directives

Figure 4-13 Conversion Directive Look Up For Double Attribute Of Molecule

The PCL processes the list of conversion directives retrieved. During the conversion

process the basic objects associated with the conceptual object are replaced by the base

objects for the generic representation. These base objects are permanent and are

allocated in the database. In Figure 4-14 the application representation of the Molecule’s

energy is converted from kiloJoules to Joules. In our implementation the registrar can

75

make errors of accuracy like converting real to integer; this should be flagged in a

production system.

PCLMolecule

Object-Oriented Database

Double
“57.92014”

String
“Ethylene”

1) The PCL Processes Each Directive
Retreived from the Database

2) When all the Directives are
Processed the PCL Returns

Molecule - Double Conversion
Directives Retreived from the
Database

KiloJoulesToJoules

Double
“57920.14”

Figure 4-14 Conversion Directive Processing For The Double Attribute Of Molecule

The fifth and final step in loading the experiment data into the database is placing the

newly formed generic conceptual hierarchy into the database. This step merely requires

the root object to be loaded into the database. Once this has been performed, all the

objects that make up the object hierarchy can be reached by traversing the hierarchy.

76

4.3.4Operation Of The PCL With A Complex Conceptual Hierarchy

Now that we have explained how the PCL operates with a single conceptual object we

need to discuss how the operation proceeds when there are several levels of conceptual

objects. A design tenet has been to allow an object to create, parse, and convert only that

data that is directly available to that object. Using the conceptual object hierarchy shown

in Figure 4-15, the molecule object can create whatever attributes are required to model a

molecule for the particular computational application and experiment type. However, the

molecule object cannot create, parse, or convert data in the atom object.

DoubleMolecule

Atom Double

Type
Double

Double

Unsigned

Location

Atom Double
DoubleAtom

Conceptual Object
Hiearchy

Application-Specific
Representation

Figure 4-15 Conceptual Object Hierarchy For Molecule With An Application-Specific Model Representation

77

This design decision causes the processing of the PCL to percolate down the conceptual

object hierarchy as directive requests are processed at each level. Figure 4-16 shows the

processing that occurs when a conceptual hierarchy is loaded. In step one, the PCL

invokes the molecule’s load function to begin the processing of the hierarchy. In the

second step the molecule process its application-specific representation as described

earlier. When this processing is complete we reach step three and the molecule invokes

the load function for each of its attributes. In our example hierarchy this consists of a

single atom. The atom object then processes its application-specific representation and

step four is complete. The atom object now needs to invoke the load function for each of

its attributes. In our example the atom type’s load function is invoked in step five. The

application-specific processing begins in step six. Once complete the atom type’s load

function returns as there are no additional conceptual objects for which the load function

can be invoked. The atom load function now can invoke the load function for the atom

location, as is shown in step seven in our figure. When the atom location processing

finishes in step eight, it returns to the atom object. Neither the atom object nor the

molecule object has additional conceptual objects to which the load message should be

forwarded so their load functions return a level. The PCL’s original load function call

returns at this point. The conceptual hierarchy now has a generic database representation

of the experiment data associated with it. The PCL can insert the root of the conceptual

hierarchy into the database thus completing the processing.

78

Molecule

Type Location

Atom

PCL

1) Load Function Call

6) Application-Specific Processing

3) Load Function Call

5) Load Function Call
7) Load Function Call

2) Application-Specific Processing

4) Application-Specific Processing

8) Application-Specific Processing

Figure 4-16 Processing Steps For The Loading Of A Conceptual Object Hierarchy

We will now explain the design of each type of directive used in the PCL system.

4.4Creation Directives

Creation directives are instructions used by the PCL to create an application-specific

representation of a conceptual object. Creation directives allow the creation of this

representation to be different for each computational application. Creation directives are

stored in the database for each computational application and experiment type. The

registrar enters these directives into the database when support for the application is

being added. The current creation directives are:

79

· Double

· Unsigned Short

· Signed Short

· Unsigned Long

· Signed Long

· String

These directives refer to data types in the ObjectStore database and thus are machine

independent.

Each conceptual object has a list of directives that define what base objects are used by

the application to model it. Creation directives are processed when a conceptual object

invokes the PCL’s create application-specific representation function. This processing

occurs before the conceptual object is ready to be parsed from the experimental results.

A simple example of this process is the creation of the nuclear repulsion energy of a

molecule. As shown in Figure 4-17, the application represents nuclear repulsion energy

as a double. The only creation directive for the nuclear repulsion energy of a molecule is

double. A more complex example would be an atom, also shown in Figure 4-17. An

atom is conceptually made up of an atom-location and an atom-type. The atom-location

and atom-type are conceptual objects that have application-specific representations. The

application represents the atom-location as two doubles. These two doubles represent the

80

polar coordinates of the atom. The atom type is made up of an unsigned integer

representing the atomic number of the atom.

Nuclear Replusion Energy

Double

Atom

Location Type

Double UnsignedDouble

Figure 4-17 Conceptual Objects With Application-Specific Representation

In general the conceptual object hierarchy forms an acyclic graph, which has base objects

at the leafs and complex objects at the root and interior nodes. The conceptual object

hierarchy has base objects bound to it by the PCL when it processes the creation

directives. The creation directives are an important portion of the extensibility available

in the PCL system.

4.5Parsing Directives

The parsing directives are instructions used to communicate how to parse the data in the

computational experiment’s results. There are two types of parsing directives,

positioning directives and reformatting directives. We will discuss each type below.

81

4.5.1Positional Parsing Directives

The PCL maintains a current location in the output file of the computational experiment.

This data is maintained in a parsing cursor. The parsing cursor marks the place from

which the PCL will read its next token. The parsing positioning directives are used to

reposition the parsing cursor so that different value can be read. The parsing positioning

directives are:

· Skip After (String, Occurrence)

· Skip Before (String, Occurrence)

· Next Line ()

· Previous Line ()

· Yield ()

The Skip After directive allows the parsing cursor to be moved forward. There are two

parameters required string and occurrence. The string is the text for which to look. The

occurrence is the occurrence for which to look. Occurrence can be the first or last

occurrence of the text. The Skip Before directive provides the same function as Skip

After except that the processing proceeds toward the beginning of the file. The Next

Line and Previous Line directives move the parsing cursor to the next and previous line

respectively. The yield directive is used to instruct the PCL to stop processing parsing

directives.

82

4.5.2Positional Parsing Directives Example

We will work through an example using the positional parsing directives by specifying

the directives required to parse the conceptual object energy from computational

experiment output in Figure 4-18. To simplify the example, we will assume that the PCL

has not executed any other positional parsing directives. The location of the parsing

cursor is crucial to this process. Initially the parsing cursor is at the start of the file. It

moves sequentially, and its position is changed by the positional parsing directives and

when a created object is loaded. The first instruction would be to skip to the beginning

of the energy number in the text file. This would be specified with Skip To parsing

directive, with the String “NUCLEAR REPULSION ENERGY IS” and Occurrence as

First. After this parsing directive has been processed the parsing cursor would be located

after the last character in the search string. The next directive would be Yield. The yield

directive would signify to the PCL that the positioning and reformatting required for this

object is complete, and that the energy value could now be read.

THE NUCLEAR REPULSION ENERGY IS 10.1219660000

Figure 4-18 Textual Representation Of Energy For GAMESS Computational Application

83

4.5.3Reformatting Parsing Directives

In most cases the computational experiment output has been formatted by the

computational application to be viewed by a scientist rather than to be parsed by another

program. This brings us to the next type of parsing directives, the reformatting parsing

directives. These directives are used to define how the output is to be reformatted before

being parsed. The reformatting is performed in order to facilitate the description of how

to parse complex data contained in the matrix. The parsing formatting directives are:

· Unfold Matrix (Folded Pages, Rows In Matrix Header, Rows In Matrix

Body, Columns In Matrix Row Header)

· Denormalize Matrix (Copy Length, From Relative Line, From Offset, To

Relative Line, To Offset, CopyIf Blank, CopyIf Line, CopyIf Offset, CopyIf

Length, MatrixStart, MatrixEnd, Increment)

The Unfold Matrix and Denormalize Matrix directives are complex. These two

directives will be explained in the context of an example.

4.5.4Reformatting Parsing Directives Example

The Unfold Matrix directive is responsible for reformatting a matrix that has been folded

across several pages. Figure 4-19 shows an example of a folded matrix. In this example,

84

note that the column and row headers have been duplicated on each page of the folded

matrix.

 1 2 3
 (AG) (B1U) (AG)
 EIGENVALUES -- -11.17072 -11.17068 -0.58548

1 1 H 1S 0.69762 0.69791 0.00852
2 2S (I) 0.06537 0.07075 -0.02120
3 2 O 1S 0.69762 -0.69791 0.00852
4 2S (I) 0.06537 -0.07075 -0.02120
5 3 H 1S (I) 0.11847 -0.17857 0.05174
6 1S (O) 0.11078 -0.15647 0.99778

 3
 (AG)
 EIGENVALUES -- -0.58548

1 1 H 1S 0.00852
2 2S (I) -0.02120
3 2 O 1S 0.00852
4 2S (I) -0.02120
5 3 H 1S (I) 0.05174
6 1S (O) 0.99778

Figure 4-19 A Folded Matrix Before And After Transformation

It is difficult to define how to parse the matrix in Figure 4-19 using the positional parsing

directives listed earlier. The Unfold Matrix directive is used reformat the folded matrix

into a single large unfolded matrix. The parsing of a single large matrix is much easier to

describe using the positional parsing directives. The Unfold Matrix makes this

transformation by locating the body of the matrix on each folded page after the first, and

appending it to the first matrix page. This movement is graphically shown in Figure 4-

19.

