
SEGMENT-BASED MATCHING FOR VISUAL NAVIGATION

1

Zhongfei Zhang

Richard Weiss

Edward M. Riseman

-

Computer and Information Science Department

University of Massachusetts

Amherst, MA 01003

Phone : (413)545-0528

NetAd : zzhang@cs.umass.EDU

May 15, 1994

Abstract

The imaging system involves an image produced from a reection by a spherical mirror to

produce a 360

�

projection of the environment. This paper extends previous work on an image-

based navigation system in which the 360

�

view is compressed into a circular waveform. A

navigation task is speci�ed as a sequence of homing tasks on target locations. This is accom-

plished by matching landmarks from the current view with the next target view. This paper

provides a new method for matching using qualitative geometric features of each of the wave-

forms. In addition, a geometric analysis allows us to do 3D reasoning about the environment,

which is su�cient for computing the rotation and translation between the current location and

the target location. It may eventually allow acquisition of a 3D model of the environment. We

show that the system performs reliably in an indoor environment.
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1. INTRODUCTION

The problem of mobile robot navigation has many approaches including methods of motion

analysis[1], associative homing[2], and model-based navigation[3]. This paper extends the work of

Hong, Tan, et al [4] on navigation through image-based local homing. Homing is a navigation task

in which the goal is one of a �xed set of target locations known to the robot. Unlike most homing

systems, the navigation problem is treated here as a sequence of homing tasks. In our previous

work, the environment was modeled as a set of snapshots of the world taken at target locations. A

spherical mirror was used to project a full 360

�

view of the world onto a single image, which was then

condensed into a compact, one-dimensional location signature. The system used local correlation to

match between location signatures. That was accomplished under the assumption that there was

no rotation and the step distance (i.e., the distance between two adjacent target steps) was small.

The system worked well when this condition was satis�ed. [4] showed an experiment in which the

robot successfully moved 17 steps along a hallway.

The current work uses the same framework except that the location signature is represented

symbolically as a sequence of segments, where each segment is one of three types: increasing,

decreasing, and constant. The matching is done �rst qualitatively using symbolic sequences of the

same shape, (i.e., a sequence of identical segment types) then hypothesized matches are veri�ed

quantitatively. In addition, a richer model of the environment is constructed including metric

information, so that the rotation and translation between the current location and the target

location can be computed, as well as distance to visible 3D landmarks. Since general motion (i.e., a

combined motion with rotation and translation) can be modeled, there is no restriction on rotation

and a longer step distance can be used for faster convergence. Moreover, the error after the robot

has homed to each target is not accumulated in the navigation process provided the �nal pose in

each homing stage is a valid initial pose of the next homing stage.

Other work on homing includes a system built by Zipser[2] in which every current view is

compared with every stored view; then an averaged motion vector, weighted by the degree-of-

match to each of its corresponding views, is computed to guide the homing process. Nelson[5]

developed a similar system for homing but di�ered in that it computed the motion associated with

the view that best matched its current view. Both methods are classi�ed as associative homing,

because the actions are associated or derived in some manner from the stored set of patterns.

Biological systems utilize associative processing and it is a natural paradigm for parallel hardware.

Fennema et al [3] use three-dimensional models to generate projections of landmarks expected to
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be seen from the estimated current location; the robot then servoes directly on the image features,

tracking them via correlation. This kind of 3D model-based navigation has the advantage that it

can use precise information about the environment to guide the robot. Beveridge[6] and Kumar[7]

in related work use 2D matches of projected landmarks to update the 3D location of the robot.

Mechanisms have been developed to detect incorrect matches (i.e., outliers) so that the system can

remain robust in real scenes.

Line tracking techniques have been applied to robot navigation. Ayache and Faugeras[10] de-

veloped a scheme by using an extended Kalman �lter to build visual maps involved in a sequence of

images. While this is an important research direction, there are signi�cant di�culties in accurately

recovering motion parameters and structure from motion[11, 12]. Dickmanns and Graefe[8, 9] also

applieded Kalman �lters to developing a technique for using image features in a real-time feedback

control loop to control the motion of a vehicle. They applied this technique to successfully drive a

vehicle at high speeds on the autobahn. The di�erence between their system and the one used by

Fennema et al[3] is that the former accomplishes servoing by tracking image features based on an

implicit model of the road whereas in the latter system, the tracked features are constructed from

landmarks which have been selected from an explict 3D model. The former system is much more

exible but the latter system requires much less 3D speci�c information.

