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Abstract

The epipolar parametrization arises nat-

urally in the reconstruction of surfaces

from pro�les with known camera motion.

This is a special case of a local paramet-

ric representation which is a mesh. Local

parametric representations can be com-

bined into a global one by computing the

transformation in parameter space on the

overlap of the patches. This paper also

discusses the applicability of this type of

model to problems in grasp con�guration

determination and pose determination.

1 Introduction

Di�erent reconstruction algorithms may produce

di�erent types of information about a surface. It

is important to have a representation that bridges

the gap between the modeling and data collection

on the one hand and the application on the other.

This paper focusses mostly on the model acquisition

but also touches on the requirements for some tasks

such as pose determination and grasp con�guration

planning. An assumption made here is that mod-

eling objects will be automated or semi-automated

and will directly use images. The modeling pro-

cess can involve stereo on viewpoint independent

features (texture or edges), laser range sensors, or

generalized stereo on pro�les (reconstruction from

pro�les with known camera motion).

There are two types of mathematical models for

surfaces

1

. One is the implicit representation given

by an equation F (X; Y; Z) = 0, e.g. superquadrics

�
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I am ignoring CSG and volumetric models

and algebraic surfaces. F is also called an inside-

outside function. This is convenient as a global rep-

resentation if the function F has a nice form, e.g.

low degree polynomial or superquadric, and �ts the

surface well. However, if this is not the case, the

surface will need to be decomposed into parts such

that each part can be represented both simply and

with desired accuracy. The second type is a para-

metric surface representation, which is a map from

D � R
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! R
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, i.e. (X(u; v); Y (u; v); Z(u; v)), e.g.

generalized cylinders and splines. Superquadrics

also have a simple representation as parametric sur-

face patches. The set D together with the map is

called a chart or coordinate patch because it can

be thought of as mapping a u; v-Cartesian coordi-

nate system onto the surface. Parametric represen-

tations are more limited in the sense that a surface

which might be represented globally by a single sim-

ple function, e.g. X

2

+ Y

2

+ Z

2

= 1, may require

several parametric patches. Note that any para-

metric patch representation can be converted to an

implicit representation, and in the case of algebraic

surfaces this can be done in closed form.

Since 3D data for a surface often comes in the

form of discrete points or discrete points that are

connected in some way, the concepts of implicit

and parametric representations need to take this

into account. Sampling a surface as a set of 3D

points which are connected by arcs produces a

graph on the surface of the object. Triangulations

and meshes are special cases of graphs. One can

think of a triangulation as being a polyhedral rep-

resentation of the surface. Every triangle becomes

a map from a subset of the plane to the surface.

For this paper, a mesh is de�ned as a graph of de-

gree four, so that there are two families of polygonal

curves that are transversal. One can also decom-

pose a graph on the object surface into planar sub-



graphs that overlap, and if one maps each of these

subgraphs to a region in the plane, then this would

correspond to choosing a parametrization for each

patch. Note that in this case the nodes in the di�er-

ent subgraphs correspond when there is overlap. In

general, if one starts with a set of graphs that cover

overlapping patches on the surface, one may have

to subdivide each graph to get nodes that match.

I would postulate that a graph representation is

suitable for any of the standard techniques for col-

lecting 3D data. The simplex angle image, which

can be used for recognition is a derivative of a degree

three graph representation that satis�es certain reg-

ularity conditions [12]. In addition, sensor fusion is

easily done with a graph representation because one

needs to model uncertainty at the resolution of the

data, otherwise �tting data to an implicit (inside-

outside) function makes certain assumptions about

the shape of the object and may weight data points

inappropriately. For example, when �tting a super-

ellipsoid to data there are a number of issues. First,

using the evaluation of the inside-outside function is

di�erent from using geometric distance. In general,

one can approximate geometric distance based on

the gradient of the inside-outside function [18, 21],

but even then di�erent points will have di�erent

covariances which need to be taken into account.

However, the most important problem related to

representation is that the family of functions itself

a�ects the result, e.g. �nding the closest super-

ellipsoid to the data may be signi�cantly di�erent

from �nding the closest polynomial surface of �xed

degree. Note that if one actually has some addi-

tional constraints on the surface, e.g. one knows

that it is a cylinder or surface of revolution, then

such models are entirely appropriate and the covari-

ance of each measurement should be used in �tting

such a parametrized family of models to the data.

