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ABSTRACT:

Deriving 3D structure in a �xed object-centered coordinate system is an increasingly

popular trend in shape from multiple views. For weak perspective projection, this problem

has been formulated and solved in many di�erent ways. We show that motion parallax with

respect to a planar surface is the basis of these approaches. This paper revisits the problem

of intrinsic structure derivation for the weak and paraperspective cases. Furthermore, a new

derivation of a linear method for intrinsic 3D shape under perspective projection is presented.

It is shown that the unifying concept underlying the computation of 3D geometry in an

intrinsic coordinate system for all projections models is that of using an arbitrary plane

in the scene (object) as a reference plane with respect to which the rest of the scene is

reconstructed. The representation is adequate for recognition and new view generation

tasks, and can also be used for complete metric reconstruction.



1. Introduction

The trend in 3D reconstruction from image motion (or multiple views) has rapidly moved

in the past few years from camera-centered depth and motion recovery to scene-centered

shape and pose recovery. For orthographic projection, Tomasi and Kanade [22] developed

an elegant method for factoring image measurements of N feature points over F frames into

F camera poses with respect to a �xed coordinate system, and N 3D point coordinates in

this system. Recently, the factorization method has been generalized to paraperspective and

weak perspective projections [18]. These approaches were developed for metric reconstruction

over many views. For applications involving object recognition and new view generation,

it may generally be not necessary to compute an absolute 3D reconstruction of an object;

intrinsic shape estimates up to some arbitrary transformations may su�ce.

In this paper, motion parallax with respect to an arbitrary plane in the scene is used

to compute relative 3D structure of the rest of the scene. It is shown that the parallax

motion, after the motion of the reference plane is compensated for, neatly separates into

a component involving 3D geometry and another that depends only on translation under

perspective projection, and rotation under weak perspective. This approach presents a

uni�ed framework for intrinsic shape estimation for all the three commonly used models of

projection, weak perspective (WP), paraperspective (PP) and (full) perspective (FP). For

weak perspective projection, under arbitrary 3D a�ne transformations, shape reconstruction

up to a shear and scale was presented in [10], [14], [20] and [23]. We �rst revisit these results

for WP and PP. Our formulation is di�erent in that it makes the planar (2D a�ne) and

the non-planar components of the image motion explicit in terms of the view transformation

and the 3D shape. It is shown that the non-planar image motion component is dependent

directly on the non-planar depth, and rotations in depth. Recall that under WP, rotations

in depth are the only motion components that lead to 3D structure information.

We extend the structure-from-planar-parallax idea to perspective projection. It is shown

that if the coordinate system of an arbitrary image is warped with respect to a reference

image, such that the image motion of a given plane becomes zero, then the residual motion

of all the points not on the reference plane leads simply to 3D structure. The non-planar

residual disparity is dependent only on the translational component of motion, and the out-

of-plane depth component in the reference view. An alternative but tedious derivation of

this result was presented in [13]. This result has strong parallels with Shashua's [21] work

on deriving projective depth from two views under any model of projection. The relationship

is shown explicitly in the paper.

Our longer term goal is to use 3D constraints in deriving object properties in video

sequences for the purposes of automated and semi-automated annotation and analysis. The

idea of planar parallax based structure description for various models of projection presents a

framework in which from a small number of views (minimumtwo), an intrinsic representation
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can be derived. This is possible even if the linear camera calibration parameters are unknown,

a common situation in video annotation for videos captured o�-line from a variety of cameras.

Also, in obtaining compact descriptions of a variety of scenes, planar structures like roads,

walls and buildings can be utilized as natural reference planes.

2. Planar Motion Parallax

The essential principle behind planar motion parallax is that if an image coordinate

system is warped so that an environmental plane is �xated between this image and a reference

image, that is the plane's image motion is nulled, then the residual image motion can be

factorized into a component that depends only on the non{planar shape, and another that

depends only on the epipoles (i.e. only on camera displacements and not rotation). This is

called planar motion parallax. It is a speci�c instance of the well-known notion of motion

parallax. For general motion parallax, it can be shown [15, 19] that if two distinct points

in 3D project to the same point in an image (that is are along the same view ray), then

the di�erence in their image displacements due to a change in the viewpoint (that is the

projection, in another view, of the vector joining the two) depends only on the 3D translation

(perspective) or rotation (weak perspective) between the views and the relative depth of the

3D points. However, using the general motion parallax may not be practical because �nding

coincident points in a view is hard; for an opaque world occluding boundaries represent such

points but these may be hard to detect and computing their image motion may be hard too.

