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1. Introduction

There have been attempts in a variety of applications to add 3D information into an image-based mosaic representation.
Creating stereo mosaics from two rotating cameras was proposed by Huang & Hung [1], and from a single off-center
rotating camera by Ishiguro, et al [2], Peleg & Ben-Ezra [3], and Shum & Szeliski [4]. In these kinds of stereo mosaics,
however, the viewpoint -- therefore the parallax -- is limited to images taken from a very small area. Recently our work
[5,6,7]  has been focused on parallel-perspective  stereo mosaics from a dominantly translating camera,  which is the
typical prevalent sensor motion during aerial surveys. A rotating camera can be easily controlled to achieve the desired
motion.  On the  contrary,  the  translation  of  a  camera  over  a  large  distance  is  much  hard  to  control  in  real  vision
applications such as robot navigation [8] and environmental  monitoring [6, 9]. We have previously shown [5-7] that
image mosaicing from a translating camera  raises a set  of different  problems from that  of circular  projections of a
rotating camera.  These include suitable mosaic  representations,  the generation of a seamless image mosaic under a
rather general motion with motion parallax, and epipolar geometry associated with multiple viewpoint geometry. 

First  we will  show why an efficient  “3D mosaicing”  techniques  are  important  for accurate  3D reconstruction from
stereo  mosaics.  Obviously use of standard  2D mosaicing  techniques  based on 2D image transformations such as  a
manifold projection [11] cannot generate a seamless mosaic in the presence of large motion parallax, particularly in the
case of surfaces that are highly irregular or with large different heights. Moreover, perspective distortion causing the
geometric seams will introduce errors in 3D reconstruction using the parallel-perspective geometry of stereo mosaics. In
generating  image  mosaics  with  parallax,  several  techniques  have  been  proposed  to  explicitly  estimate  the  camera
motion  and  residual  parallax  [9,12,13].  These  approaches,  however,  are  computationally  intense,  and  since  a  final
mosaic is represented in a reference perspective view, there could be serious occlusion problems due to large viewpoint
differences between a single reference view and the rest of the views in the image sequence. 

We have proposed a novel “3D mosaicing” technique called PRISM (parallel ray interpolation for stereo mosaicing) [7]
to  efficiently  convert  the  sequence  of  perspective images  with  6  DOF motion  into  the  parallel-perspective  stereo
mosaics.  In  the  PRISM approach,  global  image  rectification  eliminates  rotation  effects,  followed  by  a  fine  local
transformation that accounts for the interframe motion parallax due to 3D structure of the scene, resulting in a stereo
pair of mosaics that embodies 3D information of the scene with optimal baseline. 

The purpose  of  this effort  is  to  study how to apply the  PRISM approach  to  video  mosaicing  for  an under-vehicle
inspection system (UVIS) that will be able to inspect the undersides of vehicles. The system will create entire images of
the vehicle undersides for both visual inspection and automatic comparison with previous images stored in a database.
Since cameras are very close to the underside of a vehicle under inspection, each camera only covers a small portion of
the underside. Thus a composite picture covering the entire under-vehicle will be created by mosaicing the images from
a virtual  2D "array  of  cameras".  Challenging  technical  issues  include  (1)  calibration  of  the  1D camera  array;  (2)
estimation  of  the  motion  of  the  vehicle  while  creating  the  mosaics  and  (3)  seamless  mosaicing  with  2D "array  of
cameras" with different viewpoints.

Our approach  for solving this problem is to use a line of cameras  as a scanner.  The system will  continuously take
images as the vehicle drives over, then mosaic all of those images into a single image used for inspection. The dense
coverage of the vehicle bottom by camera images as the vehicle drives over allows for relatively easy mosaicing of the
vehicle underside image. As a result of camera view overlap, we can also create multiple mosaics with pseudo-parallel
projection representations that  preserve  the occlusion information from different  viewing angles  in favor of vehicle
inspection. 
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2.  Parallel-Perspective Stereo Geometry

Fig. 1 illustrates the basic idea of the parallel-perspective stereo mosaics. Let us first assume the motion of a camera is
an ideal  1D translation,  the optical  axis is perpendicular  to the motion,  and the frames are dense enough.   We can
generate two spatio-temporal images by extracting two columns of pixels (perpendicular to the motion) at the front and
rear  edges  of  each  frame  in  motion.  The  mosaic  images  thus  generated  are  similar  to  parallel-perspective images
captured by a linear pushbroom camera [14], which has  perspective projection in the direction perpendicular to the
motion  and parallel  projection  in  the  motion  direction .  In  contrast  to  the  common pushbroom aerial  image,  these
mosaics are obtained from two different  oblique viewing angles of a single camera’s field of view,  one set  of rays
looking forward  and the other  set  of rays looking backward,  so that  a  stereo  pair  of left  and right  mosaics  can  be
generated as the sensor moves forward, capturing the inherent 3D information.  

