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Abstract

The problem of automatic model acquisition from com-

puter images has a long and sophisticated research his-

tory. Recently, there has been a focus on the interpre-

tation of aerial imagery for model reconstruction and

there has been signi�cant progress in several sub-areas.

However, a general model acquisition system that is not

restricted to a small class of models and contexts has not

been realized.

This paper presents a framework that separates control

decisions and knowledge from the underlying image un-

derstanding (IU) modules. The control system is able

to make use of IU modules by applying them in the cor-

rect context and interpreting their results according to

the current state of knowledge. A set of Bayesian net-

works are used to represent knowledge about objects and

object relationships, and to allow the control system to

select an action that is expected to decrease the uncer-

tainty about the object under consideration.

The framework is applied to the problem of automatic

building reconstruction from aerial images. Results show

how the framework extends the capability of the Ascen-

der system, a building model acquisition system, by clas-

sifying image regions prior to geometric reconstruction.

1 Introduction

The extraction and reconstruction of geometric models

from images is an important focus of the computer vi-

sion community. Signi�cant progress has been made in

several constrained subareas and systems perform rea-

sonably well within the domains for which they were de-

signed. These (sub)e�orts can be characterized by the

contextual restrictions embedded into the algorithms at

the time they were designed. These implicit and ex-

plicit restrictions vary from the type and characteris-
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tics of the data required for processing to the classes

of objects addressed by the algorithm. Although these

algorithms perform well within the particular contexts

for which they were designed, they often degrade signif-

icantly within di�erent domains.

A more general solution to the problem lies in the sys-

tems ability to automatically select the appropriate al-

gorithm, apply it to the correct subset of the data, and

interpret the result according to the current context and

knowledge. The framework presented here allows for

the integration of these special purpose algorithms into

a large knowledge-based system.

This idea of a (set of) local expert(s) that are ap-

plied within the correct context, and then fused to-

gether into a coherent interpretation of the scene is not

new. Object speci�c-experts, referred to as schemas,

played a prominent role in early work on the Schema

system [Draper'89], several knowledge directed vision

systems [Rimey'92, Musman'93, Sarkar'95], as well

as other reconstruction systems from the aerial im-

age domain [Chellapa et al.'94, Huertas and Nevatia'80,

Gi�ord and McKeown'94, Jaynes'96a, Matsuyama'85].

Under this model, robustness is achieved by providing

multiple reconstruction/recognition strategies which are

applicable under well de�ned conditions and generality

is achieved by increasing the number of object classes to

describe a larger fraction of the world.

The framework is founded on three fundamental prin-

ciples: 1) Speci�c image understanding strategies are

clearly successful under particular contexts for a partic-

ular class of objects but may break down when applied in

contexts that exceed the design constraints. 2) Domain

knowledge, knowledge acquired from partial processing

of the data, and knowledge about available image un-

derstanding strategies are all valuable in constraining

the reconstruction problem. 3) A successful system will

contain many speci�c strategies but will selectively ap-

ply them in the correct context, with the correct set of

parameters, and will fuse the results of individual strate-

gies into a complete reconstruction.

In order to demonstrate these principles, we apply the



framework to the problem of automatic model acquisi-

tion from aerial images. The framework is applicable

in any domain where a set of specialized visual pro-

cesses are available to gather evidence about the scene.

The utility of knowledge-directed processing is demon-

strated by a detailed comparison of an existing site re-

construction system and the same system, augmented

with our knowledge-based framework. The Ascender

system [Collins, et al.'96] has been shown to e�ectively

reconstruction a single class of buildings from a set of

aerial image. We show that the functionality and accu-

racy of Ascender and similar systems can be extended

through the explicit use of knowledge.

Ascender detects polygons in a single image through the

grouping of image lines into chains based on geomet-

ric constraints. All possible groupings are searched for

polygon chains that may represent a building bound-

ary. A set of building polygons are then matched across

multiple views of the site in order to compute build-

ing heights. We introduce the knowledge-directed re-

construction framework to the Ascender system in order

to improve its generality, robustness, and overall per-

formance. Image polygons are classi�ed using the net-

work and reconstructed according to the classi�cation.