The use of planar parallax instead is practical. Many cultural and other scenes naturally

contain a planar surface which can serve as a coordinate system to de�ne the structure of

the rest of the scene. For the problem of obstacle detection, Carlsson and Eklundh [2] and

Enkelmann [4] used the speci�c constraint on image ow for a ground plane. The camera

motion was modeled as the motion on the ground plane. In contrast, our method can use

any arbitrary plane in the environment, (e.g. walls, ceilings, oor etc.) and is applicable for

general rigid motion.

Figure 4 is a geometric depiction of planar parallax. Given p and p

0

, the projections of

a 3D point in two views, and given a reference plane S, if the planar motion transformation

can be computed, then a virtual projection, p

w

, corresponding to the point of intersection

of the ray p

0

and S can be computed. Alternatively the primed image coordinates (p

0

) can

be warped to create an image of points p

w

. Then the di�erence between p

w

and p in the

reference view is the planar parallax motion. It is clear from the �gure that these parallax

vectors are all oriented towards the epipole t (the point of intersection of the line connecting

the two camera centers, OO

0

, with the reference image plane).

3. Projection Models
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Figure 1: The Perspective Projection.

Consider a scene represented in a �xed scene{centered coordinate system, (X

w

; Y

w

; Z

w

).

Let (X;Y;Z) represent a camera{centered coordinate system that changes with relative

motion between the camera and the scene. A point P

w

in the w{coordinates is represented

as P in the camera coordinates as

P = RP

w

+T; (3:1)

where R is the rotation matrix and T the translation vector that represent the coordinate

transformation between the two coordinate systems. If i

T

, j

T

and k

T

are the three rows of R,

then the above equation can be written componentwise, for instance for the x component,

P

x

= i

T

P

w

+ T

x

: (3:2)
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Figure 2: The Paraperspective Projection.

In (full) perspective projection (FP), depicted in �gure 1, a pin{hole model of the camera

is used. Assuming that the focal length of the camera is unity, the 2D image projection p
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of P can be written componentwise as

p

x

=

P

x

P

z

=

i

T

P

w

+ T

x

k

T

P

w

+ T

z

; p

y

=

P

y

P

z

=

j

T

P

w

+ T

y

k

T

P

w

+ T

z

: (3:3)

That is, the x and y 2D components are the ratios, respectively, of the x and y components

of P with its z component.
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Figure 3: The Weak Perspective Projection.

Paraperspective (PP) is a particular �rst order approximation to FP. If the extent of the

scene/object is small compared to its average distance from the camera, that is jP

w

j

2

=jP

2

0

z

�

0 (P

0

is the centroid of the object in the camera coordinates), and the object is signi�cantly

o�{centered, that is, jP

w

j

2

=jP

2

0

z

� jP

w

jjT

x

j=jP

2

0

z

, jP

w

j

2

=jP

2

0

z

� jP

w

jjT

y

j=jP

2

0

z

, then, the 2D

projections can be approximated by [18]

p =

1

T

z

 "

i

T

�

T

x

T

z

k

T

j

T

�

T

y

T

z

k

T

#

P

w

+

"

T

x

T

y

#!

: (3:4)

Note that PP allows for a global scale factor for all points corresponding to the z component

of the centroid, and also allows for changes in the view angle for the object. Geometrically,

PP is shown in �gure 2. Each point is �rst projected, along the view direction of the centroid,

on a frontal plane passing through the centroid. All the projections from this frontal plane

are projected to the image plane resulting in a common scale factor.

If only the zeroth order term in the Taylor series expansion of the perspective equations

around the z component of the object centroid is signi�cant, then the resulting projection

is called the weak perspective projection, WP. Geometrically (�gure 3), each point is �rst

projected along the optical axis (z direction of the camera) on to a frontal plane passing

through the centroid. All projections from this plane are then projected on to the image
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plane. The projection equations are

p =

1

T

z

 "

i

T

j

T

#

P

w

+

"

T

x

T

y

#!

: (3:5)

For all of the models of projection above, the measured image coordinates, p

c

, in any

arbitrary coordinate system on the image plane can be related to the true image coordinates,

p through an internal camera transformation,

p

c

= A

c

p +T

c

; (3:6)

where A

c

is a 2 � 2 matrix representing the x and y scale factors and skew, and T

c

is

the position of the principal point on the image plane. When this is incorporated into the

projection models, the transformation from world to the measured image coordinates is a

general perspective transformation [17].

