
Figure 11: RADIUS reference

image.

Figure 12: RADIUS inspection

image.

Figure 13: RADIUS magnitude

of parallax ow map.

Figure 14: Wall Frame 1 Figure 15: Wall Frame 2 Figure 16: Wall Frame 3

Figure 17: 2D based Mosaic constructed from the 3 Wall frames.

Figure 18: 3D corrected Mosaic constructed from the 3 Wall frames.



side of the image is not visible. However in the forward

view Figure 8 the carpet is visible in this area. This is

an example of dis-occlusion.

4.2 RADIUS images

Figures 11,12 show the two original RADIUS images.

These images are particularly di�cult for area based

matching techniques because of the large homogeneous

areas. In order to register the ground plane using our di-

rect method for estimating quadratic motion models, we

provided initial masks for a few portions of the ground

plane in the reference images. For these images, we have

not yet obtained the ground truth data, thus we show

our �nal result as the map of the magnitude of the par-

allax ow vectors (Figure 13). The parallax ow vector

at any point is linearly related to the height of the point

and inversely to the depth.

The parallax ow vectors in this case, were computed

using the quasi-parametric ow algorithm described in

Section 3. The optic ow algorithm performs very poorly

on this sequence due to the presence of large areas of ho-

mogeneous patches. The quasi-parametric parallax es-

timation algorithm gives superior results because of the

added constraint of �nding matches only along an esti-

mated parallax direction. The parallax direction is ap-

proximately parallel to the y-axis, thus computation of

parallax ow along edges oriented parallel to the paral-

lax direction is poor (aperture problem). These locations

also have low con�dence values. As can be noted from

Figure (13), the overall parallax ow estimation results

are fairly good. These results can be improved by incor-

porating feature based information.

4.3 3D corrected Mosaic: Wall sequence

The three original wall images Frames 1, 2 and 3 are

shown in Figures 14, 15 and 16 respectively. Figure 17

shows a 2D mosaic built using only 2D a�ne transfor-

mations [Irani94a]. The 2D a�ne transformations used

aligns the wall part of the images. However the objects

sticking out of the wall exhibit parallax and are not reg-

istered by the a�ne. As a result in the 2D mosaic Figure

17, there are many ghost (duplicate) lines in the bottom

half of the image. The reader's attention is drawn to

the image regions corresponding to the duplicate lines

in the boxes titled \TTY" and \Wooden blocks" in the

left bottom and the the smearing on the book title infor-

mation (e.g. Excel, Word, Getting Started) in the right

bottom of Figure 17 respectively.

Figure 18 shows a 3D corrected mosaic image. In this

case, using the technique described in Section 3.5, the

objects sticking out of the wall are correctly positioned

and no duplicate lines are visible. The 3D corrected

mosaic was made by using Wall Frame 3 (Figure 16) as

the �nal destination image. Using the parallax computed

from Wall frames 1 and 2, Wall frame 2 was reprojected

into the frame 3 coordinate system. This reprojected

image was then merged with frame 3 to make the Mosaic

image shown in Figure 18. Note in Figure 16 one can not

see the boxes entitled \Wooden blocks" or \TTY". In the

mosaic image, they however appear and are present in

the geometrically correct locations.
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Figure 5: Oblique side aerial

view: inspection image, Frame

3

Figure 6: Oblique side view

height map.
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Figure 7: Oblique aerial view:

Wire frame drawing of car 55.

Figure 8: Oblique forward

aerial view: reference image,

Frame 1.

Figure 9: New view, syn-

thetic image of Oblique for-

ward Frame 1.

Figure 10: New view, synthetic

nadir image.

height of a large majority of the points within 0.2 -

0.3 inches. The best structure from motion algorithms

[Oliensis91] would estimate depth of points typically to

an average accuracy of 3 % or so. which is the same

as about 2 inches. The recovery of heights from this

data would have about the same accuracy of 2 inches for

camera height of 69 inches. Therefore, our results are an

order of magnitude better in accuracy. Figure 7 shows

a wire-frame reconstruction of the height map of the car

labeled 55

2

on the image. The height map shown in Fig-

ure (6) was used to construct the wire-frame drawing.

The two bumps seen on top of the car in the wire-frame

drawing are physically there in the car, they correspond

to two semi-transparent ashing signal sirens.

