
LOCAL SEARCH ALGORITHMS FOR

GEOMETRIC OBJECT RECOGNITION:

OPTIMAL CORRESPONDENCE AND POSE

J. Ross Beveridge

Tech. Report. CS 93-??

c

 Copyright by J. Ross Beveridge 1993

All Rights Reserved

ACKNOWLEDGMENTS

There is little, besides programing, that I enjoy doing alone. I �nd ideas are best shared

and developed with others, and therefore the genesis of this thesis lies in discussions with

more people than I dare list; to all who have played a part, I say thank you.

I owe a special debt to my thesis committee. Ed Riseman's and Al Hanson's guidance

and patience have given me the skills to do research. Their driving commitment to computer

vision, their curiosity about computer vision, and their open minds are sources of inspiration.

I am indebted to Robbie Moll, for he introduced me to local search. Finally, Don Geman's

command of probability theory, and his refreshing common sense, make his advice invaluable.

Rich Weiss helped to frame the basic research problem addressed in this thesis, and I am

in his debt. Teddy Kumar deserves special thanks, for without his 3D pose algorithm, and

his patience in explaining it to me, the extensions to full-perspective matching would have

been impossible. Through countless joyful discussions with Bruce Draper and Bob Collins

I have defended, re�ned, and changed my ideas about computer vision. Finally, I wish to

acknowledge Scott Anderson, Brian Burns, John Brolio, Martin Herbordt, Manmatha, John

Oliensis, Harpreet Sawhney, and Lance Williams, for they have all helped me.

It is with gratitude that I thank the agencies whose �nancial support made this work pos-

sible. This work has been supported in part by the Advanced Research Projects Agency(via

TACOM) under contract DAAE07-91-C-RO35, and contract DACA76-92-C-0041 (via U.S.

Army Topographic Engineering Center). This work has also been supported by the National

Science Foundation under grant number CDA-8922572.

My wife, Adele Howe, and I entered graduate school together, and we have supported

each other through the creation of two theses: hers and mine. Adele's insight and unfaltering

support has meant more to me than I can say. My life personally, and as a researcher, is

immeasurably richer for the bene�t of her companionship.

iii

ABSTRACT

LOCAL SEARCH ALGORITHMS FOR

GEOMETRIC OBJECT RECOGNITION:

OPTIMAL CORRESPONDENCE AND POSE

May 1993

J. Ross Beveridge

B.S., University of California, San Diego

M.S., University of Massachusetts

Ph.D., University of Massachusetts

Directed by: Professor Edward M. Riseman

Recognizing an object by its shape is a fundamental problem in computer vision, and

typically involves �nding a discrete correspondence between object model and image features

as well as the pose - position and orientation - of the camera relative to the object. This

thesis presents new algorithms for �nding the optimal correspondence and pose of a rigid 3D

object. They utilize new techniques for evaluating geometric matches and for searching the

combinatorial space of possible matches. An e�cient closed-form technique for computing

pose under weak-perspective (four parameter 2D a�ne) is presented, and an iterative non-

linear 3D pose algorithm is used to support matching under full 3D perspective.

A match error ranks matches by summing a �t error, which measures the quality of the

spatial �t between corresponding line segments forming an object model and line segments

extracted from an image, and an omission error, which penalizes matches which leave

portions of the model omitted or unmatched. Inclusion of omission is crucial to success

when matching to corrupted and partial image data.

New optimal matching algorithms use a form of combinatorial optimization called local

search, which relies on iterative improvement and random sampling to probabilistically �nd

globally optimal matches. A novel variant has been developed, subset-convergent local search

�nds optimal matches with high probability on problems known to be di�cult for other

techniques. Speci�cally, it does well on a test suite of highly fragmented and cluttered

data, symmetric object models, and multiple model instances. Problem search spaces grows

exponentially in the number of potentially paired features n, yet empirical performance

suggests computation is bounded by n

2

.

Using the 3D pose algorithm during matching, local search solves problems involving

signi�cant amounts of 3D perspective. No previous work on geometric matching has gen-

eralized in this way. Our hybrid algorithm combines the closed-form weak-perspective pose

and iterative 3D pose algorithms to e�ciently solve matching problems involving perspective.

For robot navigation, this algorithm recognizes 3D landmarks, and thereby permits a mobile

robot to successfully update its estimated pose relative to these landmarks.

iv

TABLE OF CONTENTS

Page

acknowledgments : iii

abstract : iv

list of tables : x

list of figures : xi

Chapter

1. Introduction : 1

1.1 Local Search Matching : 2

1.2 Objectives : 5

1.3 Imaging : 6

1.4 Examples : 10

1.5 Contributions : 13

1.6 Overview : 17

2. Previous Work : 19

2.1 Introduction : 19

2.2 Problem Overview : 20

2.2.1 Roberts Sets the Stage : 20

2.2.2 Terminology : 21

2.2.3 Correspondence Mappings : 22

2.2.4 Hypothesize then Verify : 23

2.2.5 Object Speci�c Knowledge and Recognition : : : : : : : : : : : : : : 24

2.3 Common Approaches : 24

2.3.1 Key-feature Matching : 25

2.3.2 Generalized Hough and Pose Clustering : : : : : : : : : : : : : : : : : 27

v

2.3.3 Tree Search and Constraint Satisfaction : : : : : : : : : : : : : : : : 29

2.3.4 Geometric Hashing : 33

2.4 Local Search Matching in Relation to Previous Work : : : : : : : : : : : : : 34

2.4.1 The Origins and Essence of Local Search : : : : : : : : : : : : : : : 34

2.4.2 A Brief Mention of Alternate Optimization Techniques : : : : : : : : 35

2.4.3 Adapting Local Search to Geometric Matching : : : : : : : : : : : : 36

2.4.4 The Issue of Acceptable versus Best Matches? : : : : : : : : : : : : 37

2.4.5 The Ancestry of Random Sampling : : : : : : : : : : : : : : : : : : : 38

2.4.6 The Ancestry of Iterative Improvement : : : : : : : : : : : : : : : : 39

2.4.7 Recognizing while Locating : 40

2.4.8 Full-perspective Matching : 40

2.4.9 Computational Complexity : 42

3. Matching as Combinatorial Optimization : 44

3.1 Introduction : 44

3.2 A Space of Possible Matches : 47

3.3 Fit Error and Fitting : 49

3.3.1 Integrated Squared Perpendicular Distance (ISPD) : : : : : : : : : : 50

3.3.2 Fit Error: Normalized ISPD : 51

3.4 Omission Error : 54

3.5 Trading O� Fit Error Versus Omission Error : : : : : : : : : : : : : : : : : 55

3.6 Collateral Knowledge added to Match Error : : : : : : : : : : : : : : : : : : 58

3.6.1 Pairwise Error : 58

3.6.2 Transformation Error : 59

4. Fitting Under Weak-Perspective : 61

4.1 Introduction : 61

4.2 Ayache: Minimizing Model Midpoint to Data Line Distance : : : : : : : : : 62

4.3 Minimizing Data Endpoint to Model Line Distance : : : : : : : : : : : : : : 63

4.3.1 De�ning the Measure : 63

4.3.2 Finding the Best-�t Similarity Transform : : : : : : : : : : : : : : : : 66

4.3.3 Symmetric 2x2 Eigensystems: The Lesser Vector : : : : : : : : : : : : 67

4.4 Integrated Point-to-line Distance : 70

4.5 Underdetermined Cases and Regularization : : : : : : : : : : : : : : : : : : 70

vi

4.6 The Special Case of 2D-rigid Transformations : : : : : : : : : : : : : : : : : 73

5. Local Search Geometric Matching : 75

5.1 Hamming-distance-1 Steepest-descent Local Search : : : : : : : : : : : : : 76

5.1.1 The Hamming-distance-1 Neighborhood : : : : : : : : : : : : : : : : 76

5.1.2 Steepest-descent Versus First-improvement : : : : : : : : : : : : : : : 78

5.1.3 Qualifying the term `Globally Optimal Match' : : : : : : : : : : : : : 82

5.2 E�cient neighborhood evaluation : 83

5.2.1 Incrementally Computing Fit Error : : : : : : : : : : : : : : : : : : : 83

5.2.2 Considering only Localized Changes in Omission Error : : : : : : : : 83

5.2.3 Sorting Endpoint Projections to Compute Omission Error : : : : : : 85

5.3 Local Optima and Random Sampling : 86

5.3.1 Using Independent Random Trials : : : : : : : : : : : : : : : : : : : 86

5.3.2 Searching the Forest : 88

5.3.3 Randomly Landing on Trees : 89

5.3.4 Non-uniform Sampling, Trying for the Best Tree : : : : : : : : : : : 90

5.4 Subset-Convergent Local Search : 90

5.4.1 Subset Selection : 91

5.4.2 A Simple Illustration : 91

5.4.3 Examples Using Actual Image data : : : : : : : : : : : : : : : : : : : 94

5.4.4 A Di�cult Matching Task : 100

5.4.5 The Deer and Gira�e are Hard to See : : : : : : : : : : : : : : : : : : 103

5.5 Conclusion : 104

6. How Easy is Local Search Matching : 106

6.1 Introduction : 106

6.2 A Suite of Test Problems : 107

6.3 Experiment and Algorithm Setup : 111

6.4 A Look at Local Optima for 2 Select Problems : : : : : : : : : : : : : : : : 114

6.5 Performance Summary Over the Entire Test Suite : : : : : : : : : : : : : : 121

6.5.1 Probability of Success

^

P

s

and Required Trials

^

t

s

: : : : : : : : : : : 122

6.5.2 Observation: Changing Match Error Changes

^

P

s

: : : : : : : : : : : 122

vii

6.6 Run-time Growth : 124

6.6.1 Regression Analysis of Run-time Versus Problem Size n : : : : : : : : 125

6.6.2 Random Clutter and Multiple Instance Problems : : : : : : : : : : : 129

6.7 Speculation: Why Don't Run-times Grow Faster? : : : : : : : : : : : : : : 132

6.7.1 Likely Explanation: Larger n Means More Options : : : : : : : : : : 133

6.7.2 Unlikely Explanation: Random Sampling Finds Good Starts : : : : : 135

6.8 Conclusion : 138

7. Fitting Under Full-Perspective : 140

7.1 Introduction : 140

7.2 Kumar's Algorithm : 141

7.3 Point-to-Ray Regularization : 145

7.4 The State Vector Approach : 147

7.5 Conclusion : 150

8. Matching with 3D Perspective : 151

8.1 Introduction : 151

8.2 Landmark-Based Robot Navigation : 153

8.3 Three Full-perspective Matching Algorithms : : : : : : : : : : : : : : : : : 153

8.3.1 Full-perspective-Inertial-Descent Matching : : : : : : : : : : : : : : : 156

8.3.2 Hybrid Weak-perspective and Full-perspective Matching : : : : : : : 160

8.3.3 Hybrid Subset-Convergent Matching : : : : : : : : : : : : : : : : : : 164

8.3.4 Comparison and Review of Algorithms : : : : : : : : : : : : : : : : : 164

8.4 Comparing Performance : 166

8.4.1 Experiment 1: Recovering from Modest Pose Errors. : : : : : : : : : 166

8.4.2 Experiment 2: Recovering from Larger Pose Errors. : : : : : : : : : 172

8.5 Conclusion : 174

9. Conclusion : 176

9.1 Review : 176

9.2 The Problems : 177

9.2.1 Complexity and Object Indexing : 177

9.2.2 Algorithm Tuning : 178

9.2.3 Random-Start Local Search Probably Succeeds : : : : : : : : : : : : 179

viii

9.3 The Strengths : 180

9.3.1 Robust Performance : 180

9.3.2 Trivial to Run in Parallel : 180

9.3.3 Broad Applicability : 181

9.3.4 Quantitatively Accurate Full-Perspective Matching : : : : : : : : : : 181

9.4 The Future : 182

9.4.1 Detailed Exploration of Algorithm Parameters : : : : : : : : : : : : : 182

9.4.2 Local Search as Model Directed Feature Grouping : : : : : : : : : : 183

9.4.3 Match Error and Formal Image Formation Models : : : : : : : : : : : 184

9.4.4 Partial Symmetry and Local Search Matching : : : : : : : : : : : : : 185

9.4.5 Alternative Optimization Techniques : : : : : : : : : : : : : : : : : : 186

9.4.6 Full-Perspective Matching : 186

9.4.7 Model-Based Sensor Fusion : 187

9.5 In Closing : 188

bibliography : 189

ix

LIST OF TABLES

Table Page

2.1 Partial lists of previous work broken out by imaging model. : : : : : : : : : : 41

2.2 Complexity estimates for di�erent types of geometric matching : : : : : : : : 43

3.1 Comparing the �t errors for correspondences in Figure 3.7 : : : : : : : : : : 53

5.1 Trials required to probabilistically solve problems as function of P

s

. : : : : : 87

5.2 Con�dence bounds on probability of success estimates : : : : : : : : : : : : : 88

5.3 Performance summary for car tracking example in Figure 1.6. : : : : : : : : 97

6.1 Best match as the the most frequently found optima : : : : : : : : : : : : : : 122

6.2 Estimates

^

P

s

and

^

t

s

for the 96 experiments : : : : : : : : : : : : : : : : : : : 123

6.3 Tabulated estimated run-times r̂

s

: 126

6.4 Co-occurrence of r̂

s

and

^

t

s

above/below average : : : : : : : : : : : : : : : : 128

6.5 Matching problems ranked by size and

^

P

s

: : : : : : : : : : : : : : : : : : : 134

6.6 Percentage of pairs included in optimal matches over n. : : : : : : : : : : : : 135

6.7 Measured

^

P

s

over predicted P

s

using 1=10 correct rule : : : : : : : : : : : : : 137

7.1 Fully de�ned 3D pose determining state vector : : : : : : : : : : : : : : : : : 149

8.1 Improvement list for inertial-descent example 1 : : : : : : : : : : : : : : : : 159

8.2 Comparing the attributes of four matching algorithms : : : : : : : : : : : : : 165

8.3 Size of candidate pair sets with/without the sign-of-contrast : : : : : : : : : 167

8.4 Matching results when poses for Image 1 and Image 2 are confused : : : : : 172

x

LIST OF FIGURES

Figure Page

1.1 Illustrating local search matching : 3

1.2 A full-perspective and weak-perspective-3D view of a cube : : : : : : : : : : 7

1.3 Four basic forms of imaging : 9

1.4 A matching example drawn from aerial image photo-interpretation : : : : : : 11

1.5 A sequence of moving car images : 12

1.6 Tracking can be cast as a matching problem : : : : : : : : : : : : : : : : : : 12

1.7 A landmark-based navigation example : 14

2.1 More pairs supporting a pose may not mean a better match : : : : : : : : : 29

2.2 Illustration of tree search applied to geometric matching. : : : : : : : : : : : 30

3.1 A simple model and data for illustrating match evaluation : : : : : : : : : : 45

3.2 Plausible �ts of the model to the data : 45

3.3 Two alternate matches illustrating omission : : : : : : : : : : : : : : : : : : 46

3.4 Illustrating search spaces and correspondence functions : : : : : : : : : : : : 48

3.5 True many-to-many mappings do arise : 49

3.6 Points on data segment 1 project perpendicularly onto model line A : : : : : 50

3.7 Illustrating how perpendicular error is used to measure �t : : : : : : : : : : 51

3.8 Di�erent omission error curves : 55

3.9 Global �tting modi�es e�ect of displacing a single segment. : : : : : : : : : : 57

3.10 Example plot of relative orientation pairwise error : : : : : : : : : : : : : : : 59

4.1 Measuring perpendicular distance from midpoints is inadequate : : : : : : : 63

4.2 Perpendicular distance measured both from data and from model : : : : : : 64

xi

4.3 Illustrating elliptical error level curves : 68

4.4 ISPD does not always uniquely determine pose : : : : : : : : : : : : : : : : : 71

5.1 Hamming-distance-1 neighborhood. : 77

5.2 Hamming-distance-1 search: successive correspondences : : : : : : : : : : : : 79

5.3 Hamming-distance-1 search: successive matches : : : : : : : : : : : : : : : : 80

5.4 Hamming-distance-1 local optima : 81

5.5 Symmetric models mean several matches are equally good : : : : : : : : : : 82

5.6 Indirect Omission E�ects : 84

5.7 More precisely how omission is measured : 85

5.8 A forest imposed on a discrete search space : : : : : : : : : : : : : : : : : : : 89

5.9 Subset-convergent local search: successive correspondences : : : : : : : : : : 92

5.10 Subset-convergent local search: successive matches : : : : : : : : : : : : : : : 93

5.11 Detailed look at one car match from Figure 1.6 : : : : : : : : : : : : : : : : 96

5.12 Outdoor scene looking down walkway : 100

5.13 Telephone pole match example. : 101

5.14 Subset-convergent local search �nds both the Deer and Gira�e : : : : : : : : 102

5.15 Showing the Deer and Gira�e matches : 104

6.1 Six geometric object models : 108

6.2 Rectangle, Pole and Dandelion with random clutter : : : : : : : : : : : : : : 109

6.3 Deer, Tree and Leaf with random clutter : 110

6.4 Multiple instances of the Rectangle, Pole and Dandelion : : : : : : : : : : : 112

6.5 Multiple instances of the Deer, Tree and Leaf : : : : : : : : : : : : : : : : : 113

6.6 Globally optimal match for the Tree model : : : : : : : : : : : : : : : : : : : 115

6.7 The 2nd and 3rd ranked Tree matches for case 1 with � = 2 : : : : : : : : 116

6.8 Histograms ranking local optima for the Tree model : : : : : : : : : : : : : : 117

xii

6.9 For match error case 2, the 3rd and 4th ranked tree matches : : : : : : : : : 118

6.10 Sixteen locally optimal matches for the Dandelion model : : : : : : : : : : : 120

6.11 Histograms ranking local optima for the Dandelion model : : : : : : : : : : : 121

6.12 Average time to run r for 1 trial plotted versus n : : : : : : : : : : : : : : : 128

6.13 Estimated required trials

^

t

s

plotted versus n : : : : : : : : : : : : : : : : : : 129

6.14 Estimated run-times r̂

s

plotted versus n : 130

6.15 Run-time plots for random clutter and multiple instance problems : : : : : : 131

6.16 Optimal correspondence c

�

with g `good' bits on the left : : : : : : : : : : : 136

7.1 Point-to-plane �t measure for 3D-to-2D pose algorithm : : : : : : : : : : : : 142

7.2 Point-to-plane error accentuated for

~

P

far

versus

~

P

near

: : : : : : : : : : : : 144

8.1 Two hallway images : 154

8.2 Perspective views of landmarks : 155

8.3 Illustrating the di�erence between steepest and inertial-descent : : : : : : : : 157

8.4 Example of the full-perspective-inertial-descent algorithm : : : : : : : : : : : 158

8.5 Landmark projections for full-perspective-inertial-descent example : : : : : : 159

8.6 3D pose update placement in hybrid-weak-full-perspective search : : : : : : : 161

8.7 Example search trace for the hybrid-weak-full-perspective search : : : : : : : 162

8.8 Landmark projections for the hybrid-weak-full-perspective search : : : : : : 163

8.9 Labeled model and data segments for experiment 1 : : : : : : : : : : : : : : 168

8.10 Candidate pairs for 9 poses and directed segments : : : : : : : : : : : : : : : 168

8.11

^

P

s

for matching from 9 pose estimates : 170

8.12 Estimated run-times for matching from 9 pose estimates : : : : : : : : : : : 171

8.13 Confusing poses for images 1 and 2 : 173

xiii

C H A P T E R 1

Introduction

The shape of a three-dimensional (3D) object is frequently the most distinctive attribute

used to identify that object in an image. For rigid objects, recognition

1

by shape involves

two interrelated subproblems. The �rst is to �nd a discrete mapping between features of

a geometric object model and the corresponding features in a two-dimensional (2D) image.