Recently, several omnidirectional (i.e., 360

�

view) image-based navigation techniques have been

developed in order to reduce the di�culties in 2D image-based correspondence. An omnidirectional

image has the potential advantage in that landmarks do not disappear because of the orientation

of the camera or the vehicle. Zheng and Tsuji[13] presented an approach to landmark-based nav-

igation in which they use a rotating slit scanner to produce a 360

�

panoramic view. Yagi and

Kawato[14] developed a similar imaging system to ours except that they used a conical mirror

instead of a spherical one, and are using the system to attempt reconstruction of a full 3D model of

environment. Moreover, they did not compress the image so that their system could only be used

in an environment rich in vertical landmarks.

In this paper, we continue our previous work on navigation[4] by presenting a more robust

matching algorithm based on the waveform of signatures and incorporating 3D geometrical reason-

ing into the system.
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2. SYSTEM OVERVIEW

The physical set-up of the navigation system presented in this paper is shown in Fig. 2(a) and

has been described in [4], with the exception that now the camera, together with the spherical

mirror, is put on top of the rotation platform of the robot instead of originally being put aside

the platform. The camera sits directly below the spherical mirror so that a 360

�

image of the

surrounding environment is acquired. Given planar motion, (i.e., translation in a plane and rotation

about an axis normal to the plane), then there is a circle in the image which is invariant under this

group of motion transformations. This circle is the "horizon circle" and is sampled from each image

to form a 1D signal called the location signature. Fig.2(b) shows an image taken under this system.

The white ring at the center of the image indicates the rotational center of the robot, which is also

the origin of the 3D coordinate system (see the next section). The coordinate axes in the image

plane, which actually are the X and Y axes in our 3D coordinate system, are indicated in the image.

Together with the axes, a circle band composed of 360 ticks is also indicated. This circle band is

the horizon circle. Each tick is a sample of the circle, which is a function of the azimuth orientation.

The low-level processing consists of normalization, median �ltering, and �tting a piecewise-linear

function to the data, as we shall describe later in the paper. The result is represented symbolically

as sequences of linear segments and some of these are selected as characteristic features for matching

between images.

Before each incremental step of movement, the robot acquires an image of the current view,

which is compressed and represented symbolically, and is compared with the target view, which

has been processed a priori in a similar manner. Matching is done �rst on the basis of qualitative

measures of the characteristic features and then quantitative measures are used to verify the match.

Finally, 3D geometrical analysis is used to determine the next homingmovement. The 3D geometric

knowledge itself is computed from the matches of the characteristic features together with the

distance traveled as measured by an odometer. Thus, there is no requirement of a 3D model and

all feature matching is image-based.

3. GEOMETRICAL ANALYSIS

The geometry of the imaging process, as depicted in Fig. 3, is not the typical projection of a

sphere onto a plane. It is a reection of the environment o� a spherical mirror. Therefore, the

typical spherical geometry cannot be used. For the analysis we will use a spherical coordinate

system centered at the origin of the image plane.
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Let R represent the radius of the spherical mirror, d the distance between the apogee of the

sphere and the focus of the camera, and let f be the focal length of the camera. In this con�guration,

the center of the sphere and the focus of the camera will both reside on the Z axis of the coordinate

system. An arbitrary point P in 3D space can be uniquely determined by its camera-centered

coordinates (�; �; �), as illustrated in Fig. 3. A projected sideview of the con�guration (depicted

in Fig. 4) will enable us to derive the mapping function from an arbitrary 3D point P (�; �; �) to

its corresponding image point P

i

(r

i

; �

i

; 0).

Let  be the incident angle of P (relative to the perpendicular on sphere at incident point Q)

and � be the orientation angle between the incident line of P and the horizontal line of the incident

point Q of P , as indicated in Fig. 4. If we let � denote the angle between the reecting line of

Q and Z axis of the coordinate system, we can derive the following relationship between the 3D

point P (�; �; �) and its corresponding image point P

i

(r

i

; �

i

; 0): (see the Appendix for derivations

of these equations)

� = 2 � � �

�

2

(1)

r

i

= f tan � = �f cot(� � 2) (2)

�

i

= �+ � (3)

where  and � are the two parameters of the mapping function and are determined by the

following two equations:

tan � =

� sin� � (R+ d+ f �R sin( � �))

� cos� �R cos( � �)

(4)

d

R

+ 1 = �

sin

cos(� � 2)

(5)

From Fig. 5(a), it can be seen that the horizontal light rays which are incident to the mirror

and are reected through the focal point form a single plane, which is horizontal in 3D world and

at a �xed height. All other horizontal rays will not be seen (see Fig.5(b)). Hence, the rest of

an image is formed from reection of non-horizontal rays. Moreover, every point in this speci�c

horizon plane will project to the image plane as a point on a circle. We call this circle the horizon
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circle, and therefore, the horizon plane can be de�ned as the set of points whose image projection

is the horizon circle. The equation of the horizon plane is:

� sin� = d+ R+ f � R sin  (6)

Since the horizon plane has � = 0, the general mapping functions in Eq. 1 to Eq. 5 will be

simpli�ed as

r

i

= �f cot 2 (7)

�

i

= �+ � (8)

where  is a �xed angle and is determined by Eq. 5 directly.