As described in Section 3.5, the parallax map com-

puted after registering the ground plane is an a�ne in-

variant. We used the technique described in Section

3.5 to make synthetic images of the scene from novel

view-points (see Figures 9 and 10). The user speci-

�es these new views by giving six or more point cor-

respondences between the source image and destination

(or new) image. We then use the pre-computed paral-

lax map and the correspondences to transfer by forward

warping [Wolberg90] the source image to the destina-

2

The slant of the front window of the car is 55 degrees

tion image. Figures 9 and 10 were created by using

the parallax map computed from the Oblique side se-

quence frames 1 and 3 (Figures 4 & 5) and frame 1 was

used as the source image. The synthetic image Figure 9

corresponds to frame 1 of the Oblique forward sequence

(Figure 8). We computed optic ow between the orig-

inal frame 1 of the forward sequence and the synthetic

frame 1. The average length of the ow vectors was 0.1

or 0.2 pixels. This signi�es that we were able to predict

the Oblique forward sequence image 1 to an average ac-

curacy of about 0.2 pixels using the two images from

the Oblique side sequence. Figure 10 shows an approxi-

mate nadir view synthesized from the two Oblique side

sequence images. The reader can notice that the per-

spective is much less in the nadir view and the vertical

sides of the blocks are foreshortened much more. Finally,

in both Figures 9 and 10 one can see �nger-print like

distortions on the upper side of the blocks. These dis-

tortions are actually dis-occluded areas. In the original

images of the Oblique side sequence, these areas are not

visible. Therefore, ideally, in the synthetic views these

areas should be totally void and appear black. However

because of some leakage at occluding contours because

of our area- based registration techniques, they appear

as �nger print patterns. Note in Figures 4 and 5, the

carpet between the blocks 444 and 225 on the upper left



for reconstruction of the video sequence at the receiver

station.

To construct a 3D corrected mosaic we need at least

three not completely overlapping images of a scene. We

now describe the steps involved in building a 3D cor-

rected mosaic using three image frames. The �rst step is

to register the �rst two images to build a parallax map in

the second frame's coordinate system. With this paral-

lax map, we compute the 11 pose parameters which reg-

ister the second image with the third image. The second

image is then reprojected by forward warping to create

a synthetic image taken from the third view-point. This

synthetic image however contains image regions common

to the �rst two images but not present in the third im-

age. The �nal step to obtain the mosaic is to merge the

synthetic third image with the actual third image. An

example of this technique can be seen in the results sec-

tion 4. Finally, to estimate the 11 pose parameters in

the mosaic case, we do not use point correspondences.

Rather, we directly register the second image with the

�rst image using the estimated parallax map as an in-

put. We again minimize equation (15) using equation

(18) and this time only estimate the 11 pose parame-

ters.

4 Results

4.1 Oblique block images

The oblique aerial images were taken in the laboratory

by mounting a camera on a tripod and simulating an

aerial y path. In the �rst image pair (Oblique forward

sequence, Figure 8) the camera is moving forward ap-

proximately 4 inches in the y-z plane of the camera.

In the second image pair (Oblique side sequence, Fig-

ures 4,5) the camera is moving sideways approximately

4 inches, parallel to the x-axis of the image. The cam-

era was tilted at approximately 35 degrees with respect

to gravity and was 69 inches above the ground. The

height of the blocks ranged from 1 inch to 4.9 inches. In

Figure (4),the numbers written on top of the rectangu-

lar at-top blocks are the height of the blocks in inches.

Similarly for the triangular blocks, the slant of the block

(degrees) was written on top of the block.

The ground plane in the images were registered and

the heights computed using the algorithms described in

the previous sections. To compute the height images,

we used the height of 3 known points. In Table 1, the

blocks from which the three points were selected are

marked by the symbol \�". The height image for the

Oblique side pair can be seen in Figure 6, the results for

the Oblique forward pair are very similar. . The bright

areas in the images correspond to areas with greater

height. There is a a lot of noise around the borders

of the images. This corresponds to border areas where

there was no information available in one or the other

image. These regions are detected by a low con�dence

value obtained from the optic ow estimation algorithm

[Bergen92] and therefore do not pose a problem. Table 1

lists quantitative results in recovering heights. For each

at top in the image, the actual height of the block is pro-

vided and the average estimated height and the standard

Figure 4: Oblique side aerial view: reference

image, Frame 1.