The second is to �nd the geometric transformation between the object model and the camera

such that projected object model features �t the corresponding image features. The �rst

is the correspondence problem and the second the pose problem. The process of solving for

both the correspondence and pose is called `geometric matching', or for brevity in this thesis,

simply `matching'.

No single, general, robust and computationally tractable matching algorithm exists.

Although the problem has been studied for at least 30 years [95], all the commonly used

algorithms have limitations. One failing of many algorithms is an inability to deal e�ectively

with cluttered and imperfect image features. A second failing is an inability to handle 3D

perspective. The vast majority of the work on recognition has dealt with essentially 2D

problems often analogous to recognizing at objects on a table.

To overcome some of these failings this thesis introduces a new family of matching

algorithms based upon local search. Local search [64, 76, 92] is known within the combi-

natorial optimization literature as an e�ective means of �nding near optimal solutions to

some di�cult combinatorial optimization problems. Little use has been made of local search

in computer vision. Other non-linear optimization techniques have been used for a variety

of tasks. For example, stochastic relaxation has been used for image restoration [39] and

boundary detection [38] while Hop�eld networks have been used for building recognition [85].

In this thesis, for the �rst time, local search is adapted to geometric matching. The

result is a family of algorithms which probabilistically �nd globally optimal matches. As

will be shown, these algorithms excel at �nding matches in highly cluttered and imperfect

data. They also perform matching subject to full 3D perspective. These two strengths in

particular set them apart from algorithms which have come before.

The remainder of this chapter motivates and introduces local search as a means of solving

geometric matching problems. Section 1.1 describes the basics of local search in general and

local search matching in particular. Section 1.2 outlines some of the broad research objectives

which have motivated and driven the research. Section 1.3 discusses mathematical models

1

The term `recognition' here refers to �nding a particular object expected to be present in an image. This

is consistent with prior uses of the term [95, 80, 48], but should not be confused with the less constrained

problem of selecting which of many di�erent objects are visible in an image.

2

of how 3D objects appear in 2D images. Two key terms, weak-perspective matching and

full-perspective matching, are de�ned here. Section 1.4 provides three concrete examples of

matching problems solved with the algorithms developed in this thesis. Section 1.5 reviews

the major contributions of the thesis and �nally Section 1.6 provides a guide to the remainder

of the thesis.

1.1 Local Search Matching

The simplicity of local search [92] is enticing. Local search exploits a synergy between

iterative improvement and random sampling. Iterative improvement is used to repeatedly

improve an initial solution, a match of a model in this work, until it is locally optimal. To

increase the probability of obtaining a near optimal solution, multiple trials are run from

randomly selected initial solutions, and the best solution from the set is retained.

Local optimality means a match is comparable to or better than all its local neighbors.

The neighborhood itself is a domain-speci�c construct, and designing good neighborhoods is

an important part of applying local search to new problems. Local search shares its use of

iterative improvement with other well known techniques, such as hill-climbing and gradient

descent. Like hill-climbing, local search is typically used for discrete state spaces. Gradient

descent, on the other hand, assumes a continuous space and a di�erentiable objective

function.

The origins of local search as a technique for solving di�cult combinatorial optimization

problems are commonly traced to the work of Kernighan [64] and Lin [75, 76]. In these

papers, Kernighan and Lin demonstrated that fairly simple iterative improvement algorithms

could �nd near optimal solutions to such problems as traveling salesperson (TSP) and graph

partitioning. Local search is one of the earliest and simplest of the general, heuristic

2

non-linear optimization techniques, and its variants remain the best way known of solving

many of the well studied combinatorial optimization problems [60, 61].

Figure 1.1 illustrates geometric matching as a problem and how local search is used to

solve it. The object model shown is a rectangle comprised of four straight line segments

labelled A through D. Image features consisting of straight line segments are shown and

numbered. These represent imperfect data such as might be produced by a straight line

extraction algorithm. Matching involves �nding a discrete correspondence between model

and image segments as well as the pose of the model relative to the data. In this example, the

pose is the 2D position, orientation and size of the rectangle relative to the image segments.

More generally in this thesis, the pose will be the 3D position and orientation of a rigid

object relative to a camera.

The best match in Figure 1.1 illustrates the rectangle model �t to corresponding image

segments using a least-squares error criterion developed as part of this thesis. Placing the

object model in this best-�t pose relative to the corresponding image data is the �rst step

in evaluating match quality. Two fundamental and intuitive criterion go into evaluating

the quality of a match. First, in a good match, model features �t the corresponding image

data. Second, good matches do not omit signi�cant portions of the model. The match

error function formalizes and quanti�es �t and omission. As should seem intuitive from

2

Heuristic here means the method is not guaranteed to �nd the best, globally optimal solution

3

Rectangle Model Imperfect Data Best Match

D

C

B

A

0

1

2

3

4

5

8

11

9

10
7

6 12

0

1

2

4

5

8

9

10

11

3

6

7
12

D

C

B

A

A B C D
0 1 8 11 2 9 10 12 3 7 11 4 5 6 12Row Error

 1 3.52

 2 1.52

 3 0.81

 4 0.60

 5 0.45

 6 0.38

 7 0.34

 8 0.31

 9 0.30

 10 0.28

 11 0.20

 12 0.10

Single Exececution of Local Search

Figure 1.1 Illustrating local search matching. A model, imperfect data, and an optimal

match are shown. In addition, successively better correspondence mappings show how local

search might move from a poor match to the one which is optimal.

4

inspection, the match shown minimizes this match error. Often in this thesis it will be

possible to determine the globally optimal match by inspection, and algorithms will be

judged according to their ability to �nd these globally optimal matches.

The table in Figure 1.1 illustrates local search �nding the best match. A black circle

�lling a square indicates that a speci�c pair of model-image segments correspond as part

of the match. Successive rows indicate successively better matches. The match error is

displayed on the left. Search is initiated starting with a fairly poor match and culminates

in row 12 with the best match. Although the initial match is poor, local search determines

a modest set of simple perturbations which transform this poor match into the best match.

The perturbations leading to better matches are determined by searching a neighborhood

of possible changes to the current match. Neighborhood exploration is an explicit generate-

and-test procedure in which the match error for each neighbor is explicitly computed. In

this example, the neighborhood consists of all matches obtained by adding or removing a

single pair of candidate model-image pairs. At each step in the search the match error for

all neighbors (in this case 15) is computed and the neighbor with the lowest match error

becomes the new best-match.

A single execution of local search may not arrive at the globally optimal match. There is

a probability that local search initiated from a randomly selected initial match will arrive at

the globally optimal match and changing the design of the neighborhood can dramatically

alter this probability. This thesis presents neighborhoods for which this probability is high

enough to enable the use of local search to solve geometric matching problems. However,

even with the best neighborhoods, random sampling is still an important tool for further

increasing the probability of �nding the globally optimal match. The idea is common to

many probabilistic algorithms: run many trials and return the best solution.

For a wide range of practical matching problems, neighborhoods presented in this thesis

�nd the globally optimal match with probability better than 0:1. With such neighborhoods,

�nding the globally optimal match with 99% con�dence requires no more than 50 independent

trials of local search. Each trial searches a vanishingly small portion of the combinatorial

correspondence space, and hence the procedure as a whole is computationally tractable.

There is a fundamental di�erence between geometric matching and most other combi-

natorial optimization problems. In problems such as graph partitioning and TSP, changes

in the objective function for neighboring solutions are localized. For instance, with the TSP

the change in the cost of a tour resulting from the swapping of two cities is localized to the

links in the tour directly involved in the swap. Costs for links between cities not involved in

the swap do not change.

In contrast, for geometric matching, pairs of segments are interrelated through the best-

�t pose of the model. Adding or removing a single pair of model-image segments from a

match changes the pose and this in turn changes the �t and omission error for all pairs

of matching segments. This coupling of evaluation through the best-�t pose of the model

complicates the evaluation of potential matches and generates subtle interactions. Geometric

matching should not be confused with simpler `matching' problems which lack such global

interdependence.

5

1.2 Objectives

The impetus for local search as an approach to matching arises in part out of the following

research objectives:

1) Avoid domain-speci�c and object-speci�c assumptions.

2) Deliver low-order polynomial, average-case computational complexity.

3) Separate the de�nition of a good match from the choice of matching algorithm.

4) Make no unrealistic assumptions about model form or data quality.

5) Solve harder problems with more computation, not additional code.

Some of these are more obvious then others. All are in large part satis�ed by the algorithms

presented in this thesis.

The �rst objective distinguishes this work from domain-speci�c or even object speci�c

work. Algorithms fashioned from scratch to exploit speci�c object or domain knowledge will

typically outperform more general algorithms. If the goal is to �nd rectangular objects, and

only rectangular objects, then specialized algorithms can be designed for this task. However,

the limitations inherent in such specialization need hardly be stated. There is one important

correlate to this goal: the best algorithms ought to have both a general form and clearly

identi�able mechanisms for incorporating additional domain constraints. For local search

matching, a means of incorporating domain constraints is through the modi�cation of the

objective function, and this is described in Section 3.6.

The second goal, polynomial average-case complexity, is a practical necessity. General,

exponential algorithms already exist for geometric recognition. They are of little practical

use! Implicit in this goal is also the assumption that average case performance is a good in-

dicator of how the algorithm will perform in practice. Hence, it is important that algorithms

do not run away in an uncontrollable fashion, even when they encounter unusually di�cult

problems.

The third goal, that of separating the criterion for success from the design of an individual

algorithm, is less common but equally important. Formalizing matching as combinatorial

optimization achieves this goal. A match error de�nes the goal of the process to be the

match with the lowest error. Failure of the system to perform as desired may be due to: 1)

the match error improperly favoring an undesired result, or 2) the search algorithm failing

to �nd the optimal match. The means of remedying these two situations are completely

di�erent, and hence the ability to distinguish between them is critical. A formal de�nition

of optimality also facilitates comparisons between alternative search algorithms.

The importance of handling realistic data and models cannot be overemphasized. As

will shortly be illustrated with examples, image data is often fragmented, accreted (over

grouped), cluttered, and partial. Failure to perform gracefully under all these conditions

limits usefulness. Realistic assumptions regarding models are equally important. Polygonal

models are limiting in at least two ways. First, they assume that in a partially modeled

world all interesting objects have clearly delineated, visible, closed boundaries. Second, they

essentially force an algorithm to ignore surface markings. Other limiting assumptions to be

6

avoided include insisting that only one instance of a model be present or that models be

asymmetric.

The �nal objective is that harder problems should require more computation but not

new code. It is less common to see this objective stated , although it is clearly desirable.

It is relatively easy to see that local search meets this objective. A single trial of local

search improves upon an initial match until it is locally optimal. Starting from a randomly

selected initial match, there is some probability of �nding the globally optimal match. In a

very practical sense this probability is a measure of problem di�culty. Finding the globally

optimal match with the same level of con�dence requires more trials for harder problems. It

does not, however, require any modi�cations to the underlying matching software.

Understanding how to determine the number of trials to run is essential to understanding

the practical use of the algorithms developed in this thesis. The approach advocated in this

thesis is to identify a set of sample matching problems and to run local search many times

on these problems. For each problem, the success/failure ratio is recorded, where success

means local search found the optimal match. Because the independent trials of local search

represent a binomial random process, it is possible to use these ratios to estimate the trials

required to obtain success with say 95% or 99% con�dence for each problem. The estimates

for individual problems may be used to derive a conservative estimate of the number of trials

required to solve problems from the sampled problem domain. This process is more fully

described in Section 5.3.1.

1.3 Imaging

Where a set of points on a rigid 3D object model appear in an image depends upon

two things. It depends upon the pose of the object relative to the camera. It also depends

upon the projective mapping between 3D points in camera coordinates and 2D points on

the camera image plane. Imaging is the combined e�ect of these two factors. The common

3D perspective imaging model assumes that arbitrarily placed rigid 3D objects are viewed

through a pin-hole camera. Mathematically this is accomplished by rotating and translating

3D points on the object model from object coordinates into camera coordinates and then

perspective projecting these 3D points onto the 2D image plane. If

~

P

o

is a 3D point on an

object model in object coordinates and ~p

c

is the 2D image of this point under full-perspective,

then their relationship is de�ned as:

~p

c

=

x=z

y=z

where

x

y

z

=

~

P

c

= R

~

P

o

+

~

T: (1:1)

The pose of the object relative to the camera is expressed as a rotation R and translation T .

Visibility checks, such as hidden line and hidden surface removal, are used to avoid imaging

obstructed portions of an object. This full-perspective imaging is the basis of most current

3D computer graphics techniques [36].

If all model matching techniques assumed full-perspective, then there would be no need

to say more about imaging. However, this is not the case. It appears that with the possible

7

exception of Lowe [82]

3

, the work presented in this thesis is the �rst to perform geometrically

accurate matching under full-perspective. This is in part because this thesis takes advantage

of the work of Kumar [71, 69] on computing 3D object pose under full perspective. All other

previous work has in one manner or another simpli�ed the problem by making restrictive

assumptions about imaging. To understand the work presented here, some of which also

makes restrictive assumptions about perspective, as well as the relationship between this

work and that which has come before, it is necessary to describe some of the more common

ways of restricting the imaging process.

One restricted form of imaging is obtained by replacing perspective projection with

something called scaled orthograhpic projection, which is de�ned by replacing equation 1.1

with:

~p

c

= s

x

y

: (1:2)

(a) (b)

Figure 1.2 A full-perspective and weak-perspective-3D view of a cube. a) full-perspective

and b) weak-perspective-3D. Perspective makes it possible to see the cube as 3 dimensional

while with weak-perspective it looks at and 2 dimensional.

Using scaled orthographic projection yields what will be called weak-perspective-3D.

The `3D' is tagged onto the end to distinguish it from another weakened form of perspective

imaging de�ned below. What is most characteristic about weak-perspective-3D imaging

is that it does not induce vanishing points. What this means in practice is that it is an

adequate approximation to full-perspective imaging for shallow objects: objects with little

depth relative to their distance to the camera. However, it will increasingly distort objects

for which some points on the object are signi�cantly closer to the camera than others. The

striking di�erence between a full-perspective view and a weak-perspective-3D view of a cube

is illustrated in Figure 1.2.

Both full-perspective and weak-perspective-3D imaging map directly from the 3D object

model to the 2D image plane. Other forms of imaging divide imaging into two steps. In

the �rst step, the 3D object model is perspective projected into the image plane based upon

a particular pose of the object relative to the camera. In the second step, this projection

3

In this work Lowe solves limited correspondence problems in the context of motion tracking. However,

he does so while fully accounting for 3D perspective.

8

becomes a 2D template subjected to 2D a�ne (similarity) transformations in the image plane.

These 2D a�ne transformations partially account for changes in appearance associated with

relative changes in object pose. In the context of matching, the �rst step is usually done

only once prior to matching. Sometimes the 2D model may be generated directly by hand

or extracted from an image. Figure 1.3 summarizes di�erent types of imaging.

When a 2D similarity transform - rotation, translation and scaling - is used in place of

a general a�ne transform, the result is a di�erent form of weakened perspective imaging.

This type of imaging shall here be called weak-perspective-2D. Weak-perspective-2D shares

some attributes with weak-perspective-3D. It behaves similarly for planar objects viewed

at roughly right angles to the camera. However, these are fundamentally di�erent forms of

imaging and should not be confused.

Weak-perspective-3D and weak-perspective-2D imaging have di�erent strengths and

weaknesses. The strengths of weak-perspective-3D imaging include the ability to image

an object from any arbitrary viewpoint. In contrast, assuming a 2D projection generated

from a particular initial viewpoint, weak-perspective-2D can only generate a subset of all

the possible views of the object. In this respect, weak-perspective-3D is more general than

weak-perspective-2D.

However, weak-perspective-2D is superior to weak-perspective-3D in the following re-

spect. When viewing an object of modest depth relative to its distance from the camera,

weak-perspective-3D cannot accurately express the appearance of the object as viewed

through a pin-hole camera from any viewpoint. In contrast, for at least a subset of views

related to an initial perspective projection of the 3D object, weak-perspective-2D will accu-

rately express the appearance of the object.

This di�erence may be illustrated using Figure 1.2. There are a set of viewpoints from

which the 2D projection in Figure 1.2a can be transformed via a 2D similarity transform so as

to exactly match the actual 2D appearance of the cube as viewed through a pin-hole camera.

For example, if the cube were moved away from the camera its image would shrink, and this

could be accommodated by changing the scale factor of the 2D similarity transformation. In

contrast, there is no viewpoint from which the cube would appear as pictured in Figure 1.2b.

There is a fourth even more restrictive form of imaging worthy of mention because it is

one of the most commonly studied and easiest under which to perform geometric matching.

This is 2D-rigid imaging, and it is similar to weak-perspective-2D imaging except that the 2D

similarity transform is replaced with a 2D rigid - rotation and translation only - transform.

To provide a bit of intuition for each form of imaging, the following describes the physical

circumstances which might give rise to each.

2D-rigid - Flat objects on a table perpendicular to the camera. The object can be translated

and rotated on the table. The distance from the camera to the table is known.

Weak-perspective-2D - Any 3D object, but viewed from a restricted set of viewpoints

de�ned relative to some nominal viewpoint. For example, a camera's precise orientation

is not critical, nor is its distance from the object important. However, changes in relative

orientation to the object can violate the weak-perspective-2D imaging model. Chapter 8

will clarify these viewpoint restrictions.

9

Full-perspective

Weak-perspective-2D

Weak-perspective-3D

2D-rigid

3D Object Model

2D-image

3D Pose
Perspective projection

Matching

3D Object Model

2D-image

3D Pose
Scaled Orthographic

Matching

3D Object Model

2D-image

2D Model

3D initial pose
Full-perspective

2D similarity
transform

Matching

3D Object Model

2D-image

2D Model

3D initial pose
Full-perspective

2D rigid
transform

Matching

Figure 1.3 Four basic forms of imaging. The relationship between 3D model and the 2D

image of the model is indicated in each case. The two step nature of weak-perspective-2D

and 2D-rigid imaging are further indicated. The enclosing dashed boxes indicate the part of

the imaging process dealt with during matching.

10

Weak-perspective-3D - Any 3D object which is shallow in depth compared to its distance

from the camera. It can be viewed from any arbitrary viewpoint. However, to the

extent that points on the object are not all at a constant depth relative to the camera,

distortions will be induced.

Full-perspective - Any 3D object viewed from any arbitrary viewpoint. Full-perspective is

an excellent �rst-order approximation for a standard camera. It neglects second-order

e�ects such as radial distortion.

In this thesis local search matching will be performed assuming both weak-perspective-2D

and full-perspective imaging. Matching under weak-perspective-2D imaging will in future

be called weak-perspective matching. Matching under full-perspective imaging will be called

full-perspective matching. These terms are well-de�ned within the context of this thesis, but

it should be noted that the term weak-perspective matching is potentially confusing and may

be used by others to refer to matching under weak-perspective-3D imaging. Section 2.4.8 of

the literature review lists imaging forms assumed by previous works on geometric matching.

1.4 Examples

Each of the matches shown in this series of examples has been obtained with the

algorithms developed in this thesis. The �rst example illustrates highly imperfect image data.