Therefore, under this con�guration, the mapping from 3D space to the image plane can be

decomposed into three parts:

� the 360

�

view of the horizon plane, i.e., the horizon circle;

� the scene above the horizon plane (open half-space), consisting of those image points outside

the horizon circle;

� the scene below the horizon plane (open half-space), consisting of the image points inside the

horizon circle.

Theoretically, this partition of the image plane is preserved as the (ideal) robot moves on a

perfectly planar surface, i.e., the scenes projected to the points outside the horizon circle can

potentially move to any place outside the horizon circle, but never go onto or inside the circle;

the scene projected to the points inside the horizon circle can potentially move to any place inside

the circle, but never get onto or outside the circle; the scene projected onto the horizon circle can

potentially move to any place on that circle, but never depart from that circle. Therefore, taking

the horizon circle in the image plane as the raw data of the navigation system will not only take

advantage of this geometric invariance, but also help compress the conventional 2D image data to

a 1D signal to reduce the huge amount of computation in the feature matching problem, and also

save great amount of storage.
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4. SYMBOLIC ENCODING OF LOCATION SIGNATURE

As stated in the previous sections, the horizon circle is extracted from an image as the raw

data of our system. In practice, the horizon circle is actually derived from a thin annular band

with a width of 5 pixels and sampled every one degree, as is shown in Fig.2(b). This will serve

to allow some immunity to noise and encross in calibration of the location of the horizon circle[4].

The summation of the grey-levels of the 5 pixels along each radial slice results in a waveform that

serves as a one-dimensional location signature as depicted in Figs. 6 { 8.

The general approach involved in the low level processing is to segment the location signature to

produce intervals that are at, monotonically increasing, or monotonically decreasing. Transforma-

tion of the original location signature via low-level processing of the waveform has been developed

to obtain reliable partitions in the face of noise and variability due to changes in illumination,

digitization, sensor noise, etc. The processes involved are: normalization,median �ltering, and

piecewise �tting.

If a location signature is denoted as V = fv

1

; v

2

; :::; v

360

g, then normalization is achieved by

dividing the measurements by the maximum value, i.e.,

v

i

;

=

v

i

maxfv

j

jv

j

2 V g

i = 1; :::; 360 (9)

Median �ltering with a window length of 5 removes many of the impulse errors. That is,

v

i

;;

= medianfv

;

i�2

; v

;

i�1

; v

;

i

; v

;

i+1

; v

;

i+2

g i = 1; :::; 360 (10)

Piecewise �tting is accomplished with the Land-McCann retinex algorithm[15, 16, 17] as follows:

v

i

;;;

=

(

v

;;

i

if v

;;

i

� v

;;

i�1

> �

v

;;

v

;;

i�1

otherwise

i = 1; :::; 360 (11)

where �

v

;;

is a threshold determined dynamically as the standard deviation of v

;;

.

Figs. 6 { 8 show the raw data of sample current and target location signatures for translation

and rotation with the range expected during movement of our robot. Fig. 9 depicts transformation

of a sample raw signature from 0

�

to 100

�

into a symbolic encoding of the waveform.

As a result of this processing, a signature is represented as a sequence of symbolically labeled

segments in a way that simpli�es the matching problem by providing a �rst stage of qualitatve

matches for landmarks.
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5. MATCHING BETWEEN VIEWS

The matching process uses qualitative measures to hypothesize correct matches between the

current location and target location signatures. The �rst step of this process is the decomposition

of each location signature into segments with one of three types of topological properties: monoton-

ically increasing, monotonically decreasing, or roughly constant. Thus, we attach a label to each

segment which is either +, �, or 0. By de�nition no two adjacent segments can have the same

type. Fig. 10 is a portion of two segmented signatures for which there are 5 segments with the

same sequence.

2

The "shape" of a sequence of segments will be de�ned as the distinct symbolic encoding of

the segments into a label sequence. It is obvious that with the small number of segment types,

there is still a manageable number of shapes for sequences of n segments, where n is 5 or less.