Table 1: Estimation of heights from oblique aerial

views.

BLO-
TRUE AVG. STD. NO. CONF.

CK
HT. HT. DEV. PTS THR.

OBLIQUE FORWARD SEQUENCE

inches inches inches

*444
4.44 4.41 0.15 1794 0.0

49
4.90 4.62 0.31 2852 0.0

49
4.90 4.70 0.08 324 50.0

337
3.37 3.24 0.09 675 0.0

*394
3.94 3.89 0.20 2900 0.0

*CAR55
3.68 3.66 0.18 840 0.0

25
2.50 2.43 0.12 667 0.0

225
2.25 2.38 0.08 728 0.0

OBLIQUE SIDE SEQUENCE

inches inches inches

*444
4.44 4.34 0.14 1386 0.0

*49
4.90 4.62 0.76 2360 0.0

49
4.90 4.86 0.04 233 50.0

337
3.37 3.33 0.10 550 0.0

*394
3.94 3.84 0.27 2365 0.0

CAR55
3.68 3.45 0.25 624 0.0

25
2.50 2.26 0.23 513 0.0

225
2.25 2.29 0.12 588 0.0

deviation of the heights of the points on that block are

also listed. The number of points over which the average

was computed and the con�dence threshold used to se-

lect the points is also listed. For the results listed in the

table, we selected all points belonging to a block by using

a con�dence threshold of 0. In the case of BLOCK49 the

standard deviation of the obtained heights is compara-

tively large: 0.31 for the oblique forward sequence and

0.76 for the oblique side sequence. This large variation

is due to regions of uniform intensity in the BLOCK49.

If we select points on BLOCK49 with con�dence value

greater than 50, (see Table 1) that the standard devi-

ation drops considerably. We are able to estimate the



of 8 equations for the other 6 unknowns: normal vec-

tor

~

N
and the rotation vector

~



. Since the translation

used in equation (17) is T

2

while the translation we com-

pute from the parallax ow vectors is T

1

, we must invert

the quadratic transformation de�ned by the parameters

p

1

::p

8

(or directly estimate the inverse quadratic trans-

formation by inter-changing the two images during esti-

mation.) We determine translation only up to a scaling

factor and therefore need the height of at least one point

to determine the heights of all other points in absolute

coordinates.

Finally, for determining the vector

~

K
when focal

length is unknown but image center is known we need

the height of two points. This is a combination of the two

previous cases. Since we do not know the focal length,

we cannot use all eight of the quadratic parameters given

in equation (17). However, the linear parameters p

1

::p

4

do not depend on the focal length and we can use the

equations pertaining to these parameters. On inspect-

ing these equations, we note that for the case T

z

equal

to zero, we cannot determine the normal component N

z

.

However we can determine N

x

and N

y

up to a scaling

factor. This is also true for the case when T

z

6= 0 since

we do not know focal length, the translation vector, we

recover is a scaled version of the vector [fT

x

fT

y

T

z

].

Therefore, whether T

z

is zero or not, we are able to de-

termine only one component of the normal

~

N
and sub-

sequently the vector

~

K
. We use the height of at least

two points and equation (23) to determine the vector

~

K

completely.

3.4 Multi-frame height recovery

In this section, we present a multi-frame extension to

the two frame height estimation techniques. Our multi-

frame technique is a batch method which uses one refer-

ence frame and one reference plane. Each frame in the

multi-frame sequence is registered to the reference frame

so that the reference plane is aligned. We then com-

pute the residual parallax displacement vectors between

every pair of frames. Hanna et.al. [Hanna93] have ex-

tended their quasi-parametric registration technique to

operate in this multi-frame batch mode. Finally, we in-

fer a height map from this sequence of estimated residual

parallax displacement vectors.

Equation (22) can be rewritten in the form:

I

i

S

i

= d

P

(K

1

x+K

2

y +K

3

) (24)

In the above equation, we note that the left hand side

terms I

i

and S

i

each vary from frame to frame, however

the right hand side is constant over the entire sequence.

