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Abstract1

Using color for visual recognition outdoors has
proven to be a difficult problem, chiefly due to
varying illumination.  Attempts to classify
pixels or image patches in outdoor scenes
based on their RGB values often fail, partly
because of the inadequacy of the feature set,
but partly because of color shifts due to
changes in illumination are not well modeled
as random noise. Approaches which attempt
to recover the “true color” of objects by
calculating the color of the incident light (i.e.
color-constancy approaches) appear to work
in constrained environments, but are not yet
applicable to outdoor scenes.

We present a technique that uses training
images of an object under daylight to learn
the shift in color of an object.  Our method
uses multivariate decision trees for piecewise
linear approximation of the region
corresponding to the object's appearance in
color space.  We then classify pixels in
outdoor scenes depending on whether they fall
within this region, and group clusters of target
pixels into regions of interest (ROIs) for a
model-based RSTA system.  The techniques
presented  are demonstrated on a challenging
task: detecting camouflaged vehicles in
outdoor scenes.

1. Introduction

Classifying objects based on their color (and in
some cases, texture) is one of the oldest
problems in computer vision and pattern
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recognition (see, for example, [Duda and Hart
1973]). In indoor settings, where lighting and
other imaging conditions can be controlled,
maximum-likelihood classifiers recognize
objects by modeling variations in color as
Gaussian noise in feature space, and assigning
every pixel (or image patch) the label with the
highest probability. Although these systems
have been around for decades, recently Swain
has rejuvenated interest in indoor color-based
object classification by showing impressive
(and real-time) results using color histogram
matching [Swain 1990].

Unfortunately, using color in outdoor imagery
has proven more difficult, enough so that
almost all existing military classification
systems rely on non-visual sensors (e.g. FLIR
or LADAR).  The main problem with  (visible)
color has been the unpredictability of an
object's apparent color in daylight; the color
shift between sunny and cloudy days (or
between morning and afternoon) is simply not
well modeled as Gaussian noise in RGB.
Researchers working on color constancy
attempt to resolve this problem by
reconstructing from the image the color of the
incident light, and then adjusting the observed
reflectances accordingly (e.g. [Forsyth 1988]).
Unfortunately, their techniques can only be
applied in highly-constrained contexts thus
far..

Using the (admittedly crude) standard models
of the color reflectance and earlier
quantitative studies of natural lighting, we
argue that the observed reflectances of an
object in outdoor scenes should trace out a
smooth (sometimes piecewise-linear) surface
in RGB, or a thin, curved volume when small
amounts of noise are added. The best approach
to classifying objects in outdoor images is



therefore to learn this daylight reflectance
volume for each object, and classify pixels
according to whether they fall inside or outside
of this volume. We use multivariate decision
trees to learn a volumetric approximation in
RGB to the reflectance volume of an object
and to classify pixels. The technique is applied
to recognizing camouflaged vehicles in the Ft.
Carson image set [Beveridge, et al. 1994].

2. The Standard Model of  Color

Variation

The most significant deterrent to the use of
color in outdoor settings has been the natural
chromatic variation of daylight, which results
in a significant shift in an object's apparent
color.  Our approach to this problem is to use
multivariate decision trees (MDTs) [Brodley
and Utgoff] (a type of recursive, non-
parametric classifier) to learn the volume in
color space that corresponds to the possible
(observed) colors of an object under natural
light.  Before proceeding, however, we will
first review the standard color models and
argue that this approach is reasonable given
the underlying physics.

The observed irradiance of an object in a color
image depends on 1) the color, intensity and
position of the incident light; 2) the
reflectance properties of the object; and 3) the
camera parameters.  Fortunately, standard
models exist for all three phases of this
process. (It should be noted that we are not
proposing new physics-based models, nor even
using the most sophisticated models available.
Our intent here is simply to give a qualitative
understanding of the underlying physics as it
relates to MDTs.) In outdoor images, the
incident light is daylight. Extensive studies
done in the 60's determined that the color of
daylight varies along a characteristic curve,
called the CIE daylight curve, defined by the
following equation [Judd, et al. 1964]:

y = 2.87 x - 3.0 x2 - 0.275

Figure 1 shows the daylight curve in a
chromaticity diagram. The equation shows
changes in the color of daylight to be changes
of a single variable, called the temperature of
the daylight, which is independent of
intensity.  The incident light in outdoor
images therefore lies on a surface in RGB,
formed by sweeping out the CIE curve along
the intensity axis.