The second example illustrates the role of global geometric consistency in disambiguating

potentially confusing local structure. It also illustrates many-to-many mappings between

model and image features. The third example illustrates the need to account for full-

perspective.

The �rst example, Figure 1.4, is drawn from the aerial photo-interpretation domain.

The speci�c problem is that of identifying a previously modeled building in the approximate

area of the image in which it is expected to appear. Figure 1.4a shows a part of a larger

image. Figure 1.4b shows line segment features extracted from this image using the Burns

algorithm [20]. Figure 1.4c shows a relatively simple object model. The placement of this

model represents an initial estimate of the object's position, orientation, and size. Figure 1.4d

shows those data features determined to match the model. Segments shown in light grey

were considered potential matches based upon the initial placement of the model as shown

in Figure 1.4c, and forms the basis of the combinatorial search space in which the optimal

match was found.

The relatively poor quality of the data in Figure 1.4 is indicative of what current

feature extraction algorithms produce under these conditions, and makes this a challenging

problem. The optimal match is pieced together from multiple fragments along each side of

the model. It was also necessary to disregard the considerable `clutter' present around the

true match. These clutter segments mimic the local rectilinear structure of the model and

greatly exacerbate the combinatorics of the correspondence problem.

Another application of matching arises when tracking a moving object. An example is

presented in Figures 1.5 and 1.6. The car is moving directly toward the camera, and under

these conditions it is possible to use a subset of the line segments extracted from the �rst

image as a model to be found in the second two images. The subset of segments selected by

11

(a) (b)

(c) (d)

Figure 1.4 A matching example drawn from aerial image photo-interpretation: a) a small

section of a larger aerial image, b) line segment features, c) a simple geometric object model

denoting a building, d) the black data segments as a set match the building model while the

grey segments do not.

12

(a) (b) (c)

Figure 1.5 A sequence of moving car images. The car is moving toward the camera and

hence it grows in size. The perspective remains essentially unchanged.

(b)(a) (c)

Figure 1.6 Tracking can be cast as a matching problem. Segments selected from the �rst

image (a) are matched to features extracted from images (b) and (c). Black segments

represent the model in (a) and the segments matched to it in (b) and (c).

13

hand to serve as a model of the car are shown in black in Figure 1.6a. The grey segments

were not considered worth tracking. This model is then matched to the segments shown in

Figure 1.6b and Figure 1.6c. Black segments match the model while grey segments do not.

In this example, as in the previous one, the model is rotated, translated and scaled in the

image plane so as to best-�t the corresponding data. Hence, these are both weak-perspective

matching problems.

This tracking example illustrates several sources of potential di�culty. Observe that

pairs of closely spaced lines border the windshield on the top and sides. The outer segments

could locally match the inner segments as well as the outer segments, and the matching

algorithmmust overcome this local ambiguity. Fitting the object model as a whole e�ectively

accomplishes this task. Although local search matching performs nearly awlessly on this

example, the reader should note there is a slight error in Figure 1.6c. The top of the right

hand mirror is matched to a segment below the correct one. This slight mismatch is due to

a slight distortion in the appearance of the model relative to what can be compensated for

using only rotation, translation and scaling in the image plane. The match shown is optimal

as measured by the match error function.

This match also provides an illustration of many-to-many mappings between object

features and image features. Both this example and the last show the importance of matching

one model line segment to one or more data fragments. This example also includes a case

where two model segments properly match a single data segment. The outer left hand side

of the car in the model consists of three adjoining segments. In the next image, Figure 1.6b,

these three segments are extracted as a single overgrouped segment.

A third application of geometric object recognition arises in the context of mobile vehicle

navigation. A vehicle in a partially modeled environment should be able to determine

its position by recognizing known landmarks. Figure 1.7a shows an image acquired by a

mobile robot in a hallway. Figure 1.7b shows data line segments extracted from the image.

Figure 1.7c shows a projection of a 3D partial model of the hallway as it would appear

from a position about 10 feet behind the robot's current position and with the robot looking

directly down the hallway. Figure 1.7d shows the image segments found to match this 3D

landmark. As in Figure 1.4, segments considered candidates but not included in the optimal

match are shown in light grey.

In the �rst two examples, the matching problems were essentially 2D. To be precise, the

models themselves consisted of 2D line segments which were rotated, translated and scaled

in the image plane. However, in the last example from the hallway, the model consisted of

3D line segments which were rotated and translated in 3D, and then projected into the image

plane using perspective projection. As will be exempli�ed in Chapter 8, in domains such as

hallways, 3D perspective plays a signi�cant role in how an object's appearance changes with

small changes in camera position.

1.5 Contributions

As the examples just presented suggest, the local search algorithms presented in this

thesis handle a wide variety of problems. As will be argued here, these algorithms overcome

a variety of problems associated with previously proposed approaches to matching.

Previous work falls roughly into four categories: 1) Feature-focus [14], key-feature [80]

14

(a) (b)

(c) (d)

Figure 1.7 A landmark-based navigation example: a) an image obtained from a mobile robot,

b) data line segments, c) a partial model of the hallway as seen from ten feet back and with

the robot oriented directly toward the door at the end of the hall. d) Image features found

to match landmark features. The match allows the true pose of the robot to be computed

to within the accuracy of the pose algorithm: roughly 6 inches in this example.

15

and alignment [54] algorithms search for a distinctive feature indicating a match. 2) General-

ized Hough transform [28, 5] and pose clustering [103] algorithms search for accumulated ev-

idence of a match in the space of model-data transformations. 3) Geometric hashing [63, 72]

and feature indexing [101] algorithms broaden the key-feature concept, using local clusters of

features to predict both the identity and placement of an object. 4) Tree search [46, 48] and

geometric consistency [4, 22] algorithms utilize geometric consistency constraints to prune a

search tree. Chapter 2 provides a more comprehensive review of these four basic approaches

to matching.

In at least four basic areas local search matching compares favorably to these previous

approaches. First, local search matching handles imperfect image data better than these

other approaches. Second, measured growth in required computation as a function of problem

size for local search matching appears comparable or superior to predicted growth for these

other approaches. Third, local search matching places fewer constraints upon allowable

geometric con�gurations of models than do these other approaches. Finally, local search

matching has extended naturally from weak-perspective to full-perspective matching. This

is not true of any other approach reviewed in Chapter 2.

Expanding upon the issue of imperfect data, arguably the greatest problems are caused

by fragmentation and accretion. To handle both of these conditions, an algorithm must

support many-to-many mappings between object model and image features. However, most

of the algorithms reviewed in Chapter 2 depend crucially upon an assumed one-to-one

mapping. These algorithms are doomed when image data fails to meet this expectation.

Some algorithms support mapping one model feature to many image features, and these are

somewhat more robust. However, only the local search algorithms developed in this thesis

fundamentally

4

support many-to-many mappings.

Empirical study of the average case computational complexity of local search matching

suggests computation grows as roughly n

2

, where n is the number of potentially matching

features. This leads to a conjecture that the average case computational complexity of

local search matching is order n

2

. Of course, this conjecture is weak, since extrapolating

from empirical performance over a �nite range of problems is at best suggestive, and at

worse false. Formal analysis would be better, but unfortunately formal analysis of local

search algorithms is known to be di�cult [62]. Therefore, this thesis o�ers the results of a

systematic empirical study in the belief that it is better to present quali�ed empirical results

than to say nothing at all.

The test suite used for the study includes problems with multiple model instances and

highly symmetricmodels. The importance of this is twofold. First, both of these are common

occurrences in various practical domains, and hence should be handled gracefully in order for

an algorithm to be of practical use. Second, the class of geometric matching algorithms whose

computational complexity has been most thoroughly studied are the tree search algorithms of

Grimson [48], and while Grimson has analytically derived an average-case complexity bound

of n

2

for restricted classes of problems, he has also shown tree search to be exponential

if either multiple model instances or symmetric models are present. In this light, an n

2

average-case bound for local search matching would be better than that for any of the other

general methods. It remains to be seen whether the conjectured n

2

bound for local search

4

Some practical algorithms permit additional correspondences to be added in a post-processing step.

16

matching will be born out by further study.

The algorithms developed in this thesis assume very little about the geometric form of an

object. This permits them to be used on a great range of di�erent problems and goes a long

way to insure that the approach is domain-independent. A model is simply a collection of

line segments. Unlike the majority of the work reported in Chapter 2, there is no requirement

that segments form closed contours. Hence, segments can denote surface markings as well as

occluding contours. Unlike key-feature and geometric hashing approaches, the local search

algorithms do not require key-features or feature indexing. Therefore, they are not dependent

on either an automated means for selecting such features or, more fundamentally, upon such

features existing in the �rst place. However, when key-features are reliably available they

may be used to augment random sampling as a means of picking initial matches.

Finally, and perhaps most signi�cantly, in the previous work there is an almost complete

lack of matching under full-perspective. The algorithms developed in this thesis readily

generalized from the commonly studied weak-perspective problems to that of matching under

full-perspective. The same cannot be said for the other approaches reviewed in Chapter 2.

Credit for this extension goes in part to Rakesh Kumar, for without the bene�t of his

work on full-perspective pose recovery [71, 69], this extension would not have been possible.

In addition, the extension is made possible by the fact that the local search approach to

matching developed in this thesis does not depend upon �nding local collections of pose-

distinctive or pose-consistent features. Virtually all previous approaches to matching are

dependent upon the existence of such features, and this dependence is largely responsible

for the failure of these other approaches to generalize to full-perspective matching. The

existence of pose-distinctive local features under full-perspective becomes problematic and

their identi�cation combinatoric.

In contrast, local search matching has no such dependence. Instead, the dependence upon

the geometric mapping between object and image features is encapsulated within the match

error calculation. Computing the match error involves �nding the optimal spatial �t between

the model and corresponding (currently matched) image features. Under weak-perspective

this involves solving for a best-�t 2D similarity transformation while under full-perspective

it involves solving for the best-�t 3D pose of the object relative to the image.

Solving for the weak-perspective best-�t is less costly than solving for full-perspective

best-�t: the �rst requires solution of a quadratic equation while the second involves iteration

using a quasi-Newton method. Typically solving for full-perspective best-�t requires only

a modest number of iterations, and hence the costs of computing weak-perspective versus

full-perspective best-�t di�er by a constant rather than an exponential factor. Consequently,

the cost of weak-perspective matching versus full-perspective matching can be expected to

di�er by a constant factor. This is born out in practice, with full-perspective matching

taking roughly ten times as long as weak-perspective matching.

It was discovered in the course of doing the work for this thesis that a judicious combi-

nation of weak-perspective and full-perspective �tting techniques leads to a hybrid form of

matching algorithm that has signi�cant advantages over either approach used alone. These

algorithms use weak-perspective to rank alternatives during search, and full-perspective when

actually adopting new matches. What this means geometrically is that the hybrid algorithm

incrementally improves the correspondence mapping between 3D object line segments and

2D image line segments using the weak-perspective approximation for guidance. As it does

17

this, the full-perspective �tting incrementally improves the 3D object pose estimates, and

in so doing incrementally removes perspective distortion from the 2D projection of the 3D

object. Results presented in this thesis show these hybrid algorithms solve problems involving

full-perspective in amounts of time comparable to the simpler weak-perspective matching

algorithms.

Several additional innovations and results presented in this thesis deserve special men-

tion. As just stated, �tting 2D line segment models subject to rotation, translation and

scaling is quite e�cient, requiring the solution of a quadratic equation. Both the e�cient

�tting methods and the �t measure itself are original contributions of this thesis. The �t

measure is the integrated squared perpendicular distance (ISPD) between the model line and

corresponding image line segments. In two ways ISPD is superior to previously suggested

measures [3]. First, perpendicular error is measured relative to the more stable model line

rather than to the potentially fragmented and skewed image segments. Second, through

integration, all points along an image segment are treated uniformly.

A fully general means of solving for the rotation, translation and scale of a model which

minimizes ISPD is presented in this thesis. With the exception of underconstrained cases,

the best-�t transformation is always uniquely determined by solving a quadratic equation.

An interesting result also presented in this thesis is that minimizing ISPD subject to rotation

and translation alone is more di�cult. This 2D rigid case requires the solution of a quartic,

rather than a quadratic, equation.

The development of novel local search neighborhoods and strategies has been important

to the overall success of the work presented in this thesis. A new algorithm, named here

subset-convergent local search, has been instrumental in reducing the average-case compu-

tational complexity to the roughly n

2

empirical estimate previously mentioned. The central

idea behind the algorithm is that geometric matches which are locally (but not globally

optimal) tend to result when di�erent portions of a model become attached to incompatible

image features. Subset-convergent local search takes such matches and disassociates from the

match all but a subset of the corresponding image features. Doing this tends to allow local

search to move beyond such undesired matches to those which are more globally consistent.

1.6 Overview

Chapter 2 reviews current approaches to recognition. The remaining chapters lay out

the local search approach to geometric matching. The thesis builds through several stages,

considering �rst weak-perspective problems and issues of computational complexity, and

culminating with an algorithm for handling full 3D perspective. This algorithm, given a very

rough estimate of an object's pose, solves simultaneously for the optimal correspondence and

3D pose.

Chapter 3 de�nes the discrete, combinatorial space of correspondences between object

model and image features. It also de�nes, over this correspondence space, the match error

function. The two fundamental terms of the match error, �t and omission, are described here.

Optional terms capturing additional constraints are also presented. Addition of optional

domain-dependent terms represents one way in which the general local search matching

technique can be tailored to meet speci�c needs of particular domains.

Computing the match error depends upon obtaining the best spatial �t between the

18

model and corresponding data. Chapter 4 fully derives the �tting algorithm for weak-

perspective. The equivalent �tting procedure for full-perspective is presented in Chapter 7.

Weak-perspective �tting minimizes an integrated-squared-perpendicular-distance (ISPD) mea-

sure between 2D model lines and 2D data line segments. The closed-form solutions for �tting

a model to image data using this measure are presented. The case of �tting subject to

rotation, translation and scaling is shown to be quadratic while the case of �tting subject

to rotation and translation alone is quartic. A regularization term is also developed which

minimizes squared distance between mid-points of corresponding model and image segments,

and thereby resolves many otherwise underconstrained cases.

Chapter 5 introduces the use of local search for geometric matching. It reviews the

ideas essential to local search, including local neighborhoods and random sampling. Speci�c

neighborhoods are developed which are particularly well-suited to geometric matching. In

particular, the Hamming-distance-one and subset-convergent neighborhoods are developed.

Subset-convergent local search is shown to be very e�ective at breaking out of locally but

not globally consistent geometric matches.

Chapter 6 takes up the question of how the computational demands of local search

matching grow as a function of problem size. Formal analysis of local search complexity

is known to be di�cult [62], and empirical estimates are a common substitute. For a test

suite of problems (also presented in Chapter 6) computation appears to grow as roughly

n

2

, where n is the number of potential pairings between model and data features. This rate

of growth is not dramatically inuenced by either the nature of clutter in an image or the

structure of the object models.

Weak-perspective matching fails to capture the variability of full 3D perspective, and in

some matching problems it is not possible to completely neglect full-perspective. Chapter 7

adapts the 3D pose algorithm developed by Kumar [70, 69] to support full-perspective

matching. Several adaptations are described. One recasts the algorithm for computational

purposes in terms of pose state vectors which are added and subtracted from a running

sum when pairs of model-image features are added or removed from a match. Another

adaptation involves adding a mid-point regularization term similar to that developed for

weak-perspective �tting. This term uniquely determines the pose for many otherwise under-

determined sets of model-to-image feature correspondences.

Local search matching algorithms for full-perspective matching are developed in Chap-

ter 8. These algorithms are demonstrated on problems which arise in the context of mobile

robot navigation. The most conceptually straightforward extension substitutes all uses

of weak-perspective �tting derived in Chapter 4 with full-perspective �tting derived in

Chapter 7. Doing this yields a powerful algorithm, in that it readily solves problems

involving perspective. However, due to the roughly order of magnitude increase in the

cost of full-perspective �tting, this algorithms is slower than its weak-perspective cousin.

Through the development of a hybrid algorithm, Chapter 8 demonstrates that even

sparing use of full-perspective yields an algorithm capable of solving matching problems

that would are quite sensitive to perspective e�ects. The hybrid algorithm uses primarily

the weak-perspective measures developed in Chapter 4 to guide the search process, and only

uses full-perspective periodically. This hybrid algorithm combines the best attributes of both

weak and full-perspective in order to solve perspective sensitive problems in little more time

than that required by the cheaper weak-perspective only algorithm.

C H A P T E R 2

Previous Work

2.1 Introduction

This chapter will emphasize the last ten years of work on recognition, focusing in par-

ticular on geometric model-based approaches which are neither object-speci�c nor domain-

speci�c. Work on this general problem traces back at least to Roberts [95] in the mid 1960's,

but the dominant approaches to solving geometric-based recognition tasks have all emerged

since 1980. Although compartmentalizing a large body of work is risky, it is possible to group

a signi�cant portion of the work on geometric-based recognition into four broad categories:

key-feature, generalized Hough, tree search and geometric hashing,. Briey, the essential

aspects of these four approaches are described below.

Key-feature: Key-feature algorithms search for highly distinctive local geometric features

which indicate the placement of an object in a scene; the `local-feature-focus' method

of Bolles and Cain [14] is an early example.

Generalized Hough: Generalized Hough algorithms [28, 5], and more recently pose clus-

tering [103] algorithms, emphasize search in the space of object model to image pose

transformations.

Tree Search: Tree search algorithms [4, 46, 48, 16, 22] expand a tree of potential matches

between model and image features using local geometric consistency constraints for

pruning.

Geometric Hashing Geometric hashing and related approaches have arisen more recently [63,

72]. This work can be seen as a natural extension of the key-feature approach in which

local geometric features are used to predict object identity as well as placement.

Before explaining the four common approaches to solving recognition tasks, Section 2.2

�rst reviews in broad terms the general statement of the geometric matching problem.

Although there has yet to emerge a consensus upon the best way to solve recognition tasks,

there is a developing nomenclature for describing the various aspects of the problem. It is

important to understand these terms, and how they describe and constrain what is meant

by recognition.

After reviewing the statement of the matching problem, Section 2.3 describes the key-

feature, generalized Hough, tree search and geometric hashing approaches to matching. Each

description summarizes the essential elements of the approach and cites both the earliest and

most signi�cant examples of its use. Where appropriate, some indication of the strengths

20

and weaknesses of each approach will be given.

Section 2.4 summarizes local search matching as developed in this thesis and draws

comparisons between this new approach to matching and work which has come before.

One distinction that emerges is that local search matching combines random sampling

and iterative improvement in a way never before used for geometric matching. Another

distinction that local search, unlike the other common approaches, makes no clear dis-

tinction between hypothesizing and verifying a match. The other four approaches are all

essentially techniques for hypothesizing either a correspondence or a pose. These hypotheses

subsequently require veri�cation. Finally, the imaging assumptions of previous works on

matching are summarized, and this shows that with the possible exception of work by David

Lowe [82], none of the work to come before has done quantitatively accurate matching under

full-perspective.

2.2 Problem Overview

To better understand alternative ways of recognizing an object, it helps �rst to under-

stand in more concrete terms what the problem entails. This can be done by reviewing the

seminal work by Roberts [95]. Roberts restricted the general problem of recognition to the

more constrained and correspondingly better de�ned problem of geometric matching, and it

is largely from Roberts that we take the basic problem statement. Section 2.2.1 reviews the

work of Roberts both to set a historical context and introduce fundamental themes which

recur throughout the subsequent work on recognition.