With n = 5, since an adjacent segment may only be one of two types (by the de�nition of the

encoding), there are a total of 3 � 2 � 2� 2� 2 = 48 qualitative shapes. Although a signature is

symbolically expressed in terms of these qualitative properties, it is still necessary to describe it in

a precise quantitative form. Three measurements describe a segment quantitatively: the "jump",

the "span", and the "azimuth". Since the waveform was sampled at every degree, each point of

a segment is indexed by its angle. Formally, given a segment fv

i

; v

i+1

; :::; v

i+k

g, the jump of the

segment is de�ned as kv

i+k

� v

i

k; the span of the segment is de�ned as k + 1; and the azimuth of

the segment is de�ned as the azimuth angle of the center of the segment, i.e., (i+

k

2

)mod 360. The

qualitative topological "label" sequence together with these three quantitative measures form the

description of a segment.

5.1 Characteristic Features

In terms of the signature, a characteristic feature will be de�ned as the segments that are most

distinctive and reliable for matching, i.e., those parts of the waveform where there is a large slope.

Thus, a characteristic feature is a segment with a large ratio of jump to span. In order to solve

the correspondence problem, we �rst extract the strongest characteristic features for matching

signatures by selecting the L segments in the target view which have the greatest slopes. The

context around a characteristic feature will be expanded by k segments to both sides to form a

landmark template of length 2k+ 1 segments. Finally, each landmark template is searched against

2

In the following context, we sometimes use the term "signature" synonymously with the term "segmented

signature".
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the current view to see if there is a match by applying the following two-stage process: hypothesis

generation and statistical veri�cation

5.2 Hypothesis Generation

Generation of candidate matches consists of two steps:

� Qualitative Matching: The shape (i.e., sequence of labels) of each landmark template is

used to match between current and target views to decrease the size of the search space.

� Quantitative Matching: The jump to span ratios of the segments of the landmark template

are used to produce a quantitative measure of the match against each candidate subsequence

obtained in qualitative matching.

The quantitative evaluation function between the landmark template and a candidate subse-

quence of the same shape is de�ned as follows:

f(t; c) =

k

X

i=�k

�

i

g(c

i

; t

i

) (12)

Where t = ft

i

ji = �k; :::kg is the template, c = fc

i

ji = �k; :::; kg is the candidate, t

i

and c

i

are the relevant segments, �

i

is a weight coe�cient, which may weight the middle terms more than

the ends, and g(c; t) is a similarity function of two segments c and t, based on their jumps and

spans. There are several ways to determine the similarity between two segments which have the

same label. A simple and e�cient way to measure the similarity between segments of the same

label type is to directly calculate the relative similarity between the two in terms of the jumps and

spans. For example, the relative similarity in jump can be used:

g

jump

(c; t) = 1�

kjump(c)� jump(t)k

jump(t)

(13)

For simplicity, the function is truncated at zero, so that negative values do not occur. A similar

de�nition can be applied to span to get g

span

. Hence, a linear combination of g

jump

and g

span

is

used to represent the similarity between two corresponding segments, i.e.,

g(c; t) = �

j

g

jump

(c; t) + �

s

g

span

(c; t) (14)
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where the weight for g

jump

(i.e., �

j

) is greater than the weight for g

span

(i.e., �

s

) because the

jump measurement preserves more invariance under low-level processing than the span measure-

ment.

5.3 Statistical Veri�cation

Since the hypothesis generation is strictly local, it is possible that if there are several similar

characteristic features, mismatches of landmarks will occur. An e�ective way to remove mismatches

is to do a global statistical analysis of the change in azimuth for each landmark. In other words, if

we assume that the visible surfaces in the environment are not close to the robot and the translation

of the robot is relatively small, then none of the landmarks can move much more than the average

motion of the others. (see the next section). Let us de�ne the di�erence between the azimuth of

a landmark and that of its potential match as the displacement of the landmark. The mean of

the displacements can be used to retain only those that are within some given deviation around

the mean. After this of removing potential outliers, the resultant pairs are called matched pairs.

Fig. 11 shows two views symbolicaly represented matched with each other.

6. 3D MOTION ANALYSIS

By using the image motion of the projected environmental surface and the partial information

about the robot navigation, the distance from the robot to the matched landmarks can be derived.