Therefore the ratio of I

i

and S

i

is an invariant across

frames. It is similar to the relative a�ne structure mea-

surement discussed by [Shashua94a] and [Sawhney94].

For a set of N inspection frames given the height of 3

points, we obtain a set of 3N linear equations and there

are (N + 3) unknowns : (N S

i

terms and the vector

~

K
). The equations are linear because we estimate 1=S

i

instead of S

i

. We can solve this system of equations to

determine N + 3 unknowns and then use equation (24)

to estimate the height at all other points. This method

corresponds to the case when we do not focal length or

image center. We can similarly extend the techniques for

the cases when center and/or focal length are known.

We experimented with this technique and observed

that the performance depended chiey only on the

largest baseline present in the multiframe motion. The

performance of the two frame technique was comparable

when the frames with the largest baseline were used to

do the computation. Therefore in the results section, we

only present results for the two frame case.

3.5 View extrapolation and 3D corrected

mosaic reconstruction

In this subsection, we briey describe our technique

for new view generation (the transfer problem in pho-

togrammetry) and 3D corrected panoramic mosaic re-

construction. In the previous section the invariance of

the quantity

I

i

S

i

was used to combine image information

from multiple views in order to obtain a single accurate

height measurement at each pixel. The same property

can be exploited to extrapolate from a given set of views

to a new view for which the camera position and orien-

tation (or equivalent information, such as 2D point cor-

respondences) is known. Alternatively, the total motion

vector at each point between a reference image and any

desired camera view can be expressed as a combination

of the plane and parallax components given in Equa-

tions (18), (17) and (19). Then, given a reference image

and the parallax map (x; y) the problem of extrapolat-

ing a new view reduces to that of pose estimation i.e.

�nding the 11 unknown motion parameters (p

1

; : : : ; p

8

)

and (T

2x

; T

2y

; T

2z

). This information can be speci�ed ei-

ther in the form of at least 6 corresponding points or in

the form of 3D translation and rotation parameters. The

new view is generated by forward warping [Wolberg90]

the source image using the estimated 11 pose parameters

of the new frame and the prior computed parallax �eld.

One application of the view extrapolation process is

the construction of image mosaics based on multiple

views that are \corrected" for parallax. Recently there

has been considerable interest in image mosaics that pro-

vide panoramic views of the scene constructed from mul-

tiple images. The mosaic image is constructed by align-

ing a number of 2D views of the same scene to each

other and assembling them into a single image. For a

detailed example of mosaic construction, see [Hansen94].

The interest in mosaics is partly motivated by applica-

tions of the mosaic representations to a number of tra-

ditional problems in visualization and video exploitation

and compression [Irani94b]. These current techniques,

however, rely on 2D planar surface registration which is

adequate in situations when the 3D parallax e�ects in the

scene are small. However, when applied to more complex

scenes, the mosaics that are generated contain undesir-

able visual artifacts, and their compression e�ciency is

reduced. Using the parallax information, geometrically

correct mosaic images can be reconstructed. The mo-

saic images and the associated parallax �elds (signifying

3D information) comprise an e�cient compression of the

video sequence data. These can be transmitted along

with the 11 associated pose parameters for each frame



center. The reader is referred to [Bergen92] for further

details about this registration technique.

The parallax vectors and the direction of translation

are simultaneously estimated using the quasi-parametric

technique described in [Hanna93].The quasi parametric

technique is generally more accurate than using optic

ow, but requires an initial estimate for translation. If

needed, an initial estimate of the translation direction

can be obtained by using the optical ow obtained by

using the technique also described in [Bergen92].

3.2 Simultaneous registration

For the simultaneous approach, we express the total mo-

tion vector of a point as the sum of the motion vector

due to the planar surface (u

p

; v

p

) (as represented above)

and the residual parallax motion vector (u

r

; v

r

). This

residual vector can be represented as:

(u; v) = (u

p

; v

p

) + (u

r

; v

r

) (18)

u

r

(x) = (fT

2x

� xT

2z

)

v

r

(x) = (fT

2y

� yT

2z

) (19)

where  = H=P

z

T

?

