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ABSTRACT

A necessity of managing scientific data is the ability to maintain experimental legacy 

information without continually modifying the applications that create and use the 

information.  By facilitating the management of scientific data we hope to give scientist 

the ability to effectively use additional modeling applications and experimental data.  We

have demonstrated that an extensible interpreter, using a series of stored directives, 

allows the loading of data from computational chemistry applications into a generic 

database.  Extending the interpreter to support a new application involves adding a list of

directives for each piece of information to be loaded.  This research confirms that an 

extensible interpreter can be used to load computational chemistry experimental data into

a generic database.  This procedure may be applicable to the loading and retrieving of 

other types of experimental data without requiring modifications of the loading and 

retrieving applications.
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1Introduction

The primary focus of our work, the PCL interpreter, is part of an overall project to assist 

computational chemists with data and experiment management.  Section 1.1 of the 

introduction surveys the overall problem.  Section 1.2 surveys CCDB, which is our 

proposed solution to the problem.  Section 1.3 describes the primary contribution of this 

thesis, namely the PCL interpreter.

1.1Problem Overview

The objective of the Computational Chemistry Database project (CCDB) at the Oregon 

Graduate Institute is to assist computational chemists with the management of data and 

experiments.  This work is being led by Judith Cushing under the direction of David 

Maier with the assistance of Meenakshi Rao, and the author.  Additional data on the 

CCDB project can be found in [2] and [5].  This objective is worthwhile because it will 

promote the leveraging of past research in future exploration.  CCDB specifically 

addresses the difficulties of computational chemists.  However, problems of  the other 

computational sciences are similar.

Computational chemists mathematically model the characteristics of molecules.  They 

accomplish this with powerful computers and specialized software. Results from 
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promising experiment runs are implemented in the laboratory.  Laboratory results are 

compared to the optimized molecular configuration predicted by the model.  

Computational chemists speed the development of new experiments by examining the 

optimized molecular configurations from experiment runs.  Figure 1-1 shows the 

components found in a computational chemistry experiment.

Initial Molecular
Configuration

Estimate

Experiment With
Initial Estimate

Optimized
Molecular

Configuration

H2O

1.3, 4.2, 1.4
4.2, 3.8, 9.5
8.1, 5.9, 2.1

H2O

1.5, 4.0, 1.5
4.3, 5.8, 4.3
1.5, 4.0, 1.5

Specialized
Software

e. g. GAMESS

Personal
Scientific Insight

Past Experiments

Figure 1-1 Components Of A Computational Chemistry Application

A molecular configuration is a set of parameters that mathematically describe a molecule 

and includes data on where specific atoms are located in the molecule and the nature of 

their bonding.  A chemist estimates an initial molecular configuration either through 

personal scientific insight, or by referring to molecular configurations from past 

experiment runs.  Chemists then submit these estimates to modeling experiment 

programs.
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Computational Chemistry Modeling programs, such as GAMESS, Gaussian, and 

HONDO, use the molecular estimate to optimize the molecular configuration through 

iteration.  Iteration is the process of repeatedly applying a calculation to an 

approximation in order to calculate a successively closer approximation.  Each iteration 

step is referred to as an iteration.  This process is shown in Figure 1-2.  Under favorable 

circumstances the calculation will converge.  In unfavorable situations the estimates will 

diverge.  The process of having an experiment adequately optimize an initial molecular 

configuration is called an experiment run.

Molecular
Configuration

Estimate Iteration X

Experiment
Iteration With

Estimate

Optimized Molecular
Configuration
Iteration X+1

H2O

1.3, 4.2, 1.4
4.2, 3.8, 9.5
8.1, 5.9, 2.1

H2O

1.5, 4.0, 1.5
4.3, 5.8, 4.3
1.5, 4.0, 1.5

Specialized
Software

e. g. GAMESS

Next Iteration

Figure 1-2 One Experiment Iteration

The process of  performing an experiment is elaborate and involves numerous steps.  We 

illustrate these steps in Figure 1-3.  Before optimizing a molecular configuration estimate

the computational chemist must select a program on which to perform the experiment. 

There are numerous programs that model molecules.  Each program has features that 
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distinguish it from other programs.  Some systems quickly calculate the total energy of 

the molecule but run more slowly.  Other programs have extremely accurate calculations.

The scientist may, for example, first want to produce a experiment run with GAMESS 

and review the total energy results before calculating an optimized molecular 

configuration with the program HONDO.  Our example will involve a experiment run of 

the molecule Ethylene and the GAMESS application.
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Programs Available:
GAMESS
HONDO

System Resources Available:
Memory: 32 Megabytes

Disk Space: 120 Megebytes

Programs Available:
GAUSSIAN
GAMESS

System Resources Available:
Memory: 64 Megabytes

Disk Space: 340 Megabytes

1) Find First Computer with GAMESS Program Installed, Alpha
2) Check Memory and Disk Space Availability, Not Sufficent

  3) Find Another Computer with GAMESS Application, Beta
  4) Check Memory and Disk Space Avaliablity, Sufficent
  5) Create an Initial Molecular Configuration for the
      Experiment
  6) Log on to Beta
  7) Transfer Initial Molecular Configuration Estimate From
      Gamma to Beta
  8) Start Model Experiment Run on Beta
  9) Periodically Log on to Beta
10) Check Run Status of The Experiment on Beta
13) Review the Results of Experiment

11) Log on to Beta
12) Transfer Optimized Molecular
      Configuration and Results
      From Beta to Gamma

Computer: Alpha

Computer: Beta

Computer: Gamma

Figure 1-3 Example Steps Of An Experimental Run

The first step of an experiment involves locating a computer that has the necessary 

software, in our example GAMESS.  In our example search for a system, we find that the

computer named Alpha has GAMESS installed.  Finding a computer that has the required
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program installed does not necessarily mean that the experiment run can be performed on

that computer.  The computational scientist must estimate the amount of disk space and 

memory required to perform the run.  There are several factors that influence the amount 

of memory and disk space required: the program, the type of experiment run, the 

molecule being modeled, and the experiment input parameters.  As with the molecular 

configuration estimates, a chemist can either arrive at the memory and disk space 

requirements through personal scientific insight or by referring to past experiments.  This

determination is shown as step two in Figure 1-3.  By referring to past experiments we 

estimate that ours will require 48 Megabytes of memory and 8 Megabytes of disk space 

for results.  Note that the computer Alpha had the GAMESS program installed, but, did 

not have enough memory to perform the run.  In our example another computer needed 

to be located which had the GAMESS application installed, 48 Megabytes of memory, 

and 8 Megabytes of disk space.  The computer named Beta is found to fulfill these 

requirements in steps three and four.

If all these requirements are confirmed, the molecular configuration estimate must be 

created and transferred to the computer that is performing the experiment run.  In the 

example this requires logging in to the computer named Beta and transferring the 

molecular configuration estimate for the molecule Ethylene.  In the example these are 

steps five, six, and seven.  The molecular configuration estimate that is transferred 

contains data about the molecule being modeled.  This data can be several megabytes in 

size.   It includes estimates on where specific electrons are located in the molecule.
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The programs that model a molecule use this data to calculate characteristics of the 

molecule and the iterative modeling can continue for days.  The molecular model run can

now be started with the molecular configuration estimate.  The GAMESS program is 

started with the Ethylene molecular configuration estimate in step eight.  Depending on 

initial configuration estimates, the program can converge to an answer quickly or not at 

all.  To ensure that the experimental run is converging toward an answer, long running 

experiments must be periodically checked.  In steps nine and ten, the experiment run is 

checked by logging into the computer named Beta and browsing the intermediate results 

of the run.  We assume the intermediate results of our example run indicate that it is 

converging.

At some point the experiment run completes or is terminated by the computational 

chemist.  The scientist then transfers the experimental data to the original computer and 

reviews the experimental data. Experiments may need to be rerun several time before 

deciding that the results are adequate.  When checking on the experiment run for a 

second time we find that the experiment has finished.  Steps eleven, twelve, and thirteen 

transfer the experimental results back to our original computer for analysis.

If this experiment run was a success, the scientist may desire to model the molecule with 

another program in an attempt to gather additional data.  Using an optimized molecular 

configuration estimate from a previous experiment run will help the new model converge
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quickly.  However, accomplishing this sharing of data is difficult.  Currently the 

modeling programs do not share a common file format or common representation of the 

data in the molecular configuration estimate.  For example, one program may represent 

an atom’s location as three coordinates in three-space, while another program may 

represent it as a length and two angles.  While one representation can be transformed into

another, they cannot be used interchangeably.  Such differences prevent one program’s 

results from being directly used in another program.  The computational scientist has two

choices: convert and format the experiment run into a structure that the new program will

be able to use, or enter new estimates for the new program leaving behind the results of 

previous work.

Cushing [2] notes computational chemists manage large experimental data from many 

different runs.  A computational chemist could have tens of experiment runs progressing 

and the results of hundreds of experimental runs.  Our goal is to facilitate and automate 

the management and reuse of experiment run data. By automating the management of 

this scientific data the computational chemists will be more effective.  In addition, the 

sharing of experiment run data can have a synergistic effect on other researchers by 

simplifying the exchange of scientific data.
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1.2CCDB - Proposed Solution

We now discuss our proposal for the management and reuse of this scientific data.  We 

then demonstrate our proposal with the example experiment run above.

Cushing’s Ph.D. Thesis [2] has suggested that object-oriented databases and 

“computational proxies” be used to manage computational scientific data.  A 

computational proxy consists of two parts: computational services and data services.  

These components can be seen  in Figure 1-4.

Computational Services Data Services

Object Oriented Database

Figure 1-4 Components Of Computational Proxy

The services provided are requested by a computational scientist through a graphical user

interface, a CCDB client.  This is shown in Figure 1-5.  This client allows the scientist to 

specify at a high level what experimental data is desired.  For example, a scientist could 

request that the client retrieve experiment runs that involve Ethylene.  The client is 

responsible for breaking down complex high level requests into simpler requests of 

services provided by the computational proxy.  The client plays an important role in 

facilitating the work performed by the computational scientists.  However because, it is 

not a part of the computational proxy its specification and design will not be discussed 

here.
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CCDB Client

Computational Services Data Services

Object Oriented Database

Figure 1-5 Components Of Computational Proxy With CCDB Client

We will now provide a brief summary of each portion of the proxy.  After this 

explanation we will clarify our points with an example.  The example will show the 

interaction a chemist would have with the CCDB client when performing the 

experimental run from Figure 1-3.

The data services are the first part of the computational proxy.  The data services are 

responsible for managing a database of experiment runs.  One service provided is making

optimized molecular configurations from past experiment runs available as input to new 

runs.  We refer to this service as a Molecule Configuration Dump.  The converse of this 

service is placing the optimized molecular configurations from complete experiment runs

into the database for later review and reuse.  This functionality is referred to as a 

Molecule Configuration Load.  In addition to these services, data on specific molecules 

in the database can be requested from the manager.  The last service is named Database 

Queries.  An example would be to have the data services retrieve experiment runs 

involving the molecule Ethylene.  After reviewing data on the requested experimental 
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runs, the chemist can select one experimental run to serve as the initial molecular 

configuration estimate to a new run.  These three services are shown in Figure 1-6.

Data Services

Molecule Configuration Load Database Queries Molecule Configuration Dump

Object Oriented Datbase

Figure 1-6 Data Services

The process of loading and dumping molecule configuration data sounds straight-

forward; however, it is not a simple task.  If data is to be transferred between an 

application and the database, the formats of this data must be the same.  There are two 

possible situations when the two formats do not match.  The first is when the data created

by an application program does not match the format of the database.  The other situation

is when the experimental data stored in the database is not in the format required by the 

application.

In general, the loading and dumping of experiment run data may require several 

conversions.  These conversions are performed in the molecule configuration load and 

dump components of the data services.  Experiment run data in the database may need to 

be converted into a format that is expected by the application performing the experiment 

run.  On the other hand, an optimized molecular configuration may need to be changed 
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into a form that matches the database schema before being loaded into the database.  A 

method of providing this functionality was described in Cushing’s work [2].  Two 

languages were described that allow the specification of how data is to be converted.  

One language, called the Computational Chemistry Input Language (CCIL), specified 

how the experiment run data in the database needed to be formatted so that it could be 

used as a molecular configuration estimate for a run.  The other language, the 

Computational Chemistry Output Language (CCOL), specified how the data services 

would parse optimized molecular configurations so that this data could be put in the 

database.  The CCIL language is used to leverage the data of past experiment runs and 

facilitate new runs.  The CCOL is used to return the results from experiment runs into the

database.  Figure 1-7 shows where the CCIL and CCOL fit in the data services.

Data Services

Molecule Configuration Load Database Queries Molecule Configuration Dump

Computational Chemistry
Output Language

Computational Chemistry Input
Language

Object Oriented Datbase

Figure 1-7 Data Services Including Chemistry Languages

The computational services are the second part of the computational proxy.  The 

computational services are responsible for starting, querying, and, stopping experiment 
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runs.  When a chemist has specified that an experimental run is to be performed, the 

computational services will locate a host computer on which the experiment can be 

performed.  The computer must have the application installed, and must also have 

enough memory and disk space to conduct the experiment.  Once this has been confirmed

the initial molecular configuration data is requested from the data services.  This data is 

then transferred to the host computer and the experiential model run started.  

Periodically, a chemist may request the status of a experiment run in order to check that 

it is proceeding correctly.  The computational services will retrieve the current status of 

the experiment run and make it available to the scientist.  The last portion of the 

computational services are the administering of completed experiment runs.  When a 

experiment run completes, the computational services retrieve the optimized molecular 

configuration results and instructs the data services that the results can be placed in the 

database.  The chemist can review the results when they have been placed in the 

database.  Figure 1-8 presents the salient points of the computational services.  

Additional data on the computational services can be found in Rao [5].

Computational Services

Stop Experimental Run Start Experimental Run Query Experimental Run

Object Oriented Datbase

Figure 1-8 Computational Services
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These two parts of the computational proxy form an data infrastructure that automates 

the management and reuse of experiment run data.  The computational proxy 

accomplishes our goal of facilitating and automating the management and reuse of 

experiment run data.

The computational proxy infrastructure can help alleviate the difficulties associated with 

the management of scientific data.  Working through the example originally shown in 

Figure 1-3 with the proposed infrastructure will help demonstrate its usefulness.  As 

previously mentioned, the computational chemist does not directly use the computational

and data services.  The interaction is carried out through an intermediate piece of 

software, the CCDB client.  For the purpose of this example we will assume that this 

interface is available.

Figure 1-9 shows the steps required to allow a experiment run to be performed with the 

computational proxy infrastructure.  The first step in performing a experiment run is the 

selection of the application that will computationally model the molecule.  When 

selecting an application the CCDB client will request that the data services retrieve the 

names of all the applications available.  The data services will then query the database.  

All the appropriate applications names will be returned to the client.  The client will 

show the applications names in a list that the computational chemist can browse.  The 

application selection is accomplished by making a choice from this list.
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CCDB Client

Computational Services Data Services

Object Oriented Database
Programs Available:

GAMESS
HONDO

System Resources Available:
Memory: 32 Megabytes

Disk Space: 120 Megebytes

Programms Available:
GAUSSIAN
GAMESS

System Resources Available:
Memory: 64 Megabytes

Disk Space: 340 Megabytes

1) Select an Application to Model the Run, GAMESS
2) Select an Initial Molecular Configuration for the Run
3) Start the Model Experiment Run
4) Periodically Query the Status of the Run
5) Review the Results of the Run

The manual steps shown in Figure 1-3 are automatically
handled by the computational and data services.

Computer: Alpha

Computer: Beta

Computer: Gamma

Figure 1-9 Steps Of Proposed Experimental Model Run
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At this point the molecular configuration estimate is needed.  (See step two.)  The 

scientist can request data on previous experiments in the database.  This is accomplished 

by entering a query in the client.  A limited type of requests can be made in a data 

manipulation language like SQL [3], or, Query By Example [9] and then mapped to an 

object-oriented query.  The CCDB client sends a request to the data services and the 

requested data is retrieved.  This experimental data can then be shown to the scientist and

reviewed.  Once an acceptable molecular configuration estimate is selected by the 

scientist, the client asks the data services to retrieve the data from the database.  When 

this data is found it is in the database's format.  The data services will look in the 

database for the CCIL instructions that explain how to convert the data into a form 

readily acceptable by the application.  This molecular configuration estimate is then 

converted and presented to the client in a file to be used as input to the application.  The 

scientist is allowed to review and modify the data in the file.

After the computational chemist has completed browsing and modifying the molecular 

configuration estimate, the experiment run can be started.  The computational services 

can then begin the steps necessary for locating a suitable location for the run.

The computational services first will query the database and locate where the requested 

application is installed.  These sites are potential run locations.  The run location list can 

then be further limited by reviewing the memory and disk space requirements of the 

experimental run.  To do this the computational services will locate the experimental run 
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that was used to create the molecular configuration estimate and use its final memory and

disk space usage.  Each computer in the list of potential run locations is queried to see if 

it meets the memory and disk space requirements.  Once a computer is located that 

fulfills the requirements for the run, it is selected as the host computer.  Additional 

requirements such as current load could be used to select a computer.  Additional 

selection criteria can help the balancing of experiment runs across a network of 

machines, but this optimization is not central to the required functionality.

Once the experiment run has been started, a proxy of the experiment is placed in the 

database.  The proxy is a place holder that contains current data on the partially 

completed experiment.

During the course of the application’s running of the experiment, the computational 

chemist may wish to check that the run is converging.  The chemist can start the CCDB 

client and request a list of currently running experiment runs.  A group of experiment 

runs can then be selected and the status of each requested.  In order to retrieve the status 

of a experiment run, the client sends a request to the computational services.   The 

computational service can review the data in the proxy and locate the computer that is 

computing the model.  The computational services will transfer the current output of the 

run along with additional data, such as the CPU time accrued. This data will be used to 

update the status of the proxy and then presented to the client for review.
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If, after reviewing the experimental run, the scientist deems that the run should be 

terminated, the run can be selected and stopped.  This would be accomplished similarly 

to how the status of an experimental run was requested.

When the model run finishes, the computational services are notified that the run has 

completed.  The results of the experiment run are then transferred back to the computer 

holding the database.  The computational services then requests that the data services 

load the data into the database. The data services will look in the database for the CCOL 

instructions that explain how to convert the data into a form readily acceptable by the 

database.  After this conversion is complete the scientist is notified that the experiment 

run has completed and the results can be reviewed.