Fig. 1. Parallel-perspective stereo geometry. Both mosaics are built on the fixation plane, but their unit is in pixel – each 
pixel represents H/F world distances.

Without loss of generality, we assume that two vertical 1-column slit windows have dy/2 offsets to the left and right of
the center of the image respectively (Fig. 1). The "left eye" view (left mosaic) is generated from the front slit window,
while the "right eye" view (right mosaic) is generated from the rear slit window. The  parallel-perspective projection
model of the stereo mosaics thus generated can be represented by the following equations [6]

xl = xr = F X/Z   
yr = FY /H  + (Z/H-1) dy/2   (1)
yl = FY /H   -  (Z/H-1) dy/2  

where F is the focal length of the camera, H is the height of a fixation plane (e.g., average height of the terrain). Eq.(1)
gives the relation between a pair of 2D points (one from each mosaic), (xl,yl) and (xr,yr), and the corresponding 3D point
(X,Y,Z). It serves a function similar to the classical pin-hole perspective camera model.  The depth can be computed as
(from Eq. (1) )

(2)

where 

by = dy+ y  =  FBy/H (3)

is the "scaled" version of the baseline By,  and 
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 y = yr - yl  (4)

is the "mosaic displacement"1 in the stereo mosaics. Displacement  y is a function of the depth variation of the scene
around the fixation plane  H.  Since a fixed angle between the two viewing rays is selected for generating the stereo
mosaics, the "disparities" (dy) of all points are fixed; instead a geometry of optimal/adaptive baselines (by) for all the
points is created.  In other words, for any point in the left mosaic, searching for the match point in the right mosaic
means finding an original frame in which this match pair has a pre-defined disparity (by the distance of the two slit
windows) and hence has an adaptive baseline depending on the depth of the point (Fig. 1).  

3.  Stereo Mosaicing from Real Video

In the PRISM approach for video mosaicing and 3D reconstruction from real video, the computation of "matching" is
efficiently distributed in three steps: camera pose estimation,  image mosaicing and 3D reconstruction. In estimating
camera  poses  (for  image  rectification),  only  sparse  tie  points  widely  distributed  in  the  two images  are  needed.  In
generating stereo mosaics, matches are only performed for parallel-perspective rays between small overlapping regions
of successive frames.  In using stereo mosaics for 3D recovery,  matches are only carried out between the two final
mosaics. This section gives a brief summary of the techniques in the three steps, which have been discussed in detail
can be found in [6,7]. 

3.1. Image rectification
The stereo mosaicing mechanism can be generalized to the case of 3D translation if the 3D curved motion track has a
dominant translational motion for generating a parallel projection in that direction [7]. Under 3D translation, seamless
stereo mosaics can be generated in the same way as in the case of 1D translation. The only difference is that viewpoints
of the mosaics form a 3D curve instead of a 1D straight line. Further, the motion of the camera can be generalized to a 6
DOF motion with some reasonable constraints on the values and rates of changes of motion parameters of a camera
[6,7] (Fig. 3a), which are satisfied by a sensor mounted in an air or ground vehicle, or a sensor looking at the underside
of a  moving  vehicle.  There  are  two steps  necessary  to  generate  a  rectified  image  sequence  that  exhibits  only  3D
translation, from which we can generate seamless mosaics: 

1) Camera orientation  estimation.   Assuming an  internally  pre-calibrated  camera,  the  extrinsic  camera  parameters
(camera orientations) can be determined from a bundle adjustment technique [16]. The detail is out the scope of this
report, but the main point here is that we do not need to carry out dense match between two successive frames.  Instead
only sparse tie points widely distributed in the two images are needed to estimate the camera orientations. 

Fig. 3. Image rectification. (a) Original and (b) rectified image sequence.
2)  Image rectification.  A 2D projective  transformation is applied to each frame in order  to eliminate  the rotational
components(Fig. 3b). In fact we only need to do this kind of transformation on two narrow slices in each frame that will

1 We use “displacement” instead of “disparity” since it is related to the baseline in a two view-perspective stereo system.
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contribute incrementally to each of the stereo mosaics. The 3D motion track formed by the viewpoints of the moving
camera will have a dominant motion direction (Y) that is perpendicular to the optical axis of the "rectified" images. 