2.2.1 Roberts Sets the Stage

What is most striking about the work of Roberts [95] is how he captured the essential

elements of recognizing a geometrically modeled object. This includes the way in which he

formulated the recognition problem, the representations and computational tools he thought

would be important, and even some of the limitations he imposed upon the problem.

Roberts restricted the problem to that of recognizing a known, precisely modeled object.

This led to a problem statement that, although di�cult, is rich, well formulated, and

ultimately solvable using geometry. This stands out in stark contrast to the more general

problem of recognizing an instance drawn from a generic class of objects. To illustrate

by example, Roberts limited the problem to that of recognizing the chair, not a chair,

where `the chair' is a speci�c chair with precisely known geometric dimensions. The more

general problem of recognizing all things people call chairs is a classic problem in Arti�cial

Intelligence, and is arguably unsolvable using only geometric constraints.

Roberts's work emphasized four things which have been recurrent themes in subsequent

work, and which play a crucial role in the work of this thesis. These four things are:

Wire Frame Object Models An object was modeled using a rigid 3D wire frame made

up of straight 3D line segments. A vast majority of the subsequent work on geometric

based recognition has also used wire frame or variants upon wire frame models.

21

Image Line Segments Rather than look for evidence of an object directly in pixel in-

tensity values, Roberts proposed that edges extracted from an image be grouped into

locally straight segments, and that these segments be matched as symbolic entities to

components of the wire frame model.

Least-Squares Pose Determination Since 2D segments in an image are projections of 3D

segments in a wire framemodel, it is possible to derives constraints upon the appearance

of a model relative to the camera. Due to noise, these constraints will never be satis�ed

perfectly, but a least-squares technique ought to provide a means of estimating the

object's pose.

Full-perspective Projection The appropriate model for how 3D model segments map to

the 2D image plane is full-perspective projection.

This last point may seem obvious, but it deserves note when considered in light of the near

complete failure of subsequent work to take account of perspective.

The details of Roberts's work look somewhat simple after nearly 30 years of research.

For example, the object models he studied were comparatively rudimentary, based upon

simple polygonal forms. However, his contribution in terms of circumscribing a rich class of

problems, and his insight into the essential aspects of its solution, are worthy of note.

2.2.2 Terminology

In describing recognition problems and recognition algorithms it is important to be able

to describe concisely di�erent aspects of the problem. In the interests of doing this, here are

a brief set of de�nitions.

Indexing: Determining which of possibly many object models are visible in an image. For

example, consider all the possible pieces of furniture in a house, and then consider

determining which are visible in a particular image.

Correspondence: The discrete mapping between features of an object model and features

in an image. This mapping amounts to a statement that a 2D image feature is the

projection of a corresponding object feature.

Pose: The spatial transformation relating the object model to the image or camera.

Projection: For 3D models, the process of mapping 3D points on an object model to 2D

points in an image.

Imaging: The complete speci�cation of the spatial mapping of 3D object features to the

2D image plane as de�ned by both the pose of the object with respect to the camera

and the form of image projection.

Match: A correspondence and an associated pose.

2D-rigid Matching: Matching an object model to image features, assuming 2D-rigid imag-

ing as described in Section 1.3.

22

Weak-perspective-2D Matching: Matching an object model to image features assum-

ing weak-perspective-2D imaging as described in Section 1.3. Abbreviated to weak-

perspective matching in this thesis.

Weak-perspective-3D Matching: Matching an object model to image features assuming

weak-perspective-3D imaging as described in Section 1.3.

Full-perspective Matching: Matching and object model to image features assuming full-

perspective imaging as described in Section 1.3.

The de�nitions of `indexing', `correspondence', `pose' and `projection' are consistent with

common usage, including that of Grimson [48]. The term `imaging' has been de�ned for

this thesis in order to give a name for the complete process by which model features map

to image features. The term `match' is de�ned in a manner consistent with the algorithms

developed in this thesis, and it is also consistent with most peoples intuition.

It is important to understand that indexing is ignored by most of the work on geometric

recognition. Of the four basic approaches reviewed in this chapter, key-feature, generalized

Hough, tree search and geometric hashing, only geometric hashing does indexing. As will

become apparent, there are sound reasons for wanting, when possible, to avoid the indexing

problem. Indexing adds one more layer of complexity to an already di�cult problem. Like

most other work on matching, the algorithms developed in this thesis will not deal with

indexing.

Having removed, by assumption, indexing from the problem statement, a legitimate

question is whether this restricted problem should be called recognition. The past standard

for the �eld has been to say yes, and to conform with this standard, this thesis uses the

term `recognition' in its title and in more general descriptions of the problem. However,

throughout most of the thesis the somewhat more precise term `model matching', or simply

`matching', is favored.

The imaging process, which de�nes the spatial mapping between object features and

image features, is an essential part of the overall description of a matching problem. The

need to keep distinct the notion of pose and imaging can be overlooked when considering

only 2D approaches to recognition. In these cases, 2D pose and imaging are synonymous.

However, as Section 1.3 described, assumptions about object pose and 3D-to-2D projection

can vary widely when working with 3D object models.

The way the space of correspondence mappings between model features and image

features is de�ned says a lot about the robustness of an algorithm in the face of corrupted

data. Despite obvious limitations, the majority of work on matching has assumed one-to-one

correspondence mappings. The alternative mappings are reviewed in the next section.

2.2.3 Correspondence Mappings

It is critical to keep clear the distinction between the spatial mapping between features

associated with imaging and the discrete correspondence mapping assigning image features

to model features. The former is a continuous geometric mapping which transforms model

features expressed in model coordinates to image features expressed in image coordinates.

The later is a combinatoric discrete mapping associating model features with those image

23

features presumed to be associated with, or caused by, the corresponding model feature.

Just as previous work simpli�es matching by assuming restricted forms of imaging, much of

the previous work unrealistically simpli�es matching by restricting allowable correspondence

mappings.

If image feature extractions algorithms were perfect, then there would never be any

need for a correspondence mapping which was not one-to-one: one feature on a model is

manifested by a single corresponding feature in the image. This is not, of course, how

real feature extraction works. The symbolic decomposition of an object model is often not

reconstructed exactly by a feature extraction process, and it is not di�cult to come up with

situations in which it is important to map one or more model features to one image feature,

and vice versa. For matching line segment models, the need for many-to-many mappings

was already demonstrated in Section 1.4.

In this light, it is perhaps surprising that the vast majority of the work cited below

presumes a match is a one-to-one correspondence between object model and image features

([63] [66], [105], [23], [26] [41], [56], [1] [55], and [22]). Since common line extraction

algorithms [89, 20, 107] often fragment and sometimes accrete (over-group) segments, this

one-to-one mapping assumption limits the applicability of these algorithms.

At a minimum, a robust matching algorithm must permit one-to-many mappings, so a

single model feature may be mapped to several image fragments. Some common algorithms

do permit such mappings, for instance [33, 98, 46]. However, none handle many-to-many

mappings, and extending them to do so is problematic due to the immense increase in

combinatorial possibilities. Only the algorithms developed in this thesis routinely assume

many-to-many mappings between object model and image features.

2.2.4 Hypothesize then Verify

Essentially all the algorithms which fall into the key-feature, generalized Hough, tree

search and geometric hashing categories generate either correspondence or pose hypothesis

which must be subsequently veri�ed. What this means in each case will become apparent

when each approach is described below. However, a brief and simpli�ed description can be

given here.

Tree search algorithms hypothesize correspondence mappings which are potential matches,

meaning there is likely but not necessarily a single pose transformation which aligns corre-

sponding features. To determine which correspondences are good matches, it is necessary to

run a separate veri�cation procedure which tests for a single consistent pose. The key-feature,

generalized Hough and geometric hashing approaches all use local features to hypothesize an

object pose. It is then necessary to verify that there are in fact image features to correspond

with each model feature in the hypothesized pose.

The reason for noting this common requirement is that it is not shared by the local

search approach to geometric matching developed in this thesis. This point will be returned

to in Section 2.4.7.

24

2.2.5 Object Speci�c Knowledge and Recognition

It would be a major omission if this review left the impression that there has not

been work on more knowledge intensive and knowledge directed approaches to recognition.

Approaches of this form are promising and interesting. The reason for their peripheral

mention here is that they adopt a di�erent set of generality assumptions than those made by

the four classes of algorithms already mentioned and by the work developed in this thesis.

Hence, they are not directly comparable.

To better see the di�erent dimensions along which an algorithm can strive to be general,

consider two essential elements of algorithms falling into the key-feature matching, gener-

alized Hough, tree search and geometric hashing categories. First, they at least attempt

to be general across a very wide range of geometric object models. What this means is

they employ a single general procedure, regardless of the type of object being searched for.

Second, drawing on the earlier discussion of the `a chair' versus `the chair' distinction, they all

assume an essentially rigid geometric template as the object model, and hence will recognize

`the chair', but not `a chair'.

There are other systems which employ more specialized knowledge and control strategies

in order to perform recognition. Hence, these systems are more general in some ways, possibly

recognizing objects drawn from more generically described object classes such as airplanes

or buildings. However, they are more limited since their adaptation to recognizing di�erent

objects will require additional knowledge and modi�ed control strategies.

A common knowledge-directed paradigm involves multiple levels of control based upon

precompiled interpretation strategies. This is essentially the approach advocated by Brooks

in ACRONYM [17]. This approach has been pushed further by Ikeuchi [58] in a system

that automatically generates object recognition strategies. Brian Burns [19] has also worked

to re�ne the multiple level of control approach through the development of what he calls

`view description networks'. Unlike geometric hashing, which has a distinct local feature

identi�cation stage followed by a table look-up stage, these algorithms embed geometric

constraints into a multi-stage decision process.

Other largely geometric approaches draw heavily upon domain-speci�c knowledge. The

Mosaic system developed by Herman and Kanade [84] uses fairly simple geometric constraints

about buildings viewed from above to extract 3D structure from quite complex aerial images.

The work of Heurtas [53] on automatic runway detection provides a quite di�erent but equally

compelling illustration of domain-speci�c and object-speci�c constraints.

Moving beyond shape, considerations such as color and context can be just as important

and often more e�cient sources of object hypotheses. For an excellent example of how color

can be used to index object models, see the work of Swain [104]. Generally, heterogeneous

sources of constraints are important, and a geometric matching algorithm should be thought

of as one piece in a larger puzzle. Learning to put the puzzle together is the task of high-level

vision research. For an excellent example of such integration see Draper [31].

2.3 Common Approaches

The four categories of geometric matching accurately reect the major trends in the �eld.

Obviously, the �t is not always perfect, and in practice individual algorithms sometimes

25

exhibit attributes from more than one class. There is an approximate chronology underlying

the order of presentation bellow. Key-feature matching [14, 80] covers a very broad range

of speci�c algorithms, and is one of the more intuitive and early approaches suggested. The

Generalized Hough approach [28, 5] emerged at essentially the same time, although pose

clustering [103] was formulated later. The early contributions in tree search [4, 46, 48]

came later than either key-feature or generalized Hough, and has yielded new and exciting

improvements [16, 22]. Finally, geometric hashing [63, 72] is perhaps the most recent

approach to be formulated, and as already noted, it is the only category that explicitly

addresses model indexing as well as matching.

2.3.1 Key-feature Matching

They general idea behind the key-feature approach is this: when looking for an object in

an image, look for something both simple to �nd and distinctive. This is in response to the

fact that, as the number of features on a model grows, the number of possible correspondence

mappings between model and image features explodes exponentially. The combinatorics of

search are greatly reduced by considering only a small subset of model features. As this

description suggests, key-feature algorithms divide matching into two stages. In the �rst

stage, image data is searched for instances of key-features. The second step is to verify -

either accepting or rejecting - each match hypothesized by an instance of a key-feature. An

early example of this approach is the `local feature focus' method proposed by Bolles and

Cain [14]. David Lowe [79, 83, 80] in his work on perceptual organization and recognition

extends and further motivates this approach.

There is a sense in which key-feature matching is recursive. The problem identifying

a key-feature is essentially a problem of recognizing a model consisting of fewer parts.

Since the key-feature has fewer components, the combinatorics associated with searching

for them are correspondingly better. Additionally, if they truly are distinctive, �nding a

set of image features which correspond to a key-feature is tantamount to �nding the object

itself. However, there is a basic conict between the need to keep the size of the key-features

small and the need to de�ne key-features which are distinctive.

When key-features get too simple they may become indistinctive, and hence are no

longer `key'. However, richly distinctive key-features tend to contain more parts, and the

combinatorics of searching for them grows accordingly. Sitarman and Rosenfeld [99] have

theorized that there is some `optimum' size for key-features, and that this size may di�er

between domains. They provide a probabilistic analysis of cost in the context of relational

graph matching. The intent is excellent and the underlying hypothesis almost certainly

correct. However, Sitarman and Rosenfeld only consider 2D-rigid models translated in the

plane. Hopefully, future work will extend their analysis to more interesting imaging models.

A simple use of the key-feature idea is evident in the work of Ayache and Faugeras [3].

In this work, 2D line segment models are matched to image segments. Long segments are

assumed to be distinctive and are used as key-features. Under favorable conditions, such

as looking at at machine parts on a table under controlled lighting, this simple heuristic

performs rather well. However, it is clearly a very weak heuristic for problems involving

errorful image data or changes in 3D viewpoint.

A variety of key-feature algorithms have used local curvature properties to identify object

26

silhouettes [66, 41, 1]. The silhouette recognition problem is simpler than recognition in

grey-scale images. It essentially assumes a binary image from which the outline of one or

more possibly overlapping objects is simply extracted. In addition, objects lie at on a

table top and are essentially 2 dimensional. Providing all these constraints are satis�ed,

then these technique are useful. Unfortunately, this work does not extend readily to more

complex, non-binary, imagery. The combinatorics of constructing closed contours threatens

to swamp that of recognition.

David Lowe's work is more general in several major ways. Lowe's SCERPO system [80,

81] was one of the earliest to recognize a 3D object based upon line segment features

extracted from a moderately complex grey-scale image. Lowe did a particularly good job of

quantitatively handling the problems associated with registering a 3D wire frame model to

corresponding segments in an image. His early work [80, 81] assumed a weak-perspective-3D

imaging, while his subsequent work on object tracking [82] handles full-perspective.

Lowe's contribution [80] to the key-feature approach is twofold. One contribution is his

elegant argument for the centrality of perceptual organization in recognition. He argues

that the human recognition system makes extensive use of feature grouping and abstraction

processes, and that computer vision should do the same. In particular, Lowe argued that

human recognition appears to depend upon the identi�cation of distinctive structures. To

illustrate his point, he uses a line drawing of a bicycle. Lowe observes that people see this

bicycle easily so long as most of the line segments forming the front wheel are present.

However, take away a few strategic pieces of this front wheel, and people have trouble

recognizing the remaining segments as a bicycle. The wheel is serving as a key-feature and

cueing the presence of the whole bicycle. Lowe's other contribution is to demonstrate with

a working algorithm that key-features can play a signi�cant role in recognizing 3D objects.

More recent work with 3D models and an approach somewhat like the key-feature

approach is that of Huttenlocher [55]. In the algorithm developed by Huttenlocher, feature

triples are used to hypothesize matches under weak-perspective-3D. The triples are ranked

according to a distinctiveness heuristic and then searched in order. This approach resembles

key-feature matching in that the small, hopefully distinctive features, are searched for �rst.

It is more prudent, in that it works down the list of potential key-features as protection

against failure. This approach has been demonstrated for a variety of 3D objects.

Perhaps the greatest failing associated with the key-feature approach is the lack of general

algorithms for automatically selecting key-features. In Lowe's SCERPO system [80], the

key-features for individual models were selected by hand. Clearly, in order to become a

general method, this selection must be automated. Unfortunately, there appears to have

been little progress to date in the area of automated key-feature selection.

One possible reason for this apparent lack of progress is that distinctiveness depends

less upon the object itself than on the surrounding scene. Neither the geometric form of

the object model, nor the aspects of the camera or sensor, matter as much as the nature

of the other objects present in the world. A square, red, match box is easily seen on a

white tablecloth, but not so easily seen on a red and white checked tablecloth. In controlled

industrial settings it may be practical to catalogue and characterize the universe of possible

objects and backgrounds. However, this is a daunting task for uncontrolled environments.

The ideas of key-feature matching have somewhat blended into more recent work on

geometric hashing [63, 72, 73], which extends the key-feature idea in two important ways.

27

First, like the work of Huttenlocher [55], it relaxes the assumption that there exists a small

number of key-features for each object model. Secondly, it suggests the use of local geometric

features to select which object out of a possibly large set of objects is likely to be present

in the scene. In keeping with the decision to review approaches roughly in order of their

development, geometric hashing, which is the newest of the approaches, is discussed in

Section 2.3.4.

2.3.2 Generalized Hough and Pose Clustering

The generalized Hough transform [28, 5, 27] algorithms and pose clustering [103] algo-

rithms take an approach quite di�erent from that of key-feature matching. Both shift the

focus of search away from correspondence space and into pose space. Generalized Hough

algorithms employ what are essentially voting schemes, while the more recently developed

pose clustering algorithms identify tightly packed clusters of `pose-distinctive' features. The

meaning of `pose-distinctive' feature will become clear shortly.

The intuition behind these approaches begins with the observation that partial matches

between small numbers of model features and small numbers of image features often constrain

the pose of the object model. To illustrate for 2D-rigid matching, one model line segment

matched to one image segment constrains both the orientation, and to a lessor degree, the

position. If an additional model segment is matched to an additional image segment, this

will in general determine a speci�c orientation and position describing the pose of the model

as a whole. These partial matches involving a small number of model and image features

are pose-distinctive features.

When there is an instance of a model in the image data, then all the pose-distinctive

features associated with this instance will map to essentially the same region of pose space.

Typically, generalized Hough algorithms explicitly discretize the space into cells, and then

each pose-distinctive feature adds its vote to the appropriate cell. The array of cells acts

as an accumulator. A cell associated with the pose of a true match should receive as many

votes as there are pose-distinctive features in a model. Conceptually it is a simple matter

to search the pose space for cells with a su�cient votes to suggest a match. These cells, in

turn, generate a hypothesized instances of the object with the indicated pose.

There have been a variety of algorithms using di�erent variations of the generalized

Hough transform. For a review of this work up to 1988 see Illingworth and Kittler [59]. For

reasons to be discussed shortly, almost all the work on generalized Hough algorithms has

focused on 2D matching problems. Some notable exceptions include the work of Silberberg,

Harwood and Davis [98], who perform a restricted form of matching in which 3D objects are

assumed to be on a stable ground plane and the camera is at a known height. As a conse-

quence, their pose space is three dimensional. Thompson and Mundy [105] consider general

unconstrained 3D views and then make judicious use of subspace projection. Speci�cally,

votes are �rst projected from the six-dimensional space onto the three-dimensional subspace

of rotations.

In the two cases just mentioned, either constraints upon pose or a subspace projection

are used to reduce the dimensionality of the pose space which is searched for evidence of a

match. The reason is quite simple, and is perhaps the major reason why the vast majority of

generalized Hough work has avoided 3D matching. The problem is that explicit represenation

28

of high dimensional, discretized, pose spaces is expensive and slow. Consider the memory

required to represent a 2D-rigid pose space when each cell requires 1 byte of memory. If

an image contains 512x512 pixels, and translation is discretized into 1 pixel cells, and if

orientation is discretized into 1 degree increments, then nearly 95 mega-bytes of memory are

required to represent the pose space. This is a lot of memory, but consider what happens

if a fourth dimension is added in order to account for changes in scale. Presuming scale is

discretized into 100 intervals, the pose space now requires nearly 10 giga-bytes of memory.

