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Abstract

When a disparity map is computed from widely

separated images the perspective distortion

may result in a large number of false matches

and poor reconstruction accuracy. This pa-

per describes three image matching algorithms

designed speci�cally to process images taken

fromwidely varying viewpoints. They include a

new match score, and modi�cations to standard

subpixel and hierarchical matching techniques.

The algorithms are incorporated into a stereo

analysis package and the system is tested by

processing a sequence of simulated images with

base-to-height ratios that varied between 0.25

and 2.25, and a single pair of high altitude im-

ages with a base-to-height ratio of 0.63. Anal-

ysis of the simulated data showed that when

these algorithms are implemented the recon-

struction accuracy remains independent of the

base-to-height ratio.

1 Introduction

For applications such as unmanned ground ve-

hicles, stealth navigation, RADIUS, and sen-

sor fusion, terrain maps must be reconstructed

from images gathered from distant reconnais-

sance sources. These images present unique

problems for terrain reconstruction systems be-

cause of their oblique viewing geometry and the

associated large base-to-height ratios. In this

paper, algorithms designed speci�cally to pro-

duce accurate elevation maps from image pairs

with a large base-to-height ratio are discussed.

It is assumed that the camera parameters and

poses are known, and the discussion is focused

on developing methods for computing a dis-

parity map. The discussion is further limited

to terrain in which the characteristic dispar-

ity of an object is roughly proportional to its
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horizontal dimensions (i.e., objects that cover

a large area have large disparities and objects

that cover a small area have small disparities),

the surfaces are highly textured, and most sur-

face features are visible in both images. In ad-

dition, attention is given mainly to retrieval ac-

curacy; at this time computation speed is not

considered.

When imagematching is used to compute a dis-

parity map, a dilemma occurs when the size of

the correlation mask is selected. To increase ro-

bustness to random noise, the mask should be

as large as possible, and to minimize the e�ects

of projective distortion, the mask should be as

small as possible [Mostafavi, 1978]. To help de-

velop algorithms that balance these competing

factors we take advantage of the fact that pixels

near the mask center are less a�ected by projec-

tive distortion. The weighted cross-correlation

match score (described in Section 2) and the

subpixel image matching technique (described

in Section 3) are designed speci�cally to place

more emphasis on the pixels near the center of

the correlation mask. In addition, a hierarchi-

cal matching scheme is discussed Section 4 that

iteratively corrects for perspective distortion.

2 Weighted correlation mask

Starting with two views of an object (labeled R

and L), the goal of image matching is to �nd

pixel pairs (one in the R image and one in the L

image) that view the same spot on the object.

In the matching process a series of match scores

�(i; j; �i; �j), �i = �i

min

����i

max

and �j = �j

min

�

���j

max

is computed between a window of pixels

(correlation mask) centered at pixel (i; j)

R

in

the R image and a similar mask centered at

(i+ �i; j+ �j)

L

in the L image. By convention,

disparities (�i; �j) are de�ned relative to a �xed

position in the R image, and a variable position

in the L image. Next, the optimal disparity



(�i

�

; �j

�

) corresponding to the best match is

selected. If (�i

�

; �j

�

) satis�es the condition that

(i; j)

R

and (i + �i

�

; j + �j

�

)

L

view the same

spot on the object, the best match is said to be

correct; otherwise, a false match has occurred.

False matches occur when noise or distortion

lowers the match score for the correct disparity

and/or raises the match score for an incorrect

disparity in such a way as to cause the wrong

disparity to be selected.

One of the most robust and commonly used

match scores is the cross-correlation coe�cient

�(i; j; �i; �j) between a rectangular mask cen-

tered at (i; j)

R

and a similar mask centered at

(i + �i; j + �j)

L

. By de�nition �(i; j; �i; �j) is

given by

�(i; j; �i; �j) = (1)

Cov [I

R

(i; j); I

L

(i+ �i; j + �j)]

p

V ar [I

R

(i; j)]V ar [I

L

(i+ �i; j + �j)]

where I

R

(i; j) and I

L

(i; j) are pixel intensi-

ties, Cov [I

R

(i; j); I

L

(i+ �i; j + �j)] is the co-

variance between masks, and V ar [I

R

(i; j)] and

V ar [I

L

(i+ �i; j + �j)] are the variances within

each mask [Cochran and Medioni, 1992]. In

this formula, �(i; j; �i; �j) does not depend on

the positions of the pixels within the mask,

and all pixels contribute equally to the match

score. Pixels near the center of the mask, how-

ever, are less a�ected by perspective distor-

tions, and more emphasis should be given to

these pixels. This can be done by assigning a

weight to each pixel that depends on its posi-

tion within the mask. Thus, the weighted av-

erage E[I

R

(i; j);A] of the pixel values within

an arbitrarily shaped mask Q centered at pixel

(i; j)