One might infer from the above discussion that the above scenario introduces many new 

steps in managing experiment runs.  However, a computational chemist using the CCDB 

client has a small amount of work to manage an experiment.  Reviewing the steps 

required to produce a experiment run with the computational proxy, the computational 

chemist must:

1. Select an application to model the run.

2. Select an initial molecular configuration for the run.

3. Start the experiment run.

4. Periodically query the status of the run.
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5. Review the results of the run.

Compare the above steps to the procedure currently required:

1. Select an application to model the run.

2. Locate a computer with the application installed.

3. Check the memory and disk space availability.

4. Create an initial molecular configuration estimate for the experiment.

5. Log on to the computer.

6. Transfer the initial molecular configuration estimate to the computer.

7. Start the experiment run.

8. Periodically log on to the computer.

9. Check the status of the experiment.

10. Log on to the computer.

11. Transfer the optimized molecular configuration and results back.

12. Review the results of the experiment.

As computing resources become more and more inexpensive, the number and size of the 

experiment runs that computational chemists desire to conduct will increase.  In the years

to come the problem of scientific data management and data sharing will be exacerbated. 
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By allowing chemists to share data about modeling experiments, past optimized 

molecular configurations can be used to give new experiment runs better initial molecule 

configurations.  The leveraging of the data from past experimental runs will allow new 

runs to converge more quickly.

The above overview has specifically discussed computational chemistry.  However, the 

situation for other computational sciences is similar.  Data management and data sharing 

can benefit these areas.

1.3The PCL Interpreter

We now focus on the implementation of an interpreter for the language (CCOL) which 

transforms output from specific applications to a generic database format.

Figure 1-10 shows how output from specific applications are transformed to and from the

object-oriented database schema.  The PCL is responsible for transforming the 

application specific output file into a equivalent generic format and placing it into the 

database.
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Figure 1-10  CCDB Computational Languages

The PCL performs this translation by consulting a list of interpreter directives in the 

database for the particular application.  These directives express the type of information, 

the location of the information in the output file, and any required conversion functions 

that are to be performed on the information before being placed in the database.  The 

PCL uses these directives to load experimental data in a five step conversion process.

These five steps are the creation of data representation, locating of data, reading of data, 

converting of data, and the loading of data.  The first step, the creation of the data’s 

representation, involves allocating storage for the data.  The amount of storage allocated 

is declared in the interpreter directive for the particular application.  The second step , the

locating of data, entails positioning a parsing cursor by searching for specific patterns in 

the output file.  Reading data, the third step, involves loading data from the current 

parsing cursor location into the allocated storage.  The fourth step is converting the data 
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into a format that matches the generic database format.  Placing the information into the 

database is step five.

This thesis describes an implementation of the CCOL language called the Parser 

Converter Loader (PCL) and part of the data services.  The goal of this work is to address

the problem of loading incompatible experiment run file formats into the database.  This 

work is central to the ability of the CCDB project to reuse experimental data.  The thesis 

is organized as follows:  Chapter Two discusses work related to the PCL.  Chapter Three 

offers the functional requirements and specification of the PCL project.  The design of 

the PCL is discussed in Chapter Four.  Chapter Five considers the C++ implementation 

of the project.  Evaluations and conclusions from the project are explained in Chapter 

Six.  Chapter Seven provides analysis and retrospective of the PCL project.  Future work 

is contemplated in Chapter Eight.
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2Related Work

2.1Data Reuse

When reviewing research literature we found two approaches to the problem of reusing 

data from one application as input to another: preventive and permissive.

The preventive approach is that data is stored in compatible formats.  In order to prevent 

the problems associated with incompatibilities, application and platform independent file 

formats are described and standardized for specific conceptual models.  These 

independent file formats are called Data Interchange Formats (DIF) [1].  Examples of 

these standardized formats are the “Chemical Exchange Format” for Chemistry, the 

“Abstract Syntax Notation One” for Genetics, and the “Planetary Data System” for Space

Mission Data.

The permissive approach accepts that data may be stored in incompatible formats.  The 

data is converted into the format required by an application by a conversion program.  

The conversion program can be a customized program, that converts only from one 

specific file format to another, or a generic conversion program that can convert data in 

one file format to a common file format.  An example of a conversion program with a 
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conversion language is the EXPRESS system developed by Shu and Housel and others 

[7] at IBM.

The two approaches explained above attempt to solve the problem of data reuse using 

one or more agreed-upon conceptual models.  The conceptual model explains what 

connotations can be associated with each data file.  An example would be the meaning 

associated with atomic mass.  The mass could be for a particular isotope of an atom, or 

the average mass of all the isotopes of the atom in its natural state.  The Data Interchange

Formats (DIF) have a conceptual model clearly defined in the specification of the file 

format.  This specification states what data is represented in the file and the semantics of 

that data.  The conversion programs also have a unifying conceptual model.  The 

conversion programs are less stringent than the DIF in how the data is represented in the 

file.  The conversion programs require that the data be conceptually compatible.  The 

conversion programs deal with the problems associated with converting the 

representation of the data.

It is important to note that without an agreement on a conceptual model neither of these 

approaches will work.  Data items may have several meanings and possible 

interpretations.  Some of these interpretations may be contradictory or may lead to 

different results based on the interpretation.  For example, if  we wanted to calculate the 

mass of  carbon found in a sample, some additional data about the carbon atoms in the 

sample is necessary.  Does the sample contain only one particular isotope of carbon or 
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does the sample contain the carbon isotopes in their natural proportions?  The results 

calculated will be different based on which meaning we associate with the data.

2.1.1Legacy Applications And Legacy Data

Two major differences between the approaches taken by the conversion programs and the

DIFs are how legacy systems and legacy data are handled.  Many of the programs used in

the scientific community are legacy applications.  Some applications have been used for 

tens of years and their particular file formats are well known by their users.  During the 

life of the application numerous experiment runs have been performed using them.  

These experiment runs collectively form a warehouse of legacy experimental data.

The DIF approach to data reuse would require that all the applications of a particular 

application type be changed to use the new standard DIF.  While this seems plausible, 

there may be several reasons why an application author may not make such a change.  

First, the change to the application to support DIF may not be not trivial.  Second, an 

author might not support DIF because of a concern that users may migrate to another 

program if they can easily transfer previous experimental results.  Some pools of 

scientific data are vast and have been accruing for tens of years.  Users with a large 

number of past experiments would not want to lose this data. An application author 

would need to create a conversion program that would translate the past experiments into

the new DIF format.
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The conversion program approach requires writing a program that can translate data in 

one file format to another file format.  The conversion program allows use of the 

currently existing legacy application without modification.  The data from past 

experiment runs produced by these legacy applications are available for reuse by having 

the conversion program manipulate the data.

2.2Conversion Programs -- EXPRESS

Conversion programs allow data created by one application to be translated into other 

formats and then used by other applications.  As described above, a conversion program 

can be a customized program, that can convert only from one file format to another, or a 

generic conversion program that can have an input and output file format described.  The

customized programs are more common because they are easier to design and create than

generalized conversion programs.  The price of this simplicity is paid when the 

customized conversion program must support additional file formats.  Cushing [2] 

estimates that a general conversion program for a particular sub-domain will begin to 

save development time over a customized program after support for the fourth file format

is added.  The computational sciences use several different types of applications for 

modeling and visualization.  For this reason we will focus on work that involves generic 

file conversion solutions.
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The EXPRESS system developed by Shu and Housel [7] is an example of a generic 

conversion application.  EXPRESS is a system that transforms data in a hierarchical 

format from one form into another.  EXPRESS’s primary use was to migrate data from a 

flat file or hierarchical database into a relational database.  The two main design points of

EXPRESS were to allow its use with minimal training and to efficiently use the 

computer resources while transforming the data.  The goal of allowing the system to be 

used with minimal training is achieved through the two transformation languages, 

DEFINE and CONVERT.  These languages are used to describe the transformations that 

need to be applied to the data.  The languages are non-procedural and thus specify what 

transformations should occur, rather that state how the transformations should occur.  

This allows the user to express the transformations in a natural way that is much easier 

than traditional programming languages.

Because EXPRESS was expected to load large amounts of data, the efficiency of the 

system was a major concern.  The efficient use of computer resources was achieved 

through concurrency and compilation.  Concurrency was used to allow non-dependent 

transformations to begin processing while other transformations were completing.  In 

addition, non-procedural descriptions of the transformations were compiled into a 

program.  This compilation allow the conversion to run more quickly that an interpreted 

description.
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2.3Conversion Applications -- The PCL

Like EXPRESS, the PCL is an example of a generic conversion program.  The PCL is a 

system that transforms data from one format to another, and loads data into an object-

oriented database.  The PCL’s primary use is to allow the reuse of data in legacy 

applications.  The main design point of the PCL is to allow the system to adapt to new 

applications, or to new releases of old applications.

The goal of allowing the system to adapt to new applications is achieved by making the 

program table driven.  Entries in three tables are used to control the transformation of 

data from one format to another.  We refer to these entries as “directives” because they 

direct the transformation.  The three types of directives are: creation, parsing, and 

conversion.  The three types of directives are used to adapt the PCL system to new 

applications.  This adaptation is performed by adding creation, parsing, and conversion 

directives for an application to the PCL tables.

2.4A Comparison Of EXPRESS And The PCL

The PCL was influenced by the design of EXPRESS.  This is to be expected as the 

purpose of the two systems is similar.  However, there are several differences that make a

comparison of the two systems interesting.  We will focus on three requirements and the 

design trade-offs they caused.  The three requirements involved:  the type of data 
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transformed, the amount of data transformed, and how often the transformation is 

performed.

The type of data transformed by the two systems is different.  EXPRESS support’s the 

manipulation of basic business data, for example text and simple numeric values.  The 

PCL transformations support the manipulation of scientific data.  This type of data has 

complex hierarchies and is heavily interconnected.  Both systems require that the 

transformed data to be available for later reuse.  EXPRESS uses a relational database to 

accomplish this goal.  The need to support highly interconnected complex hierarchies 

caused us to select an object-oriented database for our repository.  The PCL includes 

functions that change data with one syntax into data with another syntax but equivalent 

semantics.  For example, a function could be written that converts a location from 

Cartesian coordinates to Polar coordinates.

The two systems transform different amounts of data.  EXPRESS is optimized to 

transform large amounts of data from one file format to another.  In an effort to facilitate 

this conversion two steps were taken: the use of concurrency and the compilation of 

conversion instructions.  The PCL system converts smaller amounts of experimental data 

and is concerned with the system’s ability to adapt to new application formats.  The 

speed of the conversion was a secondary concern for two reasons.  One reason was that 

the amount of data being converted was relatively small, on the order of several 

megabytes.  The other reason was that producing experimental results takes days or 
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weeks of computation and, a few additional minutes during the conversion was deemed 

insignificant.  For these reasons we selected an interpreter to execute our conversion 

instructions and delayed the contemplation of concurrency during the conversion process.

An additional benefit of using an interpreter was that the PCL could be moved to 

different hardware platforms without needing to change the source code.

The specification and execution of the transformation occur with different frequencies in 

the two systems.  Shu and Housel [7] note that “[i]n practice database conversion is not a 

‘one shot’ process.  Rather, application systems and their data are moved gradually as the

application programs are rewritten.”  Conversions in the PCL occur whenever a 

experiment completes.  This can occur tens of times per day, which is much more 

frequently than anticipated in the EXPRESS system.  The EXPRESS system expects the 

specification and execution of the conversion to occur several times.  The PCL, on the 

other hand, expects changes to specifications of the conversion to occur seldom and the 

conversions to be invoked frequently.  These differences lead to diverse conversion 

languages. The authors of EXPRESS, expecting the conversion language to be specified 

often, created non-procedural languages.  On the other hand, expecting that the 

conversion language would be specified less often, we believed that a procedural 

language would be adequate for a prototype conversion program.
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2.5Alternative Systems

We considered if existing pattern-matching tools could reformat the experimental output 

so that it could be loaded by the computational proxy.  Several tools such as PERL[10] 

and AWK[11] were considered.  Both programs were able to handle the reformatting 

necessary for single-valued objects, however, the scripts to handle the reformatting of 

complex objects become elaborate.  The other problem we encountered was that we saw 

no direct method of linking reformatted objects generated by PERL and AWK with 

database objects without creating an intermediate language.  For these reasons we did not

use alternative pattern-matching tools.

The PCL combines an interesting mixture of ideas: database conversion and loading, 

complex and highly interconnected scientific data models, and support for unmodified 

legacy application and data.  This blend of ideas permits several design tradeoffs 

explained above.  While the PCL has similarities to existing systems, it addresses the 

problem of scientific data reuse in several unique and innovative ways.
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3The PCL Functional Requirements And 

Specification

In this section we will explain several types of data incompatibility.  This discussion 

helps clarify what incompatibilities can addressed by a software system.  After this 

discussion, we contrast a customized method with the PCL method of loading 

incompatible experiment run data into the database.  Once the PCL method is presented 

we will discuss the importance of a shared conceptual model to the PCL solution.

3.1Conceptual, Data Model and Physical Incompatibility

When attempting to address the problems of data incompatibility it is important to define

what data level we are discussing.  Maier in a paper entitled Object Data Models For 

Shared Molecular Structures[4], defines three levels of data incompatibility:  the 

conceptual, data model, and physical levels.  The conceptual level can be thought of as 

the connotation of terms and concepts.  An example is the meaning of the atomic mass of

an element.  The atomic mass can be thought of as an average of all the isotopes of an 

element or as the mass of a particular isotope.  The data model conveys how a conceptual

idea is represented.  An example is how a bond between two elements can be 

represented.  The bond can be represented as a pair of  Cartesian coordinates or it can be 

represented a pair of Polar coordinates.  Each of these representations contains the same 
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data (semantically), it is merely represented differently (syntactically).  The final level of

incompatibility is the physical level.  The physical level is the way data is stored in the 

computer system.  An example of this type of incompatibility is the different byte 

orderings that computers use.  We discuss how each level relates to the PCL below.

The PCL addresses two of these three, namely the physical and data model levels.  The 

conceptual level is not addressed by the PCL, but we assume that a common conceptual 

model can represent the inputs and outputs of the application of interest.

Agreement at the conceptual level is a precursor to any attempt at supporting 

informational model or physical compatibility.  Maier states “There is no point in 

discussing physical compatibility of data if there is fundamental disagreement on the 

meaning or interpretation of that data.” [4]

Incompatibility at the data model level is addressed by the PCL directives.  Creation 

directives allow the creation of application-specific representations of conceptual 

structures.  Parsing directives allow the parsing of data into these representations.  

Finally, conversion directives allow these representations to be transformed into a 

common type maintained in the database.  These directives all assume common 

conceptual structures.
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The CCDB as a whole deals with incompatibility at the physical level when data is 

retrieved from the database.  The database converts stored data into the byte ordering 

required by the requesting computer system.  The PCL need not address incompatibility 

at the physical level since it parses the ASCII files output by the application.

3.2Customized Loading Of Experimental Data To A Database

In this section we describe the functional requirements and specification of the Parser 

Converter Loader (PCL).  The PCL is an implementation of the Computational 

Chemistry Output Language (CCOL) as shown in Figure 3-1.  The goal of the PCL is to 

load incompatible experiment run file formats into the database.

Output
File

Output File Descriptions
Written in CCOL

Input File Descriptions
Written in CCIL

Input
FilePCL Input File

Generator

CCDB
OODB

Application

Figure 3-1 CCDB Computational Languages
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After listing the requirements for the PCL we will explain each in more detail.  The 

requirement of the PCL system is that it retrieve data from the output file produced by a 

model run and place this data into the database for reuse, see Figure 3-2 below.

Computational Chemistry Datbase

Generic Experiments

C9H22O4

1.3, 4.2, 1.4
4.2, 3.8, 9.5
8.1, 5.9, 2.1

C18H24O2

1.3, 4.2, 1.4
4.2, 3.8, 9.5
8.1, 5.9, 2.1

HNO2

1.3, 4.2, 1.4
4.2, 3.8, 9.5
8.1, 5.9, 2.1

CHO4

1.3, 4.2, 1.4
4.2, 3.8, 9.5
8.1, 5.9, 2.1

Parser Converter Loader

GAMESS HONDO GAMESS GAMESS

C9H22O4 C18H24O2 CHO4 HNO2

Output Files in
Various Formats

Figure 3-2 Parsing, Loading, and Converting Experiment Run Data From Several Applications

The loading of experimental data could be achieved by writing a customized database 

loader for each computational application.  Each database loader would place data 

generated by a particular computational application into the database.  However, this 

requires that a new database loader program be written whenever a new application is 

used.  Notice that conceptually all the loader programs would share similar processing 

needs.  The database loaders can be thought of as making this transformation in the five 

generic steps shown in Figure 3-3 through Figure 3-7.

41



3.2.1Customized Creation Of Data Representation

The first step in loading the experimental data into the database involves allocating 

storage to hold experimental data that is in the application’s format before it is placed 

into the database.  This can be seen in Figure 3-3.  In our example, the GAMESS 

experiment has five attributes; molecule name, application name, three arrays X, Y, and 

Z.  Each of these has a domain associated with it.  The molecule name and application 

name have the domain of string, and the three arrays have the domain array of double 

with three elements each.

C9H22O4

1.3, 4.2, 1.4
4.2, 3.8, 9.5
8.1, 5.9, 2.1

GAMESS

GAMESS Experiment

 Molecule Name: String
 X: Array[3] Doubles
 Y: Array[3] Doubles
 Z: Array[3] Doubles

 Application Name:
    String

1) Allocate storage to hold the
    experimental data that is in the
    application format.

String is a domain.

Application Name is an attribute.
Experiment

Output PCL Representation

Figure 3-3 Step One -- Customized Creation Of Data Representation

3.2.2Customized Locating Of Data

Step two entails locating the data to be placed in the database.  The data is located in the 

experiment run output. This data is usually located by finding a particular keyword or 
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title.  In our example in Figure 3-4 the string desired was the first string in the file and no

positioning was required.  The arrow in the experiment output points to the data that has 

been located in the GAMESS experiment run.