4. The Weak/Paraperspective Case

The theory of planar parallax structure for WP (a�ne structure from motion) has been

derived in various forms in [10], [14], [20] and [23]. The formulation presented here is di�erent

in that it makes the planar (2D a�ne) and the non{planar components of the image motion

explicit in terms of the view transformation and the 3D shape.

For the formulation here, it is assumed that the scene to camera coordinate transfor-

mation of equation 3.1 involves a general 3D a�ne transformation (and not just a rigid

transformation). Then the measured image projection, p, of P under WP is

p = A

c

(A

23

P

w

+T

xy

) +T

c

; (4:1)

where A

23

is the top left 2�3 sub{matrix of A, and T

xy

is the vector [T

x

T

y

]

T

, and A

c

and

T

c

are the internal camera parameters. Note that for each image, the camera parameters

can be di�erent. Clearly, the centroid of the image projections of a set of points is the same

as the projection of the object centroid. Therefore, if p now refers to the di�erence vector

between an imaged point and the centroid, the above equation can be simpli�ed to

p = A

c

A

23

P

w

: (4:2)

We can choose the scene coordinate frame to be aligned with an arbitrary image frame,

called the reference frame. In this frame, the projection equation simpli�es to

p = A

c

P

w

xy

: (4:3)
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Projections in any other arbitrary view, whose coordinates are denoted as p

0

, can be written

as

p

0

= A

0

c

A

22

A

c

�1

p+A

0

c

[a

13

a

23

]

T

P

w

z

; (4:4)

where A

22

is the top{left 2� 2 sub{matrix and a

ij

the ijth element of A.

If all the scene points lie on a plane g

T

P

w

xy

+ P

w

z

= 0, then the relation between

projections in the reference view and an arbitrary view can be written as:

p

0

= A

0

c

[A

22

�

"

a

13

a

23

#

g

T

]A

c

�1

p (4:5)

This is the well known result that projections of a plane under weak perspective transfor-

mation are related through an a�ne transformation.

Let g

T

P

w

xy

+ P

w

z

= 0 be a reference plane de�ned in the scene coordinate system.

Consider an arbitrary point (not lying on the reference plane) in the reference view. The

view ray for this point intersects the reference plane at some point. So, the reference image

projection for both these points (the original point and its planar intersection) is the same.

P

w

z

for the arbitrary point can be written as a sum of the z{component of the corresponding

planar point, say P

pl

w

z

, and the out{of{plane z{component, P

np

w

z

. Since, the planar component

satis�es equation 4.5, the projection relation for the arbitrary point in two views is

p

0

= A

0

c

[A

22

�

"

a

13

a

23

#

g

T

]A

c

�1

p+A

0

c

[r

13

r

23

]

T

P

np

w

z

: (4:6)

We write this more compactly as

p

0

= A

im

p + Z

np

b (4:7)

where the new symbols have the obvious correspondence with those in equation 4.6. The

�rst part of the transformation is due to the a�ne planar component and the second is due

to the non{planar component. Thus, the image motion of points has been decomposed into a

planar component with respect to a reference plane in a reference view, and an out{of{plane

component. Furthermore, the non{planar motion is decomposed into a component that

depends on the relative structure of the scene in the reference view, and another component

that depends on the view transformation. Also note that for any arbitrary view, the vector

b is �xed for all the points. So, the non{planar vectors for each point in the view are

parallel. Their magnitude is directly proportional to the out{of{plane depth component.

If an additional reference point is chosen, then the relative magnitude of the non{planar

displacement of any other point with respect to this reference point gives a view{invariant

representation of the structure of the scene.

In the formulation above, the scene-to-camera transformations are arbitrary 3D a�ne

transformations. Therefore, the view{invariant representation of structure derived above is
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invariant to general a�ne view transformations. Also, since the projection transformations

in equations (3.5) and (3.4) for WP and PP are similar in that they have a linear and a

translational part, the above decomposition of image motion into planar and non{planar

components is valid for PP too.

Any three points present both in the reference view and an arbitrary view can be used

to de�ne a 2D a�ne transformation corresponding to the reference plane passing through

those three points. The correspondence of a fourth point speci�es the invariant structure

completely. Three coordinates are being speci�ed from two views to compute an invariant

structure representation of the object. The in{plane 2D a�ne coordinates can be computed

in the reference view itself and the third coordinate is computed using the additional view.