R

is

E [I

R

(i; j);A] =

1

N

X

{
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X

|

0
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R
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where ({

0

; |

0

) 2 Q, A(i� {

0

; j � |

0

) are the mask

weights that depend on the distance from sum-

mation index ({

0

; |

0

) to the mask center (i; j),

and N is the total number of pixels within

the mask. Furthermore, to ensure that the

mask does not attenuate or amplify the image,

the weights are normalized so that the average

weight is unity.

1 =

1

N

X

{

0

X

|

0

A({

0

; |

0

)

Likewise, the weighted variation at pixel
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and the weighted variance V ar [I

R

(i; j);A] and

covariance Cov [I

R
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L
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V ar [I

R

(i; j);A] =

1
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and the weighted cross-correlation match score

is given by

�(i; j; �i; �j;A) = (2)

Cov [I

R

(i; j); I

L

(i+ �i; j + �j);A]

p

V ar [I

R

(i; j);A]V ar [I

L

(i+ �i; j + �j);A]

For the analyses presented in this paper two

weighting functions are use, Gaussian weights

given by

A(i� {

0

; j � |

0

) =

2n+ 1

2

2n

�

2m+ 1

2

2m

�

2n!

(n � i+ {
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) ! (n+ i� {
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(m� j + |
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and uniformweights given byA(i�{

0

; j�|

0

) = 1,

for �n � (i � {

0

) � n and �m � (j �

|

0

) � m. Note that when the uniform weights

are used, the weighted cross-correlation match

score (Equation 2) reduces to the conventional

cross-correlation match score (Equation 1).

By assigning a weight of zero to all pixels that

lie outside Q, the array of weighted averages

E(I ;A) for all pixels in an image may be com-

puted by convolving I with the kernel A and

dividing by N .

E(I ;A) =

1

N

I �A

Similarly, the computation formulas for the

variance array Var(I ;A) and covariance array

Cov(I

R

; S(I

L

; �i; �j;A) are

Var(I ;A) =

1

N � 1

�

I

2

�A

2

�

1

N

(I �A)

2

�

(3)



and

Cov(I

R

; S(I
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; �i; �j);A) =
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N � 1

h

(I

R

� S(I
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�
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N

(I

R

�A) � (S(I

L

; �i; �j) �A)

�

where S(I

L

; �i; �j) is an operator that shifts

an image by �i pixels in the i-dimension and

�j pixels in the j-dimension. Implementation

of the shift operator is important to the per-

formance of the subpixel image matching algo-

rithm (see Section 3 for details).

If the surface is stationary or the images are

taken simultaneously, the computations may

be simpli�ed by applying epipolar constraints

[Slama, 1980]. By resampling the R and L im-

ages so that each image line corresponds to an

epipolar line, the vertical component of the dis-

parity becomes identically zero, i.e., �j = 0, for

all (i; j). In the following sections it is assumed

that the epipolar constraints apply, thus �j is

dropped from all equations and �i is replaced

with �.

3 Subpixel image matching

Reconstruction accuracy depends directly on

the disparity map accuracy; therefore, signif-

icant improvements can be achieved by com-

puting disparities to subpixel accuracy. Sub-

pixel registration schemes rely on the assump-

tion that near the true disparity

~

�, the com-

puted match scores are estimates of a smooth

function ~�(�) [Faugeras, 1993]. Thus, an es-

timate of the optimal disparity �

�

is found by

approximating ~�(�) with a model f(�; c

0

; c

1

; ���),

solving for the coe�cients c

0

; c

1

; � � �, and setting

�

�

to the value of � that optimized the model,

f

0

(�

�

; c

0

; c

1

; � � �) = 0. For the subpixel matching

algorithm described below, a parabolic model

f = c

0

� �

2

+ c

1

� � + c

2

is used; and �

�

is found

by solving a least squares problem for the coe�-

cients (c

0

; c

1

; c

2

) and then setting �

�

= �2c

1

=c

0

[Tian and Huhns, 1986]. The error sources as-

sociated with this scheme are modeling error

(i.e., the di�erence between ~�(�) and f(�)) and

contamination of pixel values by random noise.

