
Appendix B
Adaptive Template Image Matching

One of the primary goals of the UVIS system is to merge together (or mosaic) many images
acquired from different locations under a vehicle. The nature of the images to be merged is
critically  dependent  on the details  of camera  placement  and spacing,  which also impacts
system design and cost. Image matching, the process of identifying like components and their
relative  displacements  in  image pairs,  provides  the  foundation  for  all  higher  level  image
processing functions  that  create  image mosaics.  The matching task becomes  increasingly
difficult as the spacing of cameras (relative to their distance from the object to be viewed)
increases.  As cameras are placed farther  apart,  the resulting images increasingly differ in
appearance due to viewing distortion and even occlusion. The image differences mean that
some image components can not be accurately matched with corresponding components in
the other image, which complicates the matching process. 

However, system design and cost considerations dictate that cameras be placed far apart, or,
equivalently, that standoff distances be small, which increases demands on the matching task.
Much of the mosaicing work done in the Computer Vision community is based on long range
viewing scenarios (such as aerial imagery) where successive images are taken from similar
viewpoints, unlike the UVIS system. Therefore, many of the standard matching techniques
are not  adequate for UVIS without  modification.  As a  result  of  these considerations,  we
identified matching as one of the key components of UVIS early in the development process
and, consequently, we have been developing  enhanced matching techniques that address the
challenges of the UVIS requirements.

To appreciate the matching challenges presented by UVIS, consider two successive views of
a vehicle taken from locations that are relatively far apart (with respect to offset from the
vehicle). Objects will be shifted from one image to the next by an amount that is dependent
on their  depths from the cameras.  This  can often result  in  an arbitrarily  large change in
background for a given object  (i.e.  - in one image a given object  may have a very dark
background and in the next image it could have a bright background since the background
components may shift quite differently from the object due to different depths within the
scene). The resulting change in image patterns is highly problematic for standard matching
techniques. While details vary significantly, most image matching techniques are based on
correlation , e.g.  moving a small sample from one image over the other image to find the
optimum  local  match.  The  problem  is  that  the  image  sample  used  is  fixed  (usually  a
rectangular  window) and when it  is compared to the other image, there may be a strong
match  for  part  of  the  pattern  but  another  part  may  not  match  at  all  due  to  the  shift  in
background described above. The result can be a significantly reduced match signal for the
correct shift values which degrades the matching output data (see Figure B.1).

We are addressing this problem by developing an alternative matching strategy. Instead of
using a fixed window to compare one image region to another, we find the largest pattern that
produces  a good match. The remaining unmatched area within the image is then matched
separately and the process is repeated until no more matches can be found. This naturally
decomposes the template into subregions that yield optimal matches and can follow arbitrary
boundaries so image components can be separated and treated independently. Another benefit
of this approach is that disparity (shift) results can change abruptly so that sharp edges in both
2D and 3D can be recovered without smoothing degradation.



While developing this approach, we found that using any fixed window to define an initial
match  region  to  be  decomposed  would  introduce  arbitrary  artifacts,  depending  on  such
factors as how window boundaries aligned with image objects. We were able to remove this
limitation by treating the entire image as a whole, which is equivalent to using the entire
image as  the match  template  window. Our algorithm for  matching  two images  currently
consists of holding one image fixed and globally shifting the other image by integer amounts
in X and Y over the entire range of possible values defined by imaging geometry. The shifted
image is  compared  with the  reference  (fixed)  image  and all  matched  pixel  locations  are
found. Connected pixels are grouped into regions and the size of each region is determined.
The disparity values (shifts in X and Y at every pixel) are built up by placing at every pixel
location the value of a given shift in X and Y if the size of the region the pixel belongs to is
larger than the previous largest region associated with that pixel.

This  process  yields  the  largest  image  components  that  match  with  their  corresponding
components in the other image and finds the natural boundaries between these components.
This eliminates the problem of shifted backgrounds since each image component is naturally
decomposed along boundaries that yield the optimum match in terms of region size.  The
effective match template naturally decomposes along boundaries that optimize matching, in
contrast  to  traditional  matching  approaches  that  are  restricted  to  using  fixed  window
templates with the attendant matching data degradation. 

The basis for matching in our adaptive template strategy is maximizing matched region size,
while conventional fixed template approaches are based on maximizing the total match over
the  range  of  the  fixed  template  without  regard  for  contents  in  the  template.  With  this
approach,  discontinuous  disparity  of  arbitrary  size  can  readily  be  recovered  without
smoothing edges (see Figure B.2).