The new framework removes false positives, allows for

a more e�cient reconstruction through the selective ap-

plication of available algorithms, and incorporates both

domain knowledge and context that can be re-engineered

according to di�erent domains without having to recode

the underlying algorithms.

The overall knowledge-directed framework is discussed

in the next section followed by a more detailed descrip-

tion of the two main system components; the visual sub-

system and the knowledge base. A discussion of how the

framework is used to extend the capability of Ascender

and systems like it can be found in section 3. Finally,

we compare the results of the knowledge-directed system

with Ascender and discuss how knowledge has improved

the automated extraction of a site model.

2 System Overview

The system is divided into a visual subsystem and a

knowledge base. The visual subsystem contains a li-

brary of IU algorithms, a geometric database that con-

tains available data (images, line segments, functional

classi�cations, etc.), as well as models that may have

been acquired through processing. Display of the ac-

quired models and a user interface is supplied by the

Radius Common Development Environment (RCDE)

[Mundy et al.'92], a geometric modeling package. The

knowledge base is based on belief networks and is con-

structed using HUGIN [Andersen'89], a system for de-

signing belief networks and inuence diagrams. The

knowledge base consists of reasoning mechanisms, a con-

trol system, and a set of belief networks that represent

knowledge about the site. The two systems communicate

through Unix socket IP mechanisms. Figure 1 shows an

overview of the system.
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Figure 1: System overview. Control decisions are based

on the current knowledge about the site. Vision algo-

rithms, stored in the visual subsystem, gather evidence

about the site, update the knowledge base and produce

geometric models.

Reasoning takes place over regions of discourse that

represent a subset of the available data. Regions of

discourse may be image regions, a particular building

model, or other sets of data that may have been pro-

duced by the system. As opposed to systems that parti-

tion the space under consideration a priori [Rimey'92],

regions of discourse are formed, merged, and destroyed

during processing of the data. For each region of dis-

course that the controller selects, a processes is forked

to begin the processing.

2.1 Hierarchical Bayesian Knowledge-

Based Control

A Bayesian network is a probabilistic inference system

that uses a graph representation to denote causal depen-

dencies within the domain under consideration. Each

node in the network represents a random variable and

each arc represents a relationship between the variables.

More details about Bayesian networks can be found in

Jensen [Jensen'96].

Bayesian network systems has been used as an infer-

ence mechanisms in several domains. In particular, they

have been used in computer vision applications such

as, control of vision processes for symbolic interpreta-

tion of a scene [Rimey'92], classi�cation complex ob-

jects, such as a ships, based on shape [Musman'93] or

recognition of object structures based on image features

[Jian-Ming'93], information fusion and control in a multi

agent system [Jensen'92] and management of computa-

tional resources[Sarkar'95].



The Bayesian network controller for Ascender II is a sys-

tem that is used for classi�cation of polygons of aerial

images. The controller is a hierarchical system composed

of a set of networks divided by di�erent levels of detail.

Each level provides relevant information about the ob-

jects at a particular scale of detail. Processing within the

network is restricted to a single level until classi�cation

at the root node occurs. This classi�cation is used to

begin processing within a new network that is related to

classi�cation at the correct level of detail. Given enough

processing resources and time, the process continues un-

til the root nodes of at least one of the networks have

been classi�ed. This is presented in Figure 2

A
B
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A2
A3

A2

Level 0

Level 1

Level 2

Figure 2: The controller starts in level 0 and �nds some

outcome for the root node at that level (A, B or C). If

the outcome is A and time for further computation is

available the controller loads the network for A in level

1 (the doted line shows this inference call). The process

can be repeated to subsequent level until the �nest level

is reached or there is no more time for computation.

Each network in this system represents structural knowl-

edge about features that are expected to be within the

domain. For example, a height node may involve in-

formation about the expected height of buildings as op-

posed to that of a grassy �eld. Speci�c site knowledge

can inuence processing of the scene and is stored in the

prior probability distributions at each node in the net-

work. That is, if 80% of the regions detected in a certain

area are buildings and the only two possible classi�ca-

tions for a region are either building and open �eld, then

the expected frequency of a particular region being an

open �eld is 20%, and the expectation of �nding regions

heights greater than zero will be proportionally higher

than regions of small height.