, and as in Section 2,H is the perpen-

dicular distance of the point of interest from the plane

and P

z

is its depth. In this representation, however, the

third quantity T

?

is the perpendicular distance from the

center of the �rst camera to the plane. The above ex-

pressions for (u; v) from equation (18) are substituted

into equation 15 to obtain the complete objective func-

tion. We use a variation of the quasi-parametric ego

motion estimation algorithm described in [Hanna93] to

simultaneously estimate the 8 planar surface parameters

(p

1

: : : p

8

), the three translational motion components

(T

2x

; T

2y

; T

2z

) and the parallax magnitude �eld . This

approach does not require the presence of an actual 3D

plane in the scene. The planar registration parameters

obtained correspond to a virtual 3D plane which gives

rise to the smallest parallax �eld (the average plane of

the 3D scene). Alternatively, we can set the parameters

so that average frontal plane is obtained.

3.3 Height recovery based on two frames

The parallax ow vectors vary directly with height and

inversely with depth. To factor out the depth and get the

height alone, we use a characteristic property of aerial

view images. For aerial view images, the depth of the

plane is typically much greater than the height of objects

on the ground. In nadir aerial images a weak perspective

projection approximation can be used, since the depth

of all points is approximately the same. Whereas, in an

oblique view, there can be considerable depth variation

across the image. However, for any single point in an

oblique aerial image, the depth of that image point is

essentially the same as the depth of a possibly virtual

3D point obtained by extending the line of sight ray and

intersecting it with the ground plane. Therefore, we can

factor out the depth in the parallax equations (4,5) by

estimating the equation of the ground plane (we actually

only need to estimate the normal of the plane up to a

scale factor).

We use the magnitude of the displacement vectors to

infer the magnitude of the height and the direction of

the ow vectors to infer the sign of the height. For

the sequential approach, the magnitude of the displace-

ment vector 

2

=

p

(x

w

� x

1

)

2

+ (y

w

� y

1

)

2

for the case

where the translation is parallel to the image plane is

given by the equation:



2

=

fH

P

z

T

2?

q

T

2

1x

+ T

2

1y

(20)

The magnitude of the displacement vector for the case

where T

1z

6= 0 is given by:



2

=

T

1z

H

P

z

T

2?



F

(21)

where 

F

=

p

(x

w

� x

F

)

2

+ (y

w

� y

F

)

2

is the distance

of the point (x

w

; y

w

) from the FOE.

In the case of the simultaneous approach, these equa-

tions have to be modi�ed by substituting the compo-

nents of T

2

for the corresponding ones of T

1

, wherever

they occur.

Noting that N

T

2

~p

1

=

f

P

z

and using the aerial view

property equations (21) and 20 can be written in the

form:

I = S

2

HN

T

2

~p

1

(22)

where I =



2



F

is an image based measurement. S is a

proportionality factor which depends solely on the trans-

lation vector T

1

and the distance T

2?

. The above equa-

tion can be rewritten as:

H =

I

(K

1

x+K

2

y +K

3

)

(23)

where

~

K
is an unknown vector and its components are

given by K

1

= SN

2x

, K

2

= SN

2x

and K

3

= fSN

2z

The height H of any image point can be computed using

equation (23). In the case of the simultaneous approach,

these equations have to be modi�ed by substituting 

for 

2

, T

2

for T

1

, and T

?

for T

2?

.

Intrinsic camera parameters such as focal length and

image center can be calibrated for using standard tech-

niques. However, there are many applications where it

is not possible to do this calibration nor obtain these

intrinsic parameters apriori. We therefore develop three

di�erent ways to estimate the vector

~

K
based on whether

or not we know the focal length and image center.

If the focal length and center are both unknown,

height of at least three points are known, these can be

used together with equation (23) to linearly estimate the

vector

~

K
. We do not need to know the image center,

because the unknown o�set simply loads the third com-

ponent of the vector

~

K
in Equation 23. We then use

this vector

~

K
, again with equation (23) to determine

the height at any other point, again in a linear fashion.

The experimental results presented in section 4 use this

case.