A detailed analysis of the e�ect of these error

sources is beyond the scope of this paper. How-

ever, it is important to note that the e�ects of

modeling errors and random noise become more

pronounced as � moves away from

~

� (the true

disparity).

Typically, match scores are evaluated at a se-

ries of integer disparities about the previous

best guess of the true disparity �

�

0

. If the in-

terval is too narrow, an insu�cient number of

samples are used to estimate the location of

the peak; and if the interval is too wide, the

match score estimates at the ends of the in-

terval may not be statistically signi�cant. In

either case, the location of the peak is poorly

de�ned. For example, if � = �

�

0

+[�2;�1; 0; 1; 2]

then only 5 observations are used to compute

3 parameters. If the range is extended to

� = �

�

0

+[�4;�3;�2;�1; 0; 1; 2; 3; 4] the number

of samples is increased to 9, but large modeling

and random noise errors at the ends of the in-

terval may contaminate the match scores used

to estimate the location of the peak.

One method for solving this problem is to use

a smaller disparity search range and evaluate

the match scores at subpixel intervals. If the

desired width of the search range is approxi-

mately �1:5 about the previous best guess �

�

0

and the interval between pixels is split p times,

where p is an odd integer, the search range is

�

�

0

�

�

3p+ 1

2p

�

+

n

p

; n = 0; � � �; 3p+ 1

For example, if p = 5 the disparity values are

�i = �

�

0

+ [�

8

5

;�

7

5

; � � �;�

1

5

; 0;

1

5

; � � �;

7

5

;

8

5

] and 17

match scores in an interval 3:2 pixels wide are

used to estimate �i

�

.

In the computational formulas (Equation 3) the

disparities are not speci�ed directly. Instead

a subpixel shift operator S(I

L

; �; 0) is used to

shift the entire image by � pixels in the i-

dimension before the convolutions with A and

A

2

are computed. The shift operation is imple-

mented by convolving I

L

with an asymmetric

kernel B

�

, i.e., S(I

L

; �; 0) = I

L

� B

�

. For ex-

ample, if � = 1:2, then B

�

= (0:2; 0:8; 0; 0; 0);

and if � = �0:9, then B

�

= (0; 0; 0:1; 0:9; 0).

4 Pyramid processing

When imaging terrain it is generally true that

large objects have large disparities and small

objects have small disparities. When the res-

olution of the R and L images are reduced,

smaller features disappear. Thus, only small

scale disparities are lost when the low resolu-

tion images are correlated. Once the large scale

disparities are recovered, the small scale dis-

parities are recovered by processing the high

resolution images and restricting the disparity



search to perturbations about the previously re-

covered disparities. This re�nement process re-

sults in a signi�cant reduction in the amount

of computation, which in addition to saving

time also reduces the chance of encountering

false matches. The sequential processing from

low to high resolution image pairs is referred to

as hierarchical, or pyramid processing [Anan-

dan, 1989]. Note that pyramid schemes will

fail when small features have large disparities

(e.g., telephone poles). This happens because

in the low resolution images small features are

not visible and in the high resolution images

the disparity search range is not su�cient to

match the feature.

An image pyramid is a set of images I

(0)

; I

(1)

; ���

of progressively diminishing resolution that are

derived from a common parent image I . Reso-

lution reduction is accomplished by smoothing

and the previous layer and then selecting every

other pixel. For the data presented in this pa-

per, 4 level pyramids are used, the images are

reduced by convolving with a 3 � 3 Gaussian

kernel and selecting every other pixel.

Starting with the lowest resolution images (at

the top level), an iterative process is carried

out in which a disparity map is computed, ex-

panded to match the size at the next lower level,

and re�ned. This process continues until the �-

nal disparity map at the base level is computed.

The disparity search range at all levels, except

the top level, is�

�

3p+1

2p

�

(p is the interval split-

ting factor described in Section 3). The dispar-

ity search range at the top level is set so that

the disparity range at the bottom will cover the

anticipated range.