The vision operators are selected based on the uncer-

tainty of the random variables in the network. Consider

the case where plan �t and line count are both boolean

variables, if a belief for a good plan �t in a region is 54%

and a belief for high number of lines inside the region is

67%, the uncertainty is higher for the plan �t variable,

so this operation will be selected in order to reduce the

uncertainty. An action is selected to reduce the uncer-

tainty in the node using the expression:

node = arg min

n

(max(Belief(n)) �

1

S

n

)

Where S

n

represents the number of states of node n.

Once a node is selected a request is passed to the visual

subsystem for the application of a particular algorithm

to a selected region. The �ndings of this action are then

returned to the controller, entered as evidence and prop-

agated through the network.

It is well known that the propagation of evidence

in Bayes nets is, in general, an NP-hard problem

[Cooper'90] and the time for propagation is a function of

number of nodes, number of links, structure of the net-

work and number of states per node. Instead of using a

large network and propagate evidence through branches

that will not a�ect the overall classi�cation process, the

system uses small networks, which will increase perfor-

mance, and propagates evidence locally.

A certain operator can be called in di�erent levels, but

because each call is related to a certain region, if a call

is made twice for the same region the system will not

compute the new value, instead it will return the value

computed previously and stored in a geometric database.

The decision process on a certain state in the root node

is done relatively to the other states, that is after each

evidence is propagated through the network all states

in the root node are veri�ed, the maximum belief and

the second maximum are computed and compared. If

the maximum is at least twice the value of the second

maximum the controller stops and gives to the region

the label de�ned by the state with the maximum belief.

This belief has a minimum bound which is given by:

min Bel = 2 �

1

(S

r

+ 1)

Where S

r

represents the number of states in the root

node.

Although there is an overhead for controlling the net-

works in di�erent levels and checking states in root nodes

after each evidence, this system is expected to perform

better then a ruled based system, since it will not make

an exhaustive call for all possible algorithms in the vision

module, an better then a system using a single network,

mainly because it will improve the performance for evi-

dence propagation.

2.2 Visual Subsystem

The visual subsystem is comprised of two parts; a func-

tion library that stores the set of IU algorithms available



to the system, and a geometric database that contains

available data in the form of imagery, partial models,

and other collateral information about the scene (such

as classi�cation of functional areas). Each subset of the

data, either given prior to processing as knowledge, or

acquired through processing, is referred to as a region

of discourse or simply region. For example, regions may

be three dimensional volumes in the scene (ie- building

model), 2D image areas (ie-focus of attention area), or

even disparate collections of image features (ie-all pixels

with a particular grey scale value).

At the request of the controller, an algorithm is selected

from the library and run on a region that currently re-

sides within the geometric database. New regions may

be produced as a result of processing and these are stored

in the database for future reference. For example, ini-

tial processing of a set of data begins with a large region

of discourse containing many di�erent classes of objects.

The system invokes a process to �nd image polygons that

may represent building rooftops. Each of these regions

may lead to new regions representing di�erent classes of

objects.

The algorithm library contains information about each

of the algorithms available to the system for selection

and application to the data as well as a de�nition of the

contexts in which each algorithm can be applied. For

example, an algorithm that computes a planar �t error

to a particular region can only be run in the context

of an available range image. Either the range image

is already available (in the form of an Interferometric

Synthetic Aperture Radar image, for example) or must

be able to be computed (from two overlapping views of

the region and an available, stereo-optical algorithm, for

example). The context information for each algorithm

must be explicitly de�ned when the algorithm is placed

into the visual subsystem library.

The library of algorithms presented here were devel-

oped to address aspects of the site reconstruction prob-

lem from aerial images. For example, �nding regions

that may contain buildings, classifying building rooftop

shapes, and determining the position of other cultural

features, are all important tasks for the model acquisi-

tion system.