Of course, �tting an implicit function model can be

done from a graph representation, but it would not

be necessary to go through that intermediate step,

and the representation of uncertainty would be on

the parameter level rather than the data level.

The important issues for representation and mod-

eling are:

� Representing accuracy of the model, which is

determined by sensor error and sampling den-

sity.

� Determining what parts of the surface have not

been sampled, i.e. the boundaries of observa-

tion.

� Facility of constructing the model from image

data.

These issues are addressed in section 3 in the case

of the epipolar representation. The epipolar repre-

sentation or epipolar parametrization arises natu-

rally in the reconstruction of surfaces from a se-

quence of pro�les where the motion of the observer

is known or can be recovered from features visible

in the image sequence. This leads to a set of local

parametric models on patches that must be com-

bined in order to represent global information. It

may happen that only part of the surface is observ-

able, and even then it may require several trajec-

tories by the camera to reconstruct that part. Ku-

tulakos and Dyer [15] have developed strategies for

moving the camera or the object so that a maxi-

mal subset of the surface is covered by such a set of

patches.

2 Epipolar parametrization

Given a smooth surface M and a curve c(t) of cam-

era centers, we have, for each t, a critical set or con-

tour generator �

t

on M consisting of those points r

where the `visual ray' or viewline from c(t) to r is

tangent to M (see Fig 1). The epipolar plane is the

plane spanned by this ray and the tangent to the

curve c of centers. In practice the epipolar plane

is computed from a visual ray to one camera cen-

ter and the baseline connecting the two centers [5,

p.170].

On the surface M an epipolar curve through r

is de�ned as one whose tangent is along the visual

ray as shown in Fig. 1. As c moves with time, the

visual ray slips along the epipolar curve. Note that

this is almost never the intersection of the epipolar

plane with the surface, unless the cameramoves in a

straight line. In general, the critical sets and epipo-

lar curves make a coordinate grid on M : a local

parametrization r(t; u) can be found in which the

critical sets are given by t =constant and the epipo-

lar curves by u = constant. In practice one has a

discrete set of views and a �nite sampling of each

pro�le, which is the image of the critical set in a

viewplane or viewsphere. This can result in a mesh

where the nodes are the intersections of the two

families of curves. It is the `epipolar parametriza-

tion' of M which is used in [1, 2] to reconstruct
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Figure 1: A surfaceM and segment of camera path from

c(0) to c(t). Also shown are the two corresponding criti-

cal sets �

0

, �

t

, a segment of epipolar curve (drawn heav-

ily), viewlines (dashed) tangent to the epipolar curve,

and a local coordinate grid of critical sets and epipolar

curves.

M from its pro�les, although b-splines were used to

represent critical sets. In [20] it is shown that recon-

struction from the epipolar parametrization is read-

ily transformable into an optimal estimation prob-

lem. The epipolar parametrization also has another

very interesting property: the viewlines associated

with points r(t; u) and r(t + �t; u) of M will (be-

ing lines in space) generally not intersect. How-

ever, for the epipolar parametrization, the point at

which these lines come closest to one another is (as

�t! 0) on the surface M . So this parametrization

is the best one to choose if one uses the pseudo-

intersection of viewlines as an approximation to the

surface. In addition, the best trajectories for mini-

mizing these distances are planar trajectories. This

leads to strategies that use a sequence of planar tra-

jectories each of which may only produce a model

of a small region on the surface. The boundaries of

these patches, which depend on the camera trajec-

tories, have been characterized in [10].

There are basically two types of situation which

occur at the boundaries of an epipolar patch. The

�rst type is called the frontier, where the epipo-

lar plane becomes tangent to M: It is precisely at

such points that the epipolar curve becomes singu-

lar, and the epipolar parametrization breaks down.

To examine the situation at the frontier one can use

the `spatio-temporal surface' as in [9, 10]. The sec-

ond type of situation occurs in the case of occlusion.

Occlusion may happen in two ways. First, the sur-

face normal may turn away from the camera. This

event is typically a cusp and is characterized by the

fact that the epipolar curve and critical set become

tangent. In the image, the pro�le is seen as ending

at a point, and the locus of points on the surface

which project to such end points is called the line

of cusps. Another type of occlusion occurs at T-

junctions. In this case, part of the critical set is ob-

scured by another part of the surface, even though

the normal is pointing toward the camera. These

points are characterized as the distal points of con-

tact of bitangent viewing rays. Taken together, the

frontier and the natural boundary, which is the set

of points of occlusion, form the boundary of each

epipolar patch. A more complete description will

appear in [10], and some of the results have ap-

peared in [9].