85

 1 2
 (AG) (B1U)
 EIGENVALUES -- -11.17072 -11.17068

1 1 H 1S 0.69762 0.69791
2 2S (I) 0.06537 0.07075
3 2 O 1S 0.69762 -0.69791
4 2S (I) 0.06537 -0.07075
5 3 H 1S (I) 0.11847 -0.17857
6 1S (O) 0.11078 -0.15647

 3
 (AG)
 EIGENVALUES -- -0.58548

1 1 H 1S 0.00852
2 2S (I) -0.02120
3 2 O 1S 0.00852
4 2S (I) -0.02120
5 3 H 1S (I) 0.05174
6 1S (O) 0.99778

Folded Page

Columns In Matrix Row Header Rows In Matrix Body

Rows In Matrix Header

Figure 4-20 Parameters Used In The Unfold Matrix Directive

There are several parameters required in the Unfold Matrix directive. The Folded Pages

parameter represents the number of pages in the folded matrix. In Figure 4-20 this value

would be two. The first page holds columns one and two, the second page holds column

three. The Rows In Matrix Header parameter is the number of rows in the matrix header.

In the example this value is three. The Row In Matrix Body parameter is used to

describe how many rows there are in the matrix body. This value is six. The Columns In

86

Matrix Row Header parameter is the number of columns in the matrix row header. This

value is 31 in the example. When the Unfold Matrix directive is processed the matrix is

reformatted using the parameters passed to the PCL. Figure 4-21 shows the resulting

matrix.

 1 2 3
 (AG) (B1U) (AG)
 EIGENVALUES -- -11.17072 -11.17068 -0.58548

1 1 H 1S 0.69762 0.69791 0.00852
2 2S (I) 0.06537 0.07075 -0.02120
3 2 O 1S 0.69762 -0.69791 0.00852
4 2S (I) 0.06537 -0.07075 -0.02120
5 3 H 1S (I) 0.11847 -0.17857 0.05174
6 1S (O) 0.11078 -0.15647 0.99778

Row Header

Figure 4-21 Matrix Representation After The Unfold Matrix Directive Processing

Once a matrix is in an unfolded form, as seen in Figure 4-21, it is easier to describe how

to parse. Describing how to parse the row headers, however, still remains difficult.

The first problem is that duplicate data has been removed from successive row headers.

This has been done to help scientists read the experiment results. Specifically, on line

one of Figure 4-21 there are two ‘1’’s, the letter ‘H’, and the string “1S”. Line number

two does not have the number one or the letter ‘H’. These fields are the same as the

87

previous line and have been eliminated in an effort to visually denote that this line’s data

is related the previous line.

The second problem is visible on line two of the unfolded matrix. The second line has an

additional string present, “(I)”, that was not present on line one. This string is actually

part of the “2S” string just before it, however, there is white space between the two

strings. The parsing of the first string will stop when the space character is read. In

order to avoid this, the second string needs to be moved next to the first string. This will

allow the two related strings to be retrieved as a single string rather than as two separate

strings.

Both of the problems we have just describe are addressed by the Denormalize Matrix

directive. This directive is responsible for moving data in the computational experiment

output. The Denormalize Matrix directive is powerful and has numerous settings. Its

parameters can be divided into four types, Move From data, Move To data, Move When,

and a Move How Long. Each will be briefly discussed.

Move From data has three components that control how data will be moved between

lines. It consists of three parts: Length, Line, and Offset. Move Length denotes the

amount of data that will be moved. From Relative Line is the relative line number from

which to move data. This number is relative to the current line number. From Offset is

88

the offset from which to begin moving data. To Relative Line is the relative line number

to which data will be moved. To Offset is the offset to which data will be moved.

Move When data has a single setting that controls when a move is performed. There are

two options for this setting: move if blank and move if not blank. The move will be

performed if the test is true.

The Move When data has three components (like the Move From components above).

Move If Relative Line and Move If Offset options are the same as the To and From line

and offset variables given above. Move if Length is used to control the amount of data

tested.

The final type is the Move How Long and contains three options: Start Relative Line,

End Relative Line and Increment. Start Line denotes on which relative line to begin

processing. End line denotes on which relative line to stop processing. These settings

are relative to the current line number. The Increment setting controls how many lines to

increment after checking a line to be moved.

We will now explain how this directive can be used to eliminate the two final problems

we have with the unfolded matrix. The processing of the Denormalize Matrix directive

89

will create a final matrix that we call “well-formed”. The well-formed matrix allows for

an easily described parsing process.

 1 2 3
 (AG) (B1U) (AG)
 EIGENVALUES -- -11.17072 -11.17068 -0.58548

1 1 H 1S 0.69762 0.69791 0.00852

2 2S (I) 0.06537 0.07075 -0.02120
3 2 O 1S 0.69762 -0.69791 0.00852
4 2S (I) 0.06537 -0.07075 -0.02120
5 3 H 1S (I) 0.11847 -0.17857 0.05174
6 1S (O) 0.11078 -0.15647 0.99778

Figure 4-22 Elimination Of White Space Between Two Strings

Our first goal is to specify how to get the optional second string next to the first string.

First assume that before this directive was executed the current line was set to the

beginning the matrix. This example has three rows in the matrix header and six rows in

the matrix body. We will want to process each line in the matrix body. So we begin

processing at relative line zero and end on relative line five. We should process each

line, thus, the increment is one. Now we only need to specify when, to where, and from

where to move.

We can look at where each second string begins on each line. If the line is blank we do

not have a second string, and we do not need to move it. If there is a string we should

move it back two spaces. Converting this data we have a move length of five characters.

90

Two characters of these five represent the space between the first and second strings and

the next three represent the maximum length of the second string. The relative line

number is three because we want to start processing line three past the current parsing

location. Recall that we assumed this is where we began reformatting the matrix. The

offset of the second string is 28 characters.

The final directive is:

Denormalize Matrix (Copy Length 5, From Relative Line 3, From Offset 28, To

Relative Line 3, To Offset 26, CopyIf Blank, CopyIf Line 3, CopyIf Offset 26, Copy If

Length 2, Matrix Start 0, Matrix End 5, Increment 1)

 1 2 3
 (AG) (B1U) (AG)
 EIGENVALUES -- -11.17072 -11.17068 -0.58548

1 1 H 1S 0.69762 0.69791 0.00852

2 2S(I) 0.06537 0.07075 -0.02120
3 2 O 1S 0.69762 -0.69791 0.00852
4 2S(I) 0.06537 -0.07075 -0.02120
5 3 H 1S(I) 0.11847 -0.17857 0.05174
6 1S(O) 0.11078 -0.15647 0.99778

Figure 4-23 Denormalization Of Data In The Row Header

91

Our second goal is to duplicate the atom number and abbreviation on any successive line

that does not contain this data. The determination of the parameters for this directive

proceeds in a similar manner to the previous example. Figure 4-24 shows the final well-

formed matrix, after this final directive has been processed.

 1 2 3
 (AG) (B1U) (AG)
 EIGENVALUES -- -11.17072 -11.17068 -0.58548

1 1 H 1S 0.69762 0.69791 0.00852
2 1 H 2S(I) 0.06537 0.07075 -0.02120
3 2 O 1S 0.69762 -0.69791 0.00852
4 2 O 2S(I) 0.06537 -0.07075 -0.02120
5 3 H 1S(I) 0.11847 -0.17857 0.05174
6 3 H 1S(O) 0.11078 -0.15647 0.99778

Figure 4-24 Final Well Formed Matrix

Through the use of the reformatting directive, complex transformation can be performed

on the experiment output. These transformations ease the complexity of describing how

text is located and parsed in computational experiment files. The positional and

reformatting parsing directives form a powerful combination that allow complex file

formats to be parsed and thus aid the extensibility in the of the PCL system.

92

4.6Conversion Directives

We have not implemented generic conversion directives in the PCL interpreter.

However, we have designed this portion of the system to provide flexibility. This

subsection contains some ideas about such future work.

The conversion directives are used to communicate to the PCL what conversion

functions need to be applied to a conceptual object represented in an application-specific

representation. Invoking the conversion functions on the conceptual object converts the

application-specific representation into the database’s representation. Figure 4-25 shows

this graphically.

ConversionApplication-Specific
Representation

Generic Database
Representation

Figure 4-25 Conversion Of Application-Specific Representation Into Generic Database Representation

For example, the GAMESS application might represent the conceptual object atom type

as the atomic number as seen in Figure 4-26. The conceptual object atom will have an

application-specific representation as an integer. The database may represent the

conceptual object atom type as the atomic weight of the atom. The atom in the generic

database representation would have a representation of a float. The conversion directive

is responsible for stating what functions must be applied to convert the integer

representing the atomic number to the float representing the atomic weight.

93

Integer
(Atomic Number)

Atom Atom

Float
(Atomic Weight)

Conversion

Application-Specific
Representation

Generic Database
Representation

Figure 4-26 Conversion Of Application-Specific Representation Onto Generic Database Representation

There can be several conversion directives associated with converting a conceptual object

from an application-specific representation into a generic database representation. An

example would be converting a unit of measure from an application-specific

representation of kilograms to a generic database representation of ounces. Assume that

we have two conversion directives, one conversion directive for eliminating the kilo unit

prefix and a second conversion directive that converts grams to ounces. To make the

needed conversion we first apply the kilograms to grams conversion directive. Then we

apply the grams to ounces conversion.

The reader might observe that in simple cases, syntactic conversions could be

automatically applied. An example would be converting an unsigned integer into an

unsigned long. This type of conversion is possible, but would be of limited benefit. The

problem that arises is that some semantic data for the base object is not available. This

problem can be demonstrated by looking at a promising case. If the application’s

94

representation of the conceptual object “Nuclear Repulsion Energy” were a double and

the database’s representation a float, a conversion could be automatically applied. The

problem is that there may be a conversion needed to change the units of measure on the

double. This problem can occur even when the two objects are of the same base object

type. For this reason we do not automatically promote base objects in the conversion

process.

95

5The PCL Implementation

This chapter will explain the implementation of the PCL system. We will specifically

discuss the object-oriented programming concepts used to implement the design outlined

in Chapter Four. The benefit that object-oriented programming provided will be

discussed next, followed by a discussion of the language and database systems chosen for

implementation. We will also explain how conceptual and base objects were

implemented. Parsing directive implementation will be considered, as will several

aspects of directive processing. The PCL message-forwarding process will be described

in the final section.

5.1Object-Oriented Programming

Object-oriented programming is a method of programming where messages are sent to

objects. Objects are abstractions of items being modeled. The abstraction includes the

messages to which the objects respond. Figure 5-1 shows an example of a molecule

object.

