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Abstract

Robust 3D motion and structure computation and segmentation has been the subject of an enor-

mous body of work in reconstructive vision. For linear approximations to perspective projection

(weak/para perspective) [20, 24, 30, 31], and for the case of image velocities [19], elegant linear

methods have been devised for robust estimation. For reconstruction under arbitrary view transfor-

mations, linear projective methods [15, 16, 28] using point correspondences have been suggested.

In this paper, we present a formulation for 3D motion and structure analysis using motion parallax

de�ned with respect to an arbitrary plane in the environment. It is shown that if an image coordinate

system is warped using plane projective transformation with respect to a reference view, the residual

image motion is dependent only on the epipoles and has a simple relation to the 3D structure. Our

computational scheme avoids point/line correspondence and is based on hierarchical estimation and

image warping [10] working directly with spatio-temporal image intensities. Results on real images

demonstrate how this analysis simpli�es ego and multiple motion analysis, and stable scene-centered

3D reconstruction.
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SUMMARY

1. Which conference ?

Computer Vision and Image Processing.

2. What is the paper about ?

A direct method of image warping and ow computation based on planar parallax that simpli�es

the analysis of ego and multiple object motion, and motion and structure reconstruction.

3. What is the original contribution of this work ?

A new derivation of image warping corresponding to a planar projective transformation, and

of the residual ow after warping. Instead of using point correspondences, our method shows

that warping of the image coordinate system and image intensities corresponding to a planar

transformation leads to a simple form of the ow dependent only on the epipoles and the 3D

geometry. It is demonstrated how this simpli�es multiple motion analysis and 3D reconstruction.

4. Does the paper mainly describe an application, and should be reviewed by the applications com-

mittee ?

No.



1 Introduction

Robust 3D motion and structure computation and segmentation has remained an important problem

in motion vision. Under perspective projection, and Euclidean reconstruction with arbitrary camera

viewpoints, the problem of computing rotation and translation, and the environmental structure lead

to non-linear optimization problems. Many solution methods have been proposed in this situation [8,

18, 29], but the inherent ambiguities and instabilities [1, 5] associated with the problem can lead to very

unreliable results in real world scenarios [6, 27]. Moreover these methods use point correspondences; a

messy problem in its own right.

There has been a quest to invent linear methods for motion and structure analysis problems. For

linear approximations to perspective projection (weak/para perspective) [20, 24, 30, 31], and for the case

of image velocities [19], elegant linear methods have been devised for robust estimation. Similarly, for

reconstruction under arbitrary view transformations and uncalibrated cameras, novel linear projective

methods [15, 16, 28] using point correspondences have been suggested.

In this paper, we present a linear method for motion analysis that does not depend on point corre-

spondences. The linearity of the method comes from using the idea of planar parallax, that is residual

motion after the motion of an environmental plane has been compensated for. Point correspondences

are avoided by formulating the analysis in terms of image warping corresponding to the image coor-

dinate transformation for an environmental plane's motion. It is shown that if an image coordinate

system is warped using plane projective transformation with respect to a reference view, the residual

image motion is dependent only on the epipoles and has a simple relation to the 3D structure. The

computational scheme avoids point/line correspondence and is based on hierarchical estimation and

image warping [10] working directly with spatio-temporal image intensities. Results on real images

demonstrate how this analysis simpli�es ego and multiple motion analysis, and stable scene-centered

3D reconstruction.

Most methods for multiple motion segmentation [2, 3, 11] rely on either simple parametric models

(a�ne/planar), or on the smoothness of ow in the image plane. No 3D motion and structure constraints

are brought to bear on the process. These methods may fail to detect self motion, or may over-segment a

3D object even for simple cases of translation in depth because in such cases a�ne and plane projective

transformations alone do not model image motion well. The planar parallax motion representation

presented here has the potential for easy exploitation of the 3D motion and structure constraints in

segmentation and reconstruction tasks. For 3D reconstruction, we show that the planar parallax method

represents the 3D geometry of the scene in an intrinsic coordinate system associated with the selected

environmental plane. Both Euclidean and a�ne reconstruction is quite simply obtained in our method.