To summarize those results, the (local) epipolar

parametrization of M has a boundary when any of

the following occur:

(i) The critical sets form an envelope on M (fron-

tier points).

(ii) The critical set and epipolar curve on M are

smooth and tangent to one another. The pro-

�le has a singularity which is a cusp or has

higher order.

(iii) The viewing ray is tangent to the surface at

a point closer to the camera. (T-junction

points).

(iv) The critical set on M is singular (having an

isolated point or a crossing).

3 The Epipolar parametrization as a

representation

One of the issues is how to represent the accuracy

of the model in such a way that incorporates both

accuracy of the depth estimates and the sampling

density of measurements. As noted above, there are

criteria in the process of reconstruction frompro�les

for detecting the boundaries of the reconstruction

process. Therefore, it is possible to keep track of

parts of the surface that have not been observed. As

for the accuracy of depth, the approach of Szeliski

and Weiss [20] uses linear smoothing and explicitly

models the covariance of the position and curvature

at each point in the mesh.

It is clear that local parametric surface patches

can be easily produced from reconstruction from

pro�les. In addition, information about curvature

is recovered. One of the important issues is how

the parts are combined into a global representa-

tion. It is important to do this because combin-

ing observation data from di�erent views improves



accuracy and is necessary for a consistent model,

e.g. the pro�le segments produced from di�erent

patches should agree so that it won't matter which

patch is used. This is potentially a di�cult problem.

If feature points are available on the surface, then

they can be used to identify corresponding points

in di�erent views. Otherwise, one might try to �nd

the rotation and translation that brings two patches

into alignment on maximal subsets. In general this

might be di�cult, but for the epipolar parametriza-

tion there is additonal geometric information avail-

able, for example at the frontier, where epipolar

curves meet in cusps.

4 Applications: representation of errors

A critical function of vision in navigation, recogni-

tion, or enhanced reality systems is to determine

the position and orientation of an object relative to

the viewer. The pose (i.e. position and orientation)

of an object has six parameters: three rotational

and three translational. Most pose algorithms take

as input an initial "guess" of the approximate ob-

ject pose and correspondences between a set of pro-

jected model features and 2D image features. Chen,

Stockman, et al. [3] computed pose from pro�les

using curvature information. One would like to

know how closely the pro�le of the generated view

matches the actual view. A graph representation

which also stores curvature information is suitable

for this algorithm, and accuracy information in the

form of a covariance matrix at each node can be

used to predict the accuracy of the pro�les. A global

�gure of merit, which could be used to evaluate a

model is the maximum over all views of the aver-

age distance between the predicted pro�le and the

actual pro�le.

For grasping, there are a couple of ways to use

geometric models. One is �nding stable grasp con-

�gurations. A stable grasp con�guration is given by

the null space or force closure equation:

d

X

i=0

w

i

= 0 (1)

where d is the number of contacts and w

i

is the

wrench due to contact i. This expression can be

minimized and evaluated at any set of d points for

which the normals and friction cones are given. The

most time-consuming aspect of this process is �nd-

ing zeros of this expression. An iterative search is

possible and requires a direction for moving the con-

tacts so that the magnitude of (1) is decreased. A

local parametric representation such as the epipo-

lar representation, which captures curvature at each

node satis�es these requirements.

Another way in which a geometric model can be

used is in planning the motion for achieving the

grasp. This task requires a prediction of where the

manipulator will make contact with the surface if it

approaches along a speci�ed ray. From this stand-

point, the question that must be answered is where

given ray will intersect the surface. This leads again

to a representation of accuracy of the surface that

is not just a value at each point but a matrix rep-

resenting the error ellipsoid.

5 Conclusion

This paper shows how a reconstruction algorithm

and graph representation �t together to represent

the information needed to solve some speci�c ap-

plications. The graph representation is a discrete

form of the epipolar parametrization that results

from the reconstruction from pro�les. It meets the

informational requirements of pose determination

and stable grasp formation. Issues of speed have

not been addressed and may require auxiliary rep-

resentations. The issues of modeling accuracy and

determining the boundary between observed and

unobserved parts of the surface are also addressed.
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