C9H22O4
  

1.3, 4.2, 1.4
4.2, 3.8, 9.5
8.1, 5.9, 2.1

GAMESS

2) Locating data in the experiment
    output that needs to be
    placed in the database.

GAMESS Experiment

 Molecule Name: String
 X: Array[3] Doubles
 Y: Array[3] Doubles
 Z: Array[3] Doubles

 Application Name:
    String

Current Location in File

Figure 3-4 Step Two -- Customized Location Of Data

3.2.3Customized Reading Of Data

In step three the data located is placed in the area allocated.  The process of locating data 

in the experiment output and then placing it in the allocated space continues until all the 

data have been located and read.  Figure 3-5 shows the completed results of out searching

and loading.
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GAMESS Experiment

 Molecule: C9H22O4
 X: 1.3, 4.2, 1.4
 Y: 4.2, 3.8, 9.5
 Z: 8.1, 5.9, 2.1

 Application: GAMESS

3) Data located is read into the
    storage allocated.

C9H22O4

1.3, 4.2, 1.4
4.2, 3.8, 9.5
8.1, 5.9, 2.1

GAMESS

Figure 3-5 Step Three -- Customized Reading Of Data

3.2.4Customized Converting Of Data

The application’s representation of data may not agree with the representation in the 

database schema.  In these cases a conversion needs to be applied to transform the data 

into the format required for loading it into the database.  Even if the domain of the 

application attribute and the database attribute match (i.e. have the same type) there may 

need to be conversion, For example simply changing the units of measure for a reading.  

Conversion functions can be arbitrarily complex.  The conversion of attributes in the 

application’s representation into the format in the database’s schema occurs in step four.  

Figure 3-6 shows the completed conversion process.  The molecule name and application

name do not require any changes and are carried forward.  The three arrays, X, Y, and Z,

however, are converted into the domain of the database schema.
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Database Schema

MoleculeName:  C9H22O4

 : 12.3, 26.1, 12.4
 : 7.2, 7.1, 15.8
 Application Name: GAMESS

4) Data in the application
    representation is converted into the
    database format.

GAMESS Experiment

 Molecule: C9H22O4
 X: 1.3, 4.2, 1.4
 Y:  4.2, 3.8, 9.5
 Z: 8.1, 5.9, 2.1

 Application: GAMESS

MoleculeName:  String
 : Array [3] Of Double
 : Array [3] Of Double
 Application Name: String

Figure 3-6 Step Four -- Customized Data Conversion

3.2.5Customized Loading Of Data

The fifth step is loading the converted data into the database.  This can be seen in Figure 

3-7.
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Database SchemaExperiment Database

5) The converted information is
    loaded into the database.

MoleculeName:  C9H22O4
 : 12.3, 26.1, 12.4
 : 7.2, 7.1, 15.8
 Application Name: GAMESS

MoleculeName:  C9H22O4
 : 12.3, 26.1, 12.4
 : 7.2, 7.1, 15.8
 Application Name: GAMESS

MoleculeName:  String
 : Array [3] Of Double
 : Array [3] Of Double
 Application Name: String

Figure 3-7 Step Five -- Customized Loading Of Data

The five customized steps of loading experimental data are summarized in Figure 3.8.

1. Customized Creation Of Data Representation

2. Customized Locating Of Data

3. Customized Reading Of Data

4. Customized Converting Of Data

5. Customized Loading Of Data

Figure 3-8 Five Customized Steps Of Loading Experimental Data
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3.3The PCL Loading Of Experimental Data To A Database

In order to avoid writing numerous loader programs, we decided to factor out the 

common functionality of all such potential programs.  Application-specific formats 

would be communicated to this single program via “directives”.  Directives are 

instructions to the PCL that control the loading of experimental data.  This generalization

is the conceptual basis of the PCL.  The PCL processes directives that control each of the

five steps listed above for specific applications.  The PCL has specific directives that 

instruct it how to allocate storage.  It also has directives that instruct it how to locate data 

in the experiment run and how to convert data from one type to another.  These 

directives control how the PCL loads data from a experiment run into the database of 

computational experiments.

An important goal of the PCL is that it be extensible.  If the idea of factoring common 

functionality out of numerous loader programs is to prove fruitful, the PCL must be able 

to adapt easily to new applications and to changes in applications.  If at all possible, 

adaptations should be accommodated through the modification of the directives given to 

the PCL, rather than through PCL code modifications.  Code additions may be necessary 

if new conceptual attributes or domains are introduced by a new application.  Sections 

3.3.1 through 3.3.5 constitute a program specification for the five steps shown in Figure 

3-3 through Figure 3-7:
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3.3.1The PCL Creation Of Data Representation -- Creation Directives

The allocation of storage for the experiment data is controlled by creation directives.  

Creation directives are instructions used to specify, to the PCL, how much space needs to

be allocated for an attribute.  This storage space is used to hold the experimental data that

is in the application’s format while it is being placed into the database.  The creation 

directives allow the allocation of storage for each experiment type to be uniquely defined

and controlled.  The changing of the creation directives will allow the PCL to adapt to 

new application types.

3.3.2The PCL Locating Of Data -- Parsing Directives

Locating data in the output file is controlled by parsing directives.  Parsing directives are 

instructions used to specify, to the PCL, how to locate data in the output file for the 

experiment.  The PCL maintains a current token location in the experiment run output.  

As parsing directives are processed, the current token location is updated appropriately.  

The parsing directives allow data for each experiment type to be uniquely defined and 

controlled.  Changing parsing directives allows the PCL to adapt to new application 

types.
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3.3.3The PCL Reading Of Data

The loading of data is implicitly performed by the PCL.  When all the parsing directives 

for an attribute have been processed, the PCL automatically reads in the attribute.  When 

reading in a data element the PCL uses the current token location to retrieve text.

3.3.4The PCL Converting Of Data -- Conversion Directives

The conversion of data to be placed in the database is controlled by conversion 

directives.  Conversion directives are instructions used to specify, to the PCL, the 

transformations that need to be applied to a data element.  If the representation and 

meaning of the application data does not agree with the database schema, conversion 

directives define the transformations to convert the data into the format required by the 

database.  The conversions allow a common semantics between the application and the 

repository.

Once these transformations are completed, the application-specific data has been 

converted into the database format.  This form is the same as the database schema and 

can be directly loaded into the database.
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3.3.5The PCL Loading Of Data

The loading of the converted data is implicitly performed by the PCL.  When all the 

conversion directives for an attribute have been processed, the PCL automatically places 

the attribute into the repository.

3.3.6The PCL Loading Experiment Run Data -- Example

Now that we have listed the five steps involved in loading experimental data we will 

work through an example.  The example will include the CCDB infrastructure steps that 

precede the start of the PCL and will include how the PCL loads a experiment run into 

the database.  Of the five steps listed above, three are central to the extensibility of the 

PCL, while the other two are automatically invoked and are not configurable.  The three 

central stages are the processing of  the creation, parsing, and conversion directives.  

These three stages are equivalent to steps one, two, and four listed above.  We will refer 

to them as the directive processing stages.  They can be seen in Figure 3-9 through 

Figure 3-11.

Recall from earlier that when a experiment run is complete, the computational 

application creates a file that contains the results of the run.  This output file is then 

transferred by the computational proxy from the computer that determined the results to 

the system that contains the repository.  Once the results from the experiment model run 

have been successfully returned where the PCL resides the PCL program is started.  The 

PCL program is charged with the responsibility of parsing, converting, and loading the 
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results of the experiment and placing this data into the database for reuse.  For this 

example, we assume that a GAMESS application has successfully completed and that the

experiment run data has been transferred back to be loaded by the PCL.

Experiment Database

Application Creation Directives

GAMESS-RHF: String, String, Array Of Double, Array
                              Of Double, Array Of Double
GAMESS-XXX: String, String, Array Of Long, Array
                              Of Double, Array Of Double

Generic Experiments

C9H22O4

1.3, 4.2, 1.4
4.2, 3.8, 9.5
8.1, 5.9, 2.1

Parser Converter Loader
(PCL)

GAMESS

GAMESS Experiment

 Molecule Name: String
 X: Array[3] Doubles
 Y: Array[3] Doubles
 Z: Array[3] Doubles

 Application Name:
    String

Final Experiment Application-Specific Representation

1.1) Determine Application
        And Experiment Type

1.2) Locate Application-Specific
        Creation Directives

1.3) Process Directives

Figure 3-9 Creation Directive Processing Stage For The Loading Of A GAMESS Experiment Run
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The first stage involves creating an application-specific representation of the run.  In our 

example the application run was performed by the application GAMESS.  The type of 

application that produced the final experiment and the type of experimental run is passed 

to the PCL by the CCDB proxy.  This is shown in Figure 3-9 as stage 1.1.  It may be 

possible to infer this data directly from the output.  This was not done because the data is 

readily available in the proxy.  In stage 1.2 of Figure 3-9 the creation directives for the 

particular application and experiment type are located in the database by the PCL.  These

directives are entered into the database once by an scientist well versed with the 

applications whom we call the “registrar”.  Creation directive data must be provided for 

each possible application and experiment type combination supported by that application.

The creation directives located in the database explain the application-specific 

representation of the data contained in the experiment run.  We see that the GAMESS 

application representation in Figure 3-9 has five attributes.  The attributes are Molecule 

Name, Application Name, X, Y, and Z, with domains string, string, and three arrays of 

three doubles respectively. Once the application and the experiment type are located in 

the database, each associated creation directive is processed by the PCL.  Processing 

these directives produces the application-specific representation of the experiment run 

data.  The results of this processing are shown in stage 1.3 of Figure 3-9.  The 

constructed application-specific representation of the experiment can now be filled.
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Experiment Database

Application Parsing Directives

GAMESS-RHF-Molecule Name: Set Current Token
                                                      At Begining Of File
GAMESS-RHF-X: Set Current Token At Begining Of
                                File, Skip String

Generic Experiments

C9H22O4

1.3, 4.2, 1.4
4.2, 3.8, 9.5
8.1, 5.9, 2.1

Parser Converter Loader
(PCL)

GAMESS

Final Experiment Application-Specific Representation
Completely Created

2.1) Determine
       Application,
       Experiment Type, And
       Attribute

2.2) Locate Application-Specific
        Parsing Directives

2.3) Process Directives

GAMESS Experiment

 Molecule: C9H22O4
 X: 1.3, 4.2, 1.4
 Y:  4.2, 3.8, 9.5
 Z: 8.1, 5.9, 2.1

 Application: GAMESS

Figure 3-10 Parsing Directive Processing Stage For The Loading Of A GAMESS Experiment Run

The second stage of loading computational experiment data involves the locating and 

parsing of data in the output file.  In Stage 2.1 of Figure 3-10 the PCL is instructed to 

locate and parse a particular attribute.  The complete explanation of how the PCL is 
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instructed to locate and parse a experiment attribute is discussed in the PCL design 

section.  Assume, for the moment, that the PCL is instructed that a particular attribute 

needs to be parsed.  In order to locate and parse an attribute the PCL requires three pieces

of data:  the application that produced the final experiment, the type of run, and the name

of the attribute.  The PCL will use these three pieces of data to find the parsing directives

required to locate and parse the attribute.  In Stage 2.2 of Figure 3-10 the parsing 

directives for the particular application, experiment type, and attribute are located in the 

database by the PCL.  The parsing directives, like the creation directives, are entered into

the database once by the registrar.  Parsing directive data needs to be provided for each 

application, experiment type, and attribute combination supported by the application.

The parsing directives located in the database explain how to locate and parse each 

attribute contained in the experiment run.  Once the application, experiment type, and 

attribute are located in the database, each associated parsing directive is processed by the 

PCL.  By consulting the database we can see that the GAMESS application, performing a

RHF experiment type, with the attribute “Molecule Name” has one parsing directive.  

This directive is “Set Current Token At Beginning Of File”.  When this directive has 

been processed by the PCL the “Molecule Name” attribute is ready to be loaded.  By 

looking at the final experiment run in Figure 3-10 we can validate the correctness of this 

directive.  If we processed the directive we would be at the beginning of the file.  We 

would then read the domain type of the attribute, which is a string.  The molecule name 

would be retrieved correctly.
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The processing of these directives produces the parsed application-specific representation

of the experiment run data.  The results of this processing are shown in Stage 2.3 of 

Figure 3-10.  The parsed application-specific representation of the run can now be 

converted, if necessary.
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Experiment Model Run Database

Application Conversion Directives

GAMESS-RHF-X: CartisianToPolar
GAMESS-RHF-Y: CartisianToPolar
GAMESS-RHF-Z: CartisianToPolar

Generic Experiment

MoleculeName:  C9H22O4

 : 12.3, 26.1, 12.4
 : 7.2, 7.1, 15.8
 Application Name: GAMESS

Parser Converter Loader
(PCL)

Application-Specific Representation
Completely Created

3.1) Determine Application,
       Experiment Type, And
       Attribute

3.2) Locate Application-
       Specific Conversion
       Directives

3.3) Process Directives

GAMESS Experiment

 Molecule: C9H22O4
 X: 1.3, 4.2, 1.4
 Y: 4.2, 3.8, 9.5
 Z: 8.1, 5.9, 2.1

 Application: GAMESS

Figure 3-11 Conversion Directive Processing Stage For The Loading Of A GAMESS Experiment Run

The third and final stage involves converting and loading the parsed application-specific 

representation of the experiment run.  In Stage 3.1 of Figure 3-11 the PCL is instructed 

to convert and load a particular attribute.  Again, the complete explanation of how the 

PCL is instructed to convert and load a experiment attribute is discussed in the PCL 
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design section.  Assume that the PCL is instructed that a particular attribute needs to be 

converted.

In order to load an attribute into the database the PCL first checks if the data needs to be 

converted into another form.  Checking for this conversion requires three pieces of data: 

the application that produced the final experiment, the type of experimental run, and the 

attribute.  The PCL will use these three pieces of data to locate the conversion directives 

required to convert and load the data.  In Stage 3.2 of Figure 3-11 the conversion 

directives for the particular application, experiment type, and attribute are located in the 

database by the PCL.  The conversion directives like the creation and parsing directives 

are entered into the database once by the registrar.  Parsing directive data needs to be 

provided for each application, experiment type, and attribute combination.

The conversion directives located in the database explain what conversions to apply to 

each attribute contained in the experiment run.  Once the application, experiment type, 

and attribute are located in the database, each associated conversion directive is 

processed by the PCL.  By consulting the database we can see that the GAMESS 

application, performing a RHF experiment type, with the attribute X has one conversion 

directive, Cartesian To Polar.  When this directive has been processed by the PCL a new 

database object is created, the X attribute is converted into polar coordinates, and this 

value is loaded into the database.
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In some cases the generic format may match the application-specific format, and thus no 

conversion is required.  In these cases no conversion directives are required.  A new 

database object is created, the value of the attribute is copied and  this value is loaded 

into the database.  An example of an attribute that does not require any conversion 

directives would be the molecule name.  The GAMESS application representation of a 

molecule name and the database’s match.

The processing of these directives completes the loading of the experiment run data into 

the database.  The result of this processing is shown in stage 2.3 of Figure 3-11.  The 

experiment run data can now be queried and reused in other experiment runs.

3.4The PCL And Data Incompatibility

3.4.1The PCL And A Conceptual Model

We now discuss why, when placing the results of experimental data from several 

different programs into a database, all the programs must share a common conceptual 

model.  Without a common conceptual model the PCL would not be able to construct 

application-specific representations of conceptual structures, as there would be no 

common structure.  The PCL would not be able to parse or convert these objects because 

the common structure is used when performing these operations.  Even if we assume that 

these limitations could be addressed and this data could be loaded into the database, we 
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now have the problem of retrieving data with no common semantics.  Data without a 

meaning is clearly useless.   Our work supports the conclusion that, “The key to 

extensible computer-based chemistry systems and shared molecular structures lies in a 

common conceptual model” [4].

The conceptual model is central to the ability to share meaningful data across 

applications, but does not excessively limit those applications.  The shared schema 

represents the common data and theoretical basis that binds the applications.  For 

example, in the CCDB project all modeling programs must agree, at a conceptual level, 

that a molecule has an energy and a collection of atoms of which it is comprised.  The 

applications must also agree that atoms are conceptually composed of an atom location 

and an atom type.  This agreement on a conceptual form does not describe or limit how 

the components are actually modeled in the computational program.  For example, all the

models can agree that an atom has an atom location.  Each model can represent this 

location in any way it sees fit.  For example, the representation can be in polar or 

Cartesian coordinates.  Cushing notes in [2] that this common application domain is not 

easily defined due to subtle nuances in the implied meaning of conceptual ideas.

3.4.2Conceptual Model Support For Data Model Compatibility

A central component of the PCL is the database schema.  When created by the user the 

schema represents a conceptual model (e. g. molecule).  The PCL uses the conceptual 

model to create a compatible data model.  The PCL accomplishes this by using the 
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conceptual model as a template for the data model.  The data model template is used by 

the creation directives.  The conceptual schema describes the generic object, while the 

creation directives describe the particular representation of that conceptual object.  The 

creation directives are a statement of the data model in the CCOL.  The conceptual 

schema represents the conceptual objects of which the PCL creation directives create 

complete application instances.  In this manner the conceptual model is mapped to a 

particular application data model.  This mapping provides a level of indirection required 

to support several data models on top of a single conceptual model.

The ability to support several data models on top of a single conceptual model allows the 

experimental results from specific applications to be deposited into a generic repository 

in a common format.  Once in this store, experimental data can be view, queried, and 

applied to a specific problem.  A computational scientist who wishes to run an 

experiment, can browse or query the databases for experiments involving molecules of a 

similar class or type.  Once these experiments have been located the scientist can be used 

to produce initial guesses of the optimized molecular structure of a molecule.  

Meaningful data can be gleaned from this warehouse of experimental data because of the 

unified application schema.
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4The PCL Design

In this section we will discuss the design of the PCL system.  We will specifically discuss

why we chose to design and implement a generic parser rather than several application 

specific parsers.  We will also discuss how the PCL system supports the creation, 

parsing, and conversion of data for arbitrary computational applications.

4.1Extensibility In A Conversion System

During the design phase of the project, the specification described in Chapter Three was 

analyzed, and a design was outlined, and validated.  The specification is outlined again in

Figure 4-1.

1. Creation of Data Representation

2. Locating of Data

3. Reading of Data

4. Converting of Data

5. Loading of Data

Figure 4-1 Five Functional Specifications For The PCL System
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When designing the PCL we considered whether extensibility should be a major concern.