2 Motion Parallax and Warping

The essential principle behind planar motion parallax is that if an image coordinate system is warped

so that an environmental plane is �xated between this image and a reference image, that is the plane's

image motion is nulled, then the residual image motion can be factorized into a component that depends

only on the non{planar shape, and another that depends only on the epipoles (i.e. only on camera

displacements and not rotation). This is called planar motion parallax. It is a speci�c instance of the
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well-known notion of motion parallax. For general motion parallax, it can be shown [23, 25] that if two

distinct points in 3D project to the same point in an image (that is are along the same view ray), then

the di�erence in their image displacements due to a change in the viewpoint (that is the projection,

in another view, of the vector joining the two) depends only on the 3D translation (perspective) or

rotation (weak perspective) between the views and the relative depth of the 3D points. However, using

the general motion parallax may not be practical because �nding coincident points in a view is hard;

for an opaque world occluding boundaries represent such points but these may be hard to detect and

computing their image motion may be hard too.

The use of planar parallax instead is practical. Many cultural and other scenes naturally contain a

planar surface which can serve as a coordinate system to de�ne the structure of the rest of the scene.

For the problem of obstacle detection, Carlsson and Eklundh [4] and Enkelmann [7] used the speci�c

constraint on image ow for a ground plane. The camera motion was modeled as the motion on the

ground plane. In contrast, our method can use any arbitrary plane in the environment, (e.g. walls,

ceilings, oor etc.) and is applicable for general rigid motion.

Figure 1 is a geometric depiction of planar parallax. Given p and p

0

, the projections of a 3D point in

two views, and given a reference plane S, if the planar motion transformation can be computed, then a

virtual projection, p

w

, corresponding to the point of intersection of the ray p

0

and S can be computed.

Alternatively the primed image coordinates (p

0

) can be warped to create an image of points p

w

. Then

the di�erence between p

w

and p in the reference view is the planar parallax motion. It is clear from

the �gure that these parallax vectors are all oriented towards the epipole t (the point of intersection of

the line connecting the two camera centers, OO

0

, with the reference image plane).

3 Planar Parallax under Perspective Projection
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Figure 1: Two-view Planar Parallax.
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Perspective projection is a model of projection that accounts for the pin-hole projection of a scene onto

an image plane. The linear internal calibration parameters can be modeled as an a�ne transformation

of the image coordinates. This transformation can be combined with an arbitrary rigid transformation

due to camera/object motion by modeling the 3D transformation as an a�ne transformation. Thus,

in the following formulation, the 3D transformation between any two time instants is modeled as a 3D

a�ne transformation; a 3D rigid transformation is a special case.

A reference view and any other arbitrary view are chosen to present the motion parallax analysis.

The 3D coordinate transformation between the primed coordinates, P

0

, in view 2 and the reference

coordinates, P, in view 1 is written as an arbitrary 3D a�ne transformation:

P

0

= A

0

P+ T

0

: (1)

Let N

T

P = d represent a plane in the reference coordinate system. Substituting this in the above

equation, one can write the plane projective transformation as [17]:

P

0

� [A

0

+T

0

N

T

=d]P; (2)

where � denotes equality up to an unknown arbitrary scale. Note that this represents the general

8{parameter projective relationship for plane{to{plane projection.

As mentioned in the introduction, we are interested in developing a direct method to compensate

for the image transformation corresponding to the above planar transformation. That is, the second

image is to be registered with respect to the reference image by a warping transformation corresponding

to the plane projective transformation. Thus, it is necessary to express the warping transformation for

the coordinates of the second image. From equation 2, the warped projective coordinates of the second

image are

P

w

� [A

0

+T

0

N

T

=d]

�1

P

0

� [I� TN

T

=d]

�1

A

0

�1

P

0

; (3)

T = �A

0

�1

T

0

is the displacement of the second frame's origin in the reference coordinates.

Using the identity [I+ uv

T

]

�1

= [I� �uv

T

] (see [13]), where � = (1=(1 + v

T

u)), (v

T

u 6= �1), the

above relationship can be written as the following projective transformation:

P

w

� [I+ �TN

T

=d]A

0

�1

P

0

; � = 1=(1�N

T

T=d); N

T

T=d 6= 1; (4)

because in general T (i.e. the second camera center) does not lie on the reference plane which would

lead to the degenerate case of the plane projecting as a line in one image.