Alternately, if the image plane coordinate system in an arbitrary view is warped to account

for the planar 2D a�ne transformation of the reference plane, then the residual motion is

due only to the non{planar structure. This represents the one parameter of scene structure

with respect to an intrinsic coordinate system of the reference plane.

5. The Perspective Case

p

S

O

O’

t

p
w

P
w

p’

P
P’

p’,

Figure 4: Two-view Planar Parallax.
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In the following formulation, a reference view and any other arbitrary view are chosen

to present the motion parallax equations. The 3D coordinate transformation between the

primed coordinates, P

0

, in view 2 and the reference coordinates, P, in view 1 is written as

an arbitrary 3D a�ne transformation:

P = AP

0

+T (5:1)

Let N

0

T

P

0

= d

0

represent a plane in the second coordinate system. Substituting this in the

above equation, one can write the view transformation for the plane as [9]:

P

w

= A[I+A

�1

TN

0

T

=d

0

]P

0

(5:2)

Note that this represents the general 8{parameter projective relationship for plane{to{plane

projection. Using the identity [I + A

�1

TN

0

T

=d

0

]

�1

= [I � �A

�1

TN

0

T

=d

0

] (see [8]), where

� = (1=(1+N

0

T

A

�1

T=d

0

)), the above relationship can be written as the following projective

transformation:

�p

0

= [I� �A

�1

TN

0

T

=d

0

]A

�1

P

w

(5:3)

p

0

is the image plane vector (p

0

x

; p

0

y

; 1) in the reference view, and � is an unknown scale factor

that assures that �p

0

lies on the reference plane. This is shown in �gure 4. Equation 5.1 can

be written in terms of p

0

and an unknown scale factor k as:

P = Akp

0

+T (5:4)

Substituting for p

0

from equation 5.3, after some algebraic manipulations (using equa-

tion (5.2)), we get:

P

w

=

�

k

[I+TN

T

=d

0

](P�T) =

�

k

[P+

d

N

d

0

T] (5:5)

where N = A

�1

T

N

0

is the plane normal in the reference view, and d

N

= P

T

N �T

T

N � d

0

is the perpendicular distance of P from the plane. In order to see that the parallax vectors

between the warped points, P

w

, and the actual points, P, are directed towards the epipole,

it is easily shown from equation (5.5) that

T � (P

w

�P) = 0: (5:6)

This is a projective relationship that shows that the projection plane normals de�ned by all

the parallax vectors lie on a great circle on the unit sphere, and the translation vector is

normal to the plane of this circle. Lawn and Cipolla [12] use this structure of the motion

parallax �eld for the special case of image velocities (closely spaced viewpoints) to compute

the epipole. They approximate the planar ow locally as an a�ne transformation. However,
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they do not relate the parallax �eld to the intrinsic structure of the scene which is the focus

of this paper. Also, the derivation here is valid for an arbitrary view transformation of the

type in equation (5.1), that includes the case of small displacements. We now derive the

relationship between the polar parallax �eld and scene structure.

Given a view ray p

0

in an arbitrary view, with the knowledge of the plane projective

transformation of equation (5.3), the projection of the virtual planar point (intersection of

p

0

with the plane) in the reference view can be computed using equation (5.3). In other

words, points in any arbitrary view can be transformed (or warped) so that they project to

the corresponding virtual planar points in the reference view. For points that do lie on the

plane, the warping transformation leads to their real projection in the reference view. For

the non{planar points, the planar motion parallax vector (the di�erence between the virtual

planar projection and the actual projection) is given by (�gure 4):

p� p

w

= (1=(1 +

P

z

d

N

=

T

z

d

0

))(p� t) (5:7)

where the lower case bold letters represent the respective image vectors with their z{

components unity, d

N

is as de�ned above. Note that the internal camera transformation,

(A

c

;T

c

), can be applied to each of the image vectors, p;p

w

; t, in equation (5.7) without

changing its form. Thus, the equation is valid for arbitrary camera parameters that can

change from view-to-view.