3.2. Ray interpolation
How can we generate seamless mosaic from video of a translating camera in a computational effective way? The key to
our approach lies in the parallel-perspective representation and an interframe ray interpolation approach. For each of the
left and right mosaics, we only need to take a front (or rear) slice of a certain width (determined by interframe motion)
from each  frame,  and perform local  registration between the overlapping  slices  of successive  frames (Fig.  4),  then
generate parallel interpolated rays between two known discrete perspective views for the left (or right) mosaic. 

Let us examine this idea more rigorously in the case of 2D translation after image rectification when the translational
components in the Z direction is small [6]. We take the left mosaic as an example (Fig. 4). First we define the central
column of the front (or rear) mosaicing slice in each frame as a fixed line, which has been determined by the camera's
location of each frame and the pre-selection of the front (or rear) slice window (Fig. 4, Fig. 5).  An interpretation plane
(IP) of  the  fixed  line  is  a  plane  passing through the  nodal  point  and  the  fixed  line.  By the  definition  of  parallel-
perspective stereo mosaics, the IPs of fixed lines for the left (or right) mosaic are parallel to each other. Suppose that
(Sx, Sy) is the translational vector of the camera between the previous (1st) frame of viewpoint (Tx,  Ty) and the current
(2nd) frame of view point (Tx+Sx, Ty+Sy) (Fig. 4). We need to interpolate parallel rays between the two fixed lines of the
1st and the 2nd frames. For each point  (xl,  y1)(to the right of the 1st fixed line  y0=dy/2) in frame(Tx, Ty), which will
contribute to the left mosaic, we can find a corresponding point (x2, y2) (to the left of the 2nd fixed line) in frame (Tx+Sx,
Ty+Sy). We assume that (x1, yl) and (x2, y2) are represented in their own frame coordinate systems, and intersect at a 3D
point (X,Y,Z). Then the parallel reprojected viewpoint (Txi, Tyi) of the correspondence pair can be computed as 

(5)

where Tyi is calculated in a synthetic IP that passes through the point (X,Y,Z) and is parallel to the IPs of the fixed lines
of the first and second frames, and Txi is calculated in a way that all the viewpoints between (Tx,Ty) and (Tx+Sx, Ty+Sy) lie
in a straight line. Note that Eq. (6) also holds for the two fixed lines such that when y1 = dy/2 (the first fixed line), we
have (Txi, Tyi)=(Tx, Ty), and when  y2 = dy/2 (the second fixed line), we have (Txi, Tyi)=(Tx+Sx, Ty+Sy). We assume that
normally the interframe motion is large enough to have y1-1 ≥ dy/2≥y2+1. A super dense image sequence could generate
a pair of stereo mosaics with super-resolution, but this will not be discussed in this paper.

Fig. 4. View interpolation by ray re-projection

The reprojected ray of the point (X,Y,Z) from the interpolated viewpoint (Txi, Tyi) is 

(6)
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and the mosaicing coordinates of this point is 

(7)

where  

txi=F Txi / H ,  tyi=F Tyi / H.  (8)

are the "scaled" translational  components of the interpolated view. Note that  the interpolated rays are also parallel-
perspective, with perspective in the x direction and parallel in the y direction. 

3.3.  3D reconstruction from stereo mosaics
In  the  general  case,  the  viewpoints  of  both  left  and  right  mosaics  will  be  on the  same  smooth  3D motion  track.
Therefore  the corresponding point  in the right mosaic  of any point  in the left  mosaic  will  be on an epipolar  curve
determined by the coordinates of the left point and the 3D motion track. We have derived the epipolar geometry of the
stereo mosaics generated from a rectified image sequence exhibiting 3D translation with the y component dominant [7].
Under 2D translation (Tx,Ty), the corresponding point (xr,yr) in the right-view mosaic of any point (xl,yl) in the left-view
mosaic will be constrained to an epipolar curve 

, (9)

,  

where   is the baseline function of yl and y,  and txl(yl) is the “scaled”  x
translational  component  (as in Eq.  (3) or (8)) of the original  frames corresponding to column  yl in the left  mosaic.
Hence is a nonlinear function of position yl as well as displacement , which is quite different from the epipolar
geometry of a two-view perspective  stereo.  The reason is that  image columns of different  yl in parallel-perspective
mosaics are projected from different viewpoints. In the ideal case where the viewpoints of stereo mosaics form a 1D
straight line, the epipolar curves will turn out to be horizontal lines.