Figure 1. The CIE daylight curve.

Researchers who model the reflectance
properties of objects generally assume a
lambertian color model, in which the surface
reflectance of an object is strictly a function
of the wavelength λ  of the incident light,

given as:

s(λ) = e(λ)ø(λ)

where e(λ) is the intensity of the incident light

at wavelength λ , and ø(λ ) is the object’s

albedo function giving the percent of light
reflected at each wavelength. It should be
noted that this model is highly restrictive and
unrealistic for most circumstances. For
example, it does not account for extended
light sources, inter-reflectance effects,
shadowing or specularities. Nonetheless, it is
the best available working model of color
reflectance.

This basic reflectance model can be made
simpler or more sophisticated, depending on
the purpose for which it is used. Forsyth, for
example, models the sensitivity of the
receptors to different wavelengths of light,
and adds another term s*(λ) which specifies a

residual reflectance (although in practice, he
sets this term to zero).  The basic properties
of the model do not change significantly,
however, and for our purposes it will be
sufficient to model an object as reflecting a
fixed percentage of the incident light in each
of the three color bands.

The color of light reflected from a lambertian
object located outdoors is therefore a function
of the temperature of the daylight and the
object’s albedo.  To predict the intensity



response in each color band (i.e. the RGB pixel
values) we also have to know the intensity of
the daylight, the relative orientation of the
light source and object surface, and the camera
parameters.  Given the radiance of an object
L(λ), the observed intensities depend on the

lens diameter d  and focal length f  of the
camera, and the image position of the object
measured as an angle a off the optical axis, as
given by the standard irradiance equation
[Horn 1987]:

E(λ) = L(λ) ⋅(π/4) (d/f)2 cos4a

The irradiance equation multiplies each
wavelength λ of L by a constant function of

the camera parameters, so it does not affect
the observed color of an object, only its
intensity.  (This is an approximation: the
focal length of a lens is a function of the
wavelength λ , creating an effect known as

chromatic aberration, as discussed in [Boult
and Wolberg 1992], for example. As a result,
the image irradiance equation does imply a
slight color shift as a function of image
location, but for our purposes we will assume
that chromatic aberration is negligible.)
Similarly, the relative orientation of the
object surface to the light source will alter an
object’s intensity but not its color.

For our purposes, we are not interested in the
details of these three equations so much as
qualitative aspects of their solutions. The CIE
daylight curve predicts that the incident light
in an outdoor scene will fall somewhere along
a smooth, curved surface in RGB space. The
lambertian reflectance model predicts that the
object’s reflectance will be a distorted version
of this surface, where the extent and direction
of the distortion depend on the object’s
albedo.  Finally, the observed irradiance is the
reflected light surface scaled by the irradiance
equation, assuming that the camera parameters
are fixed. If we add a small amount of Gaussian
noise, we find that the observed reflectances
should lie in a thin, smooth, curved volume in
color space.

3. Selecting a Classifier

If we completely believed the standard color
model outlined above, then we would know all
the form of the observation function (a
function of temperature, albedo, etc.), and
training a maximum-likelihood classifier would

be a  parameter  es t imat ion task.
Unfortunately, we know that these models are
not that accurate. Inter-reflectance effects,
specularities and other unmodeled phenomena
will introduce further distortions into this
volume. When digital CCD cameras are used,
digitizer parameters, pixel saturation effects,
and non-linearities in the NTSC signal
standard will warp the volume of possible
irradiances still further. It therefore seems
premature to approach the outdoor
classification problem as an explicit parameter
estimation problem for a known equation.
Nonetheless, under the course model proposed
earlier it seems reasonable to assume that the
observed irradiances from a single object under
natural lighting will lie in a smooth, thin,
irregularly curved volume.