Many of the IU algorithms may be very \lightweight",

are expected to perform only in a constrained top-down

manner, and may even be used in more than one con-

text. This is due to the fact that the IU algorithms are

responsible for gathering evidence for a particular hy-

pothesis put forward by the controller. For example, an

algorithm that detects the presence of local maximum

in a region of the elevation data can be viewed as a car

detector when invoked on a parking lot area. The same

algorithm may detect the presence of a rooftop structure

when applied to a known building area.

Algorithms may also be very sophisticated, such as the

reconstruction of at roof buildings from multiple views

(the role of the Ascender system). Below, the algorithms

used to extend the Ascender system are described.

Line Count The line count algorithm extracts and

counts line segments from a given region in an optical im-

age. Line segments are detected using the Boldt line al-

gorithm [Weiss'86]. This algorithm hierarchically groups

edgels into progressively longer line segments based on

proximity and collinearity constraints. Extracted line

segments are associated with the region to which they

belong and are stored in the Geometric Database for fu-

ture use. Straight lines provide important clues to fea-

ture classes and can be used to �nd higher level image

features such as junctions and polygons. Figure 3 shows

a set of line segments extracted from an aerial image.

Figure 3: Extracted line segments for a region within an

optical image. Line segments may assist in discriminat-

ing object classes. In this example, the existence of a

centerline may be due to a peaked roof building.

Junction Count This algorithm computes the num-

ber of junctions within a particular region of discourse.

Junctions are computed by intersecting lines that lay

within the region. For each intersection the line seg-

ments are back-projected to a nominal Z-plane in the

world to compute an angle of intersection. The con-

troller speci�es the type of junction to count and, given

the relative angle and position of the line segments the

junction is either counted or not. For example, both L

and T junctions must be near orthogonal in the world

and the relative position of the two lines determines if

the intersection is type L, T, or neither. Figure 4 shows

both L and T junctions detected in an image region.

Average Junction Contrast Similar to the junction

count routine, the algorithm computes the line intersec-

tions within the region of a particular type. The contrast

for a single intersection is the average of the grey-scale

contrasts across the two line segments that gave rise to

the intersection. The algorithm returns the average con-

trast of all valid intersections within the region.

Planar Surface Fit If more than one view of a region

is available, elevation data can be computed through a

stereo-optical routine. The elevation data can then be

used as input to robust surface �tting techniques. In this



Figure 4: Line junctions provide evidence that a cul-

tural feature may exist within an image region and lend

evidence to a region classi�cation.

algorithm, a planar surface is �t thorough the region and

a percentage, related to the residual �t error, is returned

to the knowledge base. The percentage represents how

well a planar model can be �t through the region's el-

evation data. Elevation data provides a rich source of

evidence about a region.

Region HeightThe region height is computed through

a multi-image matching scheme. The matching-scheme

used in Ascender I is used here.

Region Size Ratio A ratio of the smallest region di-

mension versus the largest is returned. For rectangular

regions this is a ratio of the smallest side versus the

longest.

Edge Terminals Search a region boundary for areas

that may have a line termination that is not part of a

region corner. These \breaks" in line segments may have

been grouped together when the region was produced

but may still provide evidence about the region class.

Figure 5 shows a region of discourse and the several new

regions produced by a search for the regions edge termi-

nals. The new regions can then be searched for evidence

that may lead to a classi�cation of the parent region.

Figure 5: A search along an existing region (a) for line

terminals that are not explained by the region corners

produces new regions of discourse (b). These regions

can be search for evidence that a multi-level building is

present (as in the �gure).

In all, the type and number of algorithms must be su�-

cient to distinguish between the di�erent object classes

and assist in the model acquisition process. Algorithms

are associated with nodes in the belief network if they

are capable of gathering evidence relevant to the belief

that the node represents. For example, a poor plane �t

within a region may imply that the region is not a at

roof building, therefore, the algorithm Planar Fit is as-

sociated with the node in the network that corresponds

to building rooftop class.

