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Abstract

We focus on the problem domain of

a robot navigating in and reconstruct-

ing an unknown environment from

a sequence of images. We argue

that the correct approach is to �nd

the appropriate approximation that

linearizes the problem, yielding fast,

non{iterative algorithms that compute

structure and motion with no initial

guess. A class of algorithms (batch

and recursive) is developed that ac-

complishes this, where the appropri-

ate algorithm depends on the partic-

ular image sequence. Experiments are

described on the PUMA sequence [13]

and the Rocket Field sequence [2].

1 Introduction

The approach to multiframe structure from mo-

tion (MFSFM) for point features described here

may be seen as a generalization of the ear-

lier work by Tomasi [16] to the case of full

perspective|for instance, our approach works

well on the Rocket Field sequence, where per-

spective e�ects are crucial. It also relates to

the work of Heeger and Jepson [6, 4, 7, 5, 15]

on recovering translational motion from optical

ow, yielding a simple algorithm for recovering

translation from sparse as well as dense optical

ow.

Our motivation is to develop methods for

MFSFM that are approximate but make e�ec-

tive use of the information available and are

fast. They are intended to give good, reliable
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structure/motion estimates quickly, with no ini-

tial guess required, using modest amounts of

data. In our experiments, the algorithms using

nonoptimized MATLAB code generated struc-

ture/motion estimates comparable to those of

a full maximum likelihood estimate (MLE) in

less than 5 seconds on a DecStation 5000. The

methods described here are for special cases of

motion but they can be generalized to uncon-

strained motion.

2 T

z

� 0 Case

We �rst describe our technique and present ex-

perimental results on a real image sequence for

a useful special case, corresponding to an aerial

cartography scenario. The assumption is that

the translational motion of the camera is largely

in the x{y plane, where z is the optical axis at

some camera position. For instance, this will be

the case for an airplane ying over a landscape

with downward{pointed camera. The assump-

tion on the motion need not be exactly satis�ed.

Let one image|the �rst|be selected as a base

image and let b

i

� (x; y)

i

be the image co-

ordinates of the i-th feature point in this im-

age, with a total of M feature points. Let

p

h

i

� (x; y)

h

i

denote the the i-th image point

in the h-th frame, where h = f1; 2; :::Ng. As-

suming a focal length of 1, the displacement in

the image position of a feature point between

the base image and the h-th image is
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is the in-

verse depth in the base coordinate system and

f(R

h

;p

h

i

) is the rotational displacement. (1) is

exact.

Throughout, we will assume that the rotational



displacement f can be approximated to �rst or-

der. This is possible if the rotation between

images is small|or if the rotation can be ap-

proximately recovered and compensated for in

a preprocessing stage. It is important to real-

ize that, for egomotion where a moving camera

navigates in a �xed scene, approximate recovery

of the rotation often is easily achievable.

Consider 2 images that di�er only through a

3D rotation of the camera. This rotation can

be simply recovered using standard techniques.

For general motion, if the translation baseline

between 2 images and the resulting image dis-

placements are not too large (i.e., for the se-

quences considered here, for translation steps

< 10{20 feet), then applying these techniques

will recover the rotation to a good approxi-

mation. After it is compensated, a �rst order

approximation of the residual rotation should

be adequate and our small rotation assump-

tion justi�ed. Experiments support these state-

ments.

Our algorithm also assumes that the cumula-

tive translation over the course of the image se-

quence is not too large|again, less than 10{

20 feet for the sequence considered here. One

might as well assume this since otherwise the

structure from motion problem becomes easy,

at least when there is signi�cant depth varia-

tion in the scene (in the standard robot navi-

gation problem, the depth variation is expected

to be signi�cant). This too is supported by our

experiments: for large translation (here > 10

feet) and depth variation, a standard 2 frame

structure from motion algorithm will likely give

robust and accurate results.

For large translation, it is anyway unlikely that

feature points will be kept in view throughout

or that correct tracking will be possible over an

extended sequence. For a long sequence with

large overall translation, the best strategy may

be to break it down into shorter subsequences,

long enough to contain enough information for

a robust structure estimate yet short enough so

that features points appear in all or most im-

ages. The algorithm described in this paper is

well suited to the task of estimating structure

from a moderate length sequence.