If focal length and center are known, we can infer

the normal of the plane by using equation (17). This

equation relates the quadratic registration parameters

to the translation, rotation and normal of the plane, but

the translation direction is computed during the quasi-

parametric residual estimation. The translation direc-

tion together with equation (17) gives us a linear set
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Figure 3: Residual parallax magni-

tude when plane is aligned

After some algebraic manipulation, it can be shown that

the parallax vector is,

�u = q � p =

T

z

(Q

z

� P

z

)

Q

z

(P

z

� T

z

)

(p� t

1

) (10)

(b). For the case when parametric surface is a plane,

refer to Figure 3. In this case, instead of the substitution

given above in Equation 7, we can use

j

~

Q

0

j

j

~

P

0

j

=

T

2?

T

2?

�H

(11)

where H and T

2?

are the perpendicular distances from

the plane to the points P and M respectively. Going

through the same steps as in the case of the derivation

of the residual parallax with respect to a parametric sur-

face, but using Equation 11 everywhere instead of Equa-

tion 7, we obtain the result

�u =

HT

z

T

2?

P

z

�HT

z

(p� t

1

) (12)

Upon some further algebraic manipulation, we can easily

obtain

�u = q� p =

HT

z

T

2?

P

z

(q � t

1

) (13)

We provide this last version of the parallax result be-

cause it is algebraically simpler than the previous one.

For the same reason, this was the form that was used

in our height interpretation algorithms described in Sec-

tion 4.

Note that the above derivation implicitly assumes that

T

z

6= 0. (Speci�cally, this assumption was made during

the derivation of Equation 9).

From Equation 13, it is clear that if T

z

= 0, the par-

allax vector is given by:

�u = �

fH

T

2?

P

z

~

T

1

(14)

3 Registration and Interpretation

We have developed two techniques for recovering the pla-

nar and parallax motions. The �rst technique takes a

sequential registration approach, in which the plane is

�rst registered using a 8 parameter quadratic transfor-

mation. The residual parallax is then estimated as a

separate step. The second technique simultaneously es-

timates the planar and parallax motion components, and

is hence referred to as a simultaneous registration.

3.1 Sequential registration

To register a plane, we use the hierarchical direct regis-

tration technique described in [Bergen92] with a planar

surface ow �eld model. This technique �rst constructs

a Laplacian pyramid from each of the two input images,

and then estimates the motion parameters in a coarse-

�ne manner. Within each level the Sum of squared di�er-

ence (SSD) measure integrated over user selected regions

of interest is used as a match measure. This measure is

minimized with respect to the quadratic ow �eld pa-

rameters. The SSD error measure for estimating the

ow �eld within a region is:

E(fug) =

X

x

(I(x; t) � I(x � u(x); t� 1))

2

(15)

where x = (x; y) denotes the spatial image position of

a point, I the (Laplacian pyramid) image intensity and

u(x) = (u(x; y); v(x; y)) denotes the image velocity at

that point, and the sum is computed over all the points

within the region and fug is used to denote the entire

ow �eld within that region. The motion �eld of a planar

surface can be represented as:

u

p

(x) = p

1

x+ p

2

y + p

5

+ p

7

x

2

+ p

8

xy

v

p

(x) = p

3

x+ p

4

y + p

6

+ p

7

xy + p

8

y

2

(16)

where
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In the above equation, (T

2x

; T

2y

; T

2z

) denotes the trans-

lation vector between the cameras, (


x

;


y

;


z

) denotes

the angular-velocity vector, and (N

2x

; N

2y

; N

2z

) denotes

the normal vector to the planar surface from the camera



frame information to obtain accurate heights, and to ex-

trapolate new views from a given set of views (i.e., in

photogrammetric terms, to achieve \transfer"). We use

the view extrapolation process to construct a panoramic

mosaic image by combining multiple views that is accu-

rate in terms of 3D positions of surfaces. In section 4,

we present real data height estimation results, which are

an order of magnitude better than the results obtained

using the best traditional (perspective projection) struc-

ture for motion algorithms [Oliensis91]. We also present

results for new view generation or view extrapolation

and 3D corrected panoramic mosaic reconstructions.

2 Parametric surfaces

Consider two camera views, one denoted as the \refer-

ence" camera, and the other the \inspection" camera. A

3D point

~

P

1

in the reference camera coordinate system

gets mapped to the 3D point

~

P

2

in the inspection camera

coordinate system by a rigid body transformation:

~

P

2

= R(

~

P

1

) +

~

T

2

= R(

~

P

1

�

~

T

1

) (1)

The mapping can be represented by a rotation (R) fol-

lowed by a translation (

~

T

2

) or by a translation (

~

T

1

) fol-

lowed by a rotation (R). With perspective projection,

the image coordinates (x,y) of a projected point P are

given by the vector ~p:

~p =

"

x

y

f

#

=

f

P

z

P (2)

where f is the focal length.