The algorithms listed above were chosen because they

are relevant to domain in which the system will be

tested. However, if the framework is to be truly gen-

eral useful, the cost of adding a new algorithm to the

system must not be prohibitive, something that proved

to be a problem in earlier knowledge-based vision sys-

tems [Draper'89]. Only two components are necessary

to convert an IU algorithm into an evidence policy that

are usable by the system.

First, the context in which the algorithm is intended

to be run must be de�ned. Currently, the de�nition of

allowable contexts is straightforward and only disallows

algorithms to be run in invalid contexts (on the wrong

type of data, for example). This is similar to the Context

Sets introduced in the Condor system [Strat'93]. This

de�nition of context is expected to be too simple for our

needs and eventually the framework will be extended

to allow the de�nition of a performance pro�le for each

algorithm that de�nes the expected performance of the

algorithm under a variety of di�erent contexts. Secondly,

a method for deriving a certainty value from the output

of the algorithm must be de�ned. This certainty value is

used by the system to update the knowledge base using

Bayesian inference.

3 Experimental Results, Extend-

ing the Ascender System

An experiment was conducted to demonstrate how the

introduction of knowledge directed framework into the

site reconstruction process can improve the accuracy of

the �nal site model. The dataset contained seven over-

lapping aerial views of the site. The area contains build-

ing, parking lots, road networks, and many other cul-

tural features typically found at a urban site. Elevation

data for the site was precomputed using a stereo-optical

system.

The experiment was performed in two stages. First,

a hand-crafted building reconstruction system was exe-

cuted on the area under consideration[Collins, et al.'96].

The system was developed over several years and tuned

to extract at rectilinear buildings. The system detects

rectilinear structure in a single image of the dataset and

uses the known relative camera pose between other views

to compute a polygon height. This �nal site model is

a set of these boundaries extruded to the ground. Al-

though the system has been shown to be e�ective in



detecting a large percentage of buildings at the site,

production of false positives in the site model can be a

problem. For example, during the 2D polygon detection

phase, a parking lot region is segmented due to acciden-

tal alignment of several cars and su�cient line evidence

within the image (�gure 6a). Although the Ascender sys-

tem attempts to eliminate these false positives by search-

ing other images for su�cient edge evidence, often this

is not su�cient to discriminate between true buildings

and false positives. These regions are then produced as

�nal models within the site (�gure 6b).

A

Figure 6: Typical errors produced by the Ascender re-

construction system. (a) Accidental alignment in a sin-

gle image produces a false rooftop hypothesis. (b) Multi-

image matching �nds su�cient support for a complete

3D model at an incorrect height.

Detect 2D Regions

Match/Triangulate

Reconstruct

Classify Regions

Figure 7: Experimental ow of control. Left column

shows the hand designed reconstruction system. After

2D polygons are generated, the knowledge base attempts

to classify each region. Only buildings are matched and

triangulated for a 3D model while other regions are re-

constructed separately as labeled \functional areas".

Because the we are interested primarily in the classi�-

cation of potential building areas, the knowledge base

system had only 2 networks. The �rst level classi�es a

region into one of the classes (Building, Parking Lot,

Open Field, Complex, Other).

A second network attempts a �ner classi�cation of

building regions into either (Multi-level Building,

Single Level Building). The �rst level network is

shown in �gure 8 and the building class-speci�c network

is shown in �gure 9.

Region

Line 
count

Ratio

Building
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Open Field
Complex
Other

Low
Medium
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< 25

>=25, <=75

> 75
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Bad

>=12, <=25

HeightPlan Fit Width L junct.

>=5, <=15
> 15

< 5

> 25

< 12 >=10, <=20
< 10

> 20

Figure 8: This network works in the coarsest level in

tries to classify a region into one the possible outcomes:

Building, Parking Lot, Open Field, Complex, Other

Plan Fit
Good

Bad

Building

T Junct.

Number Contrast

Yes
No

< 5
>=5, <=15
> 15

< 25
>=25, <=75
> 75

Simple

Multilevel

Figure 9: This network works in level 2. For each build-

ing found in level 1 this network is invoked and tries

to classify the building as either a simple building or a

multilevel building.