A few of the steps leading to equation (5.7) are:

p� p

w

=

1

P

z

P�

1

P

w

z

P

w

=

1

P

z

P� (1=(P

z

+

d

N

d

0

T

z

))(P+

d

N

d

0

T)

= (1=(1 +

P

z

d

N

=

T

z

d

0

))(p� t)

In equation (5.7), d

0

, the distance of the reference plane from the origin of the second

image coordinate system, can be replaced by �T

d

, the distance of the translation vector from

the reference plane. In fact, d

0

= P

0

T

N

0

= P

T

N�T

T

N = �T

d

. Thus,

p� p

w

= (1=(1 +

P

z

d

N

=

T

z

�T

d

))(p� t): (5:8)

When T

z

is zero, the parallax equation becomes:

p� p

w

= (�d

N

=P

z

)[T

x

T

y

0]

T

(5:9)
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In this case, the parallax motion vectors are all parallel, oriented towards the epipole at

in�nity as in the case of weak/paraperspective in equation 4.7. How can one decide when

a WP assumption is good enough ? Given two frames, the �rst being the reference frame,

say the parallax vectors turn out to be all parallel. Then, the parallax vectors should be

computed with the other frame as the reference frame. If the parallax vectors are again par-

allel, then either there is no rotation (and T

z

= 0 translation), or WP is a valid assumption.

The former is not an interesting special case. The latter is true because with rotation, under

perspective projection, the epipole in the second frame will not be at in�nity, leading to

parallax vectors that have a �nite focus of expansion/contraction. In contrast, for WP, the

parallax vectors are always parallel independent of which frame is chosen as the reference

frame.

The above derivation of planar parallax is in terms of the parallax vector between the

projections of the \pseudo-points" corresponding to the planar projection, and the actual

projections of the points in the reference image (�gure 4). A very similar derivation with

identical results but using an explicit warping of the coordinate system of the second image

frame, according to the planar transformation with respect to the reference frame, is shown

in the appendix.

For an alternative but more tedious derivation of the above results see [13]. A geometric

derivation of the planar parallax under perspective projection result and a similar algebraic

derivation has also been recently done independently by Kumar and Anandan [11].

We have shown that the parallax vector de�ned with respect to an arbitrary plane is

directed towards the epipole in the reference image. Thus, the parallax vector �eld is due only

to the translational component of the 3D view transformation, as is expected of any motion

parallax �eld. The e�ect of rotations on the image motion has been eliminated by choosing

a warping transformation corresponding to a plane in the environment. In the warped

coordinate system, the motion disparity of the plane is zero. In other words, the points on the

plane have been �xated through a coordinate transformation. The residual image motion is

due only to the non{planar component of the environment, and translational motion. Recall

that in traditional structure from motion algorithms, decomposing the image motion into

rotational and translational components is hard because of inherent ambiguities [1, 3]. This

problem has been circumvented in the planar parallax approach because the rotations a�ect

only the plane projective transformation of equation (5.2) and not the parallax motion. If

the planar transformation is not decomposed into its rotational and translational component,

then this method does not su�er from the inherent ambiguities.

In summary, the above derivation shows that the motion parallax vectors, de�ned as the

residual motion vectors after the motion of a reference plane has been subtracted, lie along

the epipolar lines, and hence all intersect at the epipole. Therefore, their direction directly

encodes the epipolar information. Furthermore, their relative magnitude depends only on

the 3D structure of the scene with respect to the reference plane.
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5.1. View{Invariant Representation

The magnitude of the parallax vector is a function of the non{planar distance, d

N

of P,

and the z{components of P and T. Let � = 1=(1 + P

z

=d

N

T

z

d

) be the magnitude and let

� = 1=� � 1. If a point P

0

not lying on the �xated plane is chosen as a reference then for

any other point P

i

:

�

i

=�0 =

P

i

z

d

i

N

=

P

0

z

d

0

N

(5:10)

That is, the ratio of the magnitudes of the non{planar parallax motion components are de-

pendent only on the relative structure of the environmental points not lying on the reference

plane. This ratio represents a view{independent \coordinate" of the structure of the envi-

ronment that does not lie on the reference plane. Given any arbitrary viewpoint, if the new

view can be warped using the transformation corresponding to the reference plane, then the

relative magnitude of the residual parallax vectors is always that given in equation (5.10).

Thus, �xation with respect to the reference plane not only compensates for the e�ects of

rotations, but also provides an environment centered reference surface with respect to which

the complete shape of the environment can be speci�ed.