Thus, it is possible to compute the current pose (position and orientation) of the robot with respect

to the target pose. In other words, we can compute the translation and rotation that will take the

robot to the target location. This contrasts with our previous approach in [4], where the rotation

was assumed to be very small and only the direction of translation was determined

3

The problem

of computing the motion parameters is simpli�ed in the case of a 360

�

view. While for image

sequences with a narrow �eld of view, the e�ects of translation and rotation are confounded in the

image, this is not the case for a 360

�

view.

6.1 Motion Model

Let us consider Fig. 12. If there is only a pure translation involved between the current view and

a target view, the landmarks appearing directly in front or 180

�

behind the translation direction

3

Note that this original assumption was not completely unreasonable because the spherical mirror was mounted in-

dependently from the rotational platform, and therefore rotational changes only enter via slippage in tires, vibrational

side e�ects, ect. However, over time rotation did enter and require recalibration.
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will have no displacement in the two signatures. All others will be displaced some distance around

the horizon circle moving away from the direction of the translation as a function of the magnitude

and direction of the robot movement and the distance of the surface. This case is shown in Fig. 6.

On the other hand, if there is only a pure rotation involved, every landmark will have a constant

angular displacement between the two signatures. This fact is shown in Fig. 7. The general case

of motion with a combined translation and rotation can be interpreted as a rotation followed by

a translation. Therefore, in order to let the robot steer itself to home precisely, the motion from

an initial pose to a target pose needs to be decomposed into rotation and translation parameters.

Since we assume that the robot is moving on a surface that is approximately planar, there is only

one rotation parameter (perpendicular to the plane) and two translation parameters. The �rst step

of the analysis is to estimate the rotation parameter.

6.2 Estimation of rotation

In a general motion model, it has been proved that the rotation and the translation are linearly

separable[18], i.e., the rotation and translation can be solved sequentially. This property is also

valid in our system, where an image is taken from the reection o� a spherical mirror. Let us

consider Fig. 12 again. Suppose we have two views taken from poses that di�ers by both rotation

and translation, as depicted in Fig. 12(c). Imagine that the rotation parameter !

R

, which is the

di�erence of the heading orientations of the two poses, is already known. Then the robot can �rst

rotate that angle and results in a new pose which has the same heading orientaion as pose 2 and

only has a pure translation remained. Thus if rotation is known then the combined motion problem

boils down to a pure translation problem as indicated in �g. 12(a). Therefore, a combined motion

problem can be separated into two independent problem: rotation and translation, and can be

attacked by solving rotation �rst.

Now, let us see Fig. 12(a) again, where there is only a pure translation involved. As indicated in

this Figure, a landmark appears to the left side of the translation direction will undergo a counter-

clockwise circular motion ow; similarly, a landmark appears to the right side of the translation

direction will undergo a clockwise circular motion ow. Moreover, since we have pointed out

that the landmarks appearing directly in front or 180

�

behind the translation direction have no

displacement in the two signatures, they will form two foci in the motion ow distribution on the

horizon circle, one being focus of expansion and the other being focus of contraction. Even if there

is no landmark appearing directly in front or 180

�

behind the translation direction, these two foci

will still exist in the motion ow on the horizon circle. This e�ect is illustrated in Fig. 1. Therefore,
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translation

direction

landmark

motion   flow

direction

FOE

FOC

Figure 1: The translation direction can be determined by the motion ow

of the landmarks. Here FOE and FOC stand for Focus Of Ex-

pansion and Focus Of Contraction

if we assume the environment is symmetrically distributed on both sides of the translation direction,

The statistical mean of displacements of landmarks is zero, because the displacements located on

the counter-clockwise part and on the clockwise part will cancel with each other. Hence, since

the combined motion can be regarded as a superposition of a pure rotation followed by a pure

translation as discussed above, the pure rotation angle is exactly the mean of the displacements

of the landmarks. In practice, the environment may not be symmetrically distributed. But the

same e�ect can be achieved by weighting the displacement of each landmark by the distance to its

nearest neighbor. Once the rotation angle is computed, the current signature is transformed by the

inverse of the rotation, so that the mean displacement is zero.

6.3 Estimation of Translation

Since the rotation is estimated �rst, we can assume that the motion is a pure, non-zero trans-

lation. In this case, as we pointed above, there is a focus of expansion (FOE) and a focus of

contraction (FOC) on the horizon circle. From Fig. 1, it can be seen that the translation direction

is the azimuth angle of the focus of expansion. Note that both the FOE and FOC are simulta-

neously visible and can be used. Hence, the translation direction can be estimated by searching

around the motion ow of the horizon circle to get that focus.
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The translation magnitude can be estimated if the distance between two successive views is

available via odometry. In our case, if the robot moves straight ahead, then encoders on the

motors can be used to obtain this information (within limits imposed by slippage of the wheels,

and disregarding noise).