An extensible system will over the long term require less development effort than 

customized conversion applications.  The primary cost saving an extensible (i.e. generic) 

system affords is a decrease in development and testing costs.  Once a generic conversion

program is developed, the cost of supporting a new computational application is 

incremental.  The customized conversion program approach, on the other hand, requires 

major components of the system to be redesigned, rewritten, and re-tested.  As support 

for additional applications are required, the incremental cost of development for an 

extensible system overtakes the cost required for several customized conversion systems.

Dr. Judith Cushing is an experienced developer of complex computer systems.  In her 

thesis [2] she claims, based on her experience, that the initial development of a generic 

conversion system would take 16 weeks.  One week of additional work would be 

required to modify table entries for each additional application.  The customized 

conversion system was estimated to take eight weeks for the first application.  Four 

weeks of development time would be required to develop additional customized 

conversion applications.  Figure 4-2 shows the amount of time required to support 

different numbers of applications.  The asterisk ‘*’ denotes the development break even 

point, where the development cost of a customized system overtakes the cost of a generic

system.
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Number Of

Applications

Supported

Generic Conversion

Application

Customized Conversion

Application

Development Time

Comparison

1 16 Weeks + 1 Week 8 Weeks 17-8

2 1 Week 4 Weeks 18-12

3 1 Week 4 Weeks 19-16

4 1 Week 4 Weeks 20-20 *

5 1 Week 4 Weeks 21-24

6 1 Week 4 Weeks 22-28

Figure 4-2 Development Time Comparison For Generic And Customized Conversion Systems

From Figure 4-2, we see that a generic conversion system is less expensive to develop 

than a customized conversion application when support for four or more computational 

applications are required.  We expect that the computational legacy systems will continue

to be used and that the ability to easily use different applications will drive the scientist’s 

desire to transfer this data to even more modeling and visualization applications.  This 

will increase the need for additional applications support.

For the above reasons we made extensibility a major concern in our design.  We wanted 

the ability to add support for new computational applications to the PCL without 

requiring changes to, and recompilation of the source code.  This goal was achieved by 

using a table-driven approach.  Our system design centered on using a table of directives 
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that control how the different steps in the conversion process are performed.  Before 

discussing how the table of directives are used in the conversion progress we will explain

conceptual and base objects.

4.2Conceptual And Base Objects

As explained in Chapter Three, the PCL requires a conceptual model that is shared 

among all the computational applications.  The PCL’s goal of data reuse requires us to 

resolve syntactic differences among particular applications with a shared conceptual 

model.  At one level there is the conceptual model, with which all the applications agree. 

On the other hand, the data model level describes different implementational 

representations of the data described by the conceptual model.  (Computational 

applications may represent data differently.)  Figure 4-3 shows the difference between 

the conceptual model and the informational model of an atom.  All three representations 

shown in the data model can be used to represent an atom uniquely.
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Atom Conceptual
Model

Informational
Model

Atomic
Number

Atomic
Name

Atomic
Abbreviation

Figure 4-3 Conceptual Model And Informational Model For "Atom"

We call each abstraction “within” the conceptual model a conceptual object.  Figure 4-4 

shows an example of a molecule conceptual object.  A conceptual object can be 

composed of other conceptual objects.  A conceptual object that is a sub-component of 

another conceptual object X is called an attribute of X.  For example, in Figure 4-4, the 

attributes of the “Molecule” conceptual object are “Name” and ”Final Energy”.

Molecule

Name Final Energy

Figure 4-4 The "Molecule" Conceptual Object With Attributes "Name" And "Final Energy"
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All computational applications represent the conceptual schema with conceptual objects 

connected in analogous structure.  We refer to this as a conceptual object hierarchy.  

Each computational application can physically represent the conceptual objects 

differently in the informational model.  We will now discuss how conceptual objects are 

represented.

The physical representation of conceptual objects are described by base objects.  Base 

objects are physical storage locations used to contain data.  Base objects are used to 

represent the particular data model an application uses to represent a conceptual object.  

For example, Figure 4-5 shows two base objects, integer and double.

Integer Double

Figure 4-5 An Example Of Two Base Objects

These two types of objects can be used to allow a conceptual object’s representation to be

associated with  arbitrary base objects.  With this flexibility, the physical representation 

of a conceptual object can be changed for different applications.  Figure 4-6 shows an 

example of how four different computational applications might represent the atom 

conceptual object.
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Integer
(Atomic Number)

String
(Atomic Name)

AtomAtomAtom

String
(Atomic Name)

Atom

Float
(Atomic Weight)

Figure 4-6 Conceptual Object "Atom" With Four Possible Base Object Representations

We designed these two types of objects so that an application can create an arbitrary 

physical representation for the conceptual objects and thus support the required 

extensibility.  These two types of objects can be used to create a conceptual object in the 

form represented by a particular computational application.

4.3Operation Of The PCL 

We will now discuss how the components of the PCL operate, after which we will 

discuss each directive type in detail.

Once a computational experiment has been transferred back to the host computer by the 

computational proxy, the PCL is started.  The computational proxy then notifies the PCL 

of the output filename, the computational chemistry application that produced the results,

and the type of computational experiment that was conducted.  The PCL uses this data to 

initialize itself.
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The PCL then allocates space for conceptual objects associated with the conceptual 

model.  The hierarchy of conceptual objects is permanent and all objects are allocated as 

persistent database objects.  This hierarchy forms the structure on which the application-

specific representation is hung.  Figure 4-7 shows a simple hierarchy of conceptual 

objects for a molecule.  At this point in the processing of the computational experiment 

results, the hierarchy of conceptual objects does not have an application-specific 

representation.

The following discussions involve a single hierarchy of conceptual objects.  However, 

the PCL is not limited to a hierarchy with a single root node.  Multiple hierarchies of 

conceptual objects would be processed as if each were a single hierarchy.  The root 

object of each hierarchy would merely need to be processed as described below.

Molecule

Atom

Type

Atom

TypeLocation Location

Figure 4-7 Conceptual Object Hierarchy For A Molecule With Two Atoms
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The process of loading data involves five steps elucidated earlier in Chapter Three:

1. Creation of Data Representation.

2. Locating of Data.

3. Reading of Data.

4. Converting of Data.

5. Loading of Data.

4.3.1Operation Of The PCL Creation Directives

We will use a single conceptual object -- molecule -- as our example, and generalize the 

operation of the PCL in the next section.  The PCL processing begins by invoking the 

load function for the root of the conceptual object hierarchy.  The molecule object then 

starts the first step in the loading process.  This step is the creation of the application 

representation for each attribute of the molecule.  To accomplish this task the molecule 

needs to find out how the computational application that created the experiment output 

represents a molecule.  The molecule object does not have the data needed to make this 

determination and defers this decision to the PCL by invoking the PCL look-up-creation-

directive function and passing it the conceptual object.  The PCL knows the 

computational application and experiment type used to create the output file, because the 

computational proxy passed this data to it when it was started.  Figure 4-8 shows the 

process of locating the creation directives for the conceptual object molecule.
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PCLMolecule

Object-Oriented Database

1) The PCL Invokes the
Molecule’s Load Function

2) The Molecule Invokes the PCL’s
Look Up Creation Directive Function
for Molecule

3) The PCL Looks in the Object-
Oriented Database And Retreives the
Creation Directives

Figure 4-8 Creation Directive Look Up For A Molecule

The PCL looks up the representation of the molecule in the database using three pieces of

data.  (1) It retrieves a list of creation directives.  (2) Each creation directive is processed 

by allocating transitory space for a new base object of the type described in the directive. 

(3) The transitory space allocated is converted and saved in persistent storage when the 

application representation is converted into the database format.  This new base object is 

then attached to the conceptual object, and the PCL function returns.  Figure 4-9 shows 

this procedure.
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Molecule’s Creation Directives
Retreived From the Database

PCLMolecule

Object-Oriented Database

1) String
2) Double

Double String

1) The Base Objects Listed in the Molecule’s
Creation Directives Are Created

2) The Newly Created Base Objects are
Attached to the Conceptual Object

3) When All the Directives Are
Processed the PCL Returns

Figure 4-9 Creation Directive Processing For A Molecule

4.3.2Operation Of The PCL Parsing Directives

The second step in the loading process involves the location of data to be stored in the 

base objects.  To accomplish this task the molecule needs to locate the data to be loaded 

into each base object.  The molecule does not have the data needed to make this 

determination and defers to the PCL by invoking the PCL look-up-parsing-directive 

function and passing it the conceptual object and the base object.  Figure 4-10 shows the 

process of locating the parsing directives for the base object molecule.
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PCLMolecule

Object-Oriented Database

Double String

1) The Molecule Invokes the PCL Look
Up Parsing Directive Function for
Molecule - String

2) The PCL Looks in the Object
Oriented Database and Retreives the
Parsing Directives

Figure 4-10 Parsing Directive Look Up For The String Attribute Of Molecule

The PCL is instructed to look up the parsing directives that describe how to locate the 

data for a base object.  It retrieves a list of parsing directives.  Each parsing directive is 

processed by executing the interpreter’s function with the supplied parameters.  The PCL

maintains the current location within the textual results with a parsing cursor.  The 

execution of the parsing directives can cause the movement of the parsing cursor and the 

reformatting of complex text.  When all the parsing directives have been processed, the 

PCL function returns.  Figure 4-11 shows this procedure.
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Computational Experiment Output

PCLMolecule

Object-Oriented Database

Double String

1) The PCL Processes Each Directive
Retreived From the Database,
Repositioning the Parsing Cursor

2) When All Directives are
Processed the PCL Returns

Molecule - String Parsing Directives
Retreived From the Database

SkipForward “Molecule Name:” First

Application Version: 12.5
Total Memory Used: 12
CPU Time: 4:17
Molecule Name: Ethylene
                          
Nuclear Repulsion Energy: 57.92014 kJ

Figure 4-11 Parsing Directive Processing For String Attribute Of Molecule

Upon return from the PCL, the molecule’s load function can safely assume that the PCL 

parsing cursor is properly positioned to read in the base class.  The reading of the textual 

data is step three.  The molecule then invokes the read function for the base class whose 

parsing directives were just processed.  The base class then instructs the PCL to read in 

the text and passes the PCL its base class type.  When reading the text the PCL knows 

what format the text should be stored in because it knows the type of the base class.  The 

PCL uses its parsing cursor as the starting point from which to read the text.  When the 
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PCL has read the data into the base class it updates the parsing cursor and returns to the 

base class read function.  The complete process can be seen in Figure 4-12.

Computational Experiment Output

PCLMolecule

Object-Oriented Database

Double String
“Ethylene”

3) The PCL Reads a String From the
Computational Experiment Output Using
the Current Location of the Parsing
Cursor and Places This Data in the Base
Object

2) The String Base Class Invokes
the PCL Read Function

Application Version: 12.5
Total Memory Used: 12
CPU Time: 4.17 s
Molecule Name: Ethylene
                          
Nuclear Repulsion Energy: 57.92014 kJ

1) The Molecule Invokes the
String Read Function

5) The String Read Function Returns
to the Molecule Load Function

4) The PCL Returns to the String
Read Function

Figure 4-12 Reading Value For String Attribute Of Molecule Using The PCL

The processing of the parsing directive for the double base object occurs in a similar 

manner as the string base object.  We will continue the example with the processing of 

the conversion directives.
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4.3.3Operation Of The PCL Conversion Directives

The fourth step of the loading process involves converting data at each conceptual model 

level into the generic representation in the database.  The PCL is instructed to look up the

conversion directives that describe how to convert the data contained in the base objects 

into the generic representation.  The PCL retrieves a list of conversion directives for each

base object.  This process is shown in Figure 4-13.

PCLMolecule

Object-Oriented Database

Double
“57.92014”

String
“Ethylene” 1) The Molecule Invokes the PCL’s Look

Up Conversion Directive Function for
Molecule - Double

2) The PCL Looks in the Object-
Oriented Database and Retreives the
Conversion Directives

Figure 4-13 Conversion Directive Look Up For Double Attribute Of Molecule

The PCL processes the list of conversion directives retrieved.  During the conversion 

process the basic objects associated with the conceptual object are replaced by the base 

objects for the generic representation.  These base objects are permanent and are 

allocated in the database.  In Figure 4-14 the application representation of the Molecule’s

energy is converted from kiloJoules to Joules.  In our implementation the registrar can 
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make errors of accuracy like converting real to integer;  this should be flagged in a 

production system.

PCLMolecule

Object-Oriented Database

Double
“57.92014”

String
“Ethylene”

1) The PCL Processes Each Directive
Retreived from the Database

2) When all the Directives are
Processed the PCL Returns

Molecule - Double Conversion
Directives Retreived from the
Database

KiloJoulesToJoules

Double
“57920.14”

Figure 4-14 Conversion Directive Processing For The Double Attribute Of Molecule

The fifth and final step in loading the experiment data into the database is placing the 

newly formed generic conceptual hierarchy into the database.  This step merely requires 

the root object to be loaded into the database.  Once this has been performed,  all the 

objects that make up the object hierarchy can be reached by traversing the hierarchy.
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4.3.4Operation Of The PCL With A Complex Conceptual Hierarchy

Now that we have explained how the PCL operates with a single conceptual object we 

need to discuss how the operation proceeds when there are several levels of conceptual 

objects.  A design tenet has been to allow an object to create, parse, and convert only that

data that is directly available to that object.  Using the conceptual object hierarchy shown

in Figure 4-15, the molecule object can create whatever attributes are required to model a

molecule for the particular computational application and experiment type.  However, the

molecule object cannot  create, parse, or convert data in the atom object.

DoubleMolecule

Atom Double

Type
Double

Double

Unsigned

Location

Atom Double
DoubleAtom

Conceptual Object
Hiearchy

Application-Specific
Representation

Figure 4-15 Conceptual Object Hierarchy For Molecule With An Application-Specific Model Representation
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This design decision causes the processing of the PCL to percolate down the conceptual 

object hierarchy as directive requests are processed at each level.  Figure 4-16 shows the 

processing that occurs when a conceptual hierarchy is loaded.  In step one, the PCL 

invokes the molecule’s load function to begin the processing of the hierarchy.  In the 

second step the molecule process its application-specific representation as described 

earlier.  When this processing is complete we reach step three and the molecule invokes 

the load function for each of its attributes.  In our example hierarchy this consists of a 

single atom.  The atom object then processes its application-specific representation and 

step four is complete.  The atom object now needs to invoke the load function for each of

its attributes.  In our example the atom type’s load function is invoked in step five.  The 

application-specific processing begins in step six.  Once complete the atom type’s load 

function  returns as there are no additional conceptual objects for which the load function

can be invoked.  The atom load function now can invoke the load function for the atom 

location, as is shown in step seven in our figure.  When the atom location processing 

finishes in step eight, it returns to the atom object.  Neither the atom object nor the 

molecule object has additional conceptual objects to which the load message should be 

forwarded so their load functions return a level.  The PCL’s original load function call 

returns at this point.  The conceptual hierarchy now has a generic database representation

of the experiment data associated with it.  The PCL can insert the root of the conceptual 

hierarchy into the database thus completing the processing.
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Molecule

Type Location

Atom

PCL

1) Load Function Call

6) Application-Specific Processing

3) Load Function Call

5) Load Function Call
7) Load Function Call

2) Application-Specific Processing

4) Application-Specific Processing

8) Application-Specific Processing

 

Figure 4-16 Processing Steps For The Loading Of A Conceptual Object Hierarchy

We will now explain the design of each type of directive used in the PCL system.

4.4Creation Directives

Creation directives are instructions used by the PCL to create an application-specific 

representation of a conceptual object.  Creation directives allow the creation of this 

representation to be different for each computational application.  Creation directives are 

stored in the database for each computational application and experiment type.  The 

registrar enters these directives into the database when support for the application is 

being added.  The current creation directives are:
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· Double

· Unsigned Short

· Signed Short

· Unsigned Long

· Signed Long

· String

These directives refer to data types in the ObjectStore database and thus are machine 

independent.

Each conceptual object has a list of directives that define what base objects are used by 

the application to model it.  Creation directives are processed when a conceptual object 

invokes the PCL’s create application-specific representation function.  This processing 

occurs before the conceptual object is ready to be parsed from the experimental results.  

A simple example of this process is the creation of the nuclear repulsion energy of a 

molecule.  As shown in Figure 4-17, the application represents nuclear repulsion energy 

as a double.  The only creation directive for the nuclear repulsion energy of a molecule is

double.  A more complex example would be an atom, also shown in Figure 4-17.  An 

atom is conceptually made up of an atom-location and an atom-type.  The atom-location 

and atom-type are conceptual objects that have application-specific representations.  The 

application represents the atom-location as two doubles.  These two doubles represent the
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polar coordinates of the atom.  The atom type is made up of an unsigned integer 

representing the atomic number of the atom.

Nuclear Replusion Energy

Double

Atom

Location Type

Double UnsignedDouble

Figure 4-17 Conceptual Objects With Application-Specific Representation

In general the conceptual object hierarchy forms an acyclic graph, which has base objects

at the leafs and complex objects at the root and interior nodes.  The conceptual object 

hierarchy has base objects bound to it by the PCL when it processes the creation 

directives.  The creation directives are an important portion of the extensibility available 

in the PCL system.

4.5Parsing Directives

The parsing directives are instructions used to communicate how to parse the data in the 

computational experiment’s results.  There are two types of parsing directives, 

positioning directives and reformatting directives.  We will discuss each type below.
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4.5.1Positional Parsing Directives

The PCL maintains a current location in the output file of the computational experiment. 