2.1 T

z

� 0 Case: Formulation

Assuming a small rotation and moderate trans-

lation, the rotational displacement has the fa-

miliar optical ow form. Also, since, T

h

z

� 0,

(1) becomes
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Rewrite the matrix of displacements as an (N�

1) � 2M matrix D by putting all the x and

then the y coordinates for a given frame on a

single row. Let

�

T

x

be a (N � 1) � 1 vector

with elements T

h

x

. Similarly, let �!

x

; �!

y
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z

be

(N�1)�1 vectors, and let

�

� be anM�1 vector.
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Here e.g. fxyg is a M � 1 vector with elements

x
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. Note that D is rank 5: its domain space is

spanned by
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where f0g is again a M � 1 vector of zeros.

Since

�

V
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V
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are known, we design a mea-

surement matrix from D which is rank 2 with

right singular vectors given by just (7). This is

done by postmultiplyingD by a rank 2M�3 ma-

trix annihilating

�

V

x

;

�

V

y

;

�

V

z

. Heeger and Jep-

son used this basic trick [6, 4, 7] in the con-

text of recovering motion from optical ow, but

their technique did not extend to annihilating

general vectors or to sparse ows. Our exten-

sion is based on Householder matrices. The

Householder matrix [3] H

ab

is an orthogonal ma-

trix that takes a to b by a reection. With

^
n � (0; 0 : : :1)

t

, the matrix de�ned by the �rst

n�1 rows of H

an̂

is a rank n�1 matrix annihi-

lating
^
n. Matrices annihilating multiple vectors

can be computed by taking appropriate prod-

ucts of matrices derived in this way.

Algorithm

Denote the (2M � 3)� 2M matrix annihilating

�

V

x

;

�

V

y

;

�

V

z

derived as above by H

V

. The (N �

1) � (2M � 3) matrix D

H

� D H

t

V

is rank 2

with domain space spanned by

�

S

H1

� H

V

�

S

1

and

�

S

H2

� H

V

�

S

2

, where these are (2M �3)�1

vectors. We identify the leading 2 dimensional



right subspace of D

H

using the SVD; the inverse

depths can then be computed as follows.
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for some 2 � 2 matrix C

2

. This is a system of

4M � 6 linear equations which can be solved by

least squares for theM+4 unknowns �

i

and the

coe�cients of C

2

.

We next modify the algorithm to better corre-

spond to a MLE. The data available for the esti-

mate are contained in the displacement matrix

D

H

. With the standard Gaussian noise model

with standard deviation �, the covariance of the

measurement matrix D

H

is
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where 1

hh

0
is an (N�1)�(N�1) matrix of ones,

appearing because each displacement entry in-

volves the base image. Let (C

H

)
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.

De�ne the residual matrix

M

R
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= 0; (10)

then the MLE of the inverse depths can be

shown to be approximately that minimizing

Tr(M

R

M

t

R

C
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H

): (11)

It is important that the matrix C

�1

H

correctly

compensates for the calculation of the displace-

ment with respect to the base image. Our ap-

proach makes no important approximation in

singling out one image for special treatment, in

contrast to the algorithm of [1].

The inverse square root of C

H

can be computed

exactly: it is
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The improved algorithm is summarized as fol-

lows: �rst the measurement matrix D

CH

=

C

�1=2

H

D H

V

is constructed. Its 2 leading right

singular vectors

�

A

1;2

are computed and the �

i

are computed from these by solving (8). The

translations T

h

x

and T

h

y

can also be recovered.

2.2 Experimental Results

In experiments with the algorithm described in

the previous subsection, some problems were

observed. Most important, this algorithm re-

quires a motion such that D

H

, D

CH

are strongly

rank 2; otherwise, the lesser singular vector will

be contaminated by noise (the perturbing ef-

fect of noise on the singular vector is inversely

related to the size of the singular value). D

CH

will be strongly rank 2 if the motion is truly pla-

nar; however many motions do cluster around a

linear motion. Thus it would be preferable to

have an algorithm that only requires extracting

the largest singular vector. Such an algorithm

was developed and used for the experiments de-

scribed below. Its description is omitted for lack

of space.

We applied our algorithm to part of the PUMA

image sequence obtained by R. Kumar and H.

Sahnwey, described in [9, 10]. Speci�cally, we

used a sequence of 32 automatically tracked fea-

ture points over 16 image frames tabulated and

provided to us by J. I. Thomas. The algorithm

of [16], when applied to this sequence, fails to

produce a reconstruction.