As shown by Fig. 13,

!

i

=

v

r

i

sin(�� �

i

) (15)

where r

i

is the distance to the ith landmark, v is the translation velocity of the robot, !

i

is

the velocity on the horizon circle of the ith landmark (i.e., its motion ow), � is the estimated

translation direction (in terms of the azimuth angle of FOE), and �

i

is the azimuth angle of the ith

landmark. All the quantities are measured in terms of the current pose. In our experiment, since

r

i

� 3ft., and v � 2ft./step, the theoretical upper bound for !

i

is 0.67 rad./step.

For discrete motion, the equation can be rewritten as:

��

i

=

�d

r

i

sin(�� �

i

) (16)

Thus, we can estimate the translation distance by �rst moving a nominal amount, then com-

puting environmental distances r

i

from each landmark. By matching the new current view against

the target view, we can use Eq. 16 to estimate the distance �d to the target. Since each landmark

can give a di�erent value for �d, the median is used.

It should be pointed out that a similar analysis on derotation and estimation of translation

direction is also independently done by Nelson and Aloimonos[19]. However, their algorithm for

derotation and estimation of the translation direction is quite di�erent from ours. They approached

the problem by searching around a 2D parameter space for rotation and translation direction. That

results in a O(n

3

) algorithm. In our case, we assume that the robot moves in the ground plane,

instead of in the general 3D space. Moreover, since calculating the mean of displacements and

searching for FOE around motion ow on the horizon circle in our algorithm are both linear, the

whole algorithm is in O(n). Note the problem in our case is slightly di�erently posed from theirs.

The basic di�erence is the 180

�

criterion vs. average displacement. They approached the derotation

problem under the assumption that only two images (i.e., only one motion ow image) are given,

whereas in our case, we can "test on the y", i.e., get an image and derotate; then get a new

one and see if we need to derotate again. Therefore, they need more computation than ours. We

12



implemented their algorithm and simulated it by using our experimental data. The results (see

Sec. 7.) show that their algorithm worked well for estimation of rotation angle, but not well for

estimation of translation direction. Moreover, they didn't estimate the translation distance and we

did.

7. EXPERIMENTAL RESULTS

The performance of our system has been demonstrated experimentally. The mobil robot is a

Denning DRV-1 model, named Harvey. The physical system has already been shown in Fig. 2(a).

In each of the navigation experiments, we �rst take a sequence of target images at di�erent lo-

cations along the navigation path. This is an o�-line procedure. The on-line navigation process

is accomplished by homing to each target along the path. For each homing process, a combined

motion between the current location and the target location is assumed and thus our motion model

is applied, i.e., after taking a current view, the matching procedure between the current view and

the target view is called and the rotation parameter is computed; then the robot derotates the

angle to eliminate outliers. This process continues until the rotation is cancelled. At this stage, the

translation direction is determined. The translation magnitude can be computed if the landmark

distance have been already determined. Otherwise, a nominal distance is used via odometry. This

process continues until the displacement between a current view and the target view is reduced to

the level of a standard deviation. This guarantees that the robot arrives at the target precisely.

Fig. 14(a) shows a sample picture from one of the experiments, in which the robot navigated

along a curved path around tables in a lab. The environment was cluttered, as shown in the �gure.

However, the robot homed to each target successfully. Fig. 14(a) is the target view of the homing

process and Fig.14(b) is the initial view which is located about 2ft. away from the target with

a heading of about 40

�

from the homing target. The horizon circle and the coordinate axes are

visually marked in the �gures. Table 1 lists the matching results for these two views. The order of

the matched pairs is listed in terms of the "signi�cance" of the characteristic features in the target

view, i.e., in the order from the feature with the greatest slope to the feature with the smallest one.

The last column in each of the tables indicates whether a computed match is actually correct. A

rotation estimate of 29:9

�

was obtained. This was used to eliminate some of the matches, and a new

estimate of the rotation was obtained from the remaining ones. The matching results at this stage

is shown in Table 2. After the second iteration was performed (see Table 3), the displacements are

13



less than 5

�4

and the translation direction is estimated as 325

�

.

To compare the performance of our algorithm with that of Nelson and Aloimonos [19], we

produced the motion ow maps around the horizon circle by linear interpolation based on those

matched characteristic feature pairs shown in Table 1 and 2. In order to let the produced motion

ow as "pure" as possible, we did not include those "pseudo-matched" pairs. Table 6 shows the

results of their algorithm. It can be seen that their derotation estimation is very close to ours,

whereas their estimation of translation direction has very big errors. The reason is that, as they

mensioned in their paper, there is a trade o� between precise determination of derotation and

precise determination of translation direction. The key problem comes from how precise a motion

ow "shape" is. However, the problem itself involves many hard problems, such as matching.