The depth maps of stereo mosaics were obtained by using the Terrest system designed for perspective stereo match[17]
without  modification.  The  Terrest  system  was  designed  to  account  the  illumination  differences  and  perspective
distortion  of  stereo  images  with  largely  separated  views  by  using  normalized  correlation  and  multi-resolution  un-
warping. Further work is needed to apply the epipolar curve constraints into the search of correspondence points in the
Terrest to speedup the match process. Currently we perform matches with 2D search regions estimated from the motion
track and the maximum depth variations of a scene.

4. Experimental Results

4.1. Comparison of 3D vs. 2D mosaicing
First, we show why “3D mosaicing” is so important for 3D reconstruction from stereo mosaics by a real example. Fig. 5
shows the local match and ray interpolation of a successive frame pair of a UMass campus scene, where the interframe
motion is (sx, sy) = (27, 48) pixels, and points on the top of a tall building (the Campus Center) have about 4 pixels of
additional motion parallax. As we will see next, these geometric misalignments, especially of linear structures, will be
clearly visible to human eyes. Moreover, perspective distortion causing the geometric seams will introduce errors in 3D
reconstruction  using  the  parallel-perspective  geometry  of  stereo  mosaics.  In  the  example  of  stereo  mosaics  of  the
UMass campus scene [18], the distance between the front and the rear slice windows is dy = 192 pixels, and the average
height of the aerial camera from the ground is H = 300 meters (m).  The relative y displacement of the building roof (to
the ground) in the stereo mosaics is about y = -29 pixels. Using Eq. (2) we can compute that the "absolute" depth of
the roof from the camera is Z = 254.68 m, and the "relative" height of the roof to the ground is Z = 45.31 m. A 4-pixel
misalignment in the stereo mosaics will introduce a depth (height) error of  Z = 6.25 m, though stereo mosaics have
rather  large "disparity" (dy =192).   While the relative error of the "absolute" depth of the roof (Z/Z) is only about
2.45%,  the  relative  error  of  its  "relative"  height   (Z/Z) is  as  high  as  13.8%.  This  clearly  shows that  geometric-
seamless mosaicing is very important for accurate 3D estimation as well as good visual appearance. It is especially true
when sub-pixel accuracy in depth recovery is needed [17].
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Fig. 5. Examples of local match and triangulation for the left mosaic.  Close-up windows of (a)the previous
and (b) the current frame. The green crosses show the initially selected points (which are evenly 
distributed along the ideal stitching line) in the previous frame and its initial matches in the current 
frame by using the global transformation. The blue and red crosses show the correct match pairs by 
feature selection and correlation (red matches red, blue matches blue). The fixed lines, stitching 
lines/curves and the triangulation results are shown as yellow. 

In principle,  we need  to  match  all  the  points  between  the  two fixed  lines  of  the  successive  frames  to  generate  a
complete parallel-perspective mosaic. In an effort to reduce the computational complexity, we have designed a fast 3D
mosaicing algorithm [7] based on the proposed PRISM method. It only requires matches between a set of point pairs in
two successive images around their stitching line, which is defined as a virtual line in the middle of the two fixed lines
(see Fig. 5). The pair of matching curves in the two frames is then mapped into the mosaic as a stitching curve by using
the ray interpolation equation (7). The rest of the points are generated by warping a set of triangulated regions defined
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by the control points on the matching curve (that correspond to the stitching curve) and the fixed line in each of the two
frames. Here we assume that each triangle is small enough to be treated as a planar region. 

Using sparse control points and image warping, the proposed 3D mosaicing algorithm only approximates the parallel-
perspective geometry in stereo mosaics (Fig. 6), but it is good enough when the interframe motion is small. Moreover,
the proposed 3D mosaicing algorithm can be easily extended to use more feature points (thus smaller triangles) in the
overlapping slices so that each triangle really covers a planar patch or a patch that is visually indistinguishable from a
planar patch, or to perform pixel-wise dense matches to achieve true parallel-perspective geometry.