Equation (4) represents the warping transform applied to the second image coordinates to account

for the plane projective transformation. This warping transformation will exactly register points in the

second image lying on the plane with their projections in the reference frame. However, the points not

lying on the plane will have some residual displacement.

Substituting equation (1) in equation (4), we get

P

w

� [I + �TN

T

=d]A

0

�1

(A

0

P+ T

0

) � (P+ T); (5)

where  = �1 + �P

T

N=d � �T

T

N=d = (P

T

N�d)=(�(T

T

N�d)) = d

N

=(�T

d

), d

N

is the perpendicular

distance of P from the plane, and T

d

is the distance of the translation vector T from the plane.
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In order to see that the parallax vectors between the warped points, P

w

, and the actual points, P,

are directed towards the epipole, it is easily shown from equation (5) that

T � (P

w

� P) = 0: (6)

This is a projective relationship that shows that the projection plane normals de�ned by all the parallax

vectors lie on a great circle on the unit sphere, and the translation vector is normal to the plane of

this circle. Lawn and Cipolla [9] use this structure of the motion parallax �eld for the special case

of image velocities (closely spaced viewpoints) to compute the epipole. They approximate the planar

ow locally as an a�ne transformation. However, they do not relate the parallax �eld to the intrinsic

structure of the scene. Also, the derivation here is valid for an arbitrary view transformation of the type

in equation (1), that includes the case of small displacements. We now derive the relationship between

the polar parallax �eld and scene structure.

Given a view ray p

0

in an arbitrary view, with the knowledge of the plane projective transformation

of equation (3), its warped coordinates with respect to the reference view can be computed. For points

that do lie on the plane, the warping transformation leads to their real projection in the reference view.

For the non{planar points, the planar motion parallax vector (the di�erence between the virtual planar

projection and the actual projection) is given by (�gure 1):

p� p

w

=

1

P

z

P�

1

P

w

z

P

w

=

1

P

z

P�

1

P

z

+ T

z

(P+ T) = (1=(1+

P

z

d

N

=

T

z

�T

d

))(p� t); (7)

where the lower case bold letters represent the respective image vectors with their z{components unity.

Note that an internal homogeneous camera transformation, (A

c

), can be applied to each of the image

vectors, p;p

w

; t, in equation (7) without changing its form. Thus, the equation is valid for an arbitrary

unknown internal camera transformation.

When T

z

is zero, the parallax equation becomes:

p� p

w

= (�d

N

=P

z

)[T

x

T

y

0]

T

(8)

In this case, the parallax motion vectors are all parallel, oriented towards the epipole at in�nity.

For an alternative but more tedious derivation of a similar result, without using image warping, see

Lee [22]. A geometric derivation of the planar parallax under perspective projection result and a similar

algebraic derivation has also been recently done independently by Kumar and Anandan [21].

We have shown that the parallax vector de�ned with respect to an arbitrary plane is directed towards

the epipole in the reference image. Thus, the parallax vector �eld is due only to the translational

component of the 3D view transformation, as is expected of any motion parallax �eld. The e�ect of

rotations on the image motion has been eliminated by choosing a warping transformation corresponding

to a plane in the environment. In the warped coordinate system, the motion disparity of the plane is zero.

In other words, the points on the plane have been �xated through a coordinate transformation. The

residual image motion is due only to the non{planar component of the environment, and translational

motion. Recall that in traditional structure from motion algorithms, decomposing the image motion into

rotational and translational components is hard because of inherent ambiguities [1, 6]. This problem may

be circumvented in the planar parallax approach because the rotations a�ect only the plane projective

transformation of equation (2) and not the parallax motion.
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In order to use the above result for ego-motion and scene structure analysis, a reference plane can

be chosen. The second frame will be transformed with the plane's transformation towards the reference

view. Then, exploiting the epipolar structure of the residual image motion, the epipole can be computed.

This leads to the decomposition of the motion into the motion part and the non-planar structure part

as in equations 7 and 8. A particular implementation of this scheme using direct methods is presented

in the section 4.