 Molecule

 Add Atom ()
 Remove Atom()
 Total Mass ()

Object Name

Messages Understood

Figure 5-1 Interface For The Molecule Object

96

The object understands the Add Atom, Remove Atom, and Total Mass messages. These

messages form an external interface that other objects can invoke. Notice that the mass

units and number of atoms in the molecule are not included as part of the external

interface. An object’s abstraction need only capture the data necessary to model the

entity to other objects. For the example we assume that this abstraction is sufficient.

Messages sent to objects constitute requests for data about that object; objects respond to

messages. In Figure 5-1 the Molecule object can respond to the Add Atom, Remove

Atom, and Total Mass messages. When a message is sent to an object, the object

processes the message and takes appropriate action. This action may involve changing

the object’s internal state or sending messages to other objects. Figure 5-2 shows an

example of the Molecule object responding to the Total Mass message.

97

 Molecule

 Total Mass ()
{
 Total = 0
 For Each Atom {
 Send Mass Message to Atom
 Add Response to Total
 }
 Return Total
}

 Atom Atom

Mass () Mass ()

1) Total Mass Message is Sent
to Molecule Object

2) Molecule Sends Mass
Message to Each Atom
Associated With This Molecule

Implementation of Total
Mass Message

Figure 5-2 Molecule Object's Processing Of The Total Mass Message

In this example the Molecule object sends the Mass message to two Atom objects

associated with the Molecule at an earlier time and aggregates their mass.

We used four object-oriented concepts during the implementation of the PCL system:

abstraction, encapsulation, inheritance, and polymorphism. We will define each of these

terms and briefly discuss their importance in the development of the PCL system.

98

Discussion of their benefits will be deferred until specific portions of the system are

discussed.

Abstraction is the set of messages to which an object responds. Abstraction was used to

define what the object was intended to model and what operations could be performed on

the object.

Encapsulation is concealing how an object is internally modeled. Encapsulation and

abstraction were used to partition implementation details from their abstraction or

external interfaces. This allowed different internal representations of objects to be

examined without requiring modifications to other object types.

Inheritance is the ability to derive an object’s interface and implementation from the

interface of another object. The object that is derived from is called the parent object;

the object that is derived is the child object. Inheritance also allows a child object to

selectively processes messages differently that the parent object; in this case the child is

considered a specialized type of the parent. The child object can accept the default

processing available from the parent object or can override the parent’s implementation.

Inheritance is the main idea that differentiates object-oriented programming from

structured programming concepts.

99

Polymorphism is the ability of a message to be processed differently by different objects.

Polymorphism allows objects specialized through inheritance to respond to the same

messages as the parent object, but process the message differently.

5.2Object-Oriented Solutions To Development Problems

Development problems occur during the creation of any large computer system. In this

section we will discuss two problems we encountered and how we used object-oriented

solutions to solve them. The first problem we will consider is the duplication of common

methods and the other is the lack of support for lists of heterogeneous objects. We will

explain each of these below. How these two solutions were used in the development of

the PCL system is discussed in sections 5.4-5.8.

Sometimes in a system two functional areas perform similar processing, often duplicating

the methods that perform this processing is inefficient for several reasons. First, code

maintenance must be performed in several locations. Second, the size of the program is

needlessly increased.

We used inheritance to avoid placing duplicate methods in several locations. Our

approach involves factoring out the common methods from each object. We call this

technique method factoring. The factored methods are placed into a parent object.

100

Objects that need to use the common methods are derived from the parent object, thus

sharing the implementation. Figure 5-3 shows the method factoring for the Link method.

Parsable Object

Link ()
{ ...
}

Atom LocationAtom

Atom LocationAtom

Link ()
{ ...
}

Link ()
{ ...
}

Figure 5-3 The Process Of Factoring A Method To A Parent Class

In the example above, the Atom and Atom Location objects have the same Link method.

In order to share this method, we create a new parent object called Parsable Object. The

code for the shared method is added to the parent object. Deriving the Atom and Atom

Location objects from the Parsable Object allows the sharing of the Link implementation.

There are several benefits associated with factoring similar methods into a parent object.

First, the maintenance of the system is simplified because there is only one location to

make changes to the shared method. Second, the code is smaller because the method is

not duplicated in several locations.

101

The second problem we will address is the lack of support for lists of heterogeneous

objects. During the development of a system it is common to maintain a list of objects.

This could be a list of integers, doubles, or structures. Most languages require a list of

objects to all be of the same basic type. When several different types of objects must be

maintained a heterogeneous list is useful.

Inheritance was used to allow support for lists of heterogeneous objects. Our approach

has two parts. The first part involves deriving all the objects that could be placed in the

list from a single parent object. The second part consists of having each object derived

from the parent override a function that returns the object’s type. We call this technique

parent factoring. Figure 5-4 shows the parent factoring for the Integer, Double, and

Long objects. Each of the three objects have been derived from the Parsable Object

parent object. Each has also overridden the Type method.

102

LongDouble

Array Of Parsable Objects

Integer

Type()
{
 Return (Integer)
}

Type()
{
 Return (Double)
}

Type()
{
 Return (Long)
}

Parsable Object

Type()
{
 Return (Parsable Object)
}

Figure 5-4 The Process Of Parent Factoring

The bottom of Figure 5-4 shows an array of three Parsable Objects. The Integer, Double,

and Long objects can all be placed into any array of type Parsable Object. This is

because they have all been specialized from this object type. This means that they inherit

all the methods of the parent type and they can respond to the same messages.

When an object is retrieved from the list it considered a Parsable Object, not the actual

type of the object. This is because the type of the array is Parsable Object. We need the

ability to infer the actual type of an object placed in the list. In step two, each object

derived from the Parsable Object was required to override a function that returned the

object’s type. This function allows us determine the type of an object and then cast it

103

back to the correct specialized type. This is necessary because the objects being read in

reside in storage and are not able to inform the parser of their types.

In this section we have discussed two of the problems we encountered during the

development of the PCL system. These two problems appeared several times during the

development of the system. We explained how we used object-oriented solutions to

solve them.

5.3Language And Database Selection

In order to be able to leverage the benefits of abstraction, encapsulation, inheritance, and

polymorphism we needed to select an object-oriented programming language and

database for system development. We selected the C++ language [8] to implement the

PCL. This decision was primarily because the Chemists we worked with were already

working with C++ and required us to use C++ in this project.

In an effort to select a database, a feasibility study was conducted. The study consisted

of evaluating the GemStone and ObjectStore object-oriented databases. Either product

could have been used to develop the system. The study demonstrated to us that, at that

time, ObjectStore had a better C++ database interface. ObjectStore was selected as the

database for the project for this reason.

104

5.4Structure Of Conceptual and Base Objects

As described in Chapter Four there are two types of objects used in the PCL: conceptual

objects and base objects. Conceptual objects model data in the discipline’s conceptual

schema. Conceptual objects do not specify a physical representation. Base objects are

used to create application-specific representations of the conceptual objects. Base objects

are attached to a conceptual object to give it a physical representation.

Conceptual objects need the ability to associate base objects with them at run time. This

association allows the conceptual object to be modeled in different ways by

computational applications. We implemented this by deriving the conceptual and base

objects from a parent object called the parsable object. Figure 5-5 show this graphically.

We will first discuss why conceptual objects were derived in this manner and then

consider the reasons for deriving base objects.

Conceptual Object Base Object

Parsable Object

Figure 5-5 Parsable Object With Derived Conceptual And Base Objects

105

Deriving the conceptual object from a parent class simplifies the linking of base objects

with conceptual objects. This is because we can use method factoring to implement the

linking in the parent object rather than in each conceptual object.

Deriving the conceptual objects in this manner simplifies the maintenance of the system

because there is only one location to make changes to the object linking code. It also

makes the code smaller because the link management is not duplicated in several

locations. An additional benefit of inheriting the conceptual object from the parsable

object is the clear delineation of what functions needed to be implemented for additional

conceptual object types. The clear distinction of the interface helps with the maintenance

of the object hierarchy as changes are made to the system

Base objects are derived from parsable objects for two reasons. The first reason involves

the implementation of the links between conceptual objects and base objects. We used

parent factoring to implement the links a list of pointers to parsable objects.

The second reason stems from the implementation of the parsing directives and will be

discussed in section 5.6.

106

5.5Structure Of The PCL Directives

Now that we have discussed the implementation of the conceptual and base objects we

turn our attention to the PCL directives. The PCL uses three types of directives to

control the loading of experiment data. At different times during the loading process the

PCL is instructed to look into the database and retrieve a list of directives to process.

This look up of directives is performed using the conceptual object type and possibly the

base object type. After this list has been retrieved the PCL processes each directive and

returns. Figure 5-6 demonstrates this general procedure.

PCLMolecule

Object Oriented Database

1) The Molecule Invokes The PCL’s
Look Up Directive Function For
Molecule

2) The PCL Looks In The Object
Oriented Database And Retrieves The
Directives

Figure 5-6 Generic Directive Look Up Procedure

When implementing the parsing directives, we used parent factoring and derived all the

directives from a single parent object. This parent object is called the parsing directive

base. Parent factoring allowed the list of parsing directives to be stored as a single list of

type parsing directive base and simplified the storing and retrieving of parsing directives.

107

Once the list of type parsing directive base is retrieved it can be iterated through by the

PCL. Before processing each directive in the list the PCL first determines the actual type

of the directive. This is accomplished by sending the directive a message that has been

overridden by each child object. This method returns the type of specialized directive.

Parent factoring allows a generic list of parsing directives to be maintained, while

allowing each directive to retain it’s specialized directive data.

5.6Processing Of Creation Directives

Recall from Chapter Four that the PCL processing begins by invoking the load function

for the root of the conceptual object hierarchy. Ultimately the determination of the

application’s representation of this conceptual object is deferred to the PCL. This is

accomplished by the conceptual object invoking the PCL’s look-up-creation-directive

function and passing the conceptual object whose representation should be determined.

This process is shown in Figure 5-7.