While we are still working on 3D camera orientation estimation using our instrumentation and the bundle adjustments
[15], Fig. 6 shows mosaic results where camera orientations were estimated by registering the planar ground surface of
the scene via dominant motion analysis. However the effect of seamless mosaicing is clearly shown in this example.
Please  compare  the  results  of  3D mosaicing  (parallel-perspective  mosaicing)  vs.  2D mosaicing  (multi-perspective
mosaicing)  by looking along many building boundaries  associating  with depth changes  in  the entire  4160x1536
mosaics at our web site [18].  Since it is hard to see subtle errors in the 2D mosaics of the size of Fig. 6a,  Fig. 6b and
Fig. 6c show close-up windows of the 2D and 3D mosaics for the portion of the scene with the tall Campus Center
building. In Fig. 6b the multi-perspective mosaic via 2D mosaicing has obvious seams along the stitching boundaries
between two frames. It can be observed by looking at the region indicated by circles where some fine structures (parts
of a white blob and two rectangles) are missing due to misalignments. As expected, the parallel-perspective mosaic via
3D mosaicing (Fig. 6c) does not exhibit these problems.

4.2. Tests for UVIS sequences

For the UVIS, the data processing system is responsible for building mosaics from a collection of video frames, which
have been stored in memory by the image acquisition system.  In order to study how to apply the PRISM approach to
UVIS,  we  tested  the  PRISM algorithm  on many  single-camera  sequences  of  digital  images  using  the  laboratory
prototype.  Cameras  moved  across  the  bottom  of  the  “car”  when  capturing  the  image  sequences.  In  the  current
implementation, we used a real-time global image matching technique (rather than bundle adjustment) for determining
the  relative  positions  of  each  frames.  In  this  technique,  four  parameters  are  used  to  characterize  the  position  and
orientation of the camera at each frame – two translation components in the row and scan directions, one rotation angle
around the vertical axis, and a scaling factor accounting for the depth changes. A pyramid-based matching algorithm
was used to determine the relative motion parameters between a pair of successive frames.  

We studied when the mosaicing algorithm would break by simulating different distances between consecutive “camera
locations” when capture the image sequences. We also studied how good the mosaics would be with and without using
3D mosaicing. Figures 7-12 show the mosaicing results by using every frame, every other frame, every six frame, and
every twelve frame of the same image sequence.  This simulates the cases with different  camera distances from 0.5
inches to 6 inches, corresponding to image displacements of from 8 to 100 pixels. We also compare the results with 2D
mosaicing, 3D mosaicing using automatic local  matching, and 3D mosaicing using manual local matching. Here are
several important conclusions. 

1. In the current setup where the average distance between cameras and the bottom of the car is about 32 inches,
the  break-down point  of  the  mosaicing  is when the  distances  between  consecutive  “camera  locations”  are
larger than 6 inches (see Figures 7-11). Camera distance of 3-4 inches achieve a good balance between cost of
computation and qualitiy of mosaics. Note that these numbers are connected with the setup of the system, but
this condition approximately corresponds to a rather large image motion of 100 pixels between two successive
frames.

2. The reason for the breakdown with large camera distance is that the system cannot effectively find the right
camera  location  by  the  global  image  matching  algorithm.  Therefore  the  local  matching  algorithm  in  3D
mosaicing  approach  (PRISM)  cannot  make  up  the  failure  in  the  global  matching  anyway  (see  Fig.  11).
However, if we can find the camera location by other means, for example, by calibrating the 1D camera array,
or by using rigid motion constraints to estimate the 3D motion of the car, we can still build reasonably good
mosaic  with  rather  large  camera  distance.  For example,  when the  camera  distance  is  about  6  inches,  3D
mosaicing results with manual local matches shows reasonably good stitching in mosaicing (Figure 12).

3. It turns out that when the image motion between two frames is small,  we can apply a simple cut-and-paste
algorithm (i.e., 2D mosaicing technique) to generate mosaics from the image sequence.  In this set of specific
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experiments,  it  does  not  make  obvious differences  in  the  mosaicing  results  by using  2D or 3D mosaicing
techniques  when the image motion is small (Figure 8, Figure 9).

Figure 7.  The 3D mosaicing result of image sequence with 0.5-inch camera distances.  Since the image motion is only 
8-pixel on average, the mosaic is almost perfect.

Figure 8.  The 2D mosaicing result of image sequence with 1-inch camera distances (16-pixel image motion on 
average).  The 2D mosaicing technique uses a rectangular cut-and-paste approach, so geometrical seams can be seen in 
some parts of the mosaic.