3.1 View{Invariant Representation

Let � = 1=(1+P

z

=d

N

T

z

d

) (equation 7) be the (signed) ratio of the parallax magnitude to j(p�t)j, and let

� = 1=�� 1. For simplicity we call � the parallax magnitude. � is a function of the distance of P to the

reference plane, d

N

, and the z{components of P and T. If a point P

0

not lying on the �xated plane is

chosen as a reference then for any other point P

i

: �

i

=�0 =

P

i

z

d

i

N

=

P

0

z

d

0

N

. That is, the ratio of the non{planar

parallax magnitudes are dependent only on the relative structure of the environmental points not lying

on the reference plane. This ratio represents a view{independent \coordinate" of the structure of the

environment that does not lie on the reference plane. Given any arbitrary viewpoint, if the new view

can be warped using the transformation corresponding to the reference plane, then the relative parallax

magnitude is always the � -ratio above. Thus, �xation with respect to the reference plane not only

compensates for the e�ects of rotations, but also provides an environment centered reference surface

with respect to which the complete shape of the environment can be speci�ed.

3.2 A�ne Reconstruction

If the internal camera parameters are known, and the 3D transformation between views is a rigid trans-

formation (that is, the matrix A is a rotation matrix R), then the reference plane can be reconstructed

in a Euclidean frame attached to the reference view, and subsequently the whole scene can be recon-

structed. The plane can be reconstructed in two ways: (i) by solving for the translation from the

epipolar constraint of equation (7), and then solving for the rotation and the plane parameters from

equation (2), or (ii) by solving for the plane and motion parameters directly from equation (2) [12].

The latter case may be unstable because it relies on higher order information (more than a�ne) in the

image displacements; these generally are unreliable for commonly used small �eld-of-view cameras [1].

After solving for the plane, by choosing the ratio P

0

z

=d

0

N

for a reference non-planar point to be unity,

all the other points can be reconstructed using their respective ratios P

i

z

=d

i

N

and their view rays p. In

particular, say for a point, P

z

=d

N

= �, then since P = �p, the two constraints de�ne an intersection

of the view ray with a plane. This intersection de�nes � uniquely. If the reference plane is given by

P

T

N = d, then

P = ((�d)=p

T

(�N� z))p; (9)

where z is the unit vector along the optical axis in the reference view.

However, when the internal camera parameters are unknown, and euclidean reconstruction is not

required, then the reconstructed P of equation (9) represents the 3D geometry of the scene up to

an arbitrary 3D a�ne transformation. To see this, assume that three points on the reference plane,

and a fourth reference point not on the plane have been chosen arbitrarily and speci�ed a set of 3D
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coordinates (say the standard a�ne basis). The coordinates of these four points are related to their true

3D coordinates (in some coordinate system) through a 12-parameter 3D a�ne transformation. This is

left unspeci�ed in the reconstruction.

Let three points on the reference plane and a non-planar reference point, (P

0

), be given some

arbitrary 3D coordinates. Assume that these coordinates de�ne the scene points in the coordinate

system of the reference view. Thus, these coordinates are related to their true world coordinates

through a transformation

P = AP

w

+T: (10)

Note that the internal camera transformation, A

c

, relating the ideal pin-hole model image coordinates

to the measured image coordinates has been absorbed in the 3D a�ne transformation. The planar

points de�ne a plane P

T

N = d. With P

0

and the plane thus de�ned, the ratio P

0

z

=d

0

N

is �xed.

For any other non-planar point (�fth and more), say, the ratio P

z

=d

N

is � (as computed by the planar

image warping and residual motion computation algorithm to be illustrated in the results section). Then,

as in equation (9),

P = ((�d)=p

T

(�N� z))p; (11)

de�nes the 3D P. However, in this case, the 3D geometry can be speci�ed only up to an unknown

a�ne transformation that brings the arbitrarily selected four reference points into registration with

the known corresponding points in the scene. Therefore, all the scenes related through a 3D a�ne

transformation are indistinguishable in this approach. This is similar to the a�ne and projectively

invariant reconstruction methods [15, 14, 28].

Note that in the reconstruction above, no explicit reconstruction of the 3D motion is required. Also,

any arbitrary view, when warped for the reference plane with respect to the reference view, will lead to

the same 3D reconstruction in a canonical coordinate system de�ned by the four chosen points.