108

PCLMolecule

Object Oriented Database

1) The PCL Invokes The
Molecule’s Load Function

2) The Molecule Invokes The PCL’s
Look Up Creation Directive Function
For Molecule

3) The PCL Looks In The Object
Oriented Database And Retreives The
Creation Directives

Figure 5-7 Creation Directive Look Up For A Molecule

In order to accomplish this, we needed the ability to pass a conceptual object to the PCL

and be able to determine the type of the object passed. This is accomplished by

declaring the PCL’s look up method to take a parsable object type. This will allow any

conceptual object to be passed to this function. This is because the conceptual object

type is a specialized from of a parsable object type. Each conceptual object has a method

that returns the conceptual object actual type. This allows the PCL to determine the

conceptual object's type and look up the proper directives.

109

5.7Processing Of Parsing Directives

Later in the processing of the conceptual object the PCL is invoked and required to look

up the parsing directives for each attribute. Again the location of the parsing directives is

deferred to the PCL. This occurs by having the conceptual object invoking the PCL’s

look-up-parsing-directive function. When this function is invoked it passes the

conceptual object and the base object whose parsing directives are to be located. Figure

5-8 graphically represents this processing.

PCLMolecule

Object Oriented Database

Double String

1) The Molecule Invokes The PCL Look
Up Parsing Directive Function For
Molecule - String

2) The PCL Looks In The Object
Oriented Database And Retreives The
Parsing Directives

Figure 5-8 Parsing Directive Look Up For The String Attribute Of Molecule

In order to accomplish this, we needed the ability to pass a conceptual object and a base

object to the PCL. Once this data has been passed to the PCL we need a method of

determining the type of each object passed. This problem is similar to the problem noted

in the implementation of the creation directives. The only difference in this case is that

we are passing two objects to the PCL. We solve this problem by declaring the PCL’s

look up method to take two parsable object types. This will allow any conceptual object

110

and base object to be passed to this function. This is because the conceptual object and

base object types have been specialized from of a parsable object type. Each conceptual

and base object has a method that returns the actual type of the object. This allows the

PCL to determine the conceptual and base object’s type and look up the proper

directives.

5.8Conversion Directives

Conversion directives have not been implemented in the current version of the PCL.

Their implementation would be very similar to that used in the parsing directives. An

implementation of this type would be straight forward extension to the PCL.

5.9Operation Of The PCL

Now that we have discussed the implementation of the different objects that make up the

PCL we need to discuss how they work together to load a experiment. The primary

implementation tenet was that the PCL directive messages were to be forwarded down

the conceptual object hierarchy and be handled at each level. The method we used to

send this cascading message was the C++ input operator >>. Each conceptual object is

required to understand the input operator message. This message is responsible for

invoking the procedures that create the application representation of the conceptual

object, parse the attached base objects, and forward the message to the conceptual

111

object’s sub-components. An example of the input operator for an atom is listed in

Figure 5-9.

 // Create Application Representation For Atom - Section One
 PCL.CreateApplicationRepresentation (*this);

 // For Each Base Object Attached To The Atom - Section Two
 // Process The Parser Directives For The Base Object
 // Send The Base Object The Input Message

 unsigned short Index=0;

 for (Index = 0 ; Index < NumberOfApplicationObjects() ; Index++) {
 PCL.ProcessDirective(*this, GetApplicationObject (Index));
 GetApplicationObject (Index).operator>>(PCL);
 }

 // Process Parser Directives For Concaputal Object - Element - Section Three
 // Send The Element The Input Message
 PCL.ProcessDirective (*this, Element);
 Element.operator>> (PCL);

 // Process Parser Directives For The Conceptual Object - AtomLocation
 // Send The AtomLocation The InputMessage
 PCL.ProcessDirective (*this , AtomLocation);
 AtomLocation.operator>> (PCL);

Figure 5-9 C++ Input Operator For Conceptual Object Atom

The input operator shown has three main sections. The beginning of each section is

labeled in a comment. The first section shows the creation application-specific

representation of the conceptual object. The second section is the parsing of the base

objects that have been associated with the conceptual object. The third section is the

forwarding of the input operator to the next conceptual level.

112

Describing the input operator method is instructive in demonstrating how the directives

are processed. For this discussion we assume that an atom conceptually composed of an

element and an atom location. When the conceptual object atom is sent the input

operator message it must create an application-specific representation of itself. This

involves creating and linking base objects to itself. This processing is show in the first

section of Figure 5-9 above.

In section two each base object created and linked to the conceptual object in section one

is parsed. The parsing involves first positioning the PCL parsing cursor and then

instructing the base object to read in a value using the PCL. When a base object receives

the input operator message it retrieves data from the PCL at the parsing cursor’s location.

The base object cannot forward the message to any other objects because the base objects

are not composed of additional levels.

The final step in the processing is section three. The input message is sent to the next

deeper level in the conceptual hierarchy. At that level the processing of section one

through three continues as described above.

Since the PCL is a sub-component of the CCDB project that is not directly used by a

computational chemist, Judy Cushing and David Maier reviewed the PCL’s

113

implementation. The PCL system’s implementation was validated by loading a molecule

orbital for the GAMESS application. The molecule orbital is a complex conceptual

object comprised two additional conceptual levels and involves the reformatting of

complex matrix data. The loading of this conceptual object required the PCL to process

all the parsing directives explained in Chapter Four.

5.10Timing Of The PCL

In order to demonstrate the ability of the PCL directives to control the parsing of

experiment results we used samples from two different computational chemistry

applications. We then created the PCL directives necessary to parse the most complex

object contained in the output, namely the molecular orbitals. A production system

would require all the information in the optimized molecular configuration to be loaded

into the database. The directives required to load the simpler objects were not included

because they do not demonstrate any additional functionality.

We selected Gammes and Gaussian as the computational chemistry applications for our

tests. This selection was made because experimental runs for these two applications were

readily available and are used by our collaborators.

The timings were gathered running on a 80 MHz Intel i486, running Windows NT Server

3.5. The system has 32 Megabytes of memory and contains a Samsung 559 Megabyte

114

drive with a FAT file-system. The PCL system was compiled using Borland C++ 3.1 in

large model using 386 instructions, but, no optimizations.

Gammes 3.76 seconds

Gaussian 3.75 seconds

Figure 5-10 Time Required To Process Molecular Orbital Creation And Parsing Directives

These two timings include the initialization of the parser's output file data structure in

addition to process the two sets of directives. The time required to process directives for

other objects should be similar. If there were ten additional objects to be loaded we

would expect thirty seconds to be required to process the creation and parsing directives.

The PCL directives used to parse the outputs are listed in appendix. Included are the

input parameters required to produce the optimized molecular configuration.

115

6Evaluation and Conclusions

In this section we will review the PCL system and summarize what we have learned from

this research. We will specifically discuss the results achieved by our research and the

effectiveness of the concepts used in the creation of the system.

6.1Confirmation Of Concept

The result achieved by our research was a confirmation of our concept that application-

specific model data for the computational sciences can be reused. This reuse can be

achieved by transforming application-specific data formats into a generic format. This

generic format can then be placed into a database of stored experiment data for later

transformation and reuse. We have designed the PCL to be extensible and efficient,

although only future testing will verify this.

The common conceptual model has been instrumental to us in this development. The

basis of a common conceptual model was used to design processing of creation, parsing,

and conversion directives. Thus we have confirmed that a common conceptual model

can be useful in developing application which convert information from several different

formats, this was predicted by Maier [4].

116

6.2Conceptual System Structure

The central concept in the PCL system is that of a table-driven interpreter. This

interpreter is responsible for the creation of application representations of conceptual

objects, the parsing of those objects, and the conversion of the application-specific

objects into generic semantically equivalent forms. These three main portions of the

interpreter are controlled by tables of instructions. Additions and modifications can be

made to these tables without requiring changes to the PCL system. In this manner, the

system can support additional computational applications easily.

The concepts and implementation of the creation, parsing, and the conversion directives

are similar. This similarity helps make the design and implementation of the system

easier to understand, maintain, and extend.

117

7Analysis and Retrospective

In this section we will analyze the PCL system and provide a retrospective of the project

including the pitfalls encountered during implementation.

7.1Innovative Design And Implementation

We have implemented a computational infrastructure that facilitates data management

and reuse in the computational sciences. This reuse is centered on a common conceptual

model, and a “computational proxy”. Reuse is provided by converting application

experiment data into a common format that is stored in an object-oriented database. The

transformation process is controlled by the PCL. The PCL is an interpreter that uses

tables of instructions to construct conceptual data in application-specific format. These

application-specific formats are then parsed and converted into a generic form that is

placed in the database. The data in this generic format can then be reused by retrieving

and converting it into the form required by a specific application. The reuse of data

while leaving legacy application file formats unaffected is a unique approach. This

approach will be of interest to computational scientists who have large amount of legacy

data in application-specific formats and desire to use this data.

118

7.2Design And Implementation Trade Offs

The implementation of the PCL includes several design trade offs. We implemented the

PCL an interpreter in an effort to allow the system to be easily modified and not tied to a

single hardware platform. The speed of data conversion and loading is acceptable using

this approach.

There are numerous base classes used to implement the PCL. The need for these base

classes would be eliminated in a language like Smalltalk, as all objects are automatically

derived from a universal type. It might be easier to implement the PCL in such a

language.

The generic algorithm used in the parsing directive search engine works well, but, is not

efficient. The time required to perform a search become noticeable for large files. The

performance could be improved by the use of algorithms in [6], such as the Boyer-Moore

algorithm.

119

8Future Work

In this section we consider future work based on the PCL system. Our work has

addressed the problem of data reuse in the computational chemistry field. There are

several interesting extensions to our work that could be pursued. The extensions are

focused in four areas: system extensions, object hierarchy, directive specification, and

directive processing.

8.1Computational Discipline Extensions

One of the most important extensions of our work would be to incorporate it into a

production system. This would clearly demonstrate the benefits and advantages and

flaws of the system by allowing computational chemists to be more effective with their

time. Once the PCL system is incorporated into a production system, support for

additional computational programs will become important. There are several additional

programs that will need to be incorporated, in addition to GAMESS and Gaussian,

including HONDO and MELDF. We conjectured that a generic conversion application

saves development time and cost over a customized approach. The adaptation of the

PCL to support more modeling programs will also allow the testing of this hypothesis.