5.2. A�ne-Invariant Reconstruction

If the internal camera parameters are known, and the 3D transformation between views is

a rigid transformation (that is, the matrixA is a rotation matrixR), then the reference plane

can be reconstructed in a Euclidean frame attached to the reference view, and subsequently

the whole scene can be reconstructed. The plane can be reconstructed in two ways: (i) by

solving for the translation from the epipolar constraint of equation (5.7), and then solving for

the rotation and the plane parameters from equation (5.2), or (ii) by solving for the plane and

motion parameters directly from equation (5.2) [7]. The latter case may be unstable because

it relies on higher order information (more than a�ne) in the image displacements; these

generally are unreliable for commonly used small �eld-of-view cameras [1]. After solving for

the plane, by choosing the ratio

P

0

z

d

0

N

for a reference non-planar point to be unity, all the

other points can be reconstructed using their respective ratios

P

i

z

d

i

N

and their view rays p.

In particular, say for a given point,

P

z

d

N

= �, then since P = �p, the two constraints de�ne

an intersection of the view ray with a plane. This intersection de�nes � uniquely. If the

reference plane is given by P

T

N = d, then

P = ((�d)=p

T

(�N� z))p; (5:11)

where z is the unit vector along the optical axis in the reference view.

However, when the internal camera parameters are unknown, and euclidean reconstruc-

tion is not required, then the reconstructed P of equation (5.11) represents the 3D geometry
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of the scene up to an arbitrary 3D a�ne transformation. To see this, consider that three

points on the reference plane, and a fourth reference point not on the plane have been chosen

arbitrarily and speci�ed a set of 3D coordinates. The coordinates of these four points are

related to their true 3D coordinates (in some coordinate system) through a 12-parameter 3D

a�ne transformation. This is left unspeci�ed in the reconstruction.

Let three points on the reference plane and a non-planar reference point, (P

0

), be given

some arbitrary 3D coordinates. Assume that these coordinates de�ne the scene points in the

coordinate system of the reference view. Thus, these coordinates are related to their true

world coordinates through a transformation

P

c

= AP

w

+T: (5:12)

Note that the internal camera transformation, A

c

;T

c

, relating the ideal pin-hole model

image coordinates to the measured image coordinates has been absorbed in the 3D a�ne

transformation. The planar points de�ne a plane P

c

T

N = d. With P

0

and the plane thus

de�ned, the ratio

P

0

z

d

0

N

is �xed.

For any other non-planar point (�fth and more), say, the ratio

P

z

d

N

is �. Then, as in

equation (5.11),

P

c

= ((�d)=p

c

T

(�N� z))p

c

; (5:13)

de�nes the 3D P

c

. However, in this case, the 3D geometry can be speci�ed only up to an

unknown a�ne transformation that brings the arbitrarily selected four reference points into

registration with the known corresponding points in the scene. Therefore, all the scenes

related through a 3D a�ne transformation are indistinguishable in this approach. This is

similar to the a�ne and projectively invariant reconstruction methods in [21], [6] and [16].

Note that in the reconstruction above using four scene points, no explicit reconstruction

of the 3D motion is required. Also, any arbitrary view, when warped for the reference plane

with respect to the reference view, will lead to the same 3D reconstruction in a canonical

coordinate system de�ned by the four chosen points.

The derived representation contains the necessary representations both for motion and

structure reconstruction and matching. If the absolute metric motion and structure infor-

mation is required, then the translation can be computed from the parallax �eld leading

subsequently to the rotation [13] and the absolute coordinates in any particular view refer-

ence frame. If the goal is recognition and matching, then absolute metric structure need not

be computed. From two views, given four planar and one out{of{plane point, the intrinsic

structure representation can be computed. For any arbitrary view, if six points (four in-plane

and two out-of-plane) can be matched, then a synthetic image for the new viewpoint can

be created using the intrinsic structure. This can then be compared with the given view.

Similarly for new view generation, if the mapping of the six points is available, then a new

view can be created without knowing the absolute structure and the motion between the
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views. For new view generation, at least two out-of-plane points are required because the

epipole needs to be computed. The parallax vectors for the two non-planar points can be

used for this. In practice, many more parallax vectors should be used to solve for the epipole

using least-squares.

5.3. Interpretation of the Parallax Magnitude

In particular, the three reference points on the plane can be chosen to be the points on

the reference image plane. Thus, this image plane becomes the reference plane. Therefore,

the plane normal N = z and d = 1. Given these and � as above,

P

c

= ((�d)=p

c

T

(�N� z))p

c

= (1=(1 �

1

�

))p

c

: (5:14)

Recall that the magnitude of the parallax vector from equation 5.8 is proportional to

(1=(1 +

P

z

d

N

=

T

z

�T

d

)).