Figure 9.  The 3D mosaicing result of image sequence with 1-inch camera distances (16-pixel image motion on 
average). Local match and view interpolation technique is applied between two successive slices therefore the mosaic is
slightly better than the 2D mosaic (Fig. 8). However the cost is additional computation for local matching and view 
interpolation.
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Figure 10.  The 3D mosaicing result of image sequence with 3-inch camera distances (50-pixel image motion on 
average). The mosaic is not perfect but is good enough for understanding the under-vehicle. 

Figure 11.  The 3D mosaicing results for image sequence with 6-inch camera distances (100-pixel image motion on 
average). The local matches were established by automatic method. Since the global matching algorithm fails to find 
the correct camera parameter in this case, the local matching step does not compensate the errors (e.g. the missing of 
some parts).

Figure 12.  The 3D mosaicing result of image sequence with 6-inch camera distances (100-pixel image motion on 
average). The “camera locations” of the moving camera was estimated by a simple calibration procedure with metric 
measurements of the camera movements, and the local matches were established manually. The result shows that if we 
can develop an effective local matching algorithm for view interpolation, we can still make good image mosaic with 
rather sparse camera array (e.g. 6 inch apart).
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5. Mosaics for UVIS with a Virtual bed-of-cameras

The algorithm design and implementation effort focused on generating mosaics from a  virtual bed-of-cameras. Three
technical  issues were  studied  and algorithms were  implemented  and tested:  (1)  calibration  of  the  1D camera  array
(including lens distortion removal);  (2)  estimation  of the motion of the vehicle  while  creating  the mosaics  and (3)
seamless mosaicing from different viewpoints.  

The first step is to remove the lens distortion from the images.  Before the cameras are installed in the system, each
camera  goes through a  calibration  procedure  in  which  their  lens  distortion  characteristics  are  measured.   The lens
distortion characteristics are then used by the data processing system to remove the geometric distortion introduced by
the lenses.
 
The mosaic generation program stitches the individual images from the camera array together to form a row mosaic.
Three row mosaics are made – one from the left side of each frame, one from the center of each frame, and one from
the right side of each frame.  These mosaics are equivalent to looking at the undercarriage from the left, middle and
right. 

The mosaic generation continues the process in the along scan direction.  The row mosaics, which are equivalent to a
single view of the undercarriage, are then stitched together to form a complete view of the undercarriage.  In a similar
process to forming the row mosaics, three full view mosaics are created – one from the leading edge of the center row
mosaic, one from the middle of the center row mosaic, and one from the trailing edge of the center row mosaic.  The
result is five images, which are equivalent to viewing the undercarriage from the left, right, front, back and middle.

A key feature of UVIS is its ability to capture a full view of the undercarriage from multiple viewpoints.  Thus, if an
object were occluded in one view, it would likely be visible in another view. This is a remarkable result, which will
significantly enhance the capabilities of the proposed system.

To study some of these  issues  we captured  several  single-camera  sequences  of  digital  images using the  laboratory
prototype. In the current implementation,  we used the same technique for determining the relative positions of each
frames – both for the raw mosaics and in the along scan direction. We used four parameters to characterize the position
and orientation of the camera at each frame – two translation components in the row and scan directions, one rotation
angle around the vertical axis, and a scaling factor accounting for the depth changes. Again, a pyramid-based matching
algorithm was used to determine the relative motion parameters between a pair of successive frames.   Because the
image motion between two frames was small, we applied a simple adaptive cut-and-paste algorithm to generate each
mosaic from the set of images, as indicated in Conclusion 3. The results were very encouraging.   Although some minor
geometric distortion was observed, we clearly demonstrated the ability of the UMass mosaic algorithm to fast create
smooth, topologically correct mosaics under each of the test conditions.  Figure 13 shows a test mosaic made from 4
cameras spaced 4 inches apart with a 45 degree field-of-view. 

We also studied the seamless mosaicing issue in case of larger motion between frames.  Two aspects to this issue were
investigated.   First,  we  studied  adaptive  window  matching  techniques,  which  have  been  shown  to  be  robust  for
matching scenes with weak texture. The importance of the matching algorithm has been shown in Figure 12 for view
interpolation. Second, we tested the UMass fast PRISM algorithm using surface triangulation as we did in Section 4.2.
We tested both algorithms for some examples of under-vehicle images as well as other type of images, and obtained
promising results (Figures 6-12).  Further investigation and implementation is needed in the phase II.
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Figure 13. A test mosaic made from 4 cameras spaced 4 inches apart with a 45 degree field-of-view
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