120

We are hopeful that the PCL work will be extended into additional computational science

disciplines, specifically Biochemistry and the Earth Sciences. As noted in the

introduction our work holds potential benefits for all the computational sciences. The

adoption of the PCL work would be accelerated with a successful production system.

The last system extension would be looking into the feasibility of creating a version of

the PCL that would process the Computational Chemistry Output Language (CCOL) and

the Computational Chemistry Input Language (CCIL). The CCIL is a language that

describes how experiment data in the database is converted into a form used by a

computational application. It performs the opposite operation of CCOL. There are

numerous similarities in the processing of the CCIL and CCOL languages. Research into

how these two languages can be implemented in a similar manner would help ease the

maintenance of the system.

An innovative extension to the PCL system would be to research data interpolation and

extrapolation. This research could be thought of as adding extrapolated or interpolated

objects into the system. This work would allow the PCL to be used to aid the analysis of

data from varying sources with different data granularities. For example, Earth-orbiting

satellites may gather vegetation density data in five mile grids, but another application

may desire this data in one mile grids. The new system would be responsible for

interpolating a value for the missing grids. When the results based on this analysis

121

became available an error value would be assigned to the results indicating the purity of

the data used to arrive at this conclusion.

8.2Object Hierarchy Extensions

An additional extension to the object hierarchy would be a way to group attributes of a

conceptual object. Currently the attributes of a conceptual object are determined by the

order of the objects in the application-specific representation. This scheme has several

limitations, one being that it is error-prone. A way to link conceptual attributes and

application-specific representations of those attributes would make the object hierarchies

more understandable.

The directives available in the PCL need to be extended. The extension should include

additional support for types and conversions. This change would allow applications to

represent experiment data in additional formats. Addressers would include new basic

and complex object types, such as unsigned character, signed character, and vectors.

8.3Directive Specification Extensions

Currently, the PCL creation, parsing, and conversion directives rarely need to be

changed. Their creation is not an easy task and requires precise work and verification by

the registrar. An important extension would be to ease the work required to create and

122

specify these directives. The addition of an intermediate non-procedural language for the

specification of directives would aid system managers. The language could be textual or

graphical. The graphical language would allow the manager to highlight portions of

sample output and specify the operations that need to occur during the transformation.

From this graphical description the PCL directives could be created and loaded into the

database. A simple but powerful extension would be to add support for regular

expression searches in the parsing directives.

8.4Directive Processing Extensions

The interpreter currently transforms the computational chemistry experiment data in a

reasonable amount of time. When adapting the PCL to additional scientific disciplines

the amount of data being converted may increase several fold. If this amount of

additional of data does increase, the speed of the interpreter may become a bottleneck.

This will especially be true if the source of the data can produce it more quickly that the

PCL can consume. In this case some of the PCL design trade-offs will need to be

reconsidered. Specifically, the PCL may need to be changed to compile transformation

plans into executable programs and update these programs when the PCL directives are

changed. In addition to this, the speed of processing conversions in parallel may prove

helpful.

123

9References

 [1] P. Bennighoff. Interoperating with DIF Data. Oregon Graduate Institute of Science

& Technology, Portland, OR. 1995.

[2] J. Cushing. Computational Proxies: An Object-based Infrastructure for

Computational Science. Ph.D. thesis, Department of Computer Science and Engineering,

Oregon Graduate Institute of Science & Technology, Portland, OR, 1995.

[3] H. Korth and A. Silberschatz. Database System Concepts. McGraw-Hill, 1991.

[4] D. Maier, J. B. Cushing, D. Hansen, M. Rao, et al. Object Data Models for Shared

Molecular Structures. In R. Lysakowski, editor, First International Symposium on

Computerized Chemical Data Standards: Databases, Data Interchange, and Data

Systems. STP 1214, American Society for Testing and Materials (ASTM), 1994.

[5] M. Rao. Computational Proxies for Computational Chemistry: A Proof of Concept.

Master’s thesis, Department of Computer Science and Engineering, Oregon Graduate

Institute of Science & Technology, Portland, OR, 1995.

124

[6] R. Sedgewick. Algorithms, pages 286-289. Addison-Wesley, 1988.

[7] N. C. Shu, B. C. Housel, R. W. Taylor, S. P. Ghosh, and V. Y. Lum. EXPRESS: A

data EXtraction, Processing, and REStructuring System. ACM Transactions on

Database Systems, 2(2):134-174, June 1977.

[8] B. Soustroup. The C++ Programming Language. Addison-Wesley, 1991.

[9] J. Ullman. Principles of Database and Knowledge-base Systems: Volume 1: Classical

Database Systems. Computer Science Press, 1988.

[10] L. Wall and R. L. Schwartz. Programming PERL. O’Reilly & Associates, 1990.

125

10Appendix

10.1Gaussian Creation Directives

Note: The numbers in the directives can be derived from the experiment information

or are constant for a version of the computational chemistry application

Create the application representation of the Molecular Orbital

Molecular Orbital

6 Atoms

Create the application representation of the Atom

Atom

26 Doubles

10.2Gaussian Parsing Directives

Molecular Orbitals

Unfold the molecular orbitals

Skip After First Occurrence of ‘Orbital’

Next Line

126

Next Line

Unfold Matrix 6 19 3 26

Copy the atom abbreviation and number

Skip Before First Occurrence of ‘Orbital’

Next Line

Next Line

Denormalize Matrix 6 3 5 4 5 Blank 4 5 6 0 25 1

Copy the orbital

Skip Before First Occurrence of ‘Orbital’

Next Line

Next Line

Denormalize Matrix 5 3 16 3 14 Blank 3 0 1 0 25 1

Reposition so an Atom can be read, repeat for each Atom

Skip Before First Occurrence of ‘Orbital’

Yield

Atom

Skip After First Occurrence of ‘EIGENVALUES’

Skip After First Occurrence of ‘--’

127

Reposition so Double can be read, repeated for each Double

Next Line

Line Offset

Yield

10.3Gaussian Output

0 1

C

C 1 RCC

H 2 RCH 1 ANG1

H 2 RCH 1 ANG1 3 180.

H 1 RCH 2 ANG1 3 0.0

H 1 RCH 2 ANG1 3 180.0

RCC=1.334

RCH=1.0802

ANG1=121.646

 Z-Matrix orientation:

 --

 Center Atomic Coordinates (Angstroms)

128

 Number Number X Y Z

 --

 1 6 0.000000 0.000000 0.000000

 2 6 0.000000 0.000000 1.334000

 3 1 0.919581 0.000000 1.900748

 4 1 -0.919581 0.000000 1.900748

 5 1 0.919581 0.000000 -0.566748

 6 1 -0.919581 0.000000 -0.566748

 ORBITAL SYMMETRIES.

 OCCUPIED (AG) (B1U) (AG) (B1U) (B2U) (AG) (B3G) (B3U)

 VIRTUAL (B2G) (AG) (B2U) (B1U) (B3G) (B1U) (AG) (B2U)

 (B3U) (B2G) (B1U) (AG) (B3G) (B2U) (B1U) (B3G)

 (AG) (B1U)

 THE ELECTRONIC STATE IS 1-AG.

 Alpha eigenvalues -- -11.17072 -11.17068 -1.03155 -0.78772 -0.64316

 Alpha eigenvalues -- -0.58548 -0.50058 -0.37542 0.18182 0.29618

 Alpha eigenvalues -- 0.31209 0.33981 0.43644 0.53790 0.88167

 Alpha eigenvalues -- 0.92681 0.99297 1.07672 1.10187 1.12548

 Alpha eigenvalues -- 1.31809 1.35476 1.39767 1.64159 1.66056

 Alpha eigenvalues -- 1.96291

 Molecular Orbital Coefficients

129

 1 2 3 4 5

 (AG) (B1U) (AG) (B1U) (B2U)

 EIGENVALUES -- -11.17072 -11.17068 -1.03155 -0.78772 -0.64316

 1 1 C 1S 0.69762 0.69791 -0.16583 -0.12814 0.00000

 2 2S (I) 0.06537 0.07075 0.18160 0.13176 0.00000

 3 2PX (I) 0.00000 0.00000 0.00000 0.00000 0.00000

 4 2PY (I) 0.00000 0.00000 0.00000 0.00000 0.27881

 5 2PZ (I) 0.00158 -0.00186 -0.10650 0.14173 0.00000

 6 2S (O) -0.03133 -0.06594 0.37110 0.41853 0.00000

 7 2PX (O) 0.00000 0.00000 0.00000 0.00000 0.00000

 8 2PY (O) 0.00000 0.00000 0.00000 0.00000 0.19373

 9 2PZ (O) -0.00431 0.01506 -0.01624 0.06345 0.00000

 10 2 C 1S 0.69762 -0.69791 -0.16583 0.12814 0.00000

 11 2S (I) 0.06537 -0.07075 0.18160 -0.13176 0.00000

 12 2PX (I) 0.00000 0.00000 0.00000 0.00000 0.00000

 13 2PY (I) 0.00000 0.00000 0.00000 0.00000 0.27881

 14 2PZ (I) -0.00158 -0.00186 0.10650 0.14173 0.00000

 15 2S (O) -0.03133 0.06594 0.37110 -0.41853 0.00000

 16 2PX (O) 0.00000 0.00000 0.00000 0.00000 0.00000

 17 2PY (O) 0.00000 0.00000 0.00000 0.00000 0.19373

 18 2PZ (O) 0.00431 0.01506 0.01624 0.06345 0.00000

130

 19 3 H 1S (I) -0.00176 0.00026 0.07802 -0.13740 0.14677

 20 1S (O) 0.00958 -0.00797 0.00528 -0.06737 0.10969

 21 4 H 1S (I) -0.00176 0.00026 0.07802 -0.13740 -0.14677

 22 1S (O) 0.00958 -0.00797 0.00528 -0.06737 -0.10969

 23 5 H 1S (I) -0.00176 -0.00026 0.07802 0.13740 0.14677

 24 1S (O) 0.00958 0.00797 0.00528 0.06737 0.10969

 25 6 H 1S (I) -0.00176 -0.00026 0.07802 0.13740 -0.14677

 26 1S (O) 0.00958 0.00797 0.00528 0.06737 -0.10969

 6 7 8 9 10

 (AG) (B3G) (B3U) (B2G) (AG)