Going beyond this four dimensional space of weak-perspective to six dimensions of 3D pose

is intractable.

One of the advances associated with pose clustering over generalized Hough techniques is

that it removes the need to explicitly represent the pose space. Stockman [103] was among the

�rst to make the case for this variation of the basic generalized Hough idea. In pose clustering,

pose-distinctive features are explicitly represented as points inN -dimensional pose space, and

a clustering algorithm operating over this point set identi�es tightly packed dense clusters.

Each cluster is assumed to be the result of an object with the indicated pose. The advantage

is that memory required for this algorithm is proportional to the dimensionality of the pose

space times the number of points in the points set. A nice illustration of clustering local

model-image feature matches based upon consistent pose hypothesis can be found in the

work of Hwang [56].

Pose clustering, just like generalized Hough methods, falls victim to a second source

of di�culty associated with higher dimensional pose spaces. As degrees of freedom are

added to the pose transform, typically it is necessary to de�ne new and more complicated

pose-distinctive features. To illustrate this point with an example, consider 2D-rigid match-

ing of straight line segment models. One model segment matched to one image segment

constrains orientation, but because the image segment may be fragmented or possibly too

long, the exact position or translation is not constrained. Typically, adding a second pair

of matched segments constrains both rotation and translation, and is hence adequate for

2D-rigid matching. To account for changes in scale, it is typically necessary to add a third

pair of matched segments.

The combinatorial complexity of �nding pose-distinctive features in the image goes up

exponentially in the number of individual object and image features required to constrain

the pose. If pose-distinctive features include only 2 image segments, then testing all such

possible features in an image is an order d

2

operation, where d is the number of line segments

extracted from an image. This is the complexity associated with 2D-rigid matching. Allowing

for changes in scale in order to perform weak-perspective-2D matching requires 3 segments,

and the complexity jumps to d

3

. Typically, to obtain reliable pose estimates under full-

perspective requires 4 image segments, and the complexity increases to d

4

.

Several e�orts have been made to assess the strengths and weaknesses of generalized

Hough matching. Brown [18] wrote a comparatively early assessment of noise sensitiv-

ity. More recently, Grimson and Huttenlocher [45] analyzed the sensitivity of the Hough

Transform and conclude that false positive rates can become intolerably high in cluttered

settings or when subspace projection is used. It seems, in general, that generalized Hough

and pose clustering algorithms are quite useful for low-dimensional matching problems.

For example, 2D-rigid and even weak-perspective matching. Their usefulness on higher-

dimensional problems, such as full-perspective matching, is questionable.

29

0

12

3

4

5 6
7

8C B

A

0 1 2 3 4 5 6 7 8

A
B
C

0 1 2 3 4 5 6 7 8

A
B
C

Triangle Model

(a) (b) (c)

Figure 2.1 More pairs supporting a pose may not mean a better match.

Generalized Hough algorithms do not account for global consistency between object and

image features. As illustrated in Figure 2.1, this leaves them open to another source of failure.

Figure 2.1a shows three model segments forming a triangle, and Figures 2.1b and 2.1c show

matches to two di�erent sets of image segments. Filled in squares in the tables indicate

corresponding pairs of model and image segments. The match in Figure 2.1c is the better,

even thought there are more individual pairs of corresponding segments in the other match.

A generalized Hough algorithm would incorrectly favor the match in Figure 2.1b because

more pairs would vote for it than for the match in Figure 2.1c. This example illustrates why

a subsequent veri�cation step is so important.

2.3.3 Tree Search and Constraint Satisfaction

The `tree' in tree search matching contains model-data correspondences, with the null

correspondence at the root. The central idea is to expand the tree in order to �nd matches

satisfying a set of geometric constraints. Tree search for matching geometric models to

tactile sensor data was introduced by Gaston [37], and was employed by Baird [4] for 2D

point matching. Grimson [46, 43, 42, 48] has done more than any other individual to promote

tree search as a geometric matching technique, and his analytical studies [44, 47, 48] make

tree search the best understood of the four approaches covered in this review. Recently, work

by Beuler [16] and Cass [22] have extended Baird's ideas in some fundamental ways, leading

to algorithms which intimately intertwine tree search with search in pose space.

The essential elements of tree search may be illustrated using the example in Figure 2.2,

which shows a model consisting of 3 line segments, image data consisting of 4 line segments,

and a fully expanded interpretation tree. The root, ;, denotes the null match: no data

segments are matched to model segments. Traversing down to level 1, each node represents

a match between data segment 1 and either the indicated model segment or the null segment

;. For example, the leftmost path down to level 1 represents a match between data segment

30

1 and model segment A. The rightmost path down to level 1 represents a match between

data segment 1 and the null model segment ;, the latter case implying no match.

A

B

C

A B C O

A B C O

A B C O

A B C O

A B C O

A B C O

A B C O

A B C O

A B C O A B C O A B C O A B C O A B C O A B C O A B C O A B C O A B C O

A B C O A B C OA B C O A B C O

A B C O

A B C O

ROOT
Level 0 -
root

Level 1 -
data line 1

Level 2 -
data line 2

Level 3 -
data line 3

Level 4 -
data line 4

1

2

3

4

Triangle Model Data Containing Model

Interpretation Tree - Solution Path Highlighted

Figure 2.2 Illustration of tree search applied to geometric matching. Shown are a model con-

sisting of 3 line segments, data consisting of 4 segments, and a fully expanded interpretation

tree. Branches generating geometrically inconsistent matches are pruned.

The nodes on level 2 represents matches between data segment 2 and either the indicated

model segment or the null segment ;. At level 2, the �rst cases of pruning based upon geo-

metric consistency can be seen. Underscored nodes indicate correspondence mappings which

are geometrically inconsistent, and there is no reason to expand the tree further below these

nodes. The solution path, fatter lines, represents the match ((1; ;); (2; A); (3; B); (4; C)). For

the sake of this example, it has been assumed that only subsets of this match are geomet-

rically consistent and pruning has been applied appropriately. As shown, this tree contains

only 93 of a possible 341 nodes. Much of the analysis associated with tree search revolves

around the question of how well geometric constraints prune the expanding interpretation

tree.

The example just given illustrates tree search as formulated by Grimson and Lozano-

P�erez [46] for recognizing rigid 2D objects in 2D image data, and 3D objects in 3D sensor

data. In particular, Grimson introduced the use of the null segment ; to overcome the

problem of spurious data. Earlier work, such as that of Gaston [37] and Baird [4], required

each level of the tree to bind a data feature (or model if role of model and data are reversed)

to a model feature. Baird was even more restrictive, requiring there to be exactly as many

model points as data points, and de�ning a match as a complete one-to-one mapping between

31

these two sets. In other words, a path down the tree was only considered a match if it reached

the bottom.

A chronology of suggested strategies for searching the interpretation tree reects the

di�culty of problems being considered. In tactile sensing problems, the number of model

and data features are typically small. Under these conditions, Gaston [37] found undirected

breadth-�rst search to be acceptable. Certainly breadth-�rst search would be tractable for

a problem of the size illustrated above. In the case of tactile sensing, breadth-�rst search

can be improved upon by realizing that the acquisition of data is typically sequential and

expensive in terms of time. Consequently, as shown in the work of Ellis [32], control strategies

for tactile sensing can actively control the acquisition of sensor data based upon the degrees

of freedom and possible ambiguities associated with the interpretation of the current tactile

data.

Baird [4] and Grimson [46] favored depth-�rst over breadth-�rst search, no doubt in part

because breadth-�rst search would have been extremely time consuming given the size of

the problems they were studying. In addition to adopting depth-�rst search, Grimson cites

two other factors as being important. The �rst is to rank choices so that the �rst acceptable

interpretation is in some sense the `best'. For example, data line segments can be ordered

from longest to shortest, with the longest being matched �rst. A second important factor

is to specify a stopping criterion which can be used to cut o� search before a substantial

portion of the interpretation tree has been expanded. An example of a stopping criterion is

to call a halt to search once a consistent interpretation has been found involving data line

segments whose total length exceeds a threshold.

Grimson's study of the behavior of tree search has been exemplary. These results are

presented in two articles [44, 47] and more fully in his book [48]. He has determined the

strength of pruning based upon local geometric consistency, the importance of a stopping

criterion, and the associated problems of multiplemodel instances and symmetricmodels. To

summarize these results, Grimson's analysis shows that for 2D-rigid matching with a stopping

criterion the average-case computational complexity of tree search is O(n

2

), where n is the

number of model features times the number of data features. He also shows that without

the stopping criterion, tree search is exponential in the number of consistent interpretations.

The latter result, concerning performance without the stopping criterion, is interesting.

The exponential performance is not the result of the algorithm wandering o� into some

portion of the search space unrelated to a consistent match. It is, instead, a consequence

of the initial problem statement. The algorithm is designed to �nd all consistent matches

between model and image features, and without a stopping criterion it dutifully enumerates

them. In other words, when the largest consistent match contains k pairs of features, tree

search enumerates all 2

k

sets of pairs in the powerset of the largest consistent match.

Grimson shows that a principled stopping criterion can be derived from basic statistical

assumptions about a problem domain, provided one assumes there is one and only one

instance of the model present in the image data, and that the model does not have signif-

icant internal symmetries. However, he also highlights the two circumstances of multiple

instances and symmetries, pointing out that they make speci�cation of a stopping criterion

problematic. This is an unfortunate limitation. Two or more objects of the same type often

appear in the same image; consider telephone poles as one looks down a road. Also, both

manufactured and biological objects frequently have internal symmetries.

32

Stepping back from Grimson's work, Baird's work is of little practical use in computer

vision because of his overly restricted assumptions about the correspondence mapping. It

is almost inconceivable that one could �nd a domain so well behaved that image data

would be guaranteed to contain exactly one and only one extracted image feature for every

model feature. However, Baird pioneered the use of linear programming as a means of

testing the global geometric consistency of a match, and his formulation of matching is

conceptually simple, general, and hence elegant. Formally, the problem Baird de�nes is to

�nd all consistent bipartite mappings between two sets of points, where consistent means

there exists a pose transformation placing each model point within a convex error polygon

de�ned about its corresponding image point. Baird shows that testing whether a match is

consistent via this de�nition is equivalent to testing whether there exists a solution to a set of

linear inequalities. He therefore is able to take advantage of well known linear programming

algorithms. Baird has shown the complexity of his algorithm to be O(m

2

), where m is the

number of points in the model.

More recently, Beuler [16] and Cass [22] have overcome some of the di�culties encoun-

tered by Grimson's algorithms while utilizing Baird's consistency measure in cases involving

extraneous and missing data. Cass has coined the term pose equivalence analysis for his

work. His algorithm searches simultaneously in correspondence and pose space for maximal

sets of pose consistent features. The algorithm is polynomial. However, for the case involving

rotation, translation and scaling of 2D models, the complexity is O(k

4

m

4

d

4

) for m model

features and d data features. Here k is the number of sides bounding a polygonal uncertainty

region about each feature. As Cass readily notes, although the polynomial bound is of

tremendous theoretical interest, it is too high for the algorithm to be put to direct practical

use. Given the centrality of random sampling to the work in this thesis, it is interesting to

observe that one means suggested by Cass for developing a more tractable algorithm is to

use random sampling as the basis for a randomized version of the pose equivalence analysis

algorithm.

To close this section, it is worth making some comments about match veri�cation and

global versus local geometric consistency. In Grimson's 1987 paper, he compared global

versus local tests of geometric consistency between matched features. In this context, global

consistency means that all pairs of matched features are consistent with a single global pose

transformation. In contrast, local consistency means that matched features are pairwise

consistent, but not necessarily globally consistent. Making up an example for the sake of

illustration, say paired features (A; 1) and (B; 2) are consistent and imply a pose F

1

, and

paired features (B; 2) and (C; 3) are consistent and imply a pose F

2

. For the triplet of

features (A; 1); (B; 2)(C; 3) to be globally consistent, F

1

and F

2

must be essentially equal.

In contrast, under many tests of pairwise consistency, F

1

and F

2

may be di�erent poses, in

which case the triplet (A; 1); (B; 2); (C; 3) is locally but not globally consistent.

Grimson concluded that testing for global consistency was costly, and didn't signi�cantly

improve the performance of tree search relative to the less costly use of local consistency

checks. In his subsequent work, Grimson has been a proponent of local consistency checks.

In contrast to Grimson, Baird, Beuler and Cass all utilize a global test of geometric consis-

tency. Global consistency testing is more involved, and developing e�cient tests for global

consistency is a major facet of each of these individual research e�orts.

Global consistency, although a strong constraint, is not equivalent to veri�cation. Con-

sider again the example in Figure 2.1 at the close of the section on generalized Hough

33

transforms. In this example, both of the obvious matches are globally consistent, yet further

veri�cation is required to explicitly identify the di�erence between the two, and thereby

determine the one with fewer pairs of matching features is better. Thus, tree search, like the

generalized Hough transform, is a means of hypothesizing matches which require subsequent

veri�cation.

2.3.4 Geometric Hashing

Not unlike the key-feature approach, geometric hashing [63, 72, 73] seeks to identify

features in an image that predict the presence of an object. The approach di�ers from

key-feature matching in several important respects. Most notably, geometric hashing deals

directly with multiple object models. Also, geometric hashing does not rely upon a few

key-features, but instead attempts to exploit the predictive power of all subsets of image

features.

There is an o�-line and an on-line stage to geometric hashing. In an o�-line operation,

a database of geometric models is analyzed. The product of this analysis is typically a

hash-table. The cost of this analysis is not part of the cost of recognition. The on-line part

of the algorithm consists of selecting sets of features in image data, and looking-up the model

or models to which these features correspond.

Examining one set of image features in order to determine the identity of an object

would be adequate if : 1) all sets of features were uniquely predictive, 2) only one model

were present in the image, and 3) the image were free from clutter. Unfortunately, not all sets

of features are uniquely predictive and images often contain multiple model instances and

clutter. Consequently, geometric hashing in practice looks at many sets of image features

and accumulates votes in order to hypothesize the presence of an object.

In the earliest work typically thought of as geometric hashing, Kalvin [63] et. al. hash

on a �ve-dimensional feature vector related to a measure of arc length versus turning-angle

as measured over a contiguous subsection of an objects boundary. As emphasized in this

work, the hashing metric must be invariant to the class of object pose transformations. The

arc length versus turning-angle measure is invariant under 2D-rigid transformations. It is

not, however, invariant with respect to variations in scale.

Lamdan [72, 73] et. al. extend and re�ne the geometric hashing idea. Their hashing

is based upon a four-tuple of points, in which the �rst three points de�ne the basis vectors

of a 2D coordinate system. The hashing measure is the coordinates of the fourth point as

measured with respect to the basis vectors, and this measure is invariant with respect to a

full 6 parameter 2D a�ne transformations. For 2D similarity transformations, a measure

based upon a three-tuple of points is suggested.

Geoemteric hashing su�ers from two basic problems: sensitivity to noise and clutter.

Grimson and Huttenlocher [49] suggest that Lamdan's choice of metrics is quite sensitive to

noise, leading to a high false positive rate even for modest amounts of noise and clutter. One

problem is that point coordinates are highly sensitive to noise when measured with respect

to bases vectors de�ned by nearly parallel triples of points. Costa and Shapiro [25] similarly

observed error sensitivity and have re�ned the geometric hashing approach using likelihood

estimation.

Clutter is another source of problems. Imagine a data set in which 1 in 5 of the data

34

points is a clutter point. Drawing sets of 4 points at random, the probability of all four

points being associated with the model is only 1 in 5. For the other 4 out of 5 point sets,

looking up a model in the hash table is a waist of time and a potential source of mistakes.

Now imagine if 9 out of 10 points are clutter, in which case the odds of randomly selecting

4 good points would be 1 out of 10; 000.

Others who have pushed the the underlying ideas of geometric hashing have found it

necessary to put considerable e�ort into designing algorithms to solve the problem of selecting

a set of features all belonging to same object. For instance, Stein [101] has shown quite nice

results using a hashed indexing scheme on 2D object models. To overcome the problem of

selecting features from the same object, his approach uses boundary contour information.

Stein de�nes super segments which are consecutive sides of a polygonal boundary. A feature

vector de�ned in terms of the relative placement of consecutive segments in the super segment

is used to index object models.

More recently, Stein has extended this work to the problem of matching 3D object models

to 2D image features [102]. Stein emphasizes the importance of grouping control mechanisms

to obtain a reasonable starting set of features. Interestingly, as one who has tried to extend

geometric hashing to 3D full perspective matching, he argues that this is very di�cult. He

instead advocates the use of topological constraints between fairly complex image features.

Geometric hashing was a highly promising approach whose performance to date has fallen

short of expectations. To its credit, it deals with indexing into databases containing multiple

object models, and performs well for a class of modestly simple 2D recognition problems.

However, no e�ective full-perspective geometric hashing scheme has been demonstrated, and

given the known di�culties associated with de�ning invariants under full-perspective [21],

such a generalization may be infeasible.

2.4 Local Search Matching in Relation to Previous Work

This section compares aspects of the previous work on geometric matching with the

local search matching approach set forth in this thesis. It does this by �rst reviewing the

origins of local search and then briey describing how local search is applied to the problem

of geometric matching. Included here is a brief discussion of the relationship between local

search and both simulated annealing and genetic algorithms.

2.4.1 The Origins and Essence of Local Search

The origins of local search are commonly traced to the work of Kernighan [64] and

Lin [75, 76]. In these papers, Kernighan and Lin demonstrated that fairly simple itera-

tive improvement algorithms �nd near optimal solutions to such problems as the traveling

salesperson problem (TSP) and the graph partitioning problem. A succinct description of

local search is provided by Papadimitriou and Steiglitz [92] in their text on combinatorial

optimization.

Kernighan and Lin [75, 76] de�ne a discrete neighborhood about each feasible solution

in the combinatorial search space. This neighborhood establishes the options available to

local search. For TSP, they de�ne a k-swap neighborhood in which the neighbors of a tour is

35

all tours formed by swapping the positions of k cities. The simplest of these neighborhoods

is the 2-swap neighborhood generated by all possible swaps of 2 cities. Local search for

TSP starts from an initial tour and repeatedly tests neighborhoods for improvement. If a

neighboring tour is found to be better, then the algorithms adopts this as a the best tour

found so far. Local search repeats this process until the current best tour is better than all

its neighbors. Such a tour is locally optimal.

A single execution of local search may become stuck on a local optima of little inter-

est. One way to lessen the problems associated with local optima is to use alternative

neighborhood de�nitions. Di�erent neighborhoods can have profoundly di�erent properties.

In general terms, one would expect larger neighborhoods to decrease the problem of local

optima while increasing the cost of search. For TSP, Kernighan and Lin studied 2-swap

neighborhoods, 3-swap neighborhoods, and other variants. The neighborhoods for graph

partitioning [64] are similar; a 2-swap neighborhood contains all graphs obtained by swapping

a pair of nodes.

Random sampling may be used to increase the probability of �nding the optimal or a

near optimal solution. Multiple trials of local search are initiated from independently chosen

random starting points and the best solution found is retained. Careful neighborhood design,

coupled with random sampling, can make local search a powerful tool for solving complicated

combinatorial optimization problems.