First, the images were unrotated automatically

to match the �rst (base) image frame. We used

the fact that the rotation was known to be pri-

marily around the optical axis and unrotated

around this axis only. The rotation was success-

fully compensated to within a maximumerror of

2:3

�

, well within the small angle approximation.

For comparison, we also unrotated compensat-

ing for arbitrary rotation. A maximum error

after compensation of 4:3

�

was found. These

results were achieved despite the large overall

rotations of up to 60:5

�

.

The results for the inverse structure in the coor-

dinate system of the �rst (base) image are sum-

marized in Table 1. The results are not sim-

ply a list of the inverse depths for di�erent fea-

ture points but have been rotated to a di�erent

basis. This was done since two components of

the inverse structure are recovered less well than

the others due to the bas{relief ambiguity|the

changed basis displays these components explic-

itly as the last two.

Table 1 shows the inverse depth compo-

nents computed by our algorithm and by an

MLE, scaled to compare to the ground truth.

The MLE was performed by a brute force

Levenberg{Marquardt (LM) minimization of an

objective function that summed explicitly the



Table 1: PUMA Sequence: Inverse Depth Results.

New, True, and LM respectively label the results for

the current algorithm, the ground truth, and the re-

sults of a MLE. For compactness, the 32 components

of the inverse depth vector are displayed in 8 rows

of 4 components each.

New -0.0101 -0.0061 -0.0114 -0.0040

True -0.0105 -0.0057 -0.0114 -0.0040

MLE -0.0100 -0.0063 -0.0116 -0.0040

New -0.0042 0.0111 -0.0075 -0.0050

True -0.0038 0.0113 -0.0070 -0.0054

MLE -0.0041 0.0110 -0.0073 -0.0052

New 0.0022 -0.0016 0.0012 -0.0055

True 0.0016 -0.0018 -0.0004 -0.0056

MLE 0.0021 -0.0017 0.0010 -0.0054

New 0.0039 -0.0062 0.0015 0.0023

True 0.0040 -0.0057 0.0020 0.0019

MLE 0.0041 -0.0060 0.0018 0.0024

New -0.0012 0.0024 0.0036 -0.0029

True -0.0013 0.0026 0.0021 -0.0033

MLE -0.0010 0.0022 0.0036 -0.0029

New 0.0084 -0.0031 0.0034 -0.0043

True 0.0090 -0.0031 0.0027 -0.0042

MLE 0.0082 -0.0031 0.0037 -0.0045

New -0.0053 -0.0022 0.0081 -0.0066

True -0.0054 -0.0027 0.0080 -0.0074

MLE -0.0053 -0.0022 0.0081 -0.0066

New 0.0173 0.0639 -0.3717 -0.1373

True 0.0287 0.0629 -0.2544 -0.105

MLE 0.0187 0.0655 -0.4171 -0.1518

image discrepancies between the measured im-

age points and the projected positions of the

3D feature points. The minimization was car-

ried out with respect to the 3D coordinates of

the feature points and the interframe motion

parameters, and started with the ground truth

values of these parameters (the rotations were

started at zero rotation for the unrotated im-

ages). The algorithm took over half an hour

to converge, despite the head start from the

ground truth.

It is clear that most components of the struc-

ture are recovered very well; however, some of

the larger structure components are recovered

imperfectly. Our algorithm recovers all compo-

nents about as well as or better than the MLE|

thus its performance is as good as could be ex-

pected on this sequence. The average percent-

age error in depth after scaling for our algorithm

is 11:5%. However, these results are less infor-

mative than those of Table 1, since it is clear

there that most of the error is due to just a few

structure components, in line with the analysis

of Jepson and Heeger [8] and Maybank [11, 12]

for optical ow. Note that two frame algorithms

fail completely on this sequence [14].

We have conducted synthetic experiments to

verify the stability of our results against dif-

ferent random noise. We �rst generated an ex-

act image sequence corresponding to the ground

truth for the structure and motion for the

PUMA sequence. In each trial, uniform noise

of size �1 pixel was added independently to

each feature point in each image and the struc-

ture was recovered using our algorithm. Ex-

plicit comparison of the original PUMA images

to the exact images generated from the ground

truth shows that the noise for the real sequence

is somewhat less than this. The result of 250 tri-

als gave comparable results to those obtained on

the real image sequence. A single failure of the

algorithm occurred which will be investigated in

future work.