3.3 Interpretation of the Parallax Magnitude

In particular, the three reference points on the plane can be chosen to be the points on the reference

image plane. Thus, this image plane becomes the reference plane. Therefore, the plane normal N = z

and d = 1. Given these and � as above,

P = ((�d)=p

T

(�N� z))p = (1=(1�

1

�

))p: (12)

Recall that the magnitude of the parallax vector from equation 7 is proportional to (1=(1 +

P

z

d

N

=

T

z

�T

d

)).

T

z

=T

d

can be conveniently set to unity to �x the overall scale. Then, the magnitude becomes (1=(1�

P

z

=d

N

)) which is the same as (1=(1 � 1=�)) in equation 12 because � = P

z

=d

N

. Therefore, in the

coordinates of the reference image, the quantity (1=(1+

P

z

d

N

=

T

z

�T

d

)) of equation 7 is directly the depth of

the corresponding point. Of course, the structure reconstruction is valid up to an arbitrary 3D a�ne

transformation as shown above. For an exact relationship between this interpretation and Shashua's [28]

projective depth result see [26].
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Figure 2: Two frames of a tra�c sequence.

4 Results using Direct Method for Parallax

Bergen et al. [10] presented a multi-resolution iterative method for computing parametric and non-

parametric image motion between two frames. We adopt their method for the implementation of the

planar parallax idea presented above. The essential idea behind the direct method is to model image

motion as

I

2

(p) = I

1

(p� u(p; a)) (13)

between images I

1

and I

2

; p is the 2D vector of image coordinates, and u(p; a) is the displacement

vector at p described using a parameter vector a. For instance, a is an eight-dimensional vector for a

plane projective transformation. In order to compute motions of varying magnitudes, the images are

represented at multiple scales using Gaussian or Laplacian pyramids. Starting at the coarsest level,

given some initial estimate of the displacement vectors, iterative re�nement of the displacement vectors

is performed by successive warping of one image towards the reference image and recomputation of the

new incremental displacement vectors. Given an estimate u

i

, an incremental update �u is computed by

minimizing the quadratic error measure

E(�u) =

X

p

(�I(p) +rI

2

:�u(p))

2

(14)

where

�I(p) = I

2

(p)� I

1

(p� u

i

): (15)

Note that I

2

is considered the reference image. I

1

(p�u

i

) is the warped image one, warped corresponding

to the current estimate of the displacement vectors. We now illustrate how the planar parallax approach

using the direct method simpli�es analysis of (i) multiple motions, and (ii) 3D geometry.

Tra�c Scene : Multiple Motions

Figure 2 shows two 480�512 frames of a tra�c sequence in which the camera moved sideways and there

are independently moving objects too (trucks and other vehicles). The camera motion is unknown. In
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order to give a sense of the motion, �gure 4 shows the image ow computed using the non-parametric

direct method with a displacement vector for every point. The ow at every point p is computed by

solving for a single u (equation 14) in a small neighborhood within the coarse to �ne estimate and warp

framework [10]. The ow

1

shows the motion due to the camera of the static environment and that of

the moving objects. There is no clear separation between these various components.

For the purposes of demonstration here, the region of the road was selected in frame 2, the reference

frame, as the reference plane region, and a warping transformation was computed using the direct

method. A method like Irani et al.'s [11] could be used for selecting the plane automatically. Our multi-

resolution direct method computes the planar transformation and performs image warping together

iteratively from coarse to �ne scales. Note that only the bounding box of the planar region in frame 2

were speci�ed without any point correspondences. The direct estimation process automatically brought

the corresponding regions in registration while solving for the planar transformation. We note here

that a six-parameter a�ne transformation resulted in better registration result than an eight-parameter

planar transformation. Figure 3 shows frame 1 warped according to the transformation computed

2

.

Finally, �gure 5 shows the displacement vectors between the reference frame, frame 2, and the a�ne

warped frame 1. In this �gure the qualitative structure and motion of the scene is quite apparent.