This data is maintained in a parsing cursor.  The parsing cursor marks the place from 

which the PCL will read its next token.  The parsing positioning directives are used to 

reposition the parsing cursor so that different value can be read.  The parsing positioning 

directives are:

· Skip After ( String, Occurrence )

· Skip Before ( String, Occurrence )

· Next Line ( )

· Previous Line ( )

· Yield ( )

The Skip After directive allows the parsing cursor to be moved forward.  There are two 

parameters required string and occurrence.  The string is the text for which to look.  The 

occurrence is the occurrence for which to look.  Occurrence can be the first or last 

occurrence of the text.  The Skip Before directive provides the same function as Skip 

After except that the processing proceeds toward the beginning of the file.  The Next 

Line and Previous Line directives move the parsing cursor to the next and previous line 

respectively.  The yield directive is used to instruct the PCL to stop processing parsing 

directives.
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4.5.2Positional Parsing Directives Example

We will work through an example using the positional parsing directives by specifying 

the directives required to parse the conceptual object energy from computational 

experiment output in Figure 4-18.  To simplify the example, we will assume that the PCL

has not executed any other positional parsing directives.  The location of the parsing 

cursor is crucial to this process.  Initially the parsing cursor is at the start of the file.  It 

moves sequentially, and its position is changed by the positional parsing directives and 

when a created object is loaded.  The first instruction would be to skip to the beginning 

of the energy number in the text file.  This would be specified with Skip To parsing 

directive, with the String “NUCLEAR REPULSION ENERGY IS” and Occurrence as 

First.  After this parsing directive has been processed the parsing cursor would be located

after the last character in the search string.  The next directive would be Yield.  The yield

directive would signify to the PCL that the positioning and reformatting required for this 

object is complete, and that the energy value could now be read.

THE NUCLEAR REPULSION ENERGY IS 10.1219660000

Figure 4-18 Textual Representation Of Energy For GAMESS Computational Application
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4.5.3Reformatting Parsing Directives

In most cases the computational experiment output has been formatted by the 

computational application to be viewed by a scientist rather than to be parsed by another 

program.  This brings us to the next type of parsing directives, the reformatting parsing 

directives.  These directives are used to define how the output is to be reformatted before 

being parsed.  The reformatting is performed in order to facilitate the description of how 

to parse complex data contained in the matrix.  The parsing formatting directives are:

· Unfold Matrix ( Folded Pages, Rows In Matrix Header, Rows In Matrix 

Body, Columns In Matrix Row Header )

· Denormalize Matrix ( Copy Length, From Relative Line, From Offset, To 

Relative Line, To Offset, CopyIf Blank, CopyIf Line, CopyIf Offset, CopyIf 

Length, MatrixStart, MatrixEnd, Increment )

The Unfold Matrix and Denormalize Matrix directives are complex.  These two 

directives will be explained in the context of an example.

4.5.4Reformatting Parsing Directives Example

The Unfold Matrix directive is responsible for reformatting a matrix that has been folded 

across several pages.  Figure 4-19 shows an example of a folded matrix.  In this example,
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note that the column and row headers have been duplicated on each page of the folded 

matrix.

 1         2         3
  (AG)      (B1U)                  (AG)
   EIGENVALUES --    -11.17072 -11.17068            -0.58548

1 1   H 1S   0.69762    0.69791               0.00852
2 2S  (I)   0.06537    0.07075              -0.02120
3 2   O 1S   0.69762  -0.69791               0.00852
4 2S  (I)   0.06537  -0.07075              -0.02120
5 3   H 1S  (I)   0.11847  -0.17857               0.05174
6 1S  (O)   0.11078  -0.15647               0.99778

 3
  (AG)
   EIGENVALUES --     -0.58548

1 1   H 1S            0.00852
2 2S  (I)     -0.02120
3 2   O 1S            0.00852
4 2S  (I)     -0.02120
5 3   H 1S  (I)   0.05174
6 1S  (O)   0.99778

Figure 4-19 A Folded Matrix Before And After Transformation

It is difficult to define how to parse the matrix in Figure 4-19 using the positional parsing

directives listed earlier.  The Unfold Matrix directive is used reformat the folded matrix 

into a single large unfolded matrix.  The parsing of a single large matrix is much easier to

describe using the positional parsing directives.  The Unfold Matrix makes this 

transformation by locating the body of the matrix on each folded page after the first, and 

appending it to the first matrix page.  This movement is graphically shown in Figure 4-

19.
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 1         2         
  (AG)      (B1U)
   EIGENVALUES --    -11.17072 -11.17068

1 1   H 1S   0.69762    0.69791
2 2S  (I)   0.06537    0.07075
3 2   O 1S   0.69762  -0.69791
4 2S  (I)   0.06537  -0.07075
5 3   H 1S  (I)   0.11847  -0.17857
6 1S  (O)   0.11078  -0.15647

 3
  (AG)
   EIGENVALUES --     -0.58548

1 1   H 1S            0.00852
2 2S  (I)     -0.02120
3 2   O 1S            0.00852
4 2S  (I)     -0.02120
5 3   H 1S  (I)   0.05174
6 1S  (O)   0.99778

Folded Page

Columns In Matrix Row Header Rows In Matrix Body

Rows In Matrix Header

Figure 4-20 Parameters Used In The Unfold Matrix Directive

There are several parameters required in the Unfold Matrix directive.  The Folded Pages 

parameter represents the number of pages in the folded matrix.  In Figure 4-20 this value 

would be two.  The first page holds columns one and two, the second page holds column 

three.  The Rows In Matrix Header parameter is the number of rows in the matrix header.

In the example this value is three.  The Row In Matrix Body parameter is used to 

describe how many rows there are in the matrix body.  This value is six.  The Columns In
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Matrix Row Header parameter is the number of columns in the matrix row header.  This 

value is 31 in the example.  When the Unfold Matrix directive is processed the matrix is 

reformatted using the parameters passed to the PCL.  Figure 4-21 shows the resulting 

matrix.

 1         2         3
  (AG)      (B1U)                  (AG)
   EIGENVALUES --    -11.17072 -11.17068            -0.58548

1 1   H 1S   0.69762    0.69791               0.00852
2 2S  (I)   0.06537    0.07075              -0.02120
3 2   O 1S   0.69762  -0.69791               0.00852
4 2S  (I)   0.06537  -0.07075              -0.02120
5 3   H 1S  (I)   0.11847  -0.17857               0.05174
6 1S  (O)   0.11078  -0.15647               0.99778

Row Header

Figure 4-21 Matrix Representation After The Unfold Matrix Directive Processing

Once a matrix is in an unfolded form, as seen in Figure 4-21, it is easier to describe how 

to parse.  Describing how to parse the row headers, however, still remains difficult.

The first problem is that duplicate data has been removed from successive row headers.  

This has been done to help scientists read the experiment results.  Specifically, on line 

one of Figure 4-21 there are two ‘1’’s, the letter ‘H’,  and the string “1S”.  Line number 

two does not have the number one or the letter ‘H’.  These fields are the same as the 
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previous line and have been eliminated in an effort to visually denote that this line’s data 

is related the previous line.

The second problem is visible on line two of the unfolded matrix.  The second line has an

additional string present, “(I)”, that was not present on line one.  This string is actually 

part of the “2S” string just before it, however, there is white space between the two 

strings.  The parsing of the first string will stop when the space character is read.  In 

order to avoid this, the second string needs to be moved next to the first string.  This will 

allow the two related strings to be retrieved as a single string rather than as two separate 

strings.

Both of the problems we have just describe are addressed by the Denormalize Matrix 

directive.  This directive is responsible for moving data in the computational experiment 

output.  The Denormalize Matrix directive is powerful and has numerous settings.  Its 

parameters can be divided into four types, Move From data, Move To data, Move When, 

and a Move How Long.  Each will be briefly discussed.  

Move From data has three components that control how data will be moved between 

lines.  It consists of three parts: Length, Line, and Offset.  Move Length denotes the 

amount of data that will be moved.  From Relative Line is the relative line number from 

which to move data.  This number is relative to the current line number.  From Offset is 
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the offset from which to begin moving data.  To Relative Line is the relative line number

to which data will be moved.  To Offset is the offset to which data will be moved.

Move When data has a single setting that controls when a move is performed.  There are 

two options for this setting: move if blank and move if not blank.  The move will be 

performed if the test is true.

The Move When data has three components (like the Move From components above).  

Move If Relative Line and Move If Offset options are the same as the To and From line 

and offset variables given above.  Move if Length is used to control the amount of data 

tested.

The final type is the Move How Long and contains three options: Start Relative Line, 

End Relative Line and Increment. Start Line denotes on which relative line to begin 

processing.  End line denotes on which relative line to stop processing.  These settings 

are relative to the current line number.  The Increment setting controls how many lines to

increment after checking a line to be moved.

We will now explain how this directive can be used to eliminate the two final problems 

we have with the unfolded matrix.  The processing of the Denormalize Matrix directive 
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will create a final matrix that we call “well-formed”.  The well-formed matrix allows for 

an easily described parsing process.

 1         2         3
  (AG)      (B1U)                  (AG)
   EIGENVALUES --    -11.17072 -11.17068            -0.58548

1 1   H 1S   0.69762    0.69791               0.00852

2 2S  (I)   0.06537    0.07075              -0.02120
3 2   O 1S   0.69762  -0.69791               0.00852
4 2S  (I)   0.06537  -0.07075              -0.02120
5 3   H 1S  (I)   0.11847  -0.17857               0.05174
6 1S  (O)   0.11078  -0.15647               0.99778

Figure 4-22 Elimination Of White Space Between Two Strings

Our first goal is to specify how to get the optional second string next to the first string.  

First assume that before this directive was executed the current line was set to the 

beginning the matrix.  This example has three rows in the matrix header and six rows in 

the matrix body.  We will want to process each line in the matrix body.  So we begin 

processing at relative line zero and end on relative line five.  We should process each 

line, thus, the increment is one.  Now we only need to specify when, to where, and from 

where to move.

We can look at where each second string begins on each line.  If the line is blank we do 

not have a second string, and we do not need to move it.  If there is a string we should 

move it back two spaces.  Converting this data we have a move length of five characters. 
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Two characters of these five represent the space between the first and second strings and 

the next three represent the maximum length of the second string. The relative line 

number is three because we want to start processing line three past the current parsing 

location.  Recall that we assumed this is where we began reformatting the matrix.  The 

offset of the second string is 28 characters.

The final directive is:

Denormalize Matrix ( Copy Length 5, From Relative Line 3, From Offset 28, To 

Relative Line 3, To Offset 26, CopyIf Blank, CopyIf Line 3, CopyIf Offset 26, Copy If 

Length 2, Matrix Start 0, Matrix End 5, Increment 1 )

 1         2         3
  (AG)      (B1U)                  (AG)
   EIGENVALUES --    -11.17072 -11.17068            -0.58548

1 1   H 1S   0.69762    0.69791               0.00852

2 2S(I)   0.06537    0.07075              -0.02120
3 2   O 1S   0.69762  -0.69791               0.00852
4 2S(I)   0.06537  -0.07075              -0.02120
5 3   H 1S(I)   0.11847  -0.17857               0.05174
6 1S(O)   0.11078  -0.15647               0.99778

Figure 4-23 Denormalization Of Data In The Row Header
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Our second goal is to duplicate the atom number and abbreviation on any successive line 

that does not contain this data.  The determination of the parameters for this directive 

proceeds in a similar manner to the previous example.  Figure 4-24 shows the final well-

formed matrix, after this final directive has been processed.

 1         2         3
  (AG)      (B1U)                  (AG)
   EIGENVALUES --    -11.17072 -11.17068            -0.58548

1 1   H 1S   0.69762    0.69791               0.00852
2 1   H 2S(I)   0.06537    0.07075              -0.02120
3 2   O 1S   0.69762  -0.69791               0.00852
4 2   O 2S(I)   0.06537  -0.07075              -0.02120
5 3   H 1S(I)   0.11847  -0.17857               0.05174
6 3   H 1S(O)   0.11078  -0.15647               0.99778

Figure 4-24 Final Well Formed Matrix

Through the use of the reformatting directive, complex transformation can be performed 

on the experiment output.  These transformations ease the complexity of describing how 

text is located and parsed in computational experiment files.  The positional and 

reformatting parsing directives form a powerful combination that allow complex file 

formats to be parsed and thus aid the extensibility in the of the PCL system.

92



4.6Conversion Directives

We have not implemented generic conversion directives in the PCL interpreter.  

However, we have designed this portion of the system to provide flexibility.  This 

subsection contains some ideas about such future work.

The conversion directives are used to communicate to the PCL what conversion 

functions need to be applied to a conceptual object represented in an application-specific 

representation.  Invoking the conversion functions on the conceptual object converts the 

application-specific representation into the database’s representation.  Figure 4-25 shows 

this graphically.

ConversionApplication-Specific
Representation

Generic Database
Representation

Figure 4-25 Conversion Of Application-Specific Representation Into Generic Database Representation

For example, the GAMESS application might represent the conceptual object atom type 

as the atomic number as seen in Figure 4-26.  The conceptual object atom will have an 

application-specific representation as an integer.  The database may represent the 

conceptual object atom type as the atomic weight of the atom.  The atom in the generic 

database representation  would have a representation of a float.  The conversion directive

is responsible for stating what functions must be applied to convert the integer 

representing the atomic number to the float representing the atomic weight.
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Integer
(Atomic Number)

Atom Atom

Float
(Atomic Weight)

Conversion

Application-Specific
Representation

Generic Database
Representation

Figure 4-26 Conversion Of Application-Specific Representation Onto Generic Database Representation

There can be several conversion directives associated with converting a conceptual object

from an application-specific representation into a generic database representation.  An 

example would be converting a unit of measure from an application-specific 

representation of kilograms to a generic database representation of ounces.  Assume that 

we have two conversion directives, one conversion directive for eliminating the kilo unit 

prefix and a second conversion directive that converts grams to ounces.  To make the 

needed conversion we first apply the kilograms to grams conversion directive.  Then we 

apply the grams to ounces conversion.

The reader might observe that in simple cases, syntactic conversions could be 

automatically applied.  An example would be converting an unsigned integer into an 

unsigned long.  This type of conversion is possible, but would be of limited benefit.  The 

problem that arises is that some semantic data for the base object is not available.  This 

problem can be demonstrated by looking at a promising case.  If the application’s 
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representation of the conceptual object “Nuclear Repulsion Energy” were a double and 

the database’s representation a float, a conversion could be automatically applied.  The 

problem is that there may be a conversion needed to change the units of measure on the 

double.  This problem can occur even when the two objects are of the same base object 

type.  For this reason we do not automatically promote base objects in the conversion 

process.
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5The PCL Implementation

This chapter will explain the implementation of the PCL system.  We will specifically 

discuss the object-oriented programming concepts used to implement the design outlined 

in Chapter Four.  The benefit that object-oriented programming provided will be 

discussed next, followed by a discussion of the language and database systems chosen for

implementation.  We will also explain how conceptual and base objects were 

implemented.  Parsing directive implementation will be considered, as will several 

aspects of directive processing.  The PCL message-forwarding process will be described 

in the final section.

5.1Object-Oriented Programming

Object-oriented programming is a method of programming where messages are sent to 

objects.  Objects are abstractions of items being modeled.  The abstraction includes the 

messages to which the objects respond.  Figure 5-1 shows an example of a molecule 

object.

 Molecule

 Add Atom ( )
 Remove Atom( )
 Total Mass ( )

Object Name

Messages Understood

Figure 5-1 Interface For The Molecule Object
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The object understands the Add Atom, Remove Atom, and Total Mass messages.  These 

messages form an external interface that other objects can invoke.  Notice that the mass 

units and number of atoms in the molecule are not included as part of the external 

interface.  An object’s abstraction need only capture the data necessary to model the 

entity to other objects.  For the example we assume that this abstraction is sufficient.

Messages sent to objects constitute requests for data about that object; objects respond to 

messages.  In Figure 5-1 the Molecule object can respond to the Add Atom, Remove 

Atom, and Total Mass messages.  When a message is sent to an object, the object 

processes the message and takes appropriate action.  This action may involve changing 

the object’s internal state or sending messages to other objects.  Figure 5-2 shows an 

example of the Molecule object responding to the Total Mass message.
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 Molecule

 Total Mass ( )
{
   Total = 0
   For Each Atom {
      Send Mass Message to Atom
      Add Response to Total
   }
   Return Total
}

 Atom Atom

Mass ( )  Mass ( )

1) Total Mass Message is Sent
to Molecule Object

2) Molecule Sends Mass
Message to Each Atom
Associated With This Molecule

Implementation of Total
Mass Message

Figure 5-2 Molecule Object's Processing Of The Total Mass Message

In this example the Molecule object sends the Mass message to two Atom objects 

associated with the Molecule at an earlier time and aggregates their mass.

We used four object-oriented concepts during the implementation of the PCL system: 

abstraction, encapsulation, inheritance, and polymorphism.  We will define each of these 

terms and briefly discuss their importance in the development of the PCL system.  
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Discussion of their benefits will be deferred until specific portions of the system are 

discussed.

Abstraction is the set of messages to which an object responds.  Abstraction was used to 

define what the object was intended to model and what operations could be performed on

the object.

Encapsulation is concealing how an object is internally modeled.  Encapsulation and 

abstraction were used to partition implementation details from their abstraction or 

external interfaces.  This allowed different internal representations of objects to be 

examined without requiring modifications to other object types.

Inheritance is the ability to derive an object’s interface and implementation from the 

interface of another object.  The object that is derived from is called the parent object; 

the object that is derived is the child object.  Inheritance also allows a child object to 

selectively processes messages differently that the parent object; in this case the child is 

considered a specialized type of the parent.  The child object can accept the default 

processing available from the parent object or can override the parent’s implementation.  

Inheritance is the main idea that differentiates object-oriented programming from 

structured programming concepts.
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Polymorphism is the ability of a message to be processed differently by different objects.

Polymorphism allows objects specialized through inheritance to respond to the same 

messages as the parent object, but process the message differently.

5.2Object-Oriented Solutions To Development Problems

Development problems occur during the creation of any large computer system.  In this 

section we will discuss two problems we encountered and how we used object-oriented 

solutions to solve them.  The first problem we will consider is the duplication of common

methods and the other is the lack of support for lists of heterogeneous objects.  We will 

explain each of these below.  How these two solutions were used in the development of 

the PCL system is discussed in sections 5.4-5.8.

Sometimes in a system two functional areas perform similar processing, often duplicating

the methods that perform this processing is inefficient for several reasons.  First, code 

maintenance must be performed in several locations.  Second, the size of the program is 

needlessly increased.

We used inheritance to avoid placing duplicate methods in several locations.  Our 

approach involves factoring out the common methods from each object.  We call this 

technique method factoring.  The factored methods are placed into a parent object.  
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Objects that need to use the common methods are derived from the parent object,  thus 

sharing the implementation.  Figure 5-3 shows the method factoring for the Link method.