T

z

T

d

can be conveniently set to unity to �x the overall scale. Then, the

magnitude becomes (1=(1�

P

z

d

N

)) which is the same as (1=(1 �

1

�

)) in equation 5.14 because

� =

P

z

d

N

. Therefore, in the coordinates of the reference image, the length of the parallax

vector is directly the depth of the corresponding point. Of course, the structure reconstruc-

tion is valid up to an arbitrary 3D a�ne transformation as shown above. This is similar to

Koenderink's [10] and Shashua's [20] a�ne structure from motion under weak perspective,

and Shashua's [21] projective depth under perspective projection.

An important point to note here is that the \a�ne depth" computed in equation 5.14

does not require the explicit computation of the epipoles as in Shashua's method.

5.4. Relationship to Shashua's Projective Depth

In [21], Shashua presented an elegant method for computing an a�ne/projective 3D

structure invariant from two views under perspective projection. He called this invariant

the projective depth. His method essentially computed the location of an arbitrary scene

point by de�ning a cross-ratio using the point, the principal point in a reference view, and

the intersection of the view ray with two reference planes de�ned in the reference view

coordinate system. In the reference view all these four points project to a single point, but

in any other view, the cross-ratio can be computed using image measurements, namely the

image correspondence of the scene point in the second view, the epipole in the second view,

and the projections of the two planar intersections. The cross-ratio is a projective invariant.

Hence, for any view, knowing the epipole and the planar projections, the projection of any

point can be reconstructed.

Figure 5 depicts the relationship between our method and that of Shashua. A point

P is viewed in a reference view and an arbitrary view with centers of projection, O and
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Figure 5: Relationship with Shashua's two-plane cross-ratio.

O

0

, respectively. Instead of using two reference planes in the scene to de�ne a cross-ratio,

our method uses one reference plane and the z = 0 plane in the reference view. So the

cross-ratio is de�ned using the line PP

w

O

0

P

s

as shown in the �gure. P

w

is the intersection

of the view ray O

0

P with the reference plane, and P

s

is its intersection with the z = 0

plane. A cross-ratio for the point P can be de�ned as (PP

s

=O

0

P

s

)=(PP

w

=O

0

P

w

). From

similar traingles in �gure 5, this is exactly the ratio ((P

z

=T

z

)=(d

N

=d)) given by the motion

parallax equation (5.7). The equation shows how this ratio can be computed using the

image measurements based on the planar parallax, similar to the computation using planar

projections for two reference planes in Shashua's case.

6. Experimental Results

We demonstrate the application of planar motion parallax on images of a rotating box.

Two frames from a sequence are shown in �gures 6 and 7. The box was held by a gripper

and was rotated around an axis going through the opposite face centers. The magnitude

of rotation between the two frames is approximately 4

o

. The background is stationary. A

SONY B/W AVC-D1 camera with e�ective FOV 24 by 23 degrees was used to capture

512�484 images. These were reduced to 256�242 for the experiments. The range of depths

in the scene is about 550 to 700 mm.
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All the processing on the images is done using direct methods developed by the Sarno�

Research Center group [5]. No point or discrete feature correspondence is assumed. First,

the left face of the box is speci�ed as the reference plane in the �rst image (called BOX1).

The second image is registered with respect to the �rst using the image ow corresponding

to the reference plane. That is, the coordinate system of the whole of the second image is

transformed according to the planar ow estimate. It was found that a general 6-parameter

a�ne transformation was su�cient for this. The second image warped corresponding to

the planar a�ne transformation (called BOX2AFFW) is shown in �gure 8. The di�erence

between this warped image and the reference image, BOX1, is shown in �gure 9. Clearly,

the motion of the reference plane has been nulled and the residual motion is only due to the

parts of the scene not lying on the reference plane. For the BOX sceneWP might be a good

enough model as was noted by Daphna Weinshall in [23]. In the di�erence image (�gure 9),

it is apparent from the \motion blur" that the residual motion is almost translatory. This

is very clear when the reference image and the di�erence image are shown as a sequence on

a CRT display.