Therefore, it is di�cult to evaluate how accurately the motion parameters can be determined when

their algorithm is applied in practical applications.

Once the rotation and translation direction are computed, the robot moves 0.5 ft. At this stage,

a new matching list is output as shown in Table 4 and the averaged displacement angle is 2:5

�

. This

angle is small enough so that the algorithm deems that the rotation is 0, and the robot continues

to translate in the same direction. Based on the matching results of Table 3 and 4 and Eq. 16, the

algorithm determines the next translation distance to be 1.3 inches and executes that motion to

arrive at the pose as shown in Fig.14(c). The matching result at this stage is listed in Table 5 and

the maximum displacement is 4

�

and averaged absolute displacement is within 2

�

. The algorithm

determines that the target and current signatures are essentially the same and terminates.

The �nal pose is 3 inches away from the target position and 3

�

away in heading when starting

from 2ft. and 40

�

. This error is tolerable for the purpose of homing. Moreover, the error is

not accumulated in the navigation process because the �nal pose in the current homing stage is

the initial pose of the next homing stage, which makes no assumptions about the pose of the

robot. It can been seen from the experiments that the correct feature matching rate is around

90%. This represents a signi�cant improvement over the previous approach [4] involving only

individual normalized segments. Furthermore, the current system works for general planar motion

and computes distance to landmarks.

4

Empirically the �nal error of the derotation is about 3

�

to 5

�

. Hence we set 5

�

as the threshold
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8. CONCLUSION

In this paper, we presented a navigation system that involves an image-based homing scheme

using 360

�

views. A robust feature matching algorithm is developed using qualitative geometric

descriptions of waveform segments around prominent features. The robot successfully homes to a

sequence of target views in a complex environment. As part of the homing control, the motion

parameters are approximately decomposed into rotation and translation. The rotation is estimated

�rst, followed by translation direction. The distances to landmarks in the environment are computed

and used to estimate the distance from the current location to the target location.

In the future, we will investigate the feasibility of automatically acquiring a model of the en-

vironment that includes the 3D relationships between the target locations. This will provide a

foundation for more sophisticated planning and a variety of navigation experiments.
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APPENDIX

We here derive those equations appeared in Sec. 3.. For the sake of clearity of the derivation,

we redraw Fig. 4 in Fig. 15.

In order to get Eq. 1, see

6

CQE, where CQ is the horizontal line to the incident point Q of P ,

QE is a vertical line passing Q. Hence

6

CQE is a right angle. Now note

6

DQF is the reectant

angle which is equal to the incident angle

6

PQD = , we have

6

EQF =

6

O

0

FP

i

= 

6

DQE =  � �

6

CQD =  � �

Thus,

( � �) + ( � �) =

�

2
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Then, Eq. 1 immediately follows.

Eq. 2 follows the fact that in the right trianble O

0

FP

i

, we heve

r

i

= kP

i

O

0

k = kFO

0

k tan �

Eq. 3 follows the fact that for all 3D point P , its image point P

i

always has a � phase shift in

XY plane (see Fig. 3).

Now, in the right triangle 4OBQ,

kOBk = kOQk sin

6

OQB

Since

6

OQB =

6

CQD =  � �

kOQk = R

Hence,

kOBk = R sin( � �)

Since

kOO

0

k = R+ d+ f

Hence,

kBO

0

k = kOO

0

k � kOBk = (R+ d+ f �R sin( � �))

Since in the right triangle 4PQO

0

,

kPGk = kPO

0

k sin

6

PO

0

G = � sin�

Hence

kABk = kAO

0

k � kBO

0

k = kPGk � kBO

0

k

i.e.,

kABk = � sin� � (R+ d+ f �R sin( � �))
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Assume C is the intersection point of the two perpendicular lines PG and QC, then

kQCk = kBCk � kBQk

Since

kBQk = kOQk cos

6

OQB = R cos( � �)

kBCk = kO

0

Gk = kPO

0

k cos

6

PO

0

G = � cos�

We have

kQCk = � cos� �R cos( � �)

Thus, in 4PQC,

tan =

kPCk

kQCk

That is followed by Eq. 4 and Eq. 6 is immediately followed by substituting � = 0 for Eq. 4.