The ow in the region of the road is mostly zero. The ow corresponding to the region of the trees

in the background is mostly parallel and is due to the translational component of the sideways camera

motion (FOE out of the image plane). For the two trucks moving in the foreground, the displacement

vectors are both due to their independent motion and the translational motion of the camera. Since

their independent motion is mostly translational, these ow vectors point towards a focus of expansion.

Therefore, the structure of the displacement �eld after compensating for the planar warp is considerably

simpler than the original �eld.

It is to be noted here that most methods for multiple motion segmentation [2, 3, 11] rely on either

simple parametric models (a�ne/planar), or on the smoothness of ow in the image plane. No 3D

motion and structure constraints are brought to bear on the process. These methods may fail to detect

self motion, or may over-segment an object even for simple cases of translation in depth as is the

case with the moving trucks in our example. The above planar parallax representation allows for easy

exploitation of the 3D motion and structure constraints in the segmentation and reconstruction task.

We are in the process of using this representation for object and structure segmentation to identify

objects and events of interest in a video sequence.

Box Scene : Shape Reconstruction

The second set of results is on images of a rotating box; two frames are shown in �gure 6. The box was

rotated about 4

o

around an axis through the centers of the top and bottom faces with the rest of the

scene and camera stationary.

The left face of the box in the second frame (reference frame) was speci�ed as the region of the

reference plane, and the �rst frame was registered with respect to the second using direct automatic

1

In all the ow �gures, the scale is chosen by the display program and is not the same as of the original images.

2

In both this and the next example, the comparison between the reference frame and the warped frame is not very

illustrative when shown as hard copy images, but the �xated planar region and the residual motion is a very compelling

display when shown as a movie.
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planar transformation warping as described in the previous section. Again, in this case, it was found

that an a�ne transformation (6-parameter) was su�cient for the planar registration. The output of

this process is shown as a warped image (frame 1 warped), and as the di�erence between the warped

frame 1 and the reference frame (frame 2) in �gure 7. In order to highlight the simpli�ed representation

obtained after planar warping, we show the \raw" ow between frames 1 and 2, and the residual ow

after warping between frame 1 warped and frame 2 in �gure 8. Clearly, in the region of the box, the

original ow is rotational but after planar warping, the residual ow is mostly along the horizontal axis

because in this case, the e�ective translation is mostly along the x axis.

Furthermore, from equation 8, in this case of purely x/y translation, the ow magnitude is directly

the depth in the coordinates of the reference image up to an unknown 3D a�ne transformation. Since

all of the box that is not on the reference plane is on one side of it, if we plot the magnitude of ow as a

function of the image plane xy-coordinate system, then this will represent the intrinsic structure of the

box up to an arbitrary 3D a�ne transformation. The intrinsic shape estimate is shown as a surface plot

in �gures 9 and 10. The viewpoint has been chosen to make the computed shape fairly explicit. (All the

surface plots use some arbitrary scale and coordinate system speci�c to the plotting programs.) Note

that in the regions corresponding to the background, the ow is arbitrary because the background was

stationary and only the box was moving; but the planar warping was applied to the whole image which

leads to some arbitrary ow for the background. The surface plots clearly show that the qualitative

estimates of the planar facets of the box and the overall shape have been recovered fairly well.

5 Conclusions

A new technique for simplifying the structure of image ow for multiple motion and scene-centered

structure analysis has been demonstrated in this work. The formulation of motion parallax with respect

to a reference plane in terms of warped image coordinates allows a natural use of direct methods for

analyzing image motion. It is also shown how a�ne and Euclidean structure is quite simply represented

in the parallax ow. This work represents steps towards building a set of application tools for (semi)

automatic annotation and analysis of motion videos for indexing and retrieval.
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Figure 3: A�ne warped frame 1.
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Figure 4: Displacement �eld between frames 1 and 2. Subsampled 30�32 from 480�512 frames.

Figure 5: Displacement �eld between a�ne warped frame 1 and 2. Subsampled 30� 32.
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Figure 6: Two frames of a box sequence.

Figure 7: Frame 1 warped and di�erence between frame 1 warped and frame 2.

Figure 8: Flow between original frames 1 and 2, and between warped frame 1 and frame2.
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Figure 9: Grided surface plot of the box.
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Figure 10: Grided surface plot of the box.
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