Figure  B.1 Changes  within Fixed  Template  Reduce  Match
Signal.   Since  match  quality  in  fixed  template  matching  is
based on similarity over the entire template region, the match
signal is reduced if the template region changes. 



It appears that our adaptive template approach correctly  recovers disparity and, therefore,
depth information  as well,  when matching patterns  are  quite  similar.  Further,  it  can deal
gracefully  with  distorted  image  regions  by  effectively  morphing  one  image  region  into
another. While the associated depth information may not be meaningful in highly distorted
regions, image appearances can be effectively matched which still allows for the use of some
mosaicing strategies.  Another feature of this  matching approach is that match region size
information is produced and can be used to aid in different processing schemes, as will be
demonstrated below.

We have evaluated adaptive template image matching using different image sets and tests.
One test verifies that recovered disparity is consistent with manually determined shifts across
image pairs. Another test uses the recovered disparity to “morph” one image into the other
(as shown in Figure B.3). If the resulting image is similar in appearance to the original, that is
one indication that the recovered disparity is correct, in some sense, and can provide useful
information.  An  extension  of  this  evaluation  is  merging  two  images  matched  using  the
adaptive template process. As one example, we take two real images from a UVIS image set
that  are  beyond the  matching  capability  of  the current  UVIS system due to  the  distance
between the viewpoints relative to the camera offset distance. The recovered disparity is used
to “morph” the second image into the first (see Figure B.4).

Figure  B.2 Adaptive Template Matching Left and right images are shown on
top with one of the adaptive templates highlighted. The recovered disparity is
shown in the  middle image  – note  the lack  of smoothing across  edges.  The
region  to  the  right  results  from  an  occlusion  area,  which  has,  necessarily,
undefined disparity. This is not necessarily a problem when disparity is used to
register one image with another to achieve similar appearance, as  was done for
the bottom image. 



A seam is  then  adaptively  chosen,  based  on  maximizing  region  size  to  find  minimally
disruptive locations. The left image and morphed image are cut along the determined seam
and merged at the seam to form a new composite image. Pixels to the left of the seam are
taken from the left image and pixels from the right of the seam are taken from the registered
image. This is an example of morphing that does not use 3D information,  it  only merges
images along a minimally disruptive seam so geometric integrity is not necessarily preserved.
It should be noted that all of the two images are used for merging even though not all areas of
the  images  overlap,  which  could  not  be  done  using  a  3D based  approach  since  no  3D
information can be determined for image regions that do not overlap.

However,  the  most  relevant  evaluation  requires  integrating  the  new  adaptive  matching
mechanism into the full UVIS system and determining how (if it all) the results are improved.
This involves large and time consuming changes to much of the software in the current UVIS
system,  so  this  is  ongoing  work  at  this  time.  If  the  adaptive  matching  process  can  be
successfully  integrated  into  the  UVIS  system,  many  advantages  may  be  realized.  The
improved matching process may be able to tolerate larger camera and view distances with
respect  to  camera  standoff  distance.  If  so,  then  improved  image  quality  and/or  reduced
system footprint could be achieved.

Improved  image  quality  could  take  the  form of  fewer  artifacts  or  visible  seams,  higher
fidelity geometric reconstruction,  better treatment of edges, and tolerance of more vehicle
motion.  Alternatively,  larger  distances  between  views  could  result  in  fewer  cameras,
therefore, reduced system footprint size and cost.

Figure B.3. Adaptive Template Matching applied to UVIS Imagery.
Left and Right images are taken from a real UVIS image set. The images used
here are beyond the current matching capabilities of the UVIS system and contain
non-overlapping areas. The image on the far right is generated by morphing the
right  image  into  the  left  image  using  disparity  recovered  from  the  adaptive
template matching process. Note the curved vertical strip in the registered image
which is generated by warping the straighter strip in the right image.



Figure B.4.   Simple Mosaicing using Adaptive Template Matching.  Left image is the
result of merging the images in Figure B.3 using adaptive template matching. Even non-
overlapping areas are treated. Note the absence of any detectable seam. The image on the
right  shows  the  seam used  for  merging  which  is  found  by  adaptively  seeking  large
regions extracted by the matching process.  
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