At pyramid level k, the initial disparity ar-

ray D

(k)

0

is formed by copying the disparities

computed at the previous level D

(k+1)

into ev-

ery other entry in D

(k)

0

, i.e., D

(k)

0

(2i; 2j) =

D

(k+1)

(i; j), �lling in the missing values in D

(k)

0

by linear interpolation, and then multiplying

the entries in D

(k)

0

by two. Next, we could sim-

ply use D

(k)

0

to initialize the disparity search

at level k, and compute the disparity array

D

(k)

directly by matching I

(k)

R

and I

(k)

L

with

the search range at pixel (i; j) given by

D

(k)

0

(i; j)�

�

3p+ 1

2p

�

+

n

p

; n = 0; � � �; 3p+1 (4)

Or better yet, we could unwarp I

(k)

L

by making

the substitution

I

(k)

L

(i; j)! I

(k)

L

(i+D

(k)

0

(i; j); j) (5)

for all pixels in I

(k)

L

, then compute an incremen-

tal disparity array �D

(k)

(i; j) by matching I

(k)

R

and I

(k)

L

(which has just been unwarped) with

the search range at pixel (i; j) given by

�

�

3p+ 1

2p

�

+

n

p

; n = 0; � � �; 3p+ 1 (6)

and �nally update the initial guess to form the

disparity array at level k.

D

(k)

(i; j) = D

(k)

0

(i; j) + �D

(k)

(i; j): (7)

This procedure removes the perspective distor-

tion associated with larger features. Before un-

warping I

(k)

R

(i; j) and I

(k)

L

(i+D

(k)

0

(i; j); j) view

the same general spot on the surface. Whereas,

after unwarping the large scale disparities are

removed and I

(k)

R

(i; j) and I

(k)

L

(i; j) view the

same general spot on the surface. Using D

(k)

0

to unwarp I

(k)

L

is similar to the method pro-

posed by Schenk et al. (1980) in which D

(k)

0

is

used to compute an approximate orthonormal

image pair from I

(k)

R

and I

(k)

L

and then �D

(k)

is computed by matching the approximate or-

thonormal images.

5 Terrain reconstruction

The following is a description of the basic steps

taken by the terrain reconstruction system (for

a detailed description see Schultz (1994)).

1. Resample the raw R and L images into

epipolar coordinates.

2. Create n level image pyramids I

(0)

R

���I

(n�1)

R

and I

(0)

L

���I

(n�1)

L

(see Section 4 for details).

3. Compute the top level disparity map

D

(n�1)

from I

(n�1)

R

and I

(n�1)

L

using the

weighted cross-correlation match score,

subpixel image matching, and hierarchical

techniques described in Sections 2, 3, 4.

4. Initialize the level counter k = n� 2.

5. Create the initial guess D

(k)

0

by expanding

D

(k+1)

.

6. Unwarp I

(k)

L

.



7. Compute the incremental disparity map

�D

(k)

by matching I

(k)

R

and I

(k)

L

.

8. Update the disparity map D

(k)

= D

(k)

0

+

�D

(k)

.

9. Test for the bottom level. If k > 0, decre-

ment the level counter k = k� 1 and go to

step 5, otherwise continue.

10. At the base level, calculate the world

coordinate vector

~

X(i; j) = (X

(0)

R

(i; j);

Y

(0)

R

(i; j); Z

(0)

R

(i; j)) for pixels where

D

(0)

(i; j) exists. This is done by solv-

ing the stereo observation equations for all

pixel pairs where a correspondence exists

[Slama, 1980].

11. Create the orthonormal elevation map Z

and image I by resampling the elevations

Z

(0)

R

and pixel intensities I

(0)

R

onto a regu-

larly spaced grid in world coordinates.

6 Results

The terrain reconstruction system was tested

by processing three sequences of simulated im-

ages and one real image pair. To evaluate the

performance of system as a function of base-

to-height ratio b=h, and with and without the

weighted correlation mask and subpixel image

matching algorithms, a series of simulated im-

ages were analyzed. For each simulation the

camera models and locations along with a ran-

dom surface were speci�ed, and an R and L

image pair synthesized using a ray tracing pro-

gram. Then from the camera models and syn-

thesized images, the surface was recovered and

compared to the original simulated one. The

same random surface (shown in Figure 1) was

used for all simulations. The horizontal dimen-

sions of the surface is 1m � 1m, the rms sur-

face height is 1.33cm, and the surface height

spectrum is proportional to k

�4

cm

�1

, where

k is the spatial frequency. Furthermore for

all simulations, the cameras were located 10m

above the surface, the focal length and orien-

tation of the cameras were adjusted so that

the entire surface �t within the camera �eld-

of-view, and the optic axis passed through the

center of the surface. A series of nine syn-

thesized image pairs were generated for b=h =

(0:25; 0:50; 0:75; 1:00; 1:25; 1:50; 1:75; 2:00; 2:25).

The simulated image pair for b=h = 2:25 is

shown in Figure 2. The a�ects of perspective

distortion are clearly visible in this image pair.