2.4.2 A Brief Mention of Alternate Optimization Techniques

Two other heuristic approaches to solving di�cult combinatorial optimization prob-

lems deserve mention, and these are simulated annealing algorithms [65] and genetic algo-

rithms [50, 94]. Simulated annealing, as its name suggests, is inspired by the model from

physics of a material reaching a minimum energy state through a process of gradual cooling.

When using simulated annealing to perform optimization, energy is typically equated to the

objective function to be minimized. Simulated annealing is a type of stochastic relaxation.

In practical terms, a simulated annealing algorithm iteratively selects new states using a

probabilistic update rule. Selection depends both upon the relative energy of the two states

and the temperature. The higher the temperature, the more selection will be random, and

the lower the temperature, the more the selection will be made in favor of the lower energy

(lower error) state. In the limit, with temperature zero, stochastic relaxation will always

select the lower energy state. At this extreme, simulated annealing behaves like local search.

Geman and Geman [39] provide a formal convergence proof for stochastic relaxation

which can be briey summarized as follows. Given a cooling schedule of appropriate form,

in the limit as annealing time goes to in�nity relaxation converges upon the globally optimal

solution with probability one. In practice of course, cooling must involve a tractable number

of iterations, and simulated annealing may converge to a locally optimal solution.

Genetic algorithms take their inspiration from biology rather than from physics. Typi-

cally, a population of solutions to an optimization problem both breed and mutate to create

a new generation of solutions. This process is repeated many times. Survival pressures are

applied which make better, more optimal, solutions more likely to reproduce.

Local search and genetic algorithms are connected through work on hybrid genetic algo-

rithms [29] and parallel genetic algorithms. In a recent paper on parallel genetic algorithms,

36

M�uhlenbein [87] makes two relevant points: 1) in parallel genetic algorithms, individuals

within a populations of solutions improve themselves using local hill-climbing, and 2) only

solutions `near' each other have the opportunity to breed. The hill-climbing operation is

essentially local search, and in the limiting case a parallel genetic algorithm with no breeding

is equivalent to random-starts of local search.

It is impossible to make one categorically correct, sweeping, judgement about how well

local search compares to alternative approaches such as simulated annealing and genetic

algorithms. Di�erent heuristic methods excel under di�erent circumstances on di�erent

problems, and predicting how a particular method will perform when adapted to a new

problem domain remains an art. In one of the more thorough of the published compar-

isons, Johnson, Aragon, McGeoch and Schevon [60, 61] compare simulated annealing with

other more traditional approaches, typically random-starts local search. The comparison

is conducted for three problems: graph partitioning [60], graph coloring [61] and number

partitioning [61].

In [60], Johnson et. al. set out to answer two questions: 1) how various design choices

associated with simulated annealing a�ect performance, and 2) how well an optimized

implementation of simulated annealing performed relative to a random-starts Kernighan

and Lin style algorithm. To summarize their answer to the �rst question: details matter.

Variations within a single general algorithm lead to major variations in performance. Their

answer to the second question is captured in the following quotation from [61].

For graph partitioning, the answer to the second question was mixed: simulated

annealing tends to dominate traditional techniques (random-starts local search) on

random graphs as the size and/or density of the graphs increases, but was roundly

beaten on graphs with built-in geometric structure.

Of local search, simulated annealing, and genetic algorithms, local search is arguably the

simplest. It is for this reason, more than any other, that this thesis adapts local search to

the problem of geometric matching. Future work should consider adapting these other two

forms of non-linear optimization to the geometric matching problem.

2.4.3 Adapting Local Search to Geometric Matching

Five things must be de�ned in order to adapt local search to a new domain: the search

space, the objective function, the source of initial starting solutions, local neighborhoods,

and search strategies. The search spaces considered in this thesis consist of many-to-many

mappings between object model features and image features. As illustrated in the example

from Figure 1.1 in Section 1.1, although many-to-many, the mapping may be restricted to

consider only subsets of all possible pairings.

The objective function is a match error function de�ned over all correspondence mappings

for which a unique best-�t pose of the model relative to the data can be computed, typically

all correspondence mappings containing more than two pairs of corresponding features. The

initial matches from which local search is initiated are randomly selected from the space of

all possible correspondence mappings. Two local neighborhoods are developed, the simpler

of the two consisting of all matches obtained by adding or removing a single pair of matched

segments. Two of the simplest strategies for searching a local neighborhoods are considered in

37

this thesis: �rst-improvement and steepest-descent. In �rst-improvement, the �rst neighbor

found to be better is immediately made the current match. In steepest-descent, the entire

neighborhood is searched, and the neighbor yielding the greatest improvement is made the

current match. Steepest-descent is used in this thesis to pick which pair of model-image

features is to be added or removed from a match.

This thesis develops a more sophisticated neighborhood and associated search strategy

speci�cally suited to the geometric matching problem. The name subset-convergent local

search is given here to this new technique. The underlying idea is to initiate search from

subsets of a geometric match as a means of breaking out of local optima. What happens

is that if a match is truly good in a geometric sense, search initiated from subsets (partial

matches) simply returns to the good match. However, more importantly, if the match is

locally optimal in terms of small changes, but not globally good, search from subsets tends

to lead to better overall matches. The discovery of the subset-convergent algorithm was

essential to the successful application of local search to geometric matching. The details

of the algorithm are described in Chapter 5. Conclusions about the power of local search

matching given here are typically for the subset-convergent algorithm.

2.4.4 The Issue of Acceptable versus Best Matches?

Most of the previous work cited formulates matching as a constraint satisfaction problem.

The goal is an acceptable match. What constitutes acceptable can be rather implicit, where

verifying a match simply involves �nding additional features consistent with a presumed

pose [55]. Acceptable can be more explicit, as in the work of Grimson [46] or Cass [22]. Very

little of the work on matching explicitly de�nes the goal as that of optimization: �nd the best

match. One notable exception is the work of Mohan [85], who uses a Hop�eld network to

identify optimal sets of image features matching a generalized building template. Another

is recent work by Li [74] on optimal weak-perspective-2D line matching using relaxation

labelling.

There is a super�cial similarity between feature counting, which is common to many of

the approaches mentioned above, and optimization based upon more substantive measures

of match quality. Often algorithms count pairs of features that are consistent with a single

object pose. This is the basis for the generalized Hough transform which looks for poses with

the most votes. Algorithms emphasizing pairwise geometric consistency also sometimes seek

maximal cliques in order to guarantee global geometric consistency [14, 15].

Grimson [46] counts the number of consistent features found during tree search and

terminates when the count exceeds a threshold. Breuel [16] goes somewhat beyond this

by stating the goal to be the largest set of consistent paired features. What should be

noted about all of these uses of paired feature counts is they do not really draw upon

underlying geometric similarity as the basis for ranking. Moreover, counting paired features

unfortunately makes fragmented data look better, since fragments lead to a greater total

number of consistent features. Recall the example of Figure 2.1 on page 29.

This thesis develops a match error function which measures geometric similarity between

a model and corresponding image features. It does this by combining two simple notions. The

�rst is that a model should �t the corresponding image data. As has been done before [80, 3],

�t depends upon the residual error after a least-squares procedure is used to determine

38

placement of the model relative to the data. The second notion is that corresponding

data features should appear where a model feature projects into an image. Failure to �nd

corresponding data is an an error of omission.

These two forms of error, �t and omission, have seldom been combined before in the

context of model matching. A notable exception can be found in the discussion of matching

metrics in Ballard and Brown [6]. They de�ne a cost function for spring template matching

that combines through summation a term related to what they call the spring cost and a

term related to what they call missing. This is conceptually similar to the �t and omission

error measures developed in this thesis.

The match error developed here di�ers in important ways from other metrics recently

suggested in the literature. A recent paper [2] suggests a good metric for evaluating matches

must be symmetric. In other words, it should return the same value regardless of which

set of data is called the model and which is called the data. This is not appropriate in the

context of model directed vision, where models known with moderately high precision are

matched to far less perfect image data. Fragmentation of image data is qualitatively di�erent

from fragmentation in a stored object model. It does not make sense to equate the two by

demanding a match error function be symmetric.

Wells [57] derives an evaluation function, a measure of Bayesian likelihood under a simple

noise model. Of greatest relevance to this thesis, his measure sums a residual �t error with

a penalty for unmatched data and does not take account of model features missing in the

data. Due to the dependence upon data left unmatched, an identical set of matched features

might have a good score in one image and a bad score in another. If the goal is to measure

the quality of the match between object model and corresponding image features rather than

the data as a whole, this indirect dependency upon unmatched features is a failing.

2.4.5 The Ancestry of Random Sampling

Fischler and Bolles [35] argued for an approach to matching called random sample

consensus. If some small number of features, for instance three model segments to three

data segments, typically determine an object's pose, then the space of possible triples may

be sampled at random. In problems where a substantial number of the possible triples are

correct - they belong to a true match - then this strategy will with high con�dence �nd a true

triple in a modest number of trials. Moreover, other correct triples will be in `consensus':

they will agree on the object's pose.

There is a nice relationship between Fischler and Bolles ideas and the use of median

�ltering to estimate an object's pose. Siegel [96] (alternatively [97]) and Benson provide a

nice example in which median �ltering is used for 2D point matching. Their problem is to

compare biological shapes: for instance skulls of di�erent animals. They show that median

�ltering, which seeks a majority subset of the possible paired features which minimizes the

median squared error, removes pairs which throw o� the overall �t. In this work, the median

was computed exhaustively and there was no need for random sampling. However, this was

made possible by assuming di�erent components of the transformation were independent.

This is not an ideal assumption.

Kumar [71], in his outlier detection algorithm, brings together the best of the random

39

sampling and median �ltering. For the 3D pose problem, prior attempts to treat trans-

formation parameters as independent produced inferior results [71]. Therefore, Kumar's

algorithm uses k-tuples of model-data pairs to generate a single estimate of the pose. In

principle the algorithm would compute the pose for every possible k-tuple. For each pose it

would determine squared error for all pairs of corresponding features and rank these in order

to determine the median error. The pose with the lowest median error would be selected

as best and those pairs in consensus with this pose are then taken to be the true match.

Because the space of k-tuples is generally too large to do this exhaustively, Kumar randomly

samples this space of k-tuples.

Siegel's algorithm and Kumar's algorithm can be properly called matching algorithms

because they make a discrete choice as to which pairs to include and which pairs to exclude

from a match. As said at the outset, they are only applicable to easy problems because they

must either make overly simplistic assumptions about the transformation [96], or they must

employ random sampling to generate a true kernel [71]. This latter step breaks down as the

number of true model-data pairs begins to drop below 50 percent of the total number of

pairs.

2.4.6 The Ancestry of Iterative Improvement

Some of the inspiration for local search matching as developed in this thesis can be

found in the way key-feature algorithms �ll-out an initial match. Once an initial match

between a subset of model features and a set of key-features in an image has been established,

key-feature algorithms typically verify the match by iteratively adding additional pairs of

features. After each addition, the best-�t pose of the object with respect to the image

is updated. Both the algorithm developed by Lowe [80] and the algorithm developed by

Ayache and Faugeras [3] �ll-out matches in this way. In �lling-out a match, one can observe

a compelling interplay between adding pairs of features to the match and updating the object

pose estimate.

If the object model is displayed in registration with the image data, then what one sees is

that often the initial �t of the model to the data is poor. Those features which are matched

are aligned, but features not yet matched are frequently misaligned, and misalignment is

worse for model features farther away from those already matched. However, as additional

pairs of corresponding features are added to the match, one literally sees the model move

into proper alignment with the data. The interplay between pose updating and adding pairs

means that as the object's pose relative to the image improves, selecting correctly which pair

of features to add next becomes easier.

The local search matching algorithm illustrated in Section 1.1 will perform much like the

algorithms just described if initiated from a key-feature match. It will successively add pairs

of features and re�ne the object pose estimate accordingly. However, unlike the algorithms

of Lowe and Ayache, if one of the algorithms developed in this thesis thesis adds a pair

of features which later appear not to match, it can remove them. This outwardly simple

enhancement has far reaching consequences. It means the initial assignment of corresponding

pairs need no longer be perfect in the sense of being a perfect subset of the true match.

Moreover, it opens up the possibility of search moving about more freely through the space

of possible correspondence.

40

2.4.7 Recognizing while Locating

Section 2.2.4 described the manner in which key-feature matching, generalized Hough

matching, tree search and geometric hashing are all processes in which matches are hypothe-

sized based upon local geometric evidence, and are subsequently tested for global geometric

consistency. Local search matching in this thesis departs fundamentally from this model,

and there are no such distinct phases of processing at work.

At all times during local search matching, the best-�t pose of the object model relative

to the image is known, and the extent to which the corresponding features are globally

consistent is expressed by the match error function. When a match of su�ciently low error

is found, it is already known to be consistent. There is no need for veri�cation of global

consistency.

There is also nothing resembling a hypothesis generation step. Instead, there is an

iterative movement from an initial, usually poor match, to one which is locally optimal.

During this movement or search, there is rich interplay between the addition and removal

of paired features from the correspondence mapping and the determination of the best-�t

pose of the model relative to the image. Adding or removing a pair of features changes the

best-�t pose of the model with respect to the image. This, in turn, changes the relative

placement of model and image features, and thereby changes what pairs may next be added

or removed from the match.

Faugeras and Herbert [33] coined a phrase in a paper on recognition of 3D objects in 3D

sensor data that describes beautifully what local search matching is doing. It appears in a

set of three general conclusions about matching drawn from their introduction.

1 Representations should be in terms of linear primitives, such as points, lines,

and planes, even if at some intermediate level we deal with things like curved

surface patches.

2 The fundamental constraint to be exploited is that of rigidity.

3 The basic paradigm to be used is that of recognizing while locating (or vice

versa).

The details of their work di�er from those developed in this thesis, but their conclusions �t

this thesis as though they were written for it. In particular, the search carried out by the

algorithms in this thesis can be succinctly described as `recognizing while locating'.

2.4.8 Full-perspective Matching

Table 2.1 reiterates the four common types of imaging and lists researchers who have

used each. The lists for 2D-rigid, weak-perspective-2D and weak-perspective-3D are by no

means exhaustive. However, the work of Lowe [82] and the work presented in this thesis

appear to be the only work to deal quantitatively with full 3D perspective during matching.

One could argue for including also Stein's recent work [102], but it is omitted because Stein

emphasizes qualitative over quantitative relationships when dealing with full-perspective.

Without going into any great detail, there are perhaps two primary reasons why full-

perspective has been avoided. First, determining the pose of an object under full-perspective

41

Table 2.1 Partial lists of previous work broken out by imaging model. To help recall of

imaging models, summaries from section 1.3 are repeated here.

Imaging Used by : : :

2D-rigid

Flat objects perpendicular to the camera.

The distance from the camera is known.

Kalvin [63]

Grimson [46]

Stockman [103]

Hwang [56]

Beveridge [11]

Weak-perspective-2D

Flat objects perpendicular to the camera

but at unknown distance and placement

relative to the camera. Also useful for gen-

eral 3D objects given further restrictions

upon possible viewpoint.

Ayache [3]

Gottschalk [41]

Costa [25]

Grimson [48]

Beveridge [12]

Cass [22]

Weak-perspective-3D

Any 3D object shallow in depth compared

to its distance from the camera and viewed

from any arbitrary viewpoint. Some dis-

tortion induced for all but perfectly at

objects.

Lowe [80]

Thompson [105]

Huttenlocher [55]

Full-perspective

Any 3D object viewed from any arbitrary

viewpoint. Full-perspective is an excellent

�rst order approximation for a standard

camera. Work listed requires an initial

approximate pose estimate.

Lowe [82]

Beveridge [10]

42

is not trivial. Developing algorithms to do this in a robust and general fashion has itself been

a major topic of research, and only in the past few years have Kumar [70, 69] and Lowe [82]

developed fairly nice algorithms for pose determination.

A second reason why full-perspective has been avoided is the common reliance on local

geometric constraints. These constraints are de�ned relative to small sets of corresponding

features. The number of features required grows, and the degree of constraint shrinks, the

closer the imaging model comes to full-perspective. For example, in geometric hashing [72],

2 points are required to establish a basis under weak-perspective-2D imaging. For full-

perspective the number of points required grows to 5. This dramatically increases the

computational complexity of the approach.

2.4.9 Computational Complexity

It is critical to understand how the computational demands of the algorithms developed

in this thesis compare to other known matching algorithms. However, making such a

comparison is as di�cult as it is important. There are unavoidable weaknesses in the

comparison which follows, and these are noted. One obvious problem is that di�erent

matching algorithms often do not solve equivalent problems. All di�culties aside, there

is value in attempting a comparison.

Here local search matching, as developed in this thesis, is compared with generalized

Hough, tree search [48] and pose equivalence analysis [22]. Key-feature approaches are not

considered. Assessing their average-case computational complexity is problematic because

the computation depends fundamentally upon the extent to which the key-features are

distinctive, and this is di�cult to determine in a general manner. In contrast, the generalized

Hough, tree search and pose equivalence analysis approaches have generic algorithmic forms.

Analytically determining complexity bounds for local search algorithms is very di�-

cult [62, 67], and it should be remembered that the rate of growth in computational demand

for local search matching reported in this thesis is empirically estimated. Over a test suite of

varying sized problems, the average case computational demand grew as roughly n

2

, where

n is the number of possibly matching pairs of model and image features. Extrapolating from

these tests, it is conjectured that the computational complexity of local search matching

is O(n

2

). Clearly this conjecture is weak. However, it is o�ered as the best guess of how

the performance scales with increasing problem size. It is worth noting that the test suite

of problems studied include known hard cases, speci�cally symmetric models and multiple

model instances. These are both conditions causing the average case computational demand

of tree search [48] to become exponential.

Table 2.2 compares complexity estimates for local search, generalizedHough, tree search [48]

and pose equivalence analysis [22] algorithms. The generalized Hough estimate assumes

possibly fragmented line segments as the primitive features. For 2D-rigid models two pairs

of matched segments establish the pose. There are m

2

d

2

= n

2

pose distinctive features and

n

2

is the complexity of the voting step of the algorithm. The average case complexity for

tree search has been derived analytically by Grimson [48]. The two bounds represent tree

search with and without termination. Without termination the algorithm enumerates all

2

l

subsets of the maximally consistent match. The bound on pose equivalence analysis is

derived by Cass [22].

43

Table 2.2 Complexity estimates for general approaches to geometric matching. n is the

number of potentially matching pairs of model and image features. The 2

l

case for tree

search is for a consistent match of size l searched without a termination criterion. The k

for pose equivalence analysis depends upon the number of sides on the convex error polygon

in which corresponding features must lie. It must be stressed that the value given for local

search is a weak conjecture based upon extrapolated empirical data.

Approach Complexity

Generalized Hough Transform

2D-Rigid n

2

Weak-perspective (2D) n

3

Tree Search

2D-Rigid n

2

or 2

l

Pose Equivalence Analysis

Weak-perspective-2D k n

4

Local Search

Weak-perspective-2D n

2

Unlike local search, tree search, generalized Hough and pose equivalence analysis do not

determine globally consistent matches. Thus, with each of these methods there is some

additional veri�cation cost not included in these estimates. Unlike local search, which �nds

probabilistically optimal matches, the other three deterministically �nd locally consistent

matches. Pose equivalence analysis goes somewhat beyond this by �nding maximal sets of

pairwise consistent pose distinctive features. However, pose equivalence analysis assumes

that the n pairs of features are pose distinctive. A model line segment paired with a

potentially fragmented image segment is not pose distinctive.