Subsequently, a general ow algorithm [5] is applied between the reference image and the

a�ne warped image, BOX2AFFW. The ow vectors are shown in �gure 10. (Due to the

display program used, the vector display is upside down.) This process of registration using

a general ow algorithm almost completely cancels the residual translation motion as shown

in the di�erence image in �gure 11. The residual non-planar motion vectors produced by

this registration correspond to the equations (4.7) and (5.7). In this case, because all of the

scene that is not on the reference plane is on one side of it, if we plot the magnitude of ow

as a function of the image plane xy-coordinate system, then this will represent the intrinsic

structure of the box up to an arbitrary 3D a�ne transformation. That is, the reference

plane is the image plane and the parallax magnitude is the non-planar depth with respect

to this plane. The intrinsic shape estimate is shown as a surface plot in �gures 12 and 13.

A shaded plot (whose hard copy reproduction is not too good, unfortunately) is shown in

�gure 14. The viewpoint has been chosen to make the computed shape fairly explicit. (All

the surface plots use some arbitrary scale and coordinate system speci�c to the plotting

programs.) Note that in the regions corresponding to the background, the ow is arbitrary

because the background was stationary and only the box was moving.

The surface plots clearly show that the qualitative estimates of the planar facets of

the box and the overall shape have been recovered fairly well. We are in the process of

computing quantitative estimates and comparing these with the ground truth. Also, we are

experimenting with more general scenes.
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7. Conclusions

A new derivation for 3D structure estimation using planar parallax has been presented. It

is shown that this approach uni�es the ideas of intrinsic 3D structure from weak perspective

and perspective projections. It is also shown that the plane-relative depth estimate obtained

from our method is closely related to Shashua's projective depth. Our goal is to apply these

formalisms to derive relative arrangement of objects and surfaces in scenes for the purposes

of scene annotation in video sequences and for recognition and new view generation. Metric

structure is not very important for these applications. Thus, the plane relative derived

structure (even with unknown camera calibration) should be adequate for the tasks. We are

in the process of developing a system for more elaborate experimentation with the formalism

presented in this paper.
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Appendix

Let the 3D a�ne transformation between a point in the reference view, P, and a second

view, P

0

, be

P

0

= A

0

P +T

0

: (7:1)

Let N

T

P = d represent a plane in the reference coordinate system. Substituting this in the

above equation, one can write the plane projective transformation as [9]:

P

0

� [A

0

+T

0

N

T

=d]P (7:2)

If the second frame's coordinate system is warped with respect to this plane projective

transformation, then the warped projective coordinates are

P

w

� [A

0

+T

0

N

T

=d]

�1

P

0

: (7:3)

This can be written as

P

w

� [I� �A

0

�1

T

0

N

T

=d]A

0

�1

P

0

� [I+ �TN

T

=d]A

0

�1

P

0

; (7.4)

where � = 1=(1�N

T

T=d), and T = �A

0

�1

T

0

is the translation (displacement of the second

frame's origin) in the reference coordinate system.

Equation (7.4) represents the warping transform applied to the second image coordinates

to take account for the plane projective transformation. This warping transformation will

exactly register points in the second image lying on the plane with their projections in

the reference frame. However, the points not lying on the plane will have some residual

displacement.

Substituting equation (7.1) in equation (7.4), we get

P

w

� [I � �A

0

�1

T

0

N

T

=d]A

0

�1

(A

0

P +T

0

)

� [I+ �TN

T

=d](P �T)

� (P+ T); (7.5)

where  = �1 + �P

T

N=d � �T

T

N=d = (P

T

N�d)=(�(T

T

N�d)) = d

N

=(�T

d

), d

N

is the

perpendicular distance of P from the plane, and T

d

is the distance of the translation vector

T from the plane.

Therefore,

p� p

w

=

1

P

z

P�

1

P

w

z

P

w

=

1

P

z

P�

1

P

z

+ T

z

(P+ T)

= (1=(1 +

P

z

d

N

=

T

z

�T

d

))(p � t); (7.6)
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which is the same as the earlier derived equation (5.8).
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Figure 6: Frame 1 of the box scene.

Figure 7: Frame 2 of the box scene.
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Figure 8: Frame 2 warped using the a�ne transformation cooresponding to the

left face.

Figure 9: Di�erence between frame 2 a�ne warped and frame 1.
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Figure 10: The non-planar residual ow.

Figure 11: Di�erence between a�ne warped and general ow warped frame 2 and

frame 1.
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Figure 12: Grided surface plot of the box.
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Figure 13: Grided surface plot of the box.
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Figure 14: Shaded surface plot of the box.
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