 EIGENVALUES -- -0.58548 -0.50058 -0.37542 0.18182 0.29618

 1 1 C 1S 0.00852 0.00000 0.00000 0.00000 -0.09105

 2 2S (I) -0.02120 0.00000 0.00000 0.00000 0.03129

 3 2PX (I) 0.00000 0.00000 0.32018 0.30382 0.00000

 4 2PY (I) 0.00000 0.26045 0.00000 0.00000 0.00000

 5 2PZ (I) 0.36314 0.00000 0.00000 0.00000 0.13028

 6 2S (O) 0.02475 0.00000 0.00000 0.00000 1.37625

 7 2PX (O) 0.00000 0.00000 0.37551 0.75082 0.00000

 8 2PY (O) 0.00000 0.27526 0.00000 0.00000 0.00000

 9 2PZ (O) 0.22453 0.00000 0.00000 0.00000 0.62103

 10 2 C 1S 0.00852 0.00000 0.00000 0.00000 -0.09105

 11 2S (I) -0.02120 0.00000 0.00000 0.00000 0.03129

 12 2PX (I) 0.00000 0.00000 0.32018 -0.30382 0.00000

131

 13 2PY (I) 0.00000 -0.26045 0.00000 0.00000 0.00000

 14 2PZ (I) -0.36314 0.00000 0.00000 0.00000 -0.13028

 15 2S (O) 0.02475 0.00000 0.00000 0.00000 1.37625

 16 2PX (O) 0.00000 0.00000 0.37551 -0.75082 0.00000

 17 2PY (O) 0.00000 -0.27526 0.00000 0.00000 0.00000

 18 2PZ (O) -0.22453 0.00000 0.00000 0.00000 -0.62103

 19 3 H 1S (I) 0.11847 -0.17857 0.00000 0.00000 -0.01761

 20 1S (O) 0.11078 -0.15647 0.00000 0.00000 -0.95260

 21 4 H 1S (I) 0.11847 0.17857 0.00000 0.00000 -0.01761

 22 1S (O) 0.11078 0.15647 0.00000 0.00000 -0.95260

 23 5 H 1S (I) 0.11847 0.17857 0.00000 0.00000 -0.01761

 24 1S (O) 0.11078 0.15647 0.00000 0.00000 -0.95260

 25 6 H 1S (I) 0.11847 -0.17857 0.00000 0.00000 -0.01761

 26 1S (O) 0.11078 -0.15647 0.00000 0.00000 -0.95260

 11 12 13 14 15

 (B2U) (B1U) (B3G) (B1U) (AG)

 EIGENVALUES -- 0.31209 0.33981 0.43644 0.53790 0.88167

 1 1 C 1S 0.00000 -0.12205 0.00000 0.09363 0.01653

 2 2S (I) 0.00000 0.04686 0.00000 0.00410 0.10140

 3 2PX (I) 0.00000 0.00000 0.00000 0.00000 0.00000

 4 2PY (I) -0.21783 0.00000 0.24038 0.00000 0.00000

 5 2PZ (I) 0.00000 0.08606 0.00000 0.15187 -0.65071

 6 2S (O) 0.00000 1.60267 0.00000 -2.54368 0.42451

132

 7 2PX (O) 0.00000 0.00000 0.00000 0.00000 0.00000

 8 2PY (O) -0.80291 0.00000 1.63487 0.00000 0.00000

 9 2PZ (O) 0.00000 0.29286 0.00000 2.56435 1.03012

 10 2 C 1S 0.00000 0.12205 0.00000 -0.09363 0.01653

 11 2S (I) 0.00000 -0.04686 0.00000 -0.00410 0.10140

 12 2PX (I) 0.00000 0.00000 0.00000 0.00000 0.00000

 13 2PY (I) -0.21783 0.00000 -0.24038 0.00000 0.00000

 14 2PZ (I) 0.00000 0.08606 0.00000 0.15187 0.65071

 15 2S (O) 0.00000 -1.60267 0.00000 2.54368 0.42451

 16 2PX (O) 0.00000 0.00000 0.00000 0.00000 0.00000

 17 2PY (O) -0.80291 0.00000 -1.63487 0.00000 0.00000

 18 2PZ (O) 0.00000 0.29286 0.00000 2.56435 -1.03012

 19 3 H 1S (I) 0.05174 0.02451 -0.03947 0.06882 -0.13648

 20 1S (O) 0.99778 0.98923 1.38452 0.42093 -0.12698

 21 4 H 1S (I) -0.05174 0.02451 0.03947 0.06882 -0.13648

 22 1S (O) -0.99778 0.98923 -1.38452 0.42093 -0.12698

 23 5 H 1S (I) 0.05174 -0.02451 0.03947 -0.06882 -0.13648

 24 1S (O) 0.99778 -0.98923 -1.38452 -0.42093 -0.12698

 25 6 H 1S (I) -0.05174 -0.02451 -0.03947 -0.06882 -0.13648

 26 1S (O) -0.99778 -0.98923 1.38452 -0.42093 -0.12698

 16 17 18 19 20

 (B2U) (B3U) (B2G) (B1U) (AG)

 EIGENVALUES -- 0.92681 0.99297 1.07672 1.10187 1.12548

133

 1 1 C 1S 0.00000 0.00000 0.00000 0.09045 0.03667

 2 2S (I) 0.00000 0.00000 0.00000 -0.00294 0.36011

 3 2PX (I) 0.00000 0.76482 -0.79488 0.00000 0.00000

 4 2PY (I) -0.43116 0.00000 0.00000 0.00000 0.00000

 5 2PZ (I) 0.00000 0.00000 0.00000 0.57779 -0.20554

 6 2S (O) 0.00000 0.00000 0.00000 -0.27814 -0.44815

 7 2PX (O) 0.00000 -0.58017 0.94532 0.00000 0.00000

 8 2PY (O) 0.70083 0.00000 0.00000 0.00000 0.00000

 9 2PZ (O) 0.00000 0.00000 0.00000 -0.51447 -0.06188

 10 2 C 1S 0.00000 0.00000 0.00000 -0.09045 0.03667

 11 2S (I) 0.00000 0.00000 0.00000 0.00294 0.36011

 12 2PX (I) 0.00000 0.76482 0.79488 0.00000 0.00000

 13 2PY (I) -0.43116 0.00000 0.00000 0.00000 0.00000

 14 2PZ (I) 0.00000 0.00000 0.00000 0.57779 0.20554

 15 2S (O) 0.00000 0.00000 0.00000 0.27814 -0.44815

 16 2PX (O) 0.00000 -0.58017 -0.94532 0.00000 0.00000

 17 2PY (O) 0.70083 0.00000 0.00000 0.00000 0.00000

 18 2PZ (O) 0.00000 0.00000 0.00000 -0.51447 0.06188

 19 3 H 1S (I) -0.44021 0.00000 0.00000 -0.45836 0.60306

 20 1S (O) 0.02782 0.00000 0.00000 0.09416 -0.23463

 21 4 H 1S (I) 0.44021 0.00000 0.00000 -0.45836 0.60306

 22 1S (O) -0.02782 0.00000 0.00000 0.09416 -0.23463

 23 5 H 1S (I) -0.44021 0.00000 0.00000 0.45836 0.60306

134

 24 1S (O) 0.02782 0.00000 0.00000 -0.09416 -0.23463

 25 6 H 1S (I) 0.44021 0.00000 0.00000 0.45836 0.60306

 26 1S (O) -0.02782 0.00000 0.00000 -0.09416 -0.23463

 21 22 23 24 25

 (B3G) (B2U) (B1U) (B3G) (AG)

 EIGENVALUES -- 1.31809 1.35476 1.39767 1.64159 1.66056

 1 1 C 1S 0.00000 0.00000 0.02496 0.00000 0.03378

 2 2S (I) 0.00000 0.00000 -0.12310 0.00000 -1.20393

 3 2PX (I) 0.00000 0.00000 0.00000 0.00000 0.00000

 4 2PY (I) -0.82019 0.68651 0.00000 -0.31427 0.00000

 5 2PZ (I) 0.00000 0.00000 -0.71567 0.00000 -0.16391

 6 2S (O) 0.00000 0.00000 -0.36333 0.00000 1.65425

 7 2PX (O) 0.00000 0.00000 0.00000 0.00000 0.00000

 8 2PY (O) 1.82948 -0.84236 0.00000 2.48277 0.00000

 9 2PZ (O) 0.00000 0.00000 1.31171 0.00000 0.33917

 10 2 C 1S 0.00000 0.00000 -0.02496 0.00000 0.03378

 11 2S (I) 0.00000 0.00000 0.12310 0.00000 -1.20393

 12 2PX (I) 0.00000 0.00000 0.00000 0.00000 0.00000

 13 2PY (I) 0.82019 0.68651 0.00000 0.31427 0.00000

 14 2PZ (I) 0.00000 0.00000 -0.71567 0.00000 0.16391

 15 2S (O) 0.00000 0.00000 0.36333 0.00000 1.65425

 16 2PX (O) 0.00000 0.00000 0.00000 0.00000 0.00000

 17 2PY (O) -1.82948 -0.84236 0.00000 -2.48277 0.00000

135

 18 2PZ (O) 0.00000 0.00000 1.31171 0.00000 -0.33917

 19 3 H 1S (I) -0.29255 -0.47854 -0.47437 0.68933 0.20134

 20 1S (O) 1.06586 0.88470 0.75739 0.59615 -0.66776

 21 4 H 1S (I) 0.29255 0.47854 -0.47437 -0.68933 0.20134

 22 1S (O) -1.06586 -0.88470 0.75739 -0.59615 -0.66776

 23 5 H 1S (I) 0.29255 -0.47854 0.47437 -0.68933 0.20134

 24 1S (O) -1.06586 0.88470 -0.75739 -0.59615 -0.66776

 25 6 H 1S (I) -0.29255 0.47854 0.47437 0.68933 0.20134

 26 1S (O) 1.06586 -0.88470 -0.75739 0.59615 -0.66776

 26 #

 (B1U)

 EIGENVALUES -- 1.96291

 1 1 C 1S -0.00250

 2 2S (I) -1.41566

 3 2PX (I) 0.00000

 4 2PY (I) 0.00000

 5 2PZ (I) 0.08663

 6 2S (O) 3.82153

 7 2PX (O) 0.00000

 8 2PY (O) 0.00000

 9 2PZ (O) -1.14177

 10 2 C 1S 0.00250

 11 2S (I) 1.41566

136

 12 2PX (I) 0.00000

 13 2PY (I) 0.00000

 14 2PZ (I) 0.08663

 15 2S (O) -3.82153

 16 2PX (O) 0.00000

 17 2PY (O) 0.00000

 18 2PZ (O) -1.14177

 19 3 H 1S (I) 0.11246

 20 1S (O) 0.35773

 21 4 H 1S (I) 0.11246

 22 1S (O) 0.35773

 23 5 H 1S (I) -0.11246

 24 1S (O) -0.35773

 25 6 H 1S (I) -0.11246

 26 1S (O) -0.35773

 DENSITY MATRIX.