This assumption is by no means trivial. Work
done by several researchers (and summarized
in [Novak and Shafer 1993]) suggests that
dielectric materials with specular reflections
produce “dog-legged” distributions in color
histograms (with no variation in lighting).
Where the lambertian model predicts a
straight line distribution in color space,
dielectrics produce piecewise-linear curves with
two segments, one corresponding to diffuse
reflection, the other to specular.  The curves
are not discontinuous, however.  If we assume
the same effect holds outdoors, the observed
reflectance volume should have a point at
which it changes direction, but it could still be
qualitatively described as a thin, irregularly
shaped volume.

Our approach is to assume that we do not
know the exact form of the equation
governing the observed irradiance of colored
objects in outdoor scenes, but that we have a
rough qualitative description of its shape.  To
recognize objects in outdoor scenes, we
therefore need to select a classification
scheme that performs well on smooth, thin,
irregularly curved volume  in feature space.
By definition, parametric classifiers are out,
since the underlying equation is unknown.
Instance-based classifiers were not considered,
because intuitively they should perform poorly
on thin, curved surfaces.  Neural networks (i.e.
feed-forward backpropagation nets) were
considered and would presumably perform well,
but require large numbers of samples for
training.  Instead, we chose multivariate
decision trees (MDTs) [Brodley and Utgoff],



which create piecewise-linear approximations
to surfaces in feature space by recursively
dividing feature space with hyperplanes.  For
classes characterized by smooth, continuous
volumes in feature space, MDTs generally
produce good classification results from fewer
training samples than are required by neural
networks.

4. Multivariate Decision Trees (A Quick

Overview)

We use multivariate decision trees, an
approach that recursively subdivides feature
space with hyperplanes.  Multivariate decision
trees are well known in the machine learning
community, but have been used less often in
computer vision (although, see  [Draper, et al.
1994]).

The basic goal of a multivariate decision tree
is to divide feature space into regions such that
all the training samples in a region have the
same label.  In our case, there are only two
labels (camouflage and other), so the
methodology is to test if all the instances in
the current region of feature space have the
same label. If so, label the region; if not, find
the hyperplane(s) that maximally separates
instances of the two labels, divide feature
space into two regions using this hyperplane,
and recurse on each region.

The hyperplanes used to divide feature space
are represented as linear threshold units
(LTUs) [Nilsson 1965, Duda and Hart 1973].
Several methods exist for learning the weights
in a linear threshold unit.   Brodley and Utgoff
[Brodley and Utgoff] discuss four such
methods: the Recursive Least  Squares (RLS)
algorithm [Young 1984], the Pocket
algorithm [Gallant 1986], Thermal Training
[Frean 1990], and CART's coefficient learning
method [Breiman, et al. 1984].  Because we
are concerned only with two-class
classification in this domain, the RLS training
method is used in this paper (see [Young
1984] for a description of training LTUs for
two-class classification, and [Draper, et al.
1994] for a description of multi-class
classification using Frean’s thermal training
rule [Frean 1990])

Like other non-parametric learning
techniques, decision trees are susceptible  to
overtraining.  In order to correct for
overfitting, a fully grown tree can pruned  by

determining the classification error for each
non-leaf subtree, and then  comparing it to the
classification error resulting from replacing
the subtree  with a leaf-node bearing the class
label of the majority of the training instances
in the set.  If the leaf-node results in better
performance, the subtree is  replaced by it
[Breiman, et al. 1984; Quinlan 1986; Brodley
and Utgoff].

5. Finding Camouflaged Vehicles

The color model described in sections 2 and 3
suggests that multivariate decision trees should
be a good technique for classifying objects in
outdoor images. To test this hypothesis, we
tested MDTs ability to identify military
vehicles in the Ft. Carson data set [Beveridge,
et al. 1994]. This is obviously a difficult task:
not only are these outdoor images with natural
lighting, but the vehicles have been
intentionally camouflaged! In addition, we are
classifying pixels from only their RGB values.

The motivation for attempting such a
challenging task is the need for a rapid focus
of attention (FOA) mechanism for RSTA.
Any classification scheme that labels pixels
based on only their RGB values can be loaded
into a 24-to-1 bit lookup table, and applied in
real time.  Obviously, the feature set is so
impoverished that some errors are inevitable,
but if many pixels can be accurately classified,
then contiguous groupings of target pixels can
be used as regions of interest (ROIs) for the
RSTA identification and matching algorithms
to process.  The vital question is whether
pixels can be classified accurately enough to
produce “useful” ROIs.