Parsable Object

Link ( )
{ ...
}

Atom LocationAtom

Atom LocationAtom

Link ( )
{ ...
}

Link ( )
{ ...
}

Figure 5-3 The Process Of Factoring A Method To A Parent Class

In the example above, the Atom and Atom Location objects have the same Link method. 

In order to share this method, we create a new parent object called Parsable Object.  The 

code for the shared method is added to the parent object.  Deriving the Atom and Atom 

Location objects from the Parsable Object allows the sharing of the Link implementation.

There are several benefits associated with factoring similar methods into a parent object. 

First, the maintenance of the system is simplified because there is only one location to 

make changes to the shared method.  Second, the code is smaller because the method is 

not duplicated in several locations.
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The second problem we will address is the lack of support for lists of heterogeneous 

objects.  During the development of a system it is common to maintain a list of objects.  

This could be a list of integers, doubles, or structures.  Most languages require a list of 

objects to all be of the same basic type.  When several different types of objects must be 

maintained a heterogeneous list is useful.

Inheritance was used to allow support for lists of heterogeneous objects.  Our approach 

has two parts.  The first part involves deriving all the objects that could be placed in the 

list from a single parent object.  The second part consists of having each object derived 

from the parent override a function that returns the object’s type.  We call this technique 

parent factoring.  Figure 5-4 shows the parent factoring for the Integer, Double, and 

Long objects.   Each of the three objects have been derived from the Parsable Object 

parent object.  Each has also overridden the Type method.  
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LongDouble

Array Of Parsable Objects

Integer

Type( )
{
   Return ( Integer )
}

Type( )
{
   Return ( Double )
}

Type( )
{
   Return ( Long )
}

Parsable Object

Type( )
{
   Return ( Parsable Object )
}

Figure 5-4 The Process Of Parent Factoring

The bottom of Figure 5-4 shows an array of three Parsable Objects.  The Integer, Double,

and Long objects can all be placed into any array of type Parsable Object.  This is  

because they have all been specialized from this object type.  This means that they inherit

all the methods of the parent type and they can respond to the same messages.

When an object is retrieved from the list it considered a Parsable Object, not the actual 

type of the object.  This is because the type of the array is Parsable Object.  We need the 

ability to infer the actual type of an object placed in the list.  In step two, each object 

derived from the Parsable Object was required to override a function that returned the 

object’s type.  This function allows us determine the type of an object and then cast it 
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back to the correct specialized type.  This is necessary because the objects being read in 

reside in storage and are not able to inform the parser of their types.

In this section we have discussed two of the problems we encountered during the 

development of the PCL system.  These two problems appeared several times during the 

development of the system.  We explained how we used object-oriented solutions to 

solve them.

5.3Language And Database Selection

In order to be able to leverage the benefits of abstraction, encapsulation, inheritance, and 

polymorphism we needed to select an object-oriented programming language and 

database for system development.  We selected the C++ language [8] to implement the 

PCL.  This decision was primarily because the Chemists we worked with were already 

working with C++ and required us to use C++ in this project.

In an effort to select a database, a feasibility study was conducted.  The study consisted 

of evaluating the GemStone and ObjectStore object-oriented databases.  Either product 

could  have been used to develop the system.  The study demonstrated to us that, at that 

time, ObjectStore had a better C++ database interface.  ObjectStore was selected as the 

database for the project for this reason.
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5.4Structure Of Conceptual and Base Objects

As described in Chapter Four there are two types of objects used in the PCL: conceptual 

objects and base objects.  Conceptual objects model data in the discipline’s conceptual 

schema.  Conceptual objects do not specify a physical representation.  Base objects are 

used to create application-specific representations of the conceptual objects.  Base objects

are attached to a conceptual object to give it a physical representation.

Conceptual objects need the ability to associate base objects with them at run time.  This 

association allows the conceptual object to be modeled in different ways by 

computational applications.  We implemented this by deriving the conceptual and base 

objects from a parent object called the parsable object.  Figure 5-5 show this graphically. 

We will first discuss why conceptual objects were derived in this manner and then 

consider the reasons for deriving base objects.

Conceptual Object Base Object

Parsable Object

Figure 5-5 Parsable Object With Derived Conceptual And Base Objects
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Deriving the conceptual object from a parent class simplifies the linking of base objects 

with conceptual objects.  This is because we can use method factoring to implement the 

linking in the parent object rather than in each conceptual object.  

Deriving the conceptual objects in this manner simplifies the maintenance of the system 

because there is only one location to make changes to the object linking code.  It also 

makes the code smaller because the link management is not duplicated in several 

locations.  An additional benefit of inheriting the conceptual object from the parsable 

object is the clear delineation of what functions needed to be implemented for additional 

conceptual object types.  The clear distinction of the interface helps with the maintenance

of the object hierarchy as changes are made to the system

Base objects are derived from parsable objects for two reasons.  The first reason involves

the implementation of the links between conceptual objects and base objects.  We used 

parent factoring to implement the links a list of pointers to parsable objects.

The second reason stems from the implementation of the parsing directives and will be 

discussed in  section 5.6.
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5.5Structure Of The PCL Directives

Now that we have discussed the implementation of the conceptual and base objects we 

turn our attention to the PCL directives.  The PCL uses three types of directives to 

control the loading of experiment data.  At different times during the loading process the 

PCL is instructed to look into the database and retrieve a list of directives to process.  

This look up of directives is performed using the conceptual object type and possibly the 

base object type.  After this list has been retrieved the PCL processes each directive and 

returns.  Figure 5-6 demonstrates this general procedure.

PCLMolecule

Object Oriented Database

1) The Molecule Invokes The PCL’s
Look Up Directive Function For
Molecule

2) The PCL Looks In The Object
Oriented Database And Retrieves The
Directives

Figure 5-6 Generic Directive Look Up Procedure

When implementing the parsing directives, we used parent factoring and derived all the 

directives from a single parent object.  This parent object is called the parsing directive 

base.  Parent factoring allowed the list of parsing directives to be stored as a single list of 

type parsing directive base and simplified the storing and retrieving of parsing directives.
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Once the list of type parsing directive base is retrieved it can be iterated through by the 

PCL.  Before processing each directive in the list the PCL first determines the actual type

of the directive.  This is accomplished by sending the directive a message that has been 

overridden by each child object.  This method returns the type of specialized directive.  

Parent factoring allows a generic list of parsing directives to be maintained, while 

allowing each directive to retain it’s specialized directive data.

5.6Processing Of Creation Directives

Recall from Chapter Four that the PCL processing begins by invoking the load function 

for the root of the conceptual object hierarchy.  Ultimately the determination of the 

application’s representation of this conceptual object is deferred to the PCL.  This is 

accomplished by the conceptual object invoking the PCL’s look-up-creation-directive 

function and passing the conceptual object whose representation should be determined.  

This process is shown in Figure 5-7.
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PCLMolecule

Object Oriented Database

1) The PCL Invokes The
Molecule’s Load Function

2) The Molecule Invokes The PCL’s
Look Up Creation Directive Function
For Molecule

3) The PCL Looks In The Object
Oriented Database And Retreives The
Creation Directives

Figure 5-7 Creation Directive Look Up For A Molecule

In order to accomplish this, we needed the ability to pass a conceptual object to the PCL 

and be able to determine the type of the object passed.   This is accomplished by 

declaring the PCL’s look up method to take a parsable object type.  This will allow any 

conceptual object to be passed to this function.  This is because the conceptual object 

type is a specialized from of a parsable object type.  Each conceptual object has a method

that returns the conceptual object actual type.  This allows the PCL to determine the 

conceptual object's type and look up the proper directives.
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5.7Processing Of Parsing Directives

Later in the processing of the conceptual object the PCL is invoked and required to look 

up the parsing directives for each attribute.  Again the location of the parsing directives is

deferred to the PCL.  This occurs by having the conceptual object invoking the PCL’s 

look-up-parsing-directive function.  When this function is invoked it passes the 

conceptual object and the base object whose parsing directives are to be located.  Figure 

5-8 graphically represents this processing.

PCLMolecule

Object Oriented Database

Double String

1) The Molecule Invokes The PCL Look
Up Parsing Directive Function For
Molecule - String

2) The PCL Looks In The Object
Oriented Database And Retreives The
Parsing Directives

Figure 5-8 Parsing Directive Look Up For The String Attribute Of Molecule

In order to accomplish this, we needed the ability to pass a conceptual object and a base 

object to the PCL.  Once this data has been passed to the PCL we need a method of 

determining the type of each object passed.  This problem is similar to the problem noted

in the implementation of the creation directives.  The only difference in this case is that 

we are passing two objects to the PCL.  We solve this problem by declaring the PCL’s 

look up method to take two  parsable object types.  This will allow any conceptual object
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and base object to be passed to this function.  This is because the conceptual object and 

base object types have been specialized from of a parsable object type.  Each conceptual 

and base object has a method that returns the actual type of the object.  This allows the 

PCL to determine the conceptual and base object’s type and look up the proper 

directives.

5.8Conversion Directives

Conversion directives have not been implemented in the current version of the PCL.  

Their implementation would be very similar to that used in the parsing directives.  An 

implementation of this type would be straight forward extension to the PCL.

5.9Operation Of The PCL

Now that we have discussed the implementation of  the different objects that make up the

PCL we need to discuss how they work together to load a experiment.  The primary 

implementation tenet was that the PCL directive messages were to be forwarded down 

the conceptual object hierarchy and be handled at each level.  The method we used to 

send this cascading message was the C++ input operator >>.  Each conceptual object is 

required to understand the input operator message.  This message is responsible for 

invoking the procedures that create the application representation of the conceptual 

object, parse the attached base objects, and forward the message to the conceptual 
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object’s sub-components.  An example of the input operator for an atom is listed in 

Figure 5-9.

  // Create Application Representation For Atom - Section One
  PCL.CreateApplicationRepresentation ( *this );

  // For Each Base Object Attached To The Atom - Section Two
  //      Process The Parser Directives For The Base Object
  //      Send The Base Object The Input Message

  unsigned short Index=0;

  for ( Index = 0 ; Index < NumberOfApplicationObjects( ) ; Index++ ) {
     PCL.ProcessDirective( *this, GetApplicationObject ( Index ) );
     GetApplicationObject ( Index ).operator>>( PCL );
  }

  // Process Parser Directives For Concaputal Object - Element - Section Three
  // Send The Element The Input Message
  PCL.ProcessDirective ( *this, Element );
  Element.operator>> ( PCL );

  // Process Parser Directives For The Conceptual Object - AtomLocation
  // Send The AtomLocation The InputMessage
  PCL.ProcessDirective ( *this , AtomLocation );
  AtomLocation.operator>> ( PCL );

Figure 5-9 C++ Input Operator For Conceptual Object Atom

The input operator shown has three main sections.  The beginning of each section is 

labeled in a comment.  The first section shows the creation application-specific 

representation of the conceptual object.  The second section is the parsing of the base 

objects that have been associated with the conceptual object.  The third section is the 

forwarding of the input operator to the next conceptual level.
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Describing the input operator method is instructive in demonstrating how the directives 

are processed.  For this discussion we assume that an atom conceptually composed of an 

element and an atom location.  When the conceptual object atom is sent the input 

operator message it must create an application-specific representation of itself.  This 

involves creating and linking base objects to itself.  This processing is show in the first 

section of Figure 5-9 above.

In section two each base object created and linked to the conceptual object in section one 

is parsed.  The parsing involves first positioning the PCL parsing cursor and then 

instructing the base object to read in a value using the PCL.  When a base object receives

the input operator message it retrieves data from the PCL at the parsing cursor’s location.

The base object cannot forward the message to any other objects because the base objects

are not composed of additional levels.

The final step in the processing is section three.  The input message is sent to the next 

deeper level in the conceptual hierarchy.  At that level the processing of section one 

through three continues as described above.

Since the PCL is a sub-component of the CCDB project that is not directly used by a 

computational chemist, Judy Cushing and David Maier reviewed the PCL’s 
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implementation.  The PCL system’s implementation was validated by loading a molecule

orbital for the GAMESS application.  The molecule orbital is a complex conceptual 

object comprised two additional conceptual levels and involves the reformatting of 

complex matrix data.  The loading of this conceptual object required the PCL to process 

all the parsing directives explained in Chapter Four.

5.10Timing Of The PCL

In order to demonstrate the ability of the PCL directives to control the parsing of 

experiment results we used samples from two different computational chemistry 

applications.  We then created the PCL directives necessary to parse the most complex 

object contained in the output, namely the molecular orbitals.  A production system 

would require all the information in the optimized molecular configuration to be loaded 

into the database.  The directives required to load the simpler objects were not included 

because they do not demonstrate any additional functionality.

We selected Gammes and Gaussian as the computational chemistry applications for our 

tests.  This selection was made because experimental runs for these two applications were

readily available and are used by our collaborators.

The timings were gathered running on a 80 MHz Intel i486, running Windows NT Server

3.5.  The system has 32 Megabytes of memory and contains a Samsung 559 Megabyte 
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drive with a FAT file-system.  The PCL system was compiled using Borland C++ 3.1 in 

large model using 386 instructions, but, no optimizations.

Gammes 3.76 seconds

Gaussian 3.75 seconds

Figure 5-10 Time Required To Process Molecular Orbital Creation And Parsing Directives

These two timings include the initialization of the parser's output file data structure in 

addition to process the two sets of directives.  The time required to process directives for 

other objects should be similar.  If there were ten additional objects to be loaded we 

would expect thirty seconds to be required to process the creation and parsing directives.

The PCL directives used to parse the outputs are listed in appendix.  Included are the 

input parameters required to produce the optimized molecular configuration.
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6Evaluation and Conclusions

In this section we will review the PCL system and summarize what we have learned from

this research.  We will specifically discuss the results achieved by our research and the 

effectiveness of the concepts used in the creation of the system.

6.1Confirmation Of Concept

The result achieved by our research was a confirmation of our concept that application-

specific model data for the computational sciences can be reused.  This reuse can be 

achieved by transforming application-specific data formats into a generic format.  This 

generic format can then be placed into a database of stored experiment data for later 

transformation and reuse.  We have designed the PCL to be extensible and efficient, 

although only future testing will verify this.

The common conceptual model has been instrumental to us in this development.  The 

basis of a common conceptual model was used to design processing of creation, parsing, 

and conversion directives.  Thus we have confirmed that a common conceptual model 

can be useful in developing application which convert information from several different 

formats, this was predicted by Maier [4].
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6.2Conceptual System Structure

The central concept in the PCL system is that of a table-driven interpreter.  This 

interpreter is responsible for the creation of application representations of conceptual 

objects, the parsing of those objects, and the conversion of the application-specific 

objects into generic semantically equivalent forms.  These three main portions of the 

interpreter are controlled by tables of instructions.  Additions and modifications can be 

made to these tables without requiring changes to the PCL system.  In this manner, the 

system can support additional computational applications easily.

The concepts and implementation of the creation, parsing, and the conversion directives 

are similar.  This similarity helps make the design and implementation of the system 

easier to understand, maintain, and extend.
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7Analysis and Retrospective

In this section we will analyze the PCL system and provide a retrospective of the project 

including the pitfalls encountered during implementation.

7.1Innovative Design And Implementation

We have implemented a computational infrastructure that facilitates data management 

and reuse in the computational sciences.  This reuse is centered on a common conceptual 

model, and a “computational proxy”.  Reuse is provided by converting application 

experiment data into a common format that is stored in an object-oriented database.  The 

transformation process is controlled by the PCL.  The PCL is an interpreter that uses 

tables of instructions to construct conceptual data in application-specific format.  These 

application-specific formats are then parsed and converted into a generic form that is 

placed in the database.  The data in this generic format can then be reused by retrieving 

and converting it into the form required by a specific application.  The reuse of data 

while leaving legacy application file formats unaffected is a unique approach.  This 

approach will be of interest to computational scientists who have large amount of legacy 

data in application-specific formats and desire to use this data.
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7.2Design And Implementation Trade Offs

The implementation of the PCL includes several design trade offs.  We implemented the 

PCL an interpreter in an effort to allow the system to be easily modified and not tied to a 

single hardware platform.  The speed of data conversion and loading is acceptable  using 

this approach.

There are numerous base classes used to implement the PCL.  The need for these base 

classes would be eliminated in a language like Smalltalk, as all objects are automatically 

derived from a universal type.  It might be easier to implement the PCL in such a 

language.

The generic algorithm used in the parsing directive search engine works well, but, is not 

efficient.  The time required to perform a search become noticeable for large files.  The 

performance could be improved by the use of algorithms in [6], such as the Boyer-Moore

algorithm.
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8Future Work

In this section we consider future work based on the PCL system.  Our work has 

addressed the problem of data reuse in the computational chemistry field.  There are 

several interesting extensions to our work that could be pursued.  The extensions are 

focused in four areas:  system extensions, object hierarchy, directive specification, and 

directive processing.

8.1Computational Discipline Extensions

One of the most important extensions of our work would be to incorporate it into a 

production system.  This would clearly demonstrate the benefits and advantages  and 

flaws of the system by allowing computational chemists to be more effective with their 

time. Once the PCL system is incorporated into a production system, support for 

additional computational programs will become important.  There are several additional 

programs that will need to be incorporated, in addition to GAMESS and Gaussian, 

including HONDO and MELDF.  We conjectured that a generic conversion application 

saves development time and cost over a customized approach.  The adaptation of the 

PCL to support more modeling programs will also allow the testing of this hypothesis.
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We are hopeful that the PCL work will be extended into additional computational science

disciplines, specifically Biochemistry and the Earth Sciences.  As noted in the 

introduction our work holds potential benefits for all the computational sciences.  The 

adoption of the PCL work would be accelerated with a successful production system.

The last system extension would be looking into the feasibility of creating a version of 

the PCL that would process the Computational Chemistry Output Language (CCOL) and 

the Computational Chemistry Input Language (CCIL).  The CCIL is a language that 

describes how experiment data in the database is converted into a form used by a 

computational application.  It performs the opposite operation of CCOL.  There are 

numerous similarities in the processing of the CCIL and CCOL languages.  Research into

how these two languages can be implemented in a similar manner would help ease the 

maintenance of the system.