Theorem

I. Given two views of a scene (possibly from two dis-

tinct uncalibrated cameras), if the image motion corre-

sponding to an arbitrary parametric surface is compen-

sated (by applying an appropriate 2D parametric trans-

formation to one of the images) then the residual paral-

lax displacement �eld on the reference image plane is an

epipolar �eld.

II (a). Let P be a point not on the surface that is

registered, and let p be its image in the reference view

(see Figure 2). Let T

1

denote the baseline vector be-

tween the cameras and Q be the point where the ray

connecting P to the the second camera center intersects

the surface. Then the residual parallax displacement �u

at image location p can be shown to be

�u = q � p =

T

z

(Q

z

� P

z

)

Q

z

(P

z

� T

z

)

(p� t

1

) (3)

where P

z

and Q

z

denote the depths of points P and Q,

T

z

is the z component of translation vector T

1

(assumed

non-zero), and t

1

denotes the epipole corresponding to

T

1

.

II (b). If the surface that is aligned is a plane, then

the residual parallax displacement simpli�es in the case

of T

z

6= 0 to:

�u =

HT

z

(p� t

1

)

T

2?

P

z

�HT

z

=

HT

z

T

2?

P

z

(q � t

1

) (4)

and in the case of T

z

= 0 to:

�u = �

fH

T

2?

P

z

~

T

1

(5)

where H is the perpendicular distance from the point P

to the reference plane, T

2?

is the perpendicular distance

between the second camera center M and the reference

plane (see Figure 3).

Proof: Part I Referring to Figure 1, let S denote the

surface of interest, P an environmental point not on S,

and O and M the two camera centers. The image of

P on the reference view is p. Let the ray MP intersect

the surface S at Q. The warping process would warp

p

0

, the image of P on the second image to q, the image

of Q on the reference image, since the transformation

applied aligns all points on the surface S. Therefore,

the residual parallax vector is pq, which is the image of

the line PQ. It is immediately obvious from the �gure

that pq lies on the plane OMP , which is the epipolar

plane passing through p. Since the above argument is

true for any point P , the parallax displacement �eld is

an epipolar �eld.

It should be noted that this theorem (and the proof)

does not deal with the problem of actually determin-

ing the transformation required to align the paramet-

ric surface. Nor is it concerned about the existence of

such a transformation{in fact, the existence is presumed

by the theorem. These issues, however, are signi�cant

for the practical application of the theorem. Although

a complete discussion of the existence and the estima-

tion of the transformation for aligning general paramet-

ric surfaces is outside the scope of this paper, the fol-

lowing observations can be made. First, the case of a

planar reference surface has been solved by us and oth-

ers (e.g., [Sawhney94]) and is also handled in this paper.

The case of a general quadratic surface is addressed in

[Shashua94b]. In the most general case, we briey note

that a numerical solution can be used based on a minimal

number of point correspondences and surface interpola-

tion.

Proof: Part II (a). Referring to Figure 2, let

~

P
denote

the vector OP ,

~

Q
denote the vector OQ, and

~

T
denote

the vector OM . Also, let

~

P

0

and

~

Q

0

denote the vectors

MP and MQ.

From Figure 2 we see that

~

Q
=

~

T
+

~

P

0

j

~

Q

0

j

j

~

P

0

j

(6)

Using the fact that

~

P

0

=

~

P
�

~

T
and taking the z com-

ponent of both sides of the above equation, we get

j

~

Q

0

j

j

~

P

0

j

=

Q

z

� T

z

P

z

� T

z

(7)

Substituting this back into Equation 6,

~

Q
=

~

T

1

+ (

~

P
�

~

T

1

)

Q

z

� T

z

P

z

� T

z

: (8)

Since q = f

~

Q
=Q

z

, p = f

~

P
=P

z

, and (assuming T

z

6= 0)

t

1

= f

~

T

1

=T

z

we get

q =

f

Q

z

�

~

T

1

+

Q

z

� T

z

P

z

� T

z

(

~

P
�

~

T

1

)

�
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�

T

z
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z
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p(9)
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Abstract

Given two arbitrary views of a scene under central pro-

jection, if the motion of points on a parametric surface

is compensated, the residual parallax displacement �eld

on the reference image is an epipolar �eld. The parallax

magnitude at a point, after suitable scaling, is an a�ne

invariant; if the surface aligned is a plane, it is directly

proportional to the height of the point from the plane

and inversely proportional to its depth from the camera.