Even accounting for the di�erences in problem statement and the means of estimating

complexity bounds, the local search approach to matching compares favorably to these other

general methods. Add this to the advantage that the local search approach is demonstrated

as extending to full-perspective matching, and the advantage that it handles many-to-many

correspondence mappings, and it should be clear why local search matching is a promising

alternative to these other techniques. The remainder of this thesis will proceed to explain

the various aspects of local search matching.

C H A P T E R 3

Matching as Combinatorial

Optimization

3.1 Introduction

To formulate geometric matching as optimization the following must be speci�ed:

1) The model representation.

2) The data representation.

3) The discrete space of possible model-data mappings.

4) The match error.

Of these four elements, the design of the match error function is by far the most involved.

This introduction will motivate some of the factors which go into evaluating the relative

merits of a particular match. Formalizing and quantifying these factors will be the principle

focus of this chapter.

Straight line segments are used to represent models and data in this thesis. Other

geometric primitives, such as points, could be used. Most of what is developed in this thesis

would be simpler with points than with line segments. However, mature algorithms exist

for extracting straight line segments [89, 20], and using segments it is possible to represent

a wide variety of objects.

The discrete space of possible matches is described by a set of possible correspondence

mappings between model and data line segments. In this thesis, the mapping is de�ned in

the least restrictive way possible: any number of model segments may map to (i.e. match)

a data segment, and any number of data segments may map to a model segment. It is

possible to preclude some pairs of segments from consideration if there is reason to believe

such pairings are impossible. Section 3.2 more formally de�nes the space of correspondence

mappings and motivates the use of many-to-many mappings.

As mentioned, the key issue in this chapter is: `What makes one match better than

another?' In tackling this question, it is instructive to step through a fairly simple example.

Figure 3.1a shows a model consisting of 3 line segments and an associated set of 7 data line

segments. It should be clear at a glance that there are loosely speaking two matches in this

data. The �rst is ((A; 1); (B; 2); (C; 3); (C4)) and the second ((A; 5); (B; 6); (C; 7)). In this

illustration, the size (i.e. scale) of the model is assumed �xed.

45

A

B C

1

2

3

4

5

6
7

Model Data

Figure 3.1 A simple model and data for illustrating match evaluation. Model segments are

black and labeled with letters. Data segments are grey and labeled with numbers.

(a) (b) (c)

Figure 3.2 Plausible �ts of the model to the data: a) favors left hand vertical segment, b)

favors the right hand vertical segment, c) splits the di�erence.

46

It is virtually impossible to judge one better than the other without inferring something

about the pose of the model implied by each. Qualitatively speaking, for correspondence

((A; 1); (B; 2); (C; 3); (C4)) there seems intuitively to be only one real option. However,

correspondence ((A; 5); (B; 6); (C; 7)) is ambiguous, and Figure 3.2 shows three arguably

consistent placements of the model relative to the data. Of these three, the one in Figure 3.2c

represents a compromise between exactly matching any of the three pairs of segments. In

contrast, the �rst two favor closeness of �t between some pairs at the expense of others.

This third placement is indicative of what is produced by least-squares �tting, and is the

approach favored in this thesis. The problem with favoring some correspondence pairs

at the expense of others, as exempli�ed in Figures 3.2a and 3.2b, is that it is essentially

equivalent to dropping pairs from a match. Consequently, it no longer respects the initial

presumption that all corresponding pairs participate in the match. For example, the �t shown

in Figure 3.2a is more appropriately associated with the correspondence ((A; 5); (B; 6)) than

with ((A; 5); (B; 6); (C; 7)).

(a) (b)

Figure 3.3 Two alternate matches illustrating omission: a) Four segments account for most

of the model, b) dropping data segment 4 leaves a portion of the model unaccounted for.

The loss of the segment makes this a poorer match.

As this example illustrates, �tting based upon a hypothesized correspondence is the

necessary �rst step in evaluating the quality of a match. How well a model �ts data is

clearly one factor used to rank alternative correspondences. What may be less obvious, is

that �t alone is an inadequate measure of match quality. Figure 3.3 shows the data for two

almost identical matches, except in Figure 3.3b one data segment is omitted. The �t, in a

least-squares sense, will be better in Figure 3.3b than in Figure 3.3a. What makes the data

in Figure 3.3a a better match is that it better accounts for the entire model.

At a minimum, in order for a match error function to enforce the preferences expressed

in these examples, it must account for both �t and omission. The exact manner in which

each is formalized will di�er given di�erent assumptions, but the underlying reason for why

each is needed should be apparent. The most obvious way to combine these two forms of

error is to sum them. This leads to the essential form of match error used in this thesis:

47

E

match

=

�

1

�

2

�

E

�t

+ E

om

(3:1)

with the weighting coe�cient � controlling the relative importance of these factors.

3.2 A Space of Possible Matches

The least restrictive space of mappings is many-to-many: any number of data line

segments may correspond to a model line, and any number of model line segments may

correspond to a data line segment. A variety of constraints (e.g. approximate knowledge of

a model's orientation) might preclude some pairs of model and data lines from matching,

thus limiting the space of potentially paired segments. Such constraints come into play prior

to, not during, matching.

Formally, letM be the set of model line segments and D be the set of data line segments.

Let S be the subset of MxD containing pairs of model and data line segments which are

candidate matches. Without prior constraints S = MxD. The possible mappings between

model and data segments c belong to the space of correspondence mappings C:

C = 2

S

S �MxD: (3:2)

Figure 3.4 shows how approximate knowledge of the model's placement might limit the

search space. For example, data line segments 0; 1; 8 and 11 are roughly parallel to model

line segmentA and might be considered close enough to be potential matches. Consequently,

in this illustration the space of possible matches to model line segment A is restricted to

pairs involving data segments f0; 1; 8; 11g.

There are several equivalent but distinct ways to denote a correspondence c 2 C. One

is to write out explicitly each pair s belonging to c. This form is assumed in equation 3.2.

Another is to associate a unique bitstring with each c 2 C. This may be done by de�ning C

as a mapping from pairs S onto values f0; 1g:

C : S ! f0; 1g: (3:3)

This bitstring interpretation is illustrated in Figure 3.4. In particular, the bitstring for the

best match is shown. Finally, a tabular form such as shown in Figure 3.4 is convenient and

will often be used in illustrations.

Data line segments are presumed to fragment often, as illustrated in Figure 3.4. There-

fore, correspondence mappings must be one-to-many: one model line segmentmapping to two

or more data line segments. Examples in Chapter 1 illustrated that the converse, mapping

one data line segment to two model line segments, is also important. Figure 3.5 provides

another example. A curve is approximated by a sequence of straight line segments. Typically,

the polygonal approximation used to describe the model will not be identical to that produced

by a piecewise linear data extraction process; the exact points at which the curve is broken

into successive segments are almost certain to di�er. Hence, as is shown in Figure 3.5, one

model line correctly maps to two data line segments, just as one data line segment also

correctly maps to two model line segments.

48

Defining a Search Space

D

C

B

A

0 1

2

4

5

8

9

10

11

3

6

7

12

The set of model segments

 M = {A, B, C, D}

The set of data segments

 D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

The complete set of model/data pairs

 M x D

Based on the relative orientation and proximity
of model and data segments as shown,
attention might be restricted to the set

 S = {(A 0), (A 1), (A, 8), (A 11),
 (B 2), (B 9), (B 10),
 (C 3), (C 7), (C 11),
 (D 4), (D 5), (D 6), (D 12)}

Illustrating a Correspondence Mapping

D

C

B

A

0

1

2

3

4

5

8

11

9

10
7

6 12

-> 1
-> 1
-> 0
-> 0
-> 1
-> 0
-> 0
-> 1
-> 0
-> 0
-> 1
-> 1
-> 0
-> 0

 (A 0)
 (A 1)
 (A 8)
 (A 11)
 (B 2)
 (B 9)
 (B 10)
 (C 3)
 (C 7)
 (C 11)
 (D 4)
 (D 5)
 (D 6)
 (D 12)

The space of
mapping functions
is

 C : S -> {1, 0}

On the right is the
particular mapping
function for the
match as shown.

In tabular form

A B C D
0 1 8 11 2 9 10 3 7 4 5 6 12

Figure 3.4 Illustrating search spaces and correspondence functions. Orientation and

proximity can constrain the set of potentially matching pairs of model and image segments.

The top �gure shows the model in a pose expected to be roughly correct. This pose constrains

the set of potentially matching pairs contained in the set S. The bottom �gure illustrates

the correspondence mapping for the best match.

49

A B C D E
0 1 2 3 4 2 3 4 5 3 4 5

Model Data Match

Many-to-many mappings are important
when line segments approximate a curve.

The relationship between model line D and
data lines 3 and 4 is expanded on the Left.

The many-to-many mapping for the
obvious match is given below.

4

D3

E

D

C

B

A 0

1

2

3

4
5

E

D

C

B

A 0

1

2

3

4
5

Figure 3.5 True many-to-many mappings do arise. In particular, when a curve is ap-

proximated with a series of straight line segments, the resulting mapping is likely to be

many-to-many.

3.3 Fit Error and Fitting

Perhaps the most obvious way one might think of �tting a model to corresponding

data would be to minimize a sum of squared distances between corresponding points on the

model and the data. However, in part because data line segments fragment, the use of such

a point-to-point measure for �tting is inappropriate.

To get around the problem of not having unique and reliably placed points, others have

realized the importance of using point-to-line (2D) or point-to-plane (3D) measures [80, 3, 70]

to accomplish �tting. This chapter will focus on the 2D case, measuring squared distance

from points to lines in the 2D image plane. The 3D case is left for Chapter 7. For 2D �tting,

Ayache [3] proposed the best-�t between a model and corresponding data segments should

minimize the sum of squared perpendicular distance between model segment midpoints and

in�nitely extended data lines.

This thesis introduces a new �tting criterion, the integrated squared perpendicular dis-

tance (ISPD) between data segments and in�nitely extended model lines. As will be ex-

plained in Chapter 4, this measure more reliably recovers the true pose of a model given

fragmented data segments. As the name implies, ISPD is obtained by taking the measure

of squared perpendicular points on a data segment and a corresponding model line and

integrating this measure between the endpoints of the data segment. The details of how

models are �t to data using ISPD are reserved for Chapter 4. This chapter will formally

de�ne ISPD and show how ISPD may be normalized with respect to the size of a model in

order to produce the �t error function E

�t

.

50

3.3.1 Integrated Squared Perpendicular Distance (ISPD)

The perpendicular distance v between a model line A and data segment 1 is illustrated

in Figure 3.6. The reader should note that the model segment A has been extended into an

in�nite line, and that perpendicular distance is measured with respect to this in�nite line.

This is done for reasons of computational expediency, since it facilitates the development of

general analytic closed-form solutions to the problem of �nding the best-�t model pose.

A

1

v(t)
v

1
v

2

p
1

p
2

p
2

p
1

Figure 3.6 Points on data segment 1 project perpendicularly onto model line A. The

perpendicular distance at any point along 1 may be written as a function v(t).

The �rst step in deriving the ISPD is to write the perpendicular distance v as a function

of position along the segment. This may be done by de�ning a parametric from v(t):

v(t) = v

1

+ (v

2

� v

1

)

t

`

0 � t � `: (3:4)

The parameter t is the position on the data segment, v

1

and v

2

are the perpendicular distances

from endpoints 1 and 2 respectively, and ` is the length of the data segment.

The de�nite integral of v(t)

2

over the length of the data segment has a relatively simple

form:

ISPD =

Z

`

0

v

2

(t) dt =

`

3

�

v

2

1

+ v

1

v

2

+ v

2

2

�

: (3:5)

Figure 3.7 illustrates �tting using ISPD in order to provide some intuition for how a

model appears when �t to data, and how the residual perpendicular error appears visually

as a perpendicular displacement between matched segments. Model segments are drawn in

black. Data segments matched to model segments are next darkest, followed by extensions

indicating the in�nite line associated with each model segments. Perpendiculars dropped

from endpoints of data segments to corresponding model lines are drawn in still a lighter

shape of grey. Finally, unmatched data segment are drawn in the lightest shade of grey.

The correspondence in Figure 3.7a is the correct or best correspondence. Consequently,

the �t is quite good. It is in fact somewhat di�cult to see the grey line segments indicating

perpendicular displacement between data segments and corresponding model lines because

the model is lying essentially on top of the corresponding data segments. The perpendicular

components are more easily seen in Figure 3.7b, in which an incorrect or sub-optimal pairing

has been added to the match. The vertical data segment in the lower right hand corner has

been matched to the right side of the rectangle, causing the rectangle to rotate relative to

51

(a) (b)

Figure 3.7 Illustrating how perpendicular error is used to measure �t. The error is indicated

by lines drawn from endpoints of data segments to extended model lines. Observe how in

(b) the addition of one `incorrect' pairing changes the model's pose.

the pose in Figure 3.7a. Additionally, the rectangle has changed position and size slightly,

but these changes are not visually obvious.

There is an alternative to ISPD which should be mentioned, and it is the weighted

squared perpendicular distance from data segment endpoints. It is important to understand

that this weighted endpoint perpendicular distance (WEPD) measure o�ers little advantage

in terms of algebraic simplicity and that it introduces an undesirable endpoint bias. Consider

the algebraic form of these two measures:

ISPD =

`

3

�

v

2

1

+ v

1

v

2

+ v

2

2

�

; and WEPD =

`

2

�

v

2

1

+ v

2

2

�

: (3:6)

These two �t measures di�er only with respect to the cross term v

1

v

2

and the associated

division of the sum by 3 rather than 2.

The endpoint bias of the WEPD measure is due to the fact that it is not invariant under

fragmentation of data segments. If a single data segment is broken into two contiguous seg-

ments, the union of the sets of points lying on each fragment equals the set of points lying on

the original. Consequently, the sum of the ISPD over the two fragments is indistinguishable

from the ISPD computed over the original segment. However, this is not true of the WEPD

measure, which biases �t based upon speci�c endpoint placement. Because it is invariant

with respect to fragmentation, ISPD is used in this thesis.

3.3.2 Fit Error: Normalized ISPD

In principle, the residual ISPD after �tting could be used directly as a �t error function

E

�t

. However, for reasons discussed in this section, it is desirable to normalize the ISPD

52

measure with respect to model size. One reason is so the match error function will produce

comparable values for models of di�erent size. Another reason is that normalization will

simplify the task of combining E

�t

with the omission error E

om

.

Consider ISPD summed over all pairs of corresponding line segments s 2 c:

ISPD(c) =

X

s2c

ISPD(s) (3:7)

where ISPD(s) is de�ned by equation 3.5 for a pair of segments s. To de�ne a �t error,

ISPD(c) might be normalized either by the sum of the lengths of the model line segments

or the sum of the lengths of the data line segments. The sum of the model segment lengths

may be written as:

L

m

=

X

m2M

`(m) (3:8)

where `(m) is the length of the model segment m after the model M has been �t to the

corresponding data. The sum of the lengths data segments may be written as:

L

d

=

X

m2M

X

d2s

m

`(d) (3:9)

where `(d) is the length of a data segment d, s

m

is the subset of the correspondence mapping

c including model segmentm, and d 2 s

m

is understood to mean the data segments included

in the pairs s

m

.

Model-normalized and data-normalized �t errors may be de�ned as:

E

m

�t

=

1

L

m

ISPD(c) and E

d

�t

=

1

L

d

ISPD(c): (3:10)

The principle di�erence between model-normalized �t error E

m

�t

and data-normalized �t

error E

d

�t

concerns what happens when too many data segments are included in the corre-

spondence mapping. To illustrate, if the total length of data line segments L

d

is �ve times

larger than the total length of the model line segments L

m

, then E

m

�t

will be �ve times larger

than E

d

�t

. Consequently, E

m

�t

is somewhat better at penalizing such matches, and this in

turn assists local search in rejecting such matches.

The data-normalized error E

d

�t

is potentially simpler to compute than E

m

�t

because

the sum of the lengths of the model line segments changes with the best-�t pose. When

�tting subject to rotation, translation and scaling in the image plane, adjusting L

m

turns

out to be trivial: simply apply the scale change to the sum of model line lengths measure

in model coordinates. However, for full-perspective matching developed later in this thesis,

recomputing L

m

for every new best-�t pose is more complicated, and the simpler data

normalized form E

d

�t

is used.

The di�erences between E

d

�t

and E

m

�t

are illustrated by example in Table 3.1. In this

table, the exact values for the two forms of �t error are shown broken out by model line

segment. The segment labels are the same as shown in Figure 3.4 (page 48). Tables 3.1a

and 3.1b are for the matches shown in Figures 3.7a and 3.7b respectively.

The key thing to observe is that for the very good match, Figure 3.7a, the di�erence

between the two measures is negligible. However, for the match in Figure 3.7b, the total

53

Table 3.1 Comparing the �t errors for correspondences in Figure 3.7. Both model-normalized

E

m

�t

and data-normalized E

d

�t

�t errors are shown. In addition, model segment length `(m),

number of data segments matched to the model segment js

m

j, cumulative length of matched

data segments

P

d2s

m

`(d), ISPD, and average perpendicular distance PD are shown. Average

PD is the square root of ISPD divided by

P

d2s

m

`(d). a) For the correspondence shown in

Figure 3.7a. b) For the correspondence shown in Figure 3.7b.

Correspondence Figure 3.7a

m E

d

�t

E

m

�t

`(m) js

m

j

P

d2s

m

`(d) ISPD PD

A 0.34 0.34 45.48 2 42.73 65.52 1.2384

B 0.15 0.15 51.07 1 65.12 28.69 0.6639

C 0.16 0.16 45.48 1 36.88 30.71 0.9126

D 0.23 0.23 51.07 2 48.58 44.27 0.9547

totals 0.88 0.88 193.11 6 193.30 169.21 {

(a)

Correspondence Figure 3.7b

m E

d

�t

E

m

�t

`(m) js

m

j

P

d2s

m

`(d) ISPD PD

A 0.60 0.70 46.57 2 42.73 138.05 1.7974

B 10.50 12.19 52.29 2 101.34 2409.72 4.8764

C 0.22 0.26 46.57 1 36.88 50.63 1.1718

D 0.28 0.32 52.29 2 48.58 63.43 1.1427

totals 11.60 13.46 197.71 7 229.52 2661.86 {

(b)

54

�t error for the data-normalized form is noticeably smaller than for the model-normalized

form, and this is an example of the undesirable behavior mentioned above. This di�erence

will become more pronounced if additional data segments are added to the correspondence.

Table 3.1 also serves to illustrate how �t error increases for sub-optimal matches. Observe

that the total �t error, measured either way, jumps by more than an order of magnitude

with the addition of the bad data segment, and that although the majority of this jump can

be attributed directly to the portion computed for model segment B, because the model is

�t to the data a whole, the error contribution from the other segments also increases.

3.4 Omission Error

The omission error for a particular model segment will be de�ned as a non-linear function

of the percent of the model line unaccounted for by data. A point, or more precisely an

interval on a model segment, is de�ned to be unaccounted for if no part of any corresponding

data line segment projects onto it. To illustrate using Figure 3.6 (page 50), the right portion

of model segment A is covered, or accounted for, by data segment 1. The covered portion is

bounded on the left by the point at which data segment endpoint p

1

projects onto A, and

on the right by endpoint p

2

of segment A.

The omission error will be non-linear because even under the best of circumstances, a

small amount of omission is to be expected (e.g. the ends of lines are often di�cult to

extract). However, if large portions of a model segment are missing from the data, the

estimated quality of the match should be substantially reduced. To illustrate, consider a

perfect square. Four data line segments, each covering three quarters of a side, is preferable

to three line segments completely covering three sides, even though the total amount of

model uncovered is the same in the two cases.