An innovative extension to the PCL system would be to research data interpolation and 

extrapolation.  This research could be thought of as adding extrapolated or interpolated 

objects into the system.  This work would allow the PCL to be used to aid the analysis of 

data from varying sources with different data granularities.  For example, Earth-orbiting 

satellites may gather vegetation density data in five mile grids, but another application 

may desire this data in one mile grids.  The new system would be responsible for 

interpolating a value for the missing grids.  When the results based on this analysis 
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became available an error value would be assigned to the results indicating the purity of 

the data used to arrive at this conclusion.

8.2Object Hierarchy Extensions

An additional extension to the object hierarchy would be a way to group attributes of a 

conceptual object.  Currently the attributes of a conceptual object are determined by the 

order of the objects in the application-specific representation.  This scheme has several 

limitations, one being that it is error-prone.  A way to link conceptual attributes and 

application-specific representations of those attributes would make the object hierarchies 

more understandable.

The directives available in the PCL need to be extended.  The extension should include 

additional support for types and conversions.  This change would allow applications to 

represent experiment data in additional formats.  Addressers would include new basic 

and complex object types, such as unsigned character, signed character, and vectors.

8.3Directive Specification Extensions

Currently, the PCL creation, parsing, and conversion directives rarely need to be 

changed.  Their creation is not an easy task and requires precise work and verification by 

the registrar.  An important extension would be to ease the work required to create and 
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specify these directives.  The addition of an intermediate non-procedural language for the

specification of directives would aid system managers.  The language could be textual or 

graphical.  The graphical language would allow the manager to highlight portions of 

sample output and specify the operations that need to occur during the transformation.  

From this graphical description the PCL directives could be created and loaded into the 

database.  A simple but powerful extension would be to add support for regular 

expression searches in the parsing directives.

8.4Directive Processing Extensions

The interpreter currently transforms the computational chemistry experiment data in a 

reasonable amount of time.  When adapting the PCL to additional scientific disciplines 

the amount of data being converted may increase several fold.  If this amount of 

additional of data does increase, the speed of the interpreter may become a bottleneck.  

This will especially be true if the source of the data can produce it more quickly that the 

PCL can consume.  In this case some of the PCL design trade-offs will need to be 

reconsidered.  Specifically, the PCL may need to be changed to compile transformation 

plans into executable programs and update these programs when the PCL directives are 

changed.  In addition to this, the speed of processing conversions in parallel may prove 

helpful.
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10Appendix

10.1Gaussian Creation Directives

# Note: The numbers in the directives can be derived from the experiment information

# or are constant for a version of the computational chemistry application

# Create the application representation of the Molecular Orbital

Molecular Orbital

6 Atoms

# Create the application representation of the Atom

Atom

26 Doubles

10.2Gaussian Parsing Directives

Molecular Orbitals

# Unfold the molecular orbitals

Skip After First Occurrence of ‘Orbital’

Next Line

126



Next Line

Unfold Matrix 6 19 3 26

# Copy the atom abbreviation and number

Skip Before First Occurrence of ‘Orbital’

Next Line

Next Line

Denormalize Matrix 6 3 5 4 5 Blank 4 5 6 0 25 1

# Copy the orbital

Skip Before First Occurrence of ‘Orbital’

Next Line

Next Line

Denormalize Matrix 5 3 16 3 14 Blank 3 0 1 0 25 1

# Reposition so an Atom can be read, repeat for each Atom

Skip Before First Occurrence of ‘Orbital’

Yield

Atom

Skip After First Occurrence of ‘EIGENVALUES’

Skip After First Occurrence of ‘--’
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# Reposition so Double can be read, repeated for each Double

Next Line

Line Offset

Yield

10.3Gaussian Output

0 1

C

C 1 RCC

H 2 RCH 1 ANG1

H 2 RCH 1 ANG1 3 180.

H 1 RCH 2 ANG1 3 0.0

H 1 RCH 2 ANG1 3 180.0

RCC=1.334

RCH=1.0802

ANG1=121.646

                  Z-Matrix orientation:

 ----------------------------------------------------------

 Center     Atomic              Coordinates (Angstroms)
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 Number     Number             X           Y           Z

 ----------------------------------------------------------

    1          6           0.000000    0.000000    0.000000

    2          6           0.000000    0.000000    1.334000

    3          1           0.919581    0.000000    1.900748

    4          1          -0.919581    0.000000    1.900748

    5          1           0.919581    0.000000   -0.566748

    6          1          -0.919581    0.000000   -0.566748

 ORBITAL SYMMETRIES.

       OCCUPIED  (AG) (B1U) (AG) (B1U) (B2U) (AG) (B3G) (B3U)

       VIRTUAL   (B2G) (AG) (B2U) (B1U) (B3G) (B1U) (AG) (B2U)

                 (B3U) (B2G) (B1U) (AG) (B3G) (B2U) (B1U) (B3G)

                 (AG) (B1U)

  THE ELECTRONIC STATE IS 1-AG.

 Alpha eigenvalues --  -11.17072 -11.17068  -1.03155  -0.78772  -0.64316

 Alpha eigenvalues --   -0.58548  -0.50058  -0.37542   0.18182   0.29618

 Alpha eigenvalues --    0.31209   0.33981   0.43644   0.53790   0.88167

 Alpha eigenvalues --    0.92681   0.99297   1.07672   1.10187   1.12548

 Alpha eigenvalues --    1.31809   1.35476   1.39767   1.64159   1.66056

 Alpha eigenvalues --    1.96291

     Molecular Orbital Coefficients
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                           1         2         3         4         5

                         (AG)      (B1U)     (AG)      (B1U)     (B2U)

     EIGENVALUES --   -11.17072 -11.17068  -1.03155  -0.78772  -0.64316

   1 1   C  1S          0.69762   0.69791  -0.16583  -0.12814   0.00000

   2        2S  (I)     0.06537   0.07075   0.18160   0.13176   0.00000

   3        2PX (I)     0.00000   0.00000   0.00000   0.00000   0.00000

   4        2PY (I)     0.00000   0.00000   0.00000   0.00000   0.27881

   5        2PZ (I)     0.00158  -0.00186  -0.10650   0.14173   0.00000

   6        2S  (O)    -0.03133  -0.06594   0.37110   0.41853   0.00000

   7        2PX (O)     0.00000   0.00000   0.00000   0.00000   0.00000

   8        2PY (O)     0.00000   0.00000   0.00000   0.00000   0.19373

   9        2PZ (O)    -0.00431   0.01506  -0.01624   0.06345   0.00000

  10 2   C  1S          0.69762  -0.69791  -0.16583   0.12814   0.00000

  11        2S  (I)     0.06537  -0.07075   0.18160  -0.13176   0.00000

  12        2PX (I)     0.00000   0.00000   0.00000   0.00000   0.00000

  13        2PY (I)     0.00000   0.00000   0.00000   0.00000   0.27881

  14        2PZ (I)    -0.00158  -0.00186   0.10650   0.14173   0.00000

  15        2S  (O)    -0.03133   0.06594   0.37110  -0.41853   0.00000

  16        2PX (O)     0.00000   0.00000   0.00000   0.00000   0.00000

  17        2PY (O)     0.00000   0.00000   0.00000   0.00000   0.19373

  18        2PZ (O)     0.00431   0.01506   0.01624   0.06345   0.00000
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  19 3   H  1S  (I)    -0.00176   0.00026   0.07802  -0.13740   0.14677

  20        1S  (O)     0.00958  -0.00797   0.00528  -0.06737   0.10969

  21 4   H  1S  (I)    -0.00176   0.00026   0.07802  -0.13740  -0.14677

  22        1S  (O)     0.00958  -0.00797   0.00528  -0.06737  -0.10969

  23 5   H  1S  (I)    -0.00176  -0.00026   0.07802   0.13740   0.14677

  24        1S  (O)     0.00958   0.00797   0.00528   0.06737   0.10969

  25 6   H  1S  (I)    -0.00176  -0.00026   0.07802   0.13740  -0.14677

  26        1S  (O)     0.00958   0.00797   0.00528   0.06737  -0.10969

                           6         7         8         9        10

                         (AG)      (B3G)     (B3U)     (B2G)     (AG)

     EIGENVALUES --    -0.58548  -0.50058  -0.37542   0.18182   0.29618

   1 1   C  1S          0.00852   0.00000   0.00000   0.00000  -0.09105

   2        2S  (I)    -0.02120   0.00000   0.00000   0.00000   0.03129

   3        2PX (I)     0.00000   0.00000   0.32018   0.30382   0.00000

   4        2PY (I)     0.00000   0.26045   0.00000   0.00000   0.00000

   5        2PZ (I)     0.36314   0.00000   0.00000   0.00000   0.13028

   6        2S  (O)     0.02475   0.00000   0.00000   0.00000   1.37625

   7        2PX (O)     0.00000   0.00000   0.37551   0.75082   0.00000

   8        2PY (O)     0.00000   0.27526   0.00000   0.00000   0.00000

   9        2PZ (O)     0.22453   0.00000   0.00000   0.00000   0.62103

  10 2   C  1S          0.00852   0.00000   0.00000   0.00000  -0.09105

  11        2S  (I)    -0.02120   0.00000   0.00000   0.00000   0.03129

  12        2PX (I)     0.00000   0.00000   0.32018  -0.30382   0.00000
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  13        2PY (I)     0.00000  -0.26045   0.00000   0.00000   0.00000

  14        2PZ (I)    -0.36314   0.00000   0.00000   0.00000  -0.13028

  15        2S  (O)     0.02475   0.00000   0.00000   0.00000   1.37625

  16        2PX (O)     0.00000   0.00000   0.37551  -0.75082   0.00000

  17        2PY (O)     0.00000  -0.27526   0.00000   0.00000   0.00000

  18        2PZ (O)    -0.22453   0.00000   0.00000   0.00000  -0.62103

  19 3   H  1S  (I)     0.11847  -0.17857   0.00000   0.00000  -0.01761

  20        1S  (O)     0.11078  -0.15647   0.00000   0.00000  -0.95260

  21 4   H  1S  (I)     0.11847   0.17857   0.00000   0.00000  -0.01761

  22        1S  (O)     0.11078   0.15647   0.00000   0.00000  -0.95260

  23 5   H  1S  (I)     0.11847   0.17857   0.00000   0.00000  -0.01761

  24        1S  (O)     0.11078   0.15647   0.00000   0.00000  -0.95260

  25 6   H  1S  (I)     0.11847  -0.17857   0.00000   0.00000  -0.01761

  26        1S  (O)     0.11078  -0.15647   0.00000   0.00000  -0.95260

                          11        12        13        14        15

                         (B2U)     (B1U)     (B3G)     (B1U)     (AG)

     EIGENVALUES --     0.31209   0.33981   0.43644   0.53790   0.88167

   1 1   C  1S          0.00000  -0.12205   0.00000   0.09363   0.01653

   2        2S  (I)     0.00000   0.04686   0.00000   0.00410   0.10140

   3        2PX (I)     0.00000   0.00000   0.00000   0.00000   0.00000

   4        2PY (I)    -0.21783   0.00000   0.24038   0.00000   0.00000

   5        2PZ (I)     0.00000   0.08606   0.00000   0.15187  -0.65071

   6        2S  (O)     0.00000   1.60267   0.00000  -2.54368   0.42451
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   7        2PX (O)     0.00000   0.00000   0.00000   0.00000   0.00000

   8        2PY (O)    -0.80291   0.00000   1.63487   0.00000   0.00000

   9        2PZ (O)     0.00000   0.29286   0.00000   2.56435   1.03012

  10 2   C  1S          0.00000   0.12205   0.00000  -0.09363   0.01653

  11        2S  (I)     0.00000  -0.04686   0.00000  -0.00410   0.10140

  12        2PX (I)     0.00000   0.00000   0.00000   0.00000   0.00000

  13        2PY (I)    -0.21783   0.00000  -0.24038   0.00000   0.00000

  14        2PZ (I)     0.00000   0.08606   0.00000   0.15187   0.65071

  15        2S  (O)     0.00000  -1.60267   0.00000   2.54368   0.42451

  16        2PX (O)     0.00000   0.00000   0.00000   0.00000   0.00000

  17        2PY (O)    -0.80291   0.00000  -1.63487   0.00000   0.00000

  18        2PZ (O)     0.00000   0.29286   0.00000   2.56435  -1.03012

  19 3   H  1S  (I)     0.05174   0.02451  -0.03947   0.06882  -0.13648

  20        1S  (O)     0.99778   0.98923   1.38452   0.42093  -0.12698

  21 4   H  1S  (I)    -0.05174   0.02451   0.03947   0.06882  -0.13648

  22        1S  (O)    -0.99778   0.98923  -1.38452   0.42093  -0.12698

  23 5   H  1S  (I)     0.05174  -0.02451   0.03947  -0.06882  -0.13648

  24        1S  (O)     0.99778  -0.98923  -1.38452  -0.42093  -0.12698

  25 6   H  1S  (I)    -0.05174  -0.02451  -0.03947  -0.06882  -0.13648

  26        1S  (O)    -0.99778  -0.98923   1.38452  -0.42093  -0.12698

                          16        17        18        19        20

                         (B2U)     (B3U)     (B2G)     (B1U)     (AG)

     EIGENVALUES --     0.92681   0.99297   1.07672   1.10187   1.12548
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   1 1   C  1S          0.00000   0.00000   0.00000   0.09045   0.03667

   2        2S  (I)     0.00000   0.00000   0.00000  -0.00294   0.36011

   3        2PX (I)     0.00000   0.76482  -0.79488   0.00000   0.00000

   4        2PY (I)    -0.43116   0.00000   0.00000   0.00000   0.00000

   5        2PZ (I)     0.00000   0.00000   0.00000   0.57779  -0.20554

   6        2S  (O)     0.00000   0.00000   0.00000  -0.27814  -0.44815

   7        2PX (O)     0.00000  -0.58017   0.94532   0.00000   0.00000

   8        2PY (O)     0.70083   0.00000   0.00000   0.00000   0.00000

   9        2PZ (O)     0.00000   0.00000   0.00000  -0.51447  -0.06188

  10 2   C  1S          0.00000   0.00000   0.00000  -0.09045   0.03667

  11        2S  (I)     0.00000   0.00000   0.00000   0.00294   0.36011

  12        2PX (I)     0.00000   0.76482   0.79488   0.00000   0.00000

  13        2PY (I)    -0.43116   0.00000   0.00000   0.00000   0.00000

  14        2PZ (I)     0.00000   0.00000   0.00000   0.57779   0.20554

  15        2S  (O)     0.00000   0.00000   0.00000   0.27814  -0.44815

  16        2PX (O)     0.00000  -0.58017  -0.94532   0.00000   0.00000

  17        2PY (O)     0.70083   0.00000   0.00000   0.00000   0.00000

  18        2PZ (O)     0.00000   0.00000   0.00000  -0.51447   0.06188

  19 3   H  1S  (I)    -0.44021   0.00000   0.00000  -0.45836   0.60306

  20        1S  (O)     0.02782   0.00000   0.00000   0.09416  -0.23463

  21 4   H  1S  (I)     0.44021   0.00000   0.00000  -0.45836   0.60306

  22        1S  (O)    -0.02782   0.00000   0.00000   0.09416  -0.23463

  23 5   H  1S  (I)    -0.44021   0.00000   0.00000   0.45836   0.60306
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  24        1S  (O)     0.02782   0.00000   0.00000  -0.09416  -0.23463

  25 6   H  1S  (I)     0.44021   0.00000   0.00000   0.45836   0.60306

  26        1S  (O)    -0.02782   0.00000   0.00000  -0.09416  -0.23463

                          21        22        23        24        25

                         (B3G)     (B2U)     (B1U)     (B3G)     (AG)

     EIGENVALUES --     1.31809   1.35476   1.39767   1.64159   1.66056

   1 1   C  1S          0.00000   0.00000   0.02496   0.00000   0.03378

   2        2S  (I)     0.00000   0.00000  -0.12310   0.00000  -1.20393

   3        2PX (I)     0.00000   0.00000   0.00000   0.00000   0.00000

   4        2PY (I)    -0.82019   0.68651   0.00000  -0.31427   0.00000

   5        2PZ (I)     0.00000   0.00000  -0.71567   0.00000  -0.16391

   6        2S  (O)     0.00000   0.00000  -0.36333   0.00000   1.65425

   7        2PX (O)     0.00000   0.00000   0.00000   0.00000   0.00000

   8        2PY (O)     1.82948  -0.84236   0.00000   2.48277   0.00000

   9        2PZ (O)     0.00000   0.00000   1.31171   0.00000   0.33917

  10 2   C  1S          0.00000   0.00000  -0.02496   0.00000   0.03378

  11        2S  (I)     0.00000   0.00000   0.12310   0.00000  -1.20393

  12        2PX (I)     0.00000   0.00000   0.00000   0.00000   0.00000

  13        2PY (I)     0.82019   0.68651   0.00000   0.31427   0.00000

  14        2PZ (I)     0.00000   0.00000  -0.71567   0.00000   0.16391

  15        2S  (O)     0.00000   0.00000   0.36333   0.00000   1.65425

  16        2PX (O)     0.00000   0.00000   0.00000   0.00000   0.00000

  17        2PY (O)    -1.82948  -0.84236   0.00000  -2.48277   0.00000
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  18        2PZ (O)     0.00000   0.00000   1.31171   0.00000  -0.33917

  19 3   H  1S  (I)    -0.29255  -0.47854  -0.47437   0.68933   0.20134

  20        1S  (O)     1.06586   0.88470   0.75739   0.59615  -0.66776

  21 4   H  1S  (I)     0.29255   0.47854  -0.47437  -0.68933   0.20134

  22        1S  (O)    -1.06586  -0.88470   0.75739  -0.59615  -0.66776

  23 5   H  1S  (I)     0.29255  -0.47854   0.47437  -0.68933   0.20134

  24        1S  (O)    -1.06586   0.88470  -0.75739  -0.59615  -0.66776

  25 6   H  1S  (I)    -0.29255   0.47854   0.47437   0.68933   0.20134

  26        1S  (O)     1.06586  -0.88470  -0.75739   0.59615  -0.66776

                          26 #

                         (B1U)

     EIGENVALUES --     1.96291

   1 1   C  1S         -0.00250

   2        2S  (I)    -1.41566

   3        2PX (I)     0.00000

   4        2PY (I)     0.00000

   5        2PZ (I)     0.08663

   6        2S  (O)     3.82153

   7        2PX (O)     0.00000

   8        2PY (O)     0.00000

   9        2PZ (O)    -1.14177

  10 2   C  1S          0.00250

  11        2S  (I)     1.41566
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  12        2PX (I)     0.00000

  13        2PY (I)     0.00000

  14        2PZ (I)     0.08663

  15        2S  (O)    -3.82153

  16        2PX (O)     0.00000

  17        2PY (O)     0.00000

  18        2PZ (O)    -1.14177

  19 3   H  1S  (I)     0.11246

  20        1S  (O)     0.35773

  21 4   H  1S  (I)     0.11246

  22        1S  (O)     0.35773

  23 5   H  1S  (I)    -0.11246

  24        1S  (O)    -0.35773

  25 6   H  1S  (I)    -0.11246

  26        1S  (O)    -0.35773

      DENSITY MATRIX.