We exploit the above result to infer 3D height informa-

tion from oblique aerial 2D images. We use direct meth-

ods to register the aerial images, develop methods to

infer height information under the following three condi-

tions: (i) focal length and image center are both known,

(ii) only the focal length is known, and (iii) both are

unknown. We use the invariance property of the scaled

parallax magnitudes to combine multiple frame informa-

tion to obtain accurate heights, and to extrapolate new

views from a given set of views (i.e., in photogrammetric

terms, to achieve \transfer"). We use the view extrap-

olation process to construct a panoramic mosaic image

by combining multiple views that is accurate in terms of

3D positions of surfaces.

1 Introduction

Traditional methods in motion analysis have expressed

the image motion of rigid bodies as a sum of two im-

age displacement �elds: a rotation �eld and a epipolar

(translation) �eld. A majority of these methods have

treated the problems of motion measurement and es-

timation as independent problems. This approach has

been plagued with problems in getting robust and accu-

rate estimates [Dutta90]. Errors in the estimate of the

relative orientation (especially the rotation component

e.g. when the motion is parallel to the image plane) be-

tween the cameras severely a�ects the depth estimates.

In this paper, we develop an alternative approach

which is based on decomposing the motion �eld into the

image motion of a parametric surface and a residual par-

allax �eld. The motion of the surface can be expressed

as a parametric motion �eld and is estimated using a di-

rect technique [Bergen92]. The direct approach provides

a more accurate alignment of the surface than using pure

�

Readers may contact �rst author at Email:

kumar@sarno�.com

\bottom-up" ow-�elds. The residual parallax �eld is

an epipolar �eld (see Section 2) and is quasi-parametric;

it is also estimated using a direct method. The parallax

magnitudes, when normalized to cancel out a scale factor

that depends on the magnitude of camera translation are

relative a�ne invariants

1

[Shashua94a] and [Sawhney94].

From the parallax maps, a projective 3D reconstruction

[Faugeras92] of the scene can be made. This projective

3D reconstruction is related to the euclidean 3D con-

struction by a collineation (4� 4) matrix.

Our work is related to the recent work using pro-

jective geometry of [Hartley93, Sawhney94, Shashua94a,

Szeliski94] and motion stabilization of [Irani94a]. It also

extends the work of [Carlson90] in obstacle detection

by removing the requirement placed by their technique

that the camera translation should be parallel to the

reference plane. It di�ers from previous work in sev-

eral ways: First, our derivation of the surface+parallax

decomposition of image motion is not restricted only

to planar surfaces. Second, we use \direct" estimation

methods for aligning the plane and estimating residual

parallax, thereby avoiding many of the problems intro-

duced by bottom-up optical ow estimation. Finally, our

approach does not require the explicit estimation of rota-

tion and translation to estimate structure. Instead, the

rotational component of motion is cancelled as a part of

the surface registration process. This has the advantage

that the instabilities introduced during the computation

of rotation matrices from the noisy ow �elds is removed.

Our approach improves both the motion measurement or

correspondence and 3D motion interpretation stages of

dynamic image analysis.

We exploit the above results to infer 3D height infor-

mation from oblique aerial 2D images under the follow-

ing three conditions: (i) focal length and image center

are known, (ii) focal length is unknown but image cen-

ter is known and (iii) focal length and image center are

both unknown. We achieve this by applying direct reg-

istration methods to align the planar reference surfaces,

and recover and interpret the parallax relative to that

surface (see Section 3). We use the invariance property

of the scaled parallax magnitudes to combine multiple

1

Relative a�ne invariants are invariants to an a�ne de-

formation of the intrinsic camera parameters (focal length,

image center etc.) and are relative to a reference plane in the

scene.