The sequence was processed by the terrain re-

construction system described in Section 5 for

three sets of parameters, (1) Gaussian weights

and p = 9, (2) uniform weights and p = 9, and

(3) uniform weights and p = 1.

Figure 1: The random surface used in all simula-

tions.

Reconstruction errors are reported in terms of

the percent of the scene recovered r and the

normalized elevation error s. The normalized

elevation error s is the standard deviation of

the elevation errors for all nodes where an ele-

vation was computed, divided by a normaliza-

tion factor s

0

, i.e.,

s =

1

s

0

STDEV

�

~

Z(i; j)� Z(i; j)

�

where the standard deviation STDEV is com-

puted only for nodes where the recovered ele-

vations Z(i; j) exists (see Section 5, Step 11),

~

Z(i; j) are the known elevations, and s

0

is a

normalization factor that compensates for the

natural improvement of vertical resolution with

b=h. The length s

0

is equal to the height of the

volume traced out by the intersection of the

�eld-of-view of the pixels at the center of the R

and L images [Matthies and Sha�er, 1987].

The simulation results are summarized in Fig-

ure 3, where r and s are plotted as a function of

b=h for the three sets of parameters described

above. Inspection of Figure 3 reveals that when

the weighted cross-correlation match score and

subpixel image matching algorithms are imple-

mented, r and s do not depend on b=h for values

of b=h at least as large as 2.25. If instead, a con-

ventional cross-correlation match score is used,

r remains constant and s grow slowly with b=h.

If, in addition, integer image shifts are used

instead of subpixel shifts, r and s grow more

quickly with b=h.



Figure 2: Synthesized image pair with a 2.25 base-to-height ratio showing a signi�cant amount of perspective

distortion.
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Figure 3: The percent recovered (r) and normalized reconstruction error (s) as a function of base-to-height

(b=h) ratio for Gaussian weights and p = 9, uniform weights and p = 9, and uniform weights and p = 1.

In addition to the simulated data, a pair of

high altitude photographs shown in Figure 4

of a building, parking lot and surrounding ter-

rain of the Martin Marietta UGV site also were

processed. The digitized images along with the

camera parameters were supplied by the U. S.

Army Topographic Engineering Center. The

�rst of these images was arbitrarily assigned

to the R image, while the other one was as-

signed to the L image. The image pair was then

processed using the terrain reconstruction algo-

rithms described above. The images were taken

with the cameras looking straight down, with a

base-to-height ration of 0.6295. Four level pyra-

mids, Gaussian weights, and subpixel matching

with p = 5 were used. At the top level the dis-

parity search range was set to (�12

3

5

; 13

3

5

), and

the window sizes for the 4 levels were 5�5, 9�7,

13�11 and 25�21.

The reconstructed orthonormal elevation map

Z and image I are shown in Figure 5. Fig-

ures 4 and 5 appear to be rotated and reversed

relative to each other because the high altitude

images come from digitized negatives and the

orthonormal views are displayed in world coor-

dinates. Figure 6 shows rendered views of three

areas in the test site|the building, parking lot,

and a rock formation. In the rendered view of

the building, sharp boundaries, especially cor-

ners, are not accurately reconstructed. How-

ever, many details of the structure, such as the


at roof and ventilation equipment, are clearly

visible. In the rendered view of the parking

lot, the basic shape of the cars are visible, how-

ever, the light pole is missing (only its shadow

remains). This is an expected artifact because

the light pole is a small feature with a large dis-

parity. In the rendered view of the rock forma-

tion, there does not appear to be any artifacts.

This part of the test site has ideal conditions for

terrain reconstruction. Notice that the shading

on the rocks, vegetation, gully and bare ground



Figure 4: Two overlapping high altitude photographs of the test site.

Figure 5: The elevation map and orthonormal view of the test site.

are consistent with the shapes of these objects.

7 Conclusions

The algorithms described in this paper were de-

signed speci�cally to reconstruct terrain from

oblique views. Based on analyses of simulated

and real data, it appears that terrain can be

successfully reconstructed from images taken

from widely varying viewpoints. These pro-

cedures are especially valuable in operational

scenarios, such as stealth navigation and un-

manned ground vehicles, where terrain maps

must be reconstructed from image data gath-

ered from distant reconnaissance sources. We

are currently setting up a series of laboratory

experiments to evaluate the performance of the

terrain reconstruction system under a variety of

operational conditions including b=h, lens fo-

cal length, and terrain type. In additions we

are in the process of integrating the terrain re-

construction and the UMass automatic building

model acquisition systems [Collins et al., 1994,

Jaynes et al., 1994].
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