-----------------------------------------------------------------------

 Total atomic charges:

              1

  1  C   -0.425338

  2  C   -0.425338

  3  H    0.212669
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  4  H    0.212669

  5  H    0.212669

  6  H    0.212669

     nuclear repulsion energy   33.4010108717 Hartrees.

  26 basis functions      42 primitive gaussians

 Dipole moment (Debye):

    X=     0.0000    Y=     0.0000    Z=    -1.2860  Tot=     1.2860

 Quadrupole moment (Debye-Ang):

   XX=    -4.6255   YY=    -4.6255   ZZ=    -3.4983

   XY=     0.0000   XZ=     0.0000   YZ=     0.0000

 Dipole moment (Debye):

    X=     0.0000    Y=     0.0000    Z=     0.0000  Tot=     0.0000

 Quadrupole moment (Debye-Ang):

   XX=   -15.7191   YY=   -12.3174   ZZ=   -12.1050

   XY=     0.0000   XZ=     0.0000   YZ=     0.0000

 Octapole moment (Debye-Ang**2):

  XXX=     0.0000  YYY=     0.0000  ZZZ=     0.0000  XYY=     0.0000

  XXY=     0.0000  XXZ=     0.0000  XZZ=     0.0000  YZZ=     0.0000

  YYZ=     0.0000  XYZ=     0.0000
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 Hexadecapole moment (Debye-Ang**3):

 XXXX=   -16.4808 YYYY=   -24.9877 ZZZZ=   -65.5232 XXXY=     0.0000

 XXXZ=     0.0000 YYYX=     0.0000 YYYZ=     0.0000 ZZZX=     0.0000

 ZZZY=     0.0000 XXYY=    -7.5604 XXZZ=   -14.8582 YYZZ=   -12.3932

 XXYZ=     0.0000 YYXZ=     0.0000 ZZXY=     0.0000

 ------------------------------------------------------------------------

 

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

 ------------------------------------------------------------------------

                   Standard orientation:

 ----------------------------------------------------------

 Center     Atomic                   Forces (Hartrees/Bohr)

 Number     Number              X              Y              Z

    1          6           0.000000000    0.000000000    0.020106520

    2          6           0.000000000    0.000000000   -0.020106520

    3          1          -0.004582715    0.000000000   -0.002473539

    4          1           0.004582715    0.000000000   -0.002473539

    5          1          -0.004582715    0.000000000    0.002473539

    6          1           0.004582715    0.000000000    0.002473539
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10.4Gammes Creation Directives

# Note: The numbers in the directives can be derived from the experiment information

# or are constant for a version of the computational chemistry application

# Create the application representation of the Molecular Orbital

Molecular Orbital

6 Atoms

# Create the application representation of the Atom

Atom

38 Doubles

10.5Gammes Parsing Directives

Molecular Orbitals

# Unfold the molecular orbitals

Skip After First Occurrence of ‘MOLECULAR’

Next Line

Next Line

Next Line
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Next Line

Unfold Matrix 2 16 4 38

# Copy the atom abbreviation and number

Skip Before First Occurrence of ‘MOLECULAR’

Next Line

Next Line

Next Line

Next Line

Next Line

Next Line

Denormalize Matrix 4 0 9 1 9 Blank 1 9 4 0 37 1

# Copy the orbital

Skip Before First Occurrence of ‘MOLECULAR’

Next Line

Next Line

Next Line

Next Line

Next Line

Next Line

Denormalize Matrix 3 0 14 0 13 Blank 0 13 1 0 37 1
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# Reposition so an Atom can be read, repeat for each Atom

Skip Before First Occurrence of ‘MOLECULAR’

Yield

Atom

Skip Before First Occurrence of ‘MOLECULAR’

Next Line

Next Line

Next Line

Next Line

Next Line

Next Line

# Reposition so Double can be read, repeated for each Double

Next Line

Line Offset

Yield

10.6Gammes Output

 TOTAL NUMBER OF BASIS FUNCTIONS     =   74
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 FINAL ENERGY IS      -78.0561311759 AFTER  12 ITERATIONS

          ---------------------

          ELECTROSTATIC MOMENTS

          ---------------------

 POINT   1           X           Y           Z (BOHR)    CHARGE

                 0.000000    0.000000    0.000000        0.00 (A.U.)

         DX          DY          DZ         /D/  (DEBYE)

     0.000000    0.000000    0.000000    0.000000

          ---------------------

          ELECTROSTATIC MOMENTS

          ---------------------

 POINT   1           X           Y           Z (BOHR)    CHARGE

                 0.000000    0.000000    0.087542        0.00 (A.U.)

         DX          DY          DZ         /D/  (DEBYE)

     0.000000    0.000000    1.285987    1.285987

  QXX         QYY         QZZ         QXY         QXZ         QYZ  (BUCKINGHAMS) -

0.622276   -

0.622276    1.244552    0.000000    0.000000    0.000000

 ...... END OF PROPERTY EVALUATION ......
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        STEP CPU TIME =    1.84  TOTAL CPU TIME =   130.09   (   2.2 MIN) IS 94.96 

PERCENT OF

REAL TIME OF    137.00

  174978 WORDS OF DYNAMIC MEMORY USED

 EXECUTION OF GAMESS TERMINATED NORMALLY Fri Aug  7 15:21:04 1992

          GRADIENT OF THE ENERGY

          ----------------------

      ATOM                 E'X               E'Y               E'Z

    1 C                0.000194871       0.000000000       0.000000000

    2 C               -0.000194871       0.000000000       0.000000000

    3 H               -0.000012376      -0.000030270       0.000000000

    4 H                0.000012376      -0.000030270       0.000000000

    5 H               -0.000012376       0.000030270       0.000000000

    6 H                0.000012376       0.000030270       0.000000000

 ...... END OF 2-ELECTRON GRADIENT ......
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        STEP CPU TIME =  228.12  TOTAL CPU TIME =   361.23   (   6.0 MIN) IS 98.70

PERCENT

OF REAL TIME OF    366.00

          MAXIMUM COMPONENT =   0.000194871

               RMS GRADIENT =   0.000066761

 ..... END OF SINGLE POINT GRADIENT .....

          MOLECULAR ORBITALS

          ------------------

                      1          2          3          4          5          6          7          8          9         10

                  -11.1794   -11.1790    -1.0472    -0.7972    -0.6550    -0.5991    -0.5078    -

0.3844

0.0506     0.0629

                       A          A          A          A          A          A          A          A          A          

A

1  H    1 S  -0.000885  -0.000008   0.076201   0.137654  -0.146789  -0.120192  -

0.180163

0.000000   0.011374   0.009358
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    2  H      S   0.006193   0.006800   0.011909   0.067802  -0.101247  -0.098893  -

0.126968

0.000000  -0.024885  -0.049591

    3  H      S  -0.009440  -0.003157   0.033003   0.023562  -0.031374  -0.005345   

0.036526

0.000000  -1.300060  -2.181759

    4  H    2 S  -0.000885  -0.000008   0.076201   0.137654   0.146789  -0.120192   

0.180163

0.000000   0.011374   0.009358

    5  H      S   0.006193   0.006800   0.011909   0.067802   0.101247  -0.098893   

0.126968

0.000000  -0.024885  -0.049591

    6  H      S  -0.009440  -0.003157   0.033003   0.023562   0.031374  -0.005345  -

0.036526

0.000000  -1.300060  -2.181759

    7  C    3 S   0.697865   0.697977  -0.167342  -0.128405   0.000000  -0.007556   

0.000000

0.000000  -0.019737  -0.023338

    8  C      S   0.067681   0.071494   0.180421   0.131430   0.000000   0.020580   

0.000000

0.000000   0.037107   0.029252

    9  C      X  -0.001270   0.001987   0.110436  -0.143379   0.000000   0.365347   

0.000000
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0.000000  -0.048198  -0.025495

   10  C      Y   0.000000   0.000000   0.000000   0.000000   0.281317   0.000000   

0.261388

0.000000   0.000000   0.000000

   11  C      Z   0.000000   0.000000   0.000000   0.000000   0.000000   0.000000   

0.000000

0.319790   0.000000   0.000000

   12  C      S  -0.035730  -0.069076   0.379102   0.426661   0.000000  -0.034121   

0.000000

0.000000   0.047718   0.168226

   13  C      X   0.003347  -0.016034   0.019167  -0.062108   0.000000   0.224264   

0.000000

0.000000  -0.059446   0.066616

   14  C      Y   0.000000   0.000000   0.000000   0.000000   0.197203   0.000000   

0.299992

0.000000   0.000000   0.000000

   15  C      Z   0.000000   0.000000   0.000000   0.000000   0.000000   0.000000   

0.000000

0.345201   0.000000   0.000000

   16  C      S   0.023040   0.094930  -0.074646  -0.325696   0.000000  -0.003667   

0.000000

0.000001   2.109155   4.408334
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   17  C      X  -0.001024   0.022965   0.002612  -0.070989   0.000000   0.000681   

0.000000

0.000000  -0.432063  -0.213937

   18  C      Y   0.000000   0.000000   0.000000   0.000000  -0.012496   0.000000   

0.101566

0.000000   0.000000   0.000000

   19  C      Z   0.000000   0.000000   0.000000   0.000000   0.000000   0.000000   

0.000000

0.051772  -0.000001   0.000000

   20  H    4 S  -0.000885   0.000008   0.076201  -0.137654  -0.146789  -0.120192   

0.180163

0.000000   0.011374  -0.009358

   21  H      S   0.006193  -0.006800   0.011909  -0.067802  -0.101247  -0.098893   

0.126968

0.000000  -0.024885   0.049591

   22  H      S  -0.009440   0.003157   0.033003  -0.023562  -0.031374  -0.005345  -

0.036526

0.000000  -1.300060   2.181759

   23  H    5 S  -0.000885   0.000008   0.076201  -0.137654   0.146789  -0.120192  -

0.180163

0.000000   0.011374  -0.009358

   24  H      S   0.006193  -0.006800   0.011909  -0.067802   0.101247  -0.098893  -

0.126968
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0.000000  -0.024885   0.049591

   25  H      S  -0.009440   0.003157   0.033003  -0.023562   0.031374  -0.005345   

0.036526

0.000000  -1.300060   2.181759

   26  C    6 S   0.697865  -0.697977  -0.167342   0.128405   0.000000  -0.007556   

0.000000

0.000000  -0.019737   0.023338

   27  C      S   0.067681  -0.071494   0.180421  -0.131430   0.000000   0.020580   

0.000000

0.000000   0.037107  -0.029252

   28  C      X   0.001270   0.001987  -0.110436  -0.143379   0.000000  -0.365347   

0.000000

0.000000   0.048198  -0.025495

   29  C      Y   0.000000   0.000000   0.000000   0.000000   0.281317   0.000000  -

0.261388

0.000000   0.000000   0.000000

   30  C      Z   0.000000   0.000000   0.000000   0.000000   0.000000   0.000000   

0.000000

0.319790   0.000000   0.000000

   31  C      S  -0.035730   0.069076   0.379102  -0.426661   0.000000  -0.034121   

0.000000

0.000000   0.047718  -0.168226
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   32  C      X  -0.003347  -0.016034  -0.019167  -0.062108   0.000000  -0.224264   

0.000000

0.000000   0.059446   0.066616

   33  C      Y   0.000000   0.000000   0.000000   0.000000   0.197203   0.000000  -

0.299992

0.000000   0.000000   0.000000

   34  C      Z   0.000000   0.000000   0.000000   0.000000   0.000000   0.000000   

0.000000

0.345201   0.000000   0.000000

   35  C      S   0.023040  -0.094930  -0.074646   0.325696   0.000000  -0.003667   

0.000000  -

0.000001   2.109155  -4.408334

   36  C      X   0.001024   0.022965  -0.002612  -0.070989   0.000000  -0.000681   

0.000000

0.000000   0.432063  -0.213937

   37  C      Y   0.000000   0.000000   0.000000   0.000000  -0.012496   0.000000  -

0.101566

0.000000   0.000000   0.000000

   38  C      Z   0.000000   0.000000   0.000000   0.000000   0.000000   0.000000   

0.000000

0.051772   0.000001   0.000000

                     11         12         13         14         15         16         17         18
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                    0.0644     0.0855     0.1057     0.1416     0.1485     0.1794     0.2223     

0.2271

                       A          A          A          A          A          A          A          A

    1  H    1 S  -0.006642  -0.019541   0.000000   0.000000   0.010285   0.010967  -

0.013302

0.001006

    2  H      S   0.033673   0.159217   0.000000   0.000000   0.116543   0.016273  -

0.374957

0.168627

    3  H      S   2.583125   6.204936   0.000000   0.000002   0.749773   3.392583  -

1.645794

3.523880

    4  H    2 S   0.006642   0.019541   0.000000   0.000000   0.010285   0.010967  -

0.013302  -

0.001006

    5  H      S  -0.033673  -0.159217   0.000000   0.000000   0.116543   0.016273  -

0.374957  -

0.168627

    6  H      S  -2.583125  -6.204936   0.000002   0.000002   0.749773   3.392583  -

1.645794  -

3.523880

    7  C    3 S   0.000000   0.000000   0.000000   0.000000   0.011124  -0.014849   

0.053668
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0.000000

    8  C      S   0.000000   0.000000   0.000000   0.000000  -0.001274   0.020942  -

0.013858

0.000000

    9  C      X   0.000000   0.000000   0.000000   0.000000  -0.049655   0.007771   

0.033561

0.000000

   10  C      Y   0.063482   0.036137   0.000000   0.000000   0.000000   0.000000   

0.000000  -

0.111203

   11  C      Z   0.000000   0.000000   0.174261  -0.104903   0.000000   0.000000   

0.000000

0.000000

   12  C      S   0.000000   0.000000   0.000000   0.000000  -0.151453   0.043641  -

0.550773

0.000000

   13  C      X   0.000000   0.000000   0.000000   0.000000  -0.066363  -0.035358   

0.003438

0.000000

   14  C      Y   0.041498   0.136666   0.000000   0.000000   0.000000   0.000000   

0.000000  -

0.271277
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   15  C      Z   0.000000   0.000000   0.268473  -0.283838   0.000000   0.000000   

0.000001

0.000000

   16  C      S   0.000000   0.000000   0.000003   0.000028  -1.794034  34.339009   

4.057977

0.000000

   17  C      X   0.000000   0.000000   0.000003   0.000010   1.923014  12.551861  -

0.637850

0.000000

   18  C      Y   1.113523   4.695565  -0.000001   0.000000   0.000000   0.000000   

0.000000

2.553448

   19  C      Z   0.000000   0.000000   1.548186   0.597545  -0.000001   0.000000  -

0.000001

0.000000

   20  H    4 S  -0.006642   0.019541   0.000000   0.000000   0.010285  -0.010967  -

0.013302

0.001006

   21  H      S   0.033673  -0.159217   0.000000   0.000000   0.116543  -0.016273  -

0.374957

0.168627

   22  H      S   2.583125  -6.204936   0.000001  -0.000002   0.749773  -3.392583  -

1.645794
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3.523880

   23  H    5 S   0.006642  -0.019541   0.000000   0.000000   0.010285  -0.010967  -

0.013302  -

0.001006

   24  H      S  -0.033673   0.159217   0.000000   0.000000   0.116543  -0.016273  -

0.374957  -

0.168627

   25  H      S  -2.583125   6.204936  -0.000001  -0.000002   0.749773  -3.392583  -

1.645794  -

3.523880

   26  C    6 S   0.000000   0.000000   0.000000   0.000000   0.011124   0.014849   

0.053668

0.000000

   27  C      S   0.000000   0.000000   0.000000   0.000000  -0.001274  -0.020942  -

0.013858

0.000000

   28  C      X   0.000000   0.000000   0.000000   0.000000   0.049655   0.007771  -

0.033561

0.000000

   29  C      Y   0.063482  -0.036137   0.000000   0.000000   0.000000   0.000000   

0.000000  -

0.111203
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   30  C      Z   0.000000   0.000000  -0.174261  -0.104903   0.000000   0.000000   

0.000000

0.000000

   31  C      S   0.000000   0.000000   0.000000   0.000000  -0.151453  -0.043641  -

0.550773

0.000000

   32  C      X   0.000000   0.000000   0.000000   0.000000   0.066363  -0.035358  -

0.003438

0.000000

   33  C      Y   0.041498  -0.136666   0.000000   0.000000   0.000000   0.000000   

0.000000  -

0.271277

   34  C      Z   0.000000   0.000000  -0.268473  -0.283838   0.000000   0.000000  -

0.000001

0.000000

   35  C      S   0.000000   0.000000  -0.000006  -0.000028  -1.794034 -34.339009   

4.057977

0.000000

   36  C      X   0.000000   0.000000   0.000000   0.000010  -1.923014  12.551861   

0.637850

0.000000

   37  C      Y   1.113523  -4.695565   0.000001   0.000000   0.000000   0.000000   

0.000000

155



2.553448

   38  C      Z   0.000000   0.000000  -1.548186   0.597545   0.000001   0.000000   

0.000001

0.000000

          -----------------

          ENERGY COMPONENTS

          -----------------

 COORDINATES OF ALL ATOMS ARE (ANGS)

   ATOM   CHARGE       X              Y              Z

 ------------------------------------------------------------

 H           1.0  -1.2265061870  -0.9134808718   0.0000000369

 H           1.0  -1.2265061868   0.9134808717  -0.0000000630

 C           6.0  -0.6602791538   0.0000000000  -0.0000000383

 H           1.0   1.2265061871  -0.9134808718   0.0000000632

 H           1.0   1.2265061868   0.9134808718  -0.0000000368

 C           6.0   0.6602791538   0.0000000000   0.0000000307
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