 Total atomic charges:

 1

 1 C -0.425338

 2 C -0.425338

 3 H 0.212669

137

 4 H 0.212669

 5 H 0.212669

 6 H 0.212669

 nuclear repulsion energy 33.4010108717 Hartrees.

 26 basis functions 42 primitive gaussians

 Dipole moment (Debye):

 X= 0.0000 Y= 0.0000 Z= -1.2860 Tot= 1.2860

 Quadrupole moment (Debye-Ang):

 XX= -4.6255 YY= -4.6255 ZZ= -3.4983

 XY= 0.0000 XZ= 0.0000 YZ= 0.0000

 Dipole moment (Debye):

 X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000

 Quadrupole moment (Debye-Ang):

 XX= -15.7191 YY= -12.3174 ZZ= -12.1050

 XY= 0.0000 XZ= 0.0000 YZ= 0.0000

 Octapole moment (Debye-Ang**2):

 XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000

 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000

 YYZ= 0.0000 XYZ= 0.0000

138

 Hexadecapole moment (Debye-Ang**3):

 XXXX= -16.4808 YYYY= -24.9877 ZZZZ= -65.5232 XXXY= 0.0000

 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000

 ZZZY= 0.0000 XXYY= -7.5604 XXZZ= -14.8582 YYZZ= -12.3932

 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000

 --

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

 --

 Standard orientation:

 --

 Center Atomic Forces (Hartrees/Bohr)

 Number Number X Y Z

 1 6 0.000000000 0.000000000 0.020106520

 2 6 0.000000000 0.000000000 -0.020106520

 3 1 -0.004582715 0.000000000 -0.002473539

 4 1 0.004582715 0.000000000 -0.002473539

 5 1 -0.004582715 0.000000000 0.002473539

 6 1 0.004582715 0.000000000 0.002473539

139

10.4Gammes Creation Directives

Note: The numbers in the directives can be derived from the experiment information

or are constant for a version of the computational chemistry application

Create the application representation of the Molecular Orbital

Molecular Orbital

6 Atoms

Create the application representation of the Atom

Atom

38 Doubles

10.5Gammes Parsing Directives

Molecular Orbitals

Unfold the molecular orbitals

Skip After First Occurrence of ‘MOLECULAR’

Next Line

Next Line

Next Line

140

Next Line

Unfold Matrix 2 16 4 38

Copy the atom abbreviation and number

Skip Before First Occurrence of ‘MOLECULAR’

Next Line

Next Line

Next Line

Next Line

Next Line

Next Line

Denormalize Matrix 4 0 9 1 9 Blank 1 9 4 0 37 1

Copy the orbital

Skip Before First Occurrence of ‘MOLECULAR’

Next Line

Next Line

Next Line

Next Line

Next Line

Next Line

Denormalize Matrix 3 0 14 0 13 Blank 0 13 1 0 37 1

141

Reposition so an Atom can be read, repeat for each Atom

Skip Before First Occurrence of ‘MOLECULAR’

Yield

Atom

Skip Before First Occurrence of ‘MOLECULAR’

Next Line

Next Line

Next Line

Next Line

Next Line

Next Line

Reposition so Double can be read, repeated for each Double

Next Line

Line Offset

Yield

10.6Gammes Output

 TOTAL NUMBER OF BASIS FUNCTIONS = 74

142

 FINAL ENERGY IS -78.0561311759 AFTER 12 ITERATIONS

 ELECTROSTATIC MOMENTS

 POINT 1 X Y Z (BOHR) CHARGE

 0.000000 0.000000 0.000000 0.00 (A.U.)

 DX DY DZ /D/ (DEBYE)

 0.000000 0.000000 0.000000 0.000000

 ELECTROSTATIC MOMENTS

 POINT 1 X Y Z (BOHR) CHARGE

 0.000000 0.000000 0.087542 0.00 (A.U.)

 DX DY DZ /D/ (DEBYE)