Now, let us see 4OQF . Obviously,

6

OFQ =

6

O

0

FP

i

= �

6

OQF =

6

OQB +

6

BQF

Since

6

OCB =  � �

6

BQF =

�

2

� � = � + � � 2

Hence

6

OQF = � � 

Therefore,

kOQk

sin

6

OFQ

=

kOFk

sin

6

OQF

That is immediately followed by Eq. 5.
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Figure 2: (a) Physical set-up of the system. The reecting globe is the

spherical mirror, mounted on top of the mobile robot which is

a Denning DRV-1 model. A camera sits below the spherical

mirror

Figure 2: (b) A sample image taken in our experiment. The white ring

indicates the rotation center of the robot and the marked ticks

are the horizon circle, together with the coordinate axes
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Figure 3: Geometrical model of the system. Every point P in 3D space

maps a point P

i

in the image plane through the camera focus.

Here R is the radius of the sphere; f is the focal length of the

camera; d is the distance between the apogee of the sphere and

the focus of the camera.
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Figure 5: (a) Side-view of the geometrical model. Only one horizon line

incident to the spherical mirror can pass through the focus of

the camera, i.e., has its corresponding map on the image plane
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Figure 9: Symbolic encoding of the waveform during low-level processing.

An enlarged portion of processing results of a location signature

is shown. The raw data are the current location signature shown

in Fig. 8. (a) result of normalization. (b) result of median �lter-

ing. (c) result of piecewise �tting to produce symbolic encoding

that serves for qualitative matching
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Figure 10: The qualitative shape of a sequence of segments. The two por-

tions of the signatures have the same topological properties,

and the shape is encoded as +� 0�+
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Figure 11: An example of matching between views. Here the two signa-

tures are symbolically represented (i.e., after piecewise �tted).

The solid segments in the dashed signature (current view),

together with their context, are matched against their corre-

sponding segments expressed as darkened in the solid signature

(target view). To be graphically clear, the two views only in-

volves a pure translation
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X
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R

is the angular motion velocity of the pose
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a combined motion; the angular displacements are the same as

in (a) except that here there is a rotation !

R

added, which must

be decomposed
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Figure 14: (a) The target view of a homing process during a navigation experiment
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Figure 14: (b) The initial current view of a homing process during a nav-

igation experiment
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Figure 14: (c) The current view after the robot moved 2nd step
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Table 1 { Matching Result between the initial current view and the target view

The average displacement: 29:9

�

Target C.F. Azimuth Angle Current C.F. Azimuth Angle Matching Correct?

100.0 128.0 y

47.5 70.0 y

78.0 103.0 y

93.5 124.0 y

6.0 32.5 y

104.5 132.5 y

305.5 344.5 y

116.5 147.0 y

182.0 221.0 n

Table 2 { Matching Result after 1st Rotation

The average displacement: 8:7

�

Target C.F. Azimuth Angle Current C.F. Azimuth Angle Matching Correct?

291.0 303.5 y

310.5 320.5 y

326.5 333.5 y

305.5 316.5 y

335.0 341.5 y

333.0 338.5 y

Table 3 { Matching Result after 2nd Rotation

The average displacement: �3:2

�

Target C.F. Azimuth Angle Current C.F. Azimuth Angle Matching Correct?

100.0 91.0 y

310.5 312.0 y

326.5 325.5 y

93.5 87.0 y

6.0 3.5 n

104.5 95.5 y

305.5 308.0 y

335.0 333.0 y

333.0 330.0 n
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Table 4 { Matching Result after 1st Moving Step

The average displacement: �2:5

�

Target C.F. Azimuth Angle Current C.F. Azimuth Angle Matching Correct?

100.0 93.5 y

310.5 310.5 y

78.0 67.5 y

326.5 324.5 y

93.5 87.5 y

256.0 260.5 y

305.5 306.5 y

116.5 113.0 y

335.0 332.0 y

333.0 329.5 n

295.0 297.5 y

Table 5 { Matching Result after 2nd Moving Step

The average displacement: �0:9

�

Target C.F. Azimuth Angle Current C.F. Azimuth Angle Matching Correct?

100.0 100.5 y

291.0 292.0 y

310.5 310.5 y

78.0 77.0 y

326.5 325.5 y

93.5 93.5 y

6.0 2.5 y

104.5 105.0 y

305.5 305.5 y

11.0 7.5 y

38.0 34.0 y

295.0 295.0 y

Table 6 { Results of Nelson and Aloimonos' Algorithm

Motion Flow Data Estimation of Rotation Estimation of Translation Direction

Table 1 32

�

190

�

Table 2 10

�

143

�

37