For each polygon, a region was produced by the visual

subsystem and a request for classi�cation was issued to

the knowledge base. After the selection of an appro-

priate evidence policy, the action selected is passed to

the visual system where the actual processing is accom-

plished. Evidence values are returned to the knowledge

base where they are used to update the network. The

system was run on the 42 regions shown in �gure 10a,

the distribution of the regions is presented in the table



below, and it stopped when a belief value for one of the

states reached the limit condition or the controller was

unable to select a new action. The region is then classi-

�ed according to the state of footprint class with the

maximum belief value found so far. The result classi�-

cation using the controller is presented in �gure 10b.

Region Type Total

Simple Buildings 21

Multilevel Buildings 1

Parking Lots 4

Complex 1

Open Fields 13

Unknown 2

In �gure 10 region \C", which is a parking lot, was clas-

si�ed as a building, partly due to the corresponding el-

evation data which was uncharacteristically smooth for

most parking lot regions. Region \D", which is com-

posed of a parking lot and building with some area of

grass should have been classi�ed as complex, but the

system classi�ed it as parking lot. This mistake is un-

derstandable in light of the the fact that the complex

classi�cation includes a mixture of features from all other

models. Parking lot features, such as many short lines

and a rough elevation map, are not only present in region

\D" but prevalent. The other two regions that were mis-

classi�ed are the two small regions in the parking lots,

a car at right of region C, that was classi�ed as open

�eld instead of unknown and a truck at left of region

\A" which was also classi�ed as open �eld. Region \B"

was classi�ed correctly as a building in level 1 but in

level 2 the system exhausted all actions and was not

able to decide between simple building and multilevel

building. The maximum belief obtained for that region

was 66% for simple against 34% for multilevel. Region

\A", which is a parking lot, had the same problem in

level 1, the system exhausted all actions and at the end

the highest belief presented was for parking lot (59%)

and the second highest value was for open �eld (31%).

The only multilevel building in the scene, region \E" was

properly classi�ed.

In the overall classi�cation process the system used only

about 41% of the actions available. An interesting result

in this process is that an area of the same type, say \open

�eld", was classi�ed using a di�erent set of actions. The

system always started with \plan �t", because of the

prior probabilities for each outcome, and in some cases,

depending on the outcome of \plan �t", the sequence

used was just ratio and height but sometimes the system

asked also for other actions such as width before deciding

on open �eld.

Another interesting issue in the controller is that not all

nodes in the knowledge base are boolean variables. For

instance, the plane �t node is set with a likelihood value

based on the result from the visual module. The �nal

models achieved with the use of the knowledge frame-

work and without are compared in the �gures below.

4 Future Directions

We have demonstrated how a exible, knowledge-

directed control framework can improve the scope and

accuracy of model acquisition systems such as Ascender.

Our goal is to demonstrate that this exibility improves

system performance and widens its scope of applicabil-

ity. To this end, work is underway on engineering the

software architecture of Ascender II and on the develop-

ment of additional evidence policies for a wider range of

building classes. The general framework being employed

supports any type of data as long as there are corre-

sponding evidence policies available for interpreting it.

Consequently, the system is being extended to include

IFSAR elevation maps (in addition to elevation maps

from traditional stereo techniques) and multi-spectral

imagery for improved ground classi�cations. We expect

to use the Fort Hood image dataset as well as other

datasets as they become available (e.g. Ft. Benning) to

demonstrate the Ascender II system.

There are many issues to be addressed during the design

and implementation of Ascender II. One issue concerns

the granularity of the IU algorithms employed in the sys-

tem and how this a�ects system performance. For ex-

ample, should Ascender I be dismantled into component

parts and reassembled in the knowledge network? Previ-

ous attempts to build knowledge-based systems ran into

major knowledge engineering problems. The treatment

of IU algorithms as black-box evidence gathering mech-

anisms, regardless of the underlying complexity, may be

one way to avoid this. Currently, simple greedy evidence

policy is being used to select the next action. What other

policies are reasonable and how do the a�ect the system

e�ciency? Techniques that compare the expected utility

of applying a particular evidence policy to its expected

cost will be investigated as one way to answer the ques-

tion of e�cient control.
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