3 Constant Translation Direction

Often a navigating robot does not change di-

rection quickly. In this section we describe an

algorithm that takes advantage of this fact: it

recovers structure from an image sequence as-

suming that the translation direction remains

approximately constant over the sequence. Ex-

perimental results are presented for a real image

sequence|the Martin{Marietta Rocket Field

sequence|for which the translation direction

does in fact change.

The constant direction assumption is more pow-

erful than it may at �rst appear. It applies not

to the interframe translation (between succes-

sive image frames) but to the cumulative trans-

lation with respect to a base frame. Assum-

ing that the camera does move with an overall

trend in some direction and that the interframe

translations are relatively small, then the larger

cumulative translations will cluster around the

trend direction. Since the larger translations are

the most important in determining the struc-

ture, the constant direction assumption is likely

to be a useful one for this common situation.

Note that we constrain just the direction of the

translations.

Under the constant direction assumption, the



translational part of (1) becomes
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the scale of the translation in the h-th frame.

We determine the translation direction �rst,

since it can be recovered accurately, and then

use this to recover the structure. Multiply (14)
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where the �'s are independent of the feature

point index i.

De�ne as before a ((M � 6) � M) House-

hold matrix H
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Here, as previously, we have assumed the trans-

lation scale small compared to the scale of the

depths; this restriction is not stringent since it

is applied only to terms that are already small

by virtue of an factor of !.

(16) is a linear equation for the translation
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which can be solved by least squares. However,

prior to doing so we �rst multiply as before on

the left by the matrix C

�1=2

H

to better approxi-

mate a MLE.

3.1 Maximum Likelihood Estimation

Assuming constant direction of translation, the

structure depends critically on accurately de-

termining this direction. Thus we attempt to

improve the linear solution for the translation

direction obtained above.

Let the residual matrix
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To construct a MLE we must compute the co-

variance of this matrix. To �rst order, and ne-
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where � is the standard deviation of the image

noise, and C
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is a (M � 6)� 2M matrix

[C

I

]

j;ia

� [H

V

]

ji

(

^

T

z

b

ia

�

^

T

2a

) (20)

where a selects the x or y coordinate.

The maximum likelihood estimate corresonds to

minimizing

Tr(C
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t
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which is quadratic in T both in numerator and

\denominator."

We use a simple iterative procedure to �nd the

minimum of (21). At this stage our approach

ceases to be purely linear|but the consequent

advantage of signi�cantly improved accuracy of

structure recovery outweighs the minor loss in

speed. Since the algorithm of the previous

section already produces an excellent starting

guess for the translation, convergence requires

few iterations.

4 Experiments: Rocket Sequence

For this sequence, with the prior knowledge that

rotations were small, we did not unrotate the

images prior to applying our motion/structure

recovery algorithms.

The result of our initial algorithm esti-

mating the translation direction was T =

(0:0618;�0:2213; 0:9733)

t

, compared with the

direction of the average ground truth transla-

tion (�0:0476; �0:2211; 0:9741)

t

. The angular

error is 6

�

.

The approximateMLE iteration reduced the an-

gular error to 2:2

�

giving a translation direction

of

^

T = (�0:0565 � 0:1842 0:9813)

t

; the time

required for convergence was less than 2 sec-

onds in MATLAB on a DecStation 5000. For

comparison, we implemented a true MLE esti-

mate of the translation direction, implemented

using a standard LM algorithm. The error func-

tion minimized was the actual image error be-

tween projected 3D points and their measured

image positions; the di�erence from the brute

force MLE of the previous section was that the



Table 2: Comparison to Ground Truth of Scaled

Depths.

MLE BFCT True LIN

23.6989 23.6821 24.6203 25.2456

33.3382 33.3552 33.7936 33.2820

22.7341 22.7046 24.2459 25.1189

16.8783 16.8902 17.7859 20.9122

26.0059 25.9719 27.8879 28.9933

23.2953 23.2948 24.7700 26.4058

48.1055 47.5408 60.5430 87.1700

29.3514 29.2206 32.3651 30.9896

46.4439 46.5271 43.8711 42.6899

40.8853 41.2243 40.1131 33.5594

50.5292 50.5373 47.7790 46.3051

translation was constrained to have a constant

direction. This procedure yielded an angular

error of 1:71

�

, comparable to the result of our

algorithm. The depth estimates obtained by

this brute force approach (BFCT), scaled to

the ground truth, are shown in Table 2. Here,

and in the results reported below, the scaling to

ground truth is done using all but the 7-th and

10-th points; since these points are both distant

and near the FOE (as can be determined a pos-

teriori) their depths are expected to be di�cult

to recover. Omitting them in the scaling gives

a better picture of the accuracy with which the

depths of other points are recovered. For the re-

maining 9 points, the average magnitude of the

depth error is 1.8 feet, and the average percent-

age error is 5.7% for the brute force algorithm.