 0.000000 0.000000 1.285987 1.285987

 QXX QYY QZZ QXY QXZ QYZ (BUCKINGHAMS) -

0.622276 -

0.622276 1.244552 0.000000 0.000000 0.000000

 END OF PROPERTY EVALUATION

143

 STEP CPU TIME = 1.84 TOTAL CPU TIME = 130.09 (2.2 MIN) IS 94.96

PERCENT OF

REAL TIME OF 137.00

 174978 WORDS OF DYNAMIC MEMORY USED

 EXECUTION OF GAMESS TERMINATED NORMALLY Fri Aug 7 15:21:04 1992

 GRADIENT OF THE ENERGY

 ATOM E'X E'Y E'Z

 1 C 0.000194871 0.000000000 0.000000000

 2 C -0.000194871 0.000000000 0.000000000

 3 H -0.000012376 -0.000030270 0.000000000

 4 H 0.000012376 -0.000030270 0.000000000

 5 H -0.000012376 0.000030270 0.000000000

 6 H 0.000012376 0.000030270 0.000000000

 END OF 2-ELECTRON GRADIENT

144

 STEP CPU TIME = 228.12 TOTAL CPU TIME = 361.23 (6.0 MIN) IS 98.70

PERCENT

OF REAL TIME OF 366.00

 MAXIMUM COMPONENT = 0.000194871

 RMS GRADIENT = 0.000066761

 END OF SINGLE POINT GRADIENT

 MOLECULAR ORBITALS

 1 2 3 4 5 6 7 8 9 10

 -11.1794 -11.1790 -1.0472 -0.7972 -0.6550 -0.5991 -0.5078 -

0.3844

0.0506 0.0629

 A A A A A A A A A

A

1 H 1 S -0.000885 -0.000008 0.076201 0.137654 -0.146789 -0.120192 -

0.180163

0.000000 0.011374 0.009358

145

 2 H S 0.006193 0.006800 0.011909 0.067802 -0.101247 -0.098893 -

0.126968

0.000000 -0.024885 -0.049591

 3 H S -0.009440 -0.003157 0.033003 0.023562 -0.031374 -0.005345

0.036526

0.000000 -1.300060 -2.181759

 4 H 2 S -0.000885 -0.000008 0.076201 0.137654 0.146789 -0.120192

0.180163

0.000000 0.011374 0.009358

 5 H S 0.006193 0.006800 0.011909 0.067802 0.101247 -0.098893

0.126968

0.000000 -0.024885 -0.049591

 6 H S -0.009440 -0.003157 0.033003 0.023562 0.031374 -0.005345 -

0.036526

0.000000 -1.300060 -2.181759

 7 C 3 S 0.697865 0.697977 -0.167342 -0.128405 0.000000 -0.007556

0.000000

0.000000 -0.019737 -0.023338

 8 C S 0.067681 0.071494 0.180421 0.131430 0.000000 0.020580

0.000000

0.000000 0.037107 0.029252

 9 C X -0.001270 0.001987 0.110436 -0.143379 0.000000 0.365347

0.000000

146

0.000000 -0.048198 -0.025495

 10 C Y 0.000000 0.000000 0.000000 0.000000 0.281317 0.000000

0.261388

0.000000 0.000000 0.000000

 11 C Z 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000

0.319790 0.000000 0.000000

 12 C S -0.035730 -0.069076 0.379102 0.426661 0.000000 -0.034121

0.000000

0.000000 0.047718 0.168226

 13 C X 0.003347 -0.016034 0.019167 -0.062108 0.000000 0.224264

0.000000

0.000000 -0.059446 0.066616

 14 C Y 0.000000 0.000000 0.000000 0.000000 0.197203 0.000000

0.299992

0.000000 0.000000 0.000000

 15 C Z 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000

0.345201 0.000000 0.000000

 16 C S 0.023040 0.094930 -0.074646 -0.325696 0.000000 -0.003667

0.000000

0.000001 2.109155 4.408334

147

 17 C X -0.001024 0.022965 0.002612 -0.070989 0.000000 0.000681

0.000000

0.000000 -0.432063 -0.213937

 18 C Y 0.000000 0.000000 0.000000 0.000000 -0.012496 0.000000

0.101566

0.000000 0.000000 0.000000

 19 C Z 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000

0.051772 -0.000001 0.000000

 20 H 4 S -0.000885 0.000008 0.076201 -0.137654 -0.146789 -0.120192

0.180163

0.000000 0.011374 -0.009358

 21 H S 0.006193 -0.006800 0.011909 -0.067802 -0.101247 -0.098893

0.126968

0.000000 -0.024885 0.049591

 22 H S -0.009440 0.003157 0.033003 -0.023562 -0.031374 -0.005345 -

0.036526

0.000000 -1.300060 2.181759

 23 H 5 S -0.000885 0.000008 0.076201 -0.137654 0.146789 -0.120192 -

0.180163

0.000000 0.011374 -0.009358

 24 H S 0.006193 -0.006800 0.011909 -0.067802 0.101247 -0.098893 -

0.126968

148

0.000000 -0.024885 0.049591

 25 H S -0.009440 0.003157 0.033003 -0.023562 0.031374 -0.005345

0.036526

0.000000 -1.300060 2.181759

 26 C 6 S 0.697865 -0.697977 -0.167342 0.128405 0.000000 -0.007556

0.000000

0.000000 -0.019737 0.023338

 27 C S 0.067681 -0.071494 0.180421 -0.131430 0.000000 0.020580

0.000000

0.000000 0.037107 -0.029252

 28 C X 0.001270 0.001987 -0.110436 -0.143379 0.000000 -0.365347

0.000000

0.000000 0.048198 -0.025495

 29 C Y 0.000000 0.000000 0.000000 0.000000 0.281317 0.000000 -

0.261388

0.000000 0.000000 0.000000

 30 C Z 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000

0.319790 0.000000 0.000000

 31 C S -0.035730 0.069076 0.379102 -0.426661 0.000000 -0.034121

0.000000

0.000000 0.047718 -0.168226

149

 32 C X -0.003347 -0.016034 -0.019167 -0.062108 0.000000 -0.224264

0.000000

0.000000 0.059446 0.066616

 33 C Y 0.000000 0.000000 0.000000 0.000000 0.197203 0.000000 -

0.299992

0.000000 0.000000 0.000000

 34 C Z 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000

0.345201 0.000000 0.000000

 35 C S 0.023040 -0.094930 -0.074646 0.325696 0.000000 -0.003667

0.000000 -

0.000001 2.109155 -4.408334

 36 C X 0.001024 0.022965 -0.002612 -0.070989 0.000000 -0.000681

0.000000

0.000000 0.432063 -0.213937

 37 C Y 0.000000 0.000000 0.000000 0.000000 -0.012496 0.000000 -

0.101566

0.000000 0.000000 0.000000

 38 C Z 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000

0.051772 0.000001 0.000000

 11 12 13 14 15 16 17 18

150

 0.0644 0.0855 0.1057 0.1416 0.1485 0.1794 0.2223

0.2271

 A A A A A A A A

 1 H 1 S -0.006642 -0.019541 0.000000 0.000000 0.010285 0.010967 -

0.013302

0.001006

 2 H S 0.033673 0.159217 0.000000 0.000000 0.116543 0.016273 -

0.374957

0.168627

 3 H S 2.583125 6.204936 0.000000 0.000002 0.749773 3.392583 -

1.645794

3.523880

 4 H 2 S 0.006642 0.019541 0.000000 0.000000 0.010285 0.010967 -

0.013302 -

0.001006

 5 H S -0.033673 -0.159217 0.000000 0.000000 0.116543 0.016273 -

0.374957 -

0.168627

 6 H S -2.583125 -6.204936 0.000002 0.000002 0.749773 3.392583 -

1.645794 -

3.523880

 7 C 3 S 0.000000 0.000000 0.000000 0.000000 0.011124 -0.014849

0.053668

151

0.000000

 8 C S 0.000000 0.000000 0.000000 0.000000 -0.001274 0.020942 -

0.013858

0.000000

 9 C X 0.000000 0.000000 0.000000 0.000000 -0.049655 0.007771

0.033561

0.000000

 10 C Y 0.063482 0.036137 0.000000 0.000000 0.000000 0.000000

0.000000 -

0.111203

 11 C Z 0.000000 0.000000 0.174261 -0.104903 0.000000 0.000000

0.000000

0.000000

 12 C S 0.000000 0.000000 0.000000 0.000000 -0.151453 0.043641 -

0.550773

0.000000

 13 C X 0.000000 0.000000 0.000000 0.000000 -0.066363 -0.035358

0.003438

0.000000

 14 C Y 0.041498 0.136666 0.000000 0.000000 0.000000 0.000000

0.000000 -

0.271277

152

 15 C Z 0.000000 0.000000 0.268473 -0.283838 0.000000 0.000000

0.000001

0.000000

 16 C S 0.000000 0.000000 0.000003 0.000028 -1.794034 34.339009

4.057977

0.000000

 17 C X 0.000000 0.000000 0.000003 0.000010 1.923014 12.551861 -

0.637850

0.000000

 18 C Y 1.113523 4.695565 -0.000001 0.000000 0.000000 0.000000

0.000000

2.553448

 19 C Z 0.000000 0.000000 1.548186 0.597545 -0.000001 0.000000 -

0.000001

0.000000

 20 H 4 S -0.006642 0.019541 0.000000 0.000000 0.010285 -0.010967 -

0.013302

0.001006

 21 H S 0.033673 -0.159217 0.000000 0.000000 0.116543 -0.016273 -

0.374957

0.168627

 22 H S 2.583125 -6.204936 0.000001 -0.000002 0.749773 -3.392583 -

1.645794

153

3.523880

 23 H 5 S 0.006642 -0.019541 0.000000 0.000000 0.010285 -0.010967 -

0.013302 -

0.001006

 24 H S -0.033673 0.159217 0.000000 0.000000 0.116543 -0.016273 -

0.374957 -

0.168627

 25 H S -2.583125 6.204936 -0.000001 -0.000002 0.749773 -3.392583 -

1.645794 -

3.523880

 26 C 6 S 0.000000 0.000000 0.000000 0.000000 0.011124 0.014849

0.053668

0.000000

 27 C S 0.000000 0.000000 0.000000 0.000000 -0.001274 -0.020942 -

0.013858

0.000000

 28 C X 0.000000 0.000000 0.000000 0.000000 0.049655 0.007771 -

0.033561

0.000000

 29 C Y 0.063482 -0.036137 0.000000 0.000000 0.000000 0.000000

0.000000 -

0.111203

154

 30 C Z 0.000000 0.000000 -0.174261 -0.104903 0.000000 0.000000

0.000000

0.000000

 31 C S 0.000000 0.000000 0.000000 0.000000 -0.151453 -0.043641 -

0.550773

0.000000

 32 C X 0.000000 0.000000 0.000000 0.000000 0.066363 -0.035358 -

0.003438

0.000000

 33 C Y 0.041498 -0.136666 0.000000 0.000000 0.000000 0.000000

0.000000 -

0.271277

 34 C Z 0.000000 0.000000 -0.268473 -0.283838 0.000000 0.000000 -

0.000001

0.000000

 35 C S 0.000000 0.000000 -0.000006 -0.000028 -1.794034 -34.339009

4.057977

0.000000

 36 C X 0.000000 0.000000 0.000000 0.000010 -1.923014 12.551861

0.637850

0.000000

 37 C Y 1.113523 -4.695565 0.000001 0.000000 0.000000 0.000000

0.000000

155

2.553448

 38 C Z 0.000000 0.000000 -1.548186 0.597545 0.000001 0.000000

0.000001

0.000000

 ENERGY COMPONENTS

 COORDINATES OF ALL ATOMS ARE (ANGS)

 ATOM CHARGE X Y Z

 --

 H 1.0 -1.2265061870 -0.9134808718 0.0000000369

 H 1.0 -1.2265061868 0.9134808717 -0.0000000630

 C 6.0 -0.6602791538 0.0000000000 -0.0000000383

 H 1.0 1.2265061871 -0.9134808718 0.0000000632

 H 1.0 1.2265061868 0.9134808718 -0.0000000368

 C 6.0 0.6602791538 0.0000000000 0.0000000307

156

	1 Introduction
	1.1 Problem Overview
	1.2 CCDB - Proposed Solution
	1.3 The PCL Interpreter

	2 Related Work
	2.1 Data Reuse
	2.1.1 Legacy Applications And Legacy Data

	2.2 Conversion Programs -- EXPRESS
	2.3 Conversion Applications -- The PCL
	2.4 A Comparison Of EXPRESS And The PCL
	2.5 Alternative Systems

	3 The PCL Functional Requirements And Specification
	3.1 Conceptual, Data Model and Physical Incompatibility
	3.2 Customized Loading Of Experimental Data To A Database
	3.2.1 Customized Creation Of Data Representation
	3.2.2 Customized Locating Of Data
	3.2.3 Customized Reading Of Data
	3.2.4 Customized Converting Of Data
	3.2.5 Customized Loading Of Data

	3.3 The PCL Loading Of Experimental Data To A Database
	3.3.1 The PCL Creation Of Data Representation -- Creation Directives
	3.3.2 The PCL Locating Of Data -- Parsing Directives
	3.3.3 The PCL Reading Of Data
	3.3.4 The PCL Converting Of Data -- Conversion Directives
	3.3.5 The PCL Loading Of Data
	3.3.6 The PCL Loading Experiment Run Data -- Example

	3.4 The PCL And Data Incompatibility
	3.4.1 The PCL And A Conceptual Model
	3.4.2 Conceptual Model Support For Data Model Compatibility

	4 The PCL Design
	4.1 Extensibility In A Conversion System
	4.2 Conceptual And Base Objects
	4.3 Operation Of The PCL
	4.3.1 Operation Of The PCL Creation Directives
	4.3.2 Operation Of The PCL Parsing Directives
	4.3.3 Operation Of The PCL Conversion Directives
	4.3.4 Operation Of The PCL With A Complex Conceptual Hierarchy

	4.4 Creation Directives
	4.5 Parsing Directives
	4.5.1 Positional Parsing Directives
	4.5.2 Positional Parsing Directives Example
	4.5.3 Reformatting Parsing Directives
	4.5.4 Reformatting Parsing Directives Example

	4.6 Conversion Directives

	5 The PCL Implementation
	5.1 Object-Oriented Programming
	5.2 Object-Oriented Solutions To Development Problems
	5.3 Language And Database Selection
	5.4 Structure Of Conceptual and Base Objects
	5.5 Structure Of The PCL Directives
	5.6 Processing Of Creation Directives
	5.7 Processing Of Parsing Directives
	5.8 Conversion Directives
	5.9 Operation Of The PCL
	5.10 Timing Of The PCL

	6 Evaluation and Conclusions
	6.1 Confirmation Of Concept
	6.2 Conceptual System Structure

	7 Analysis and Retrospective
	7.1 Innovative Design And Implementation
	7.2 Design And Implementation Trade Offs

	8 Future Work
	8.1 Computational Discipline Extensions
	8.2 Object Hierarchy Extensions
	8.3 Directive Specification Extensions
	8.4 Directive Processing Extensions

	9 References
	10 Appendix
	10.1 Gaussian Creation Directives
	10.2 Gaussian Parsing Directives
	10.3 Gaussian Output
	10.4 Gammes Creation Directives
	10.5 Gammes Parsing Directives
	10.6 Gammes Output