Tests were conducted on a set of 44 images
from the Fort Carson data set. (This is
essentially all the RGB images from the first
CD except for calibration images and a few
images that are excessively dark; [Beveridge,
et al. 1994] describes the complete data set
and how it can be obtained.) The objects being
sought were camouflaged  military vehicles in
a natural setting.  There are four different
army vehicles in these images: two armored
personal carriers, a pickup truck, and an M60
tank; all four bear slightly different colors and
patterns of camouflage.

Quantitative evaluation of the performance of
the classifier was done at two levels: pixel and
ROI.  At the pixel level,  classification



accuracy is a poor evaluation criterion; since
99.6% of the pixels are background, a
classifier that labeled nothing as target would
be highly accurate.  Instead, we evaluate our
system separately in terms of its accuracy on
target pixels and its accuracy on background
pixels.

The pixel-wise performance of the MDT
classifier on the Ft. Carson images is given in
Table 1.  On the average, 53.40% of the
target pixels and 97.50% of the background
pixels were correctly classified. These results
were obtained using cross-validation, where the
decision tree was trained on half the images
and tested on the other half.  In order to  train
the decision trees, approximately 35,000
sample pixel values were extracted from the
training images.  Figure 2 shows the images
with the best, average and worst results (in
terms of qualitative accuracy), respectively,
along with their corresponding classified
binary images.

Table 1.  Ability of Multivariate Decision

Trees to separate target pixels (of
camouflaged  vehicles) from background pixels
for the Ft. Carson images Beveridge, et al.
1994].

% of Target
Pixels

Correctly
Labeled

%  of
Background

Pixels
Correctly
Labeled

Average 53.40 97.50

Best 84.66 99.67

Worst 31.87 94.71

SD 10.39 1.62

Table 1 provides a measure of the multivariate
decision tree as a  classifier for this domain,
testing the argument about MDT’s ability to
compensate for natural chromatic variation
made in Sections 2 & 3. Another way to test
the validity of this argument is to look at the
distributions of target and background pixels in
the Ft. Carson data, and the region of color-
space associated with target pixels learned by
MDT. Figures 3 and 4 show the target and
background pixels in a chromaticity diagram;
Figure 5 shows the region of space learned by
the MDT, also projected onto a chromaticity
diagram. Note that large portions of the space
are occupied by neither target not background

pixels, so the label associated with these parts
of color space is arbitrary. In this example,
MDT assigns much of this space the class
“target”.

A region-level evaluation, on the other hand,
certifies how well MDTs perform at
generating regions of interest for a RSTA
system.  ROIs were generated from the pixel-
label data by finding connected groups of
target pixels that were at least ten pixels high
and wide, and that had a maximum aspect ratio
(height to width or width to height) of 10:1.
ROIs whose bounding rectangles overlapped
were then merged.  For ROIs, there are two
relevant evaluation criteria: the probability
that a ROI will be generated for any target,
and the probability given an ROI that it
contains a target. For the Ft. Carson data,
there were 112 occurrences of targets in the
44 test images. The MDT classifier produced
153 ROIs, of which 109 contained targets; 3
targets were not recognized, and there were 44
false alarms.  Table 2 shows the performance
of MDT at generating ROIs.

Table 2. Ability of MDT to generate regions

of interest around target vehicles in the Ft.
Carson data.

Targets Targets
Found

False
alarms

Total 112 109 44

Best 4 4 0

Worst 4 3 3

7. Conclusion

The experiments shown here are preliminary
but very promising.  MDTs appear to work
well on a difficult set of outdoor scenes, as
predicted by the physics-based argument
outlined in Sections 2 and 3. The accuracy in
terms of generating regions of interest is high
enough to suggest that MDTs are an
immediately useful technology for color-based
object recognition.



Figure 3. Target pixel distribution

Figure 4. Background pixel distribution.

Figure 5. The region of color space (projected

onto a chromaticity diagram) labeled “target”
by the MDT.
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(a) Image 47: best performance

(b) Image 04: average performance

(c) Image 28: worst performance

Figure 2.  Source and classification images