Using our estimate

^

T of the translation direc-

tion, the structure was computed by a linear

algorithm (LIN) similar to that for the T

z

� 0

case. Table 2 shows the results scaled to com-

pare with the ground truth depths. For the nine

points described above, the average magnitude

of the depth error is 1.3 feet and the average per-

cent error is 5:1

%

, comparable to the results of

the brute force MLE. However, the superiority

of the latter algorithm is shown in the accuracy

with which it recovers the depths of the di�cult

7-th and 10-th points|for these two points, pre-

cise determination of the FOE is crucial.

Finally, we have done a full MLE estimate as for

the PUMA sequence, making no assumption on

the translation|this algorithm therefore should

give the most accurate results. However, its re-

sults are comparable to those obtained previ-

ously by our algorithm and by the constant di-

rection BFCT algorithm. The scaled depths are

shown in Table 2. The average magnitude of the

depth error is 1.7 feet and the average percent-

age error is 5:6

%

. Though this algorithm was

started from the ground truth, about 4 minutes

were required for convergence.

It is clear from these experiments that the as-

sumption of constant translation direction is an

appropriate one for the Rocket sequence, and

that our essentially linear algorithm gives com-

parable results to full MLE estimates, while re-

quiring only a few seconds of computation time.

To check these results, we ran a series of syn-

thetic experiments. In one set, we generated

an image sequence corresponding exactly to the

grouth truth for the rocket sequence. We then

ran 200 trials of our algorithm, in which at each

trial approximately 1 pixel random noise (with

a uniform distribution) was added to each im-

age point. For each trial, the averagemagnitude

of the depth error for the selected 9 points was

measured. The average of this quantity over

the 200 trials was 1.7 feet. The average of the

average percentage error was 6%. The average

angular error in the translation direction was

1:5

�

. These results are in line with those for the

real sequence.

In a second set of sythetic experiments, both

the motion and structure were varied randomly

at each trial. 22 points and 9 image frames

were used in all trials. The \ground truth"

depths of points were varied randomly with a

uniform distribution over the range from 20 to

60 feet, while the other coordinates were var-

ied uniformly in the range of -15 to +15 feet.

The motion was predominantly forward, with

random small rotations. Finally, uniform image

noise was added independently to each image

feature corresponding to about 1 pixel noise for

the rocket sequence. Over 200 trials, the aver-

age of the average magnitude of the depth error

was 1.6 feet with one failure of the algorithm at

31 feet. The average angular error in the trans-

lation direction was 3:8

�

, again with one outlier

corresponding to that for the depth error.

5 Recursive Implementation

We sketch a recursive implementation of our ap-

proach. Consider the algorithm for T

z

� 0 and

for simplicity assume that there is zero rota-

tion. Then the measurement matrix in (3) is

D = [�

�

T

x

�

�

t

;�

�

T

y

�

�

t

]. Again for simplicity, con-

sider D

x

� [�

�

T

x

�

�

t

], the x-components of the

measured image displacements. The task of de-



termining the inverse depths from D

x

is simply

that of determining the leading eigenvector of

M

h

x

� [D

x

]

t

D

x

=

X

h

[D

h

x

]

t

D

h

x

; (22)

where D

h

x

is the h-th row of D

x

. A recursive

algorithm then consists of: 1) as each new im-

age is acquired, let M

h+1

x

= M

h

x

+ [D

h+1

x

]

t

D

h+1

x

,

where D

h+1

x

represents the new image measure-

ments; 2) compute the leading eigenvector of

the updated matrix M

h

x

. This idea clearly ex-

tends to the case where there is rotation.

Our algorithm for the constant translation di-

rection case �rst calculates the translation di-

rection, using all available information, and

then uses this to compute the structure. Thus

as it stands it cannot be implemented as a re-

cursive algorithm for structure. However, it is

easy to implement as a recursive algorithm for

estimating the direction of translation. It is also

possible to derive a variant of our approach that

can be implemented as a recursive structure es-

timation algorithm.
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