For a single model segment m, let p be the fraction not covered by a point on a

corresponding data segment. The non-linear function of p used to de�ne omission error

is:

E

om

(p) =

(

e

�p

�1

e

�

�1

if � 6= 0

p otherwise

: (3:11)

The fraction p lies in the range [0; 1], and hence the omission error too lies in this range.

The degree of non-linearity is controlled by �. However, the exact manner in which changing

� changes the form of E

om

(p) is less than obvious. It is helpful to introduce an auxilary

parameter a, and then de�ne � in terms of a.

� = 2 ln

�

2

a

� 1

�

: (3:12)

The parameter a may be thought of as attenuation because it attenuates the omission

error relative to the linear case. Figure 3.8 illustrates how attenuation speci�es the non-

linearity of the relationship between p and E

om

. The horizontal axis is p and the vertical

axis E

om

. In the special case where attenuation a = 1:0, E

om

is a linear function of p. In

fact, it is the identity function. As a drops below 1:0, E

om

drops below the linear case. For

instance, a = 0:5 attenuates E

om

by 50% at the midpoint of the curve. This parameter

allows the user to vary the e�ect of the degree of model omission for di�erent task domains.

55

0

0.2

0.4

0.6

0.8

1

0 0.5 1

O
m

is
s
io

n
 E

rr
o
r

Fraction Omitted

75% of 0.5

50% of 0.5

Error 0.5 with Omission 0.5

Attenuation 1.00
Attenuation 0.75
Attenuation 0.50

0

0.2

0.4

0.6

0.8

1

0 0.5 1

O
m

is
s
io

n
 E

rr
o
r

Fraction Omitted

75% of 0.5

50% of 0.5

Error 0.5 with Omission 0.5

Attenuation 1.00
Attenuation 0.75
Attenuation 0.50

Figure 3.8 Di�erent omission error curves. Attenuation a controls how the curve drops below

the linear case. The three curves are for attenuation 1:00, 0:75 and 0:50. The corresponding

values for � are 0:0, 1:0 and 2:2.

Thus far, E

om

(p) has only been de�ned for a single model segment m based upon the

fraction of the segment omitted p. The omission error for a complete match is a weighted

sum of the omission error for each of the model segments:

E

om

=

X

m2M

`(m)

L

m

!

E

om

(p

m

): (3:13)

Weighting the contribution from each model line segment by the relative length of the

segment makes the omission error more directly comparable to the normalized �t error

E

�t

. However, it is possible to weight omission uniformly across model segments regardless

of length. This emphasizes the importance of small segments, and an example where this is

important is the telephone pole matching example in Section 5.4.3. Unless otherwise stated,

the weighted by length form of the omission error will be used in this thesis.

3.5 Trading O� Fit Error Versus Omission Error

The balance struck between �t error and omission error de�nes the character of an

optimal match. Recall from equation 3.1 that the relative importance of �t versus omission

is controlled by the parameter �. By weighting the relative importance of �t versus omission,

56

� controls how far a data line segment may be displaced from a model segment and still be

included in an optimal match. The �t error and omission error have been normalized in

part to give � an intuitive geometric interpretation: � may be thought of as the maximum-

displacement beyond which a data segment displaced relative to the model will be dropped

from a match. The parameter � may also be thought of as the standard deviation on an error

process which displaces and skews data line segments relative to model segments. The e�ect

is then to include in matches segments lying within one standard deviation of the model.

Although this interpretation is approximately correct, making it rigorous is complicated, and

it is not developed in this thesis.

The global �tting process used to register the model to the data complicates maximum-

displacement interpretation for �. Consider a set of data which is a perfect copy of a model.

If a single component of the model is displaced by an amount �, the best-�t pose of the

model relative to the data will tend to distribute this error over all components of the

model, and therefore the actual displacement will be less than �. To better understand what

is taking place, this section will study what happens when one component of a simple model

is displaced relative to the rest of the model.

The relationship between �t and omission is better seen by substituting the model-

normalized �t error E

m

�t

from equation 3.10 and the omission error E

om

from equation 3.13

into equation 3.1:

E

match

=

�

1

�

2

L

m

�

X

s2c

ISPD(s) +

X

m2M

`(m)

L

m

!

E

om

(p

m

) (3.14)

=

�

1

L

m

�

X

m2M

X

s2s

m

ISPD(s)

�

2

!

+ `(m)E

om

(p

m

)

!

: (3.15)

To understand the consequences associated with matching or not matching a single model

line segment, equation 3.15 breaks down the error by model segments m 2M .

Neglecting global �tting, the break-even point at which the cost of adding a pair s

0

=

(m;d) equals the penalty for omitting it is reached when the average perpendicular distance

between d and m equals �. To see this, consider the following scenario: there is one pair,

s

0

= (m;d), involving model segment m, and the data segment d completely covers model

segment m. The contribution to E

match

for model segment m with s

0

included in the

correspondence consists solely of the �t error:

ISPD(s

0

)

�

2

: (3:16)

With s

0

excluded there is no �t error and E

om

(1:0) = 1:0. Therefore, the contribution to

E

match

is

`(m): (3:17)

The break-even point at which the match error is the same whether s

0

is included or excluded

arises when equations 3.16 and 3.17 are equal, and this in turn implies that the break-even

point is achieved when

ISPD(s

0

)

`(m)

= �

2

: (3:18)

The expression on the left is the average squared perpendicular distance between m and d.

57

Therefore, taking the square root of each side shows that the break-even point is reached

when the average perpendicular distance equals �.

(a) (b)

(c) (d)

0.25 = 0.0 + 0.25 0.21 = 0.10 + 0.11E
match

E
match

Figure 3.9 Global �tting modi�es e�ect of displacing a single segment: a) three perfect

sides of a square 30 units on a side, b) a fourth side displaced 8 units to the right, c) square

matched data three sides, d) square matched to all four sides. The match error is written

below the two matches: E

match

=

�

1

�

2

�

E

�t

+ E

om

.

Figure 3.9 explores how �tting the model to the data as a whole changes the behavior

just predicted. For a square of 30 units on a side, one side is displaced 8 units from its

true position in the data, and then the match error is computed with � = 8 both with and

without the displaced side included in the match. The illustration shows how the e�ect of

global �tting is to distribute and reduce the expected �t error.

Figures 3.9a and 3.9b show the data to which the square is matched both with and

without the displaced side included in the match. Figures 3.9c and 3.9d show the model

matched to each set of data, and under each the match error is shown as the sum of the

�t error divided by �

2

plus the omission error. In Figure 3.9c, the �t error is zero: the

model lies exactly over the three data segments, and all the error comes from the omission

58

of the one side. Figure 3.9d shows the e�ect of matching to the displaced side: the �t error

increases and the omission error decreases. However, because of the global �tting, the �t

error is distributed over all four segments and does not increase as much as the omission

error decreases. Consequently, the match error is less with the displaced side included in the

match.

3.6 Collateral Knowledge added to Match Error

A variety of additional forms of error might be added to the match error function, each

reecting a di�erent constraint. Two such additional errors are considered here. The �rst

is a measure of pairwise compatibility between corresponding segments. The second is a

measure of the extent to which the best-�t pose - the transformation �tting the object

model to the data - is consistent with initial expectations. The match error with these

additional constraints added is:

E

match

(c) =

�

1

�

2

�

E

�t

(c) + E

om

(c) + E

pw

(c) + E

F

(c) (3:19)

where E

pw

is a pairwise error term expressing pairwise compatibility between matching

segments and E

F

is a transformation error term expressing how well the best-�t pose

conforms to the expected pose.

There is an obvious and a less obvious reason for adding constraints to the match

error. The obvious reason is to alter the ranking of the locally optimal matches. The

additional constraints modi�e what constitutes the best match. The less obvious reason is

that additional constraints modify the way local search explores the combinatorial space of

possible correspondences. This is an important consideration, and will be discussed further

after local search is introduced in Chapter 5. It should be said here that including the

pairwise error de�ned below has proven to be essential in order to solve a di�cult matching

problem involving a highly symmetric object model.

3.6.1 Pairwise Error

Pairwise error, E

pw

, is de�ned relative to a pair of corresponding model and data

segments and provides an opportunity to take into account compatibility constraints between

two matching segments. The pairwise error for a correspondence c is de�ned to be the sum

of the pairwise error associated with corresponding pairs of segments:

E

pw

(c) =

X

s2c

E

pw

(s): (3:20)

The following is an example of a pairwise error function that has proven to be useful.

This error penalizes segments whose relative orientations di�er by more than a preselected

threshold. The di�erence in relative orientations � is measured after the model has been �t

to the data:

E

pw

(s) =

8

<

:

0 if j�j < �

l

(sin �)

2

�(sin �

l

)

2

(sin �

u

)

2

�(sin �

l

)

2

otherwise

: (3:21)

59

The threshold �

l

establishes a minimum di�erence in orientation, perhaps 10 degrees, below

which the error is 0. The upper bound, �

l

, sets the slope of the error such that if the

di�erence in relative orientation reaches this upper bound, then the error equals 1:0. If the

error exceeds this upper bound, then it grows larger than 1:0. Figure 3.10 illustrates the

shape of E

pw

for �

l

= 10 degrees and �

u

= 30 degrees.

-1

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90

P
a
ir
w

is
e
 e

rr
o
r

Angle theta in degrees

Figure 3.10 Example plot of relative orientation pairwise error. Error is zero up to �

l

= 10

degrees, and then ramps up to 1:0 at �

u

= 30 degrees. For � greater than 30 degrees error

continues to grow.

For reasons of computational expediency, this error is expressed in terms of sin and cos

rather than directly in terms of the di�erences in angle. The squared sin of the angle between

segments is readily computed by subtracting from 1:0 the square of the dot product between

the normals of the two segments.

A variety of other pairwise constraints between potentially matching segments might be

encoded using E

pw

. For example, if appearance information were available for a domain,

this might be encoded as a pairwise error; for example, a penalty might be exacted for

matching a model segment expected to have a textured region on one side to an image

segment with uniform regions on both sides.

3.6.2 Transformation Error

It has proven important when matching under weak-perspective to include an error

term that discourages correspondences that imply near pathological transformations. In

particular, the problem involves correspondences for which the change in scale becomes very

large; for instance, a correspondence whose best-�t transformation shrinks the model by a

60

factor of 10 or 100. In order to make these matches less desirable the following E

F

(c) is

de�ned:

E

F

(c) =

8

>

<

>

:

1=s � r if s < 1=r

0:0 if 1=r � s � r

s� r if s > r:

(3:22)

Here s is the scale change associated with the best-�t pose for correspondence c. The

parameter r speci�es an allowable range of scale changes s for which there is no penalty. If

the scale change grows or shrinks beyond r then the error grows in proportion to the relative

change in scale. For all the weak-perspective experiments presented in this thesis r = 2.

C H A P T E R 4

Fitting Under Weak-Perspective

4.1 Introduction

Closed form equations for �tting 2D models to data are derived in this chapter. In

particular, equations are developed for minimizing the integrated squared perpendicular

distance (ISPD) measure introduced in the previous chapter. This approach to �tting 2D line

segment models to 2D potentially fragmented 2D line segment data is superior to previous

approaches to the problem.

Fitting 2D point models to corresponding 2D data points is simpler than �tting points to

lines. For a rigid 2D point model �tting involves �nding a rotation R

�

and translation

~

T

�

in

the image plane such that the sum of squared Euclidean distance between transformed model

points and corresponding data points is minimized. If the 2D object model is permitted to

change size, then an additional scale term s

�

must also be determined. Solving for the best-�t

rigid and similarity (variable scale) transforms for points is a simple and solved problem.

Unfortunately, when working with line segment models and potentially fragmented data

line segments, it is unwise to use point-to-point �tting. It is, for example, di�cult to

determine corresponding points when a model line segment matches two data data line

segments. As observed by others [80, 3], it is better to �t so as to minimize perpendicular

point-to-line distance. Finding best-�t rigid and similarity transformations using point-to-

line measures is a more di�cult and less well studied problem.

When this thesis work began, the outwardly simpler problem of �tting models to data

using 2D-rigid transformations was considered �rst. The best-�t rigid transformation was

found to depend upon the roots of a quartic (fourth order) equation [11]. Subsequently, the

variable scale problem was considered. In this problem the model is �t to the data using

a 2D similarity transformation. For this problem it was found that the best-�t similarity

transformation depends upon the roots of a quadratic equation. Therefore, �tting variable

scale models in simpler than �tting rigid models, and the underlying reasons for why the

rigid problem is more di�cult are explored at the end of this chapter.

As already discussed in Chapter 1, the similarity transform is referred to here as weak-

perspective because it approximates full-perspective for a subset of possible object views.

For at objects essentially facing the camera, the variability in appearance is essentially

equivalent to taking a single projection from 3D-to-2D, and then applying 2D similarity

transforms to this projection. The 2D similarity transform is also sometime called the

4-parameter a�ne transform.

A quadratic �tting result closely related to the one developed here was presented by

Ayache [3] in 1986. This chapter begins by describing the �t measure and solution technique

62

developed by Ayache [3]. Ayache measured error from midpoints of model segments to

in�nitely extended data lines, but as will be shown, it is better to measure from in�nitely

extended model lines.

4.2 Ayache: Minimizing Model Midpoint to Data Line Distance

The HYPER system [3] developed by Ayache and Faugeras recognized 2D parts placed

at upon a table. The approach taken was essentially one of �rst �nding simple key-features

and then con�rming or rejecting hypothesized matches based upon the �t of the 2D model

to corresponding image data. In particular, Ayache's models were comprised of 2D straight

line segments and these were matched to line segments extracted from images. It is the

details of the line segment �tting technique which are of interest here.

Ayache originally proposed �tting midpoints of model segments to midpoints of corre-

sponding data segments, but found that because of imperfections in the data segments this

introduced problems. Speci�cally, the �ts were not reliable and consequently matches which

ought to have been accepted were rejected. In response to the weakness of the point-to-point

�tting, Ayache developed a �tting technique which minimized the squared perpendicular

distance from in�nitely extended data lines to the midpoints of model line segments.

Ayache's error measure may be written as

E =

n

X

i=1

�

^

N

i

�

�

s

MD

R

MD

~

M

i

�

~

T

MD

�

�

^

N

i

�

~

D

i

�

2

; (4:1)

where

^

N

i

is the unit normal for the ith data line segment,

~

D

i

is any point on the data

line segment, and

~

M

i

is the midpoint of the ith model line segment. The optimal pose

is determined by the scale change s

�

MD

, rotation R

�

MD

and translation

~

T

�

MD

which together

minimize E. The rotation matrix R

MD

and translation vector

~

T

MD

have the standard form:

R

MD

=

cos� � sin�

sin� cos �

~

T

MD

=

t

x

t

y

Ayache showed that equation 4.1 may be rewritten as a simple quadratic in terms of an

unconstrained vector

~

V . To build up to this, observe �rst that equation 4.1 may be rewritten

as

E =

n

X

i=1

�

^

N

i

�

�

M

i

�

s

MD

~

�

MD

�

�

~

T

MD

�

�

^

N

i

�

~

D

i

�

2

(4:2)

, where

M

i

=

x

i

�y

i

y

i

x

i

~

�

MD

=

cos �

sin�

: (4:3)

The product s

MD

~

�

MD

is a vector with two elements and two degrees of freedom. Hence, it

is possible to further reduce equation 4.2 to a simple quadratic:

E =

n

X

i=1

�

^

N

T

i

C

i

~

V �

^

N

T

i

~

D

i

�

2

; (4:4)

63

where

C

i

=

x

i

�y

i

1 0

y

i

x

i

0 1

~

V = s

MD

cos � s

MD

sin� t

x

t

y

T

:

The simplicity with which the optimal pose may be found using equation 4.4 is attrac-

tive, but unfortunately the measure as de�ned has several drawbacks. First, measuring

perpendicular distance only from the midpoint of a segment does not constrain model

segment orientation relative to a data segment. Second, in�nitely extending the potentially

fragmented data segments accentuates errors associated with skewed fragments. Each of

these failings, along with the associated �xes, are described in the following section.

4.3 Minimizing Data Endpoint to Model Line Distance

4.3.1 De�ning the Measure

1

3

24

A

B

C

D

1

3

24

A

BC

D

(a) (b)

Figure 4.1 Measuring perpendicular distance from midpoints is inadequate. Measuring from

endpoints is better. Four in�nitely extended data lines are numbered 1 through 4. The model

segments are lettered A through D. Model segment A matches to data line 1, segment B to

2, etc.

There are problems with Ayache's �tting based upon minimizing the perpendicular

distance from model midpoints to in�nitely extended data segments. A striking example

of potential di�culties is presented in Figure 4.1, in which a model of a square is matched

to perfect data. The model segments are shown in black, and in�nitely extended data

segments in grey. Using the midpoint measure proposed by Ayache, there are an in�nite

set of rotations and scalings that are equivalent. Figures 4.1a and 4.1b show two di�erent

64

�ts, each with zero midpoint-to-midpoint error. Using perpendicular distance to endpoints

rather than midpoints resolves this ambiguity.

A

1
2

A

1
2

Perpendicular distance - model endpoints to data lines

Perpendicular distance - data endpoints to model lines

Figure 4.2 Perpendicular distance measured both from data and from model. A model

line segment A and data line segments 1 and 2 are shown. In�nitely extending data line 2

exaggerates the perpendicular error between the left endpoint of A and the extended line.

Extending model segments rather than data segments corrects this problem, since model

segments do not fragment.

As illustrated in Figure 4.2, in�nitely extending fragmented data line segments can bias

the �t, and it is better to in�nitely extend the model segments. Unlike data segments,

model segments don't fragment. The resulting perpendicular data endpoint to model line

�t measure is also shown in Figure 4.2. The skewing of segment 2 is not exaggerated using

this more stable measure. A Monte Carlo study comparing these two measures con�rmed

that the data endpoint to model line measure more accurately recovers an object model's

true pose when data segments are fragmented and skewed [11].

Given Ayache's derivation above, the most obvious way of writing the data endpoint to

model line measure is to reverse the role of model and data segments in equation 4.1, and

sum over both endpoints of the n corresponding segments:

E =

n

X

i=1

2

X

j=1

�

^

N

i

�

�

s

DM

R

DM

~

D

ij

�

~

T

DM

�

�

^

N

i

�

~

M

ij

�

2

: (4:5)

^

N

i

is now the unit normal to the ith model line segment,

~

M

ij

is the jth endpoint of the ith

65

model line segment, and

~

D

ij

is the jth endpoint of the ith data line segment. Unfortunately,

this measure computes this error subject to scaling, rotating and translating the data with

respect to the model. To reect this change, the subscript on the transformation has been

changed from MD (Model-transformed-to-Data) to DM (Data-transformed-to-Model).

The transformation s

�

DM

, R

�

DM

and

~

T

�

DM

minimizing equation 4.5 best-�t registers the

data to the model. However, in model matching, it is more natural to register the model to

the data, and therefore the transformation s

�

MD

, R

�

MD

and

~

T

�

MD

transforming the model so

as to minimize the perpendicular error measure is desired. Here is the same perpendicular

error measure as in equation 4.5, but parameterized in terms of the model being transformed

with respect to the data:

E =

n

X

i=1

2

X

j=1

��

R

MD

^

N

i

�

�

~

D

ij

�

�

R

MD

^

N

i

�

�

�

s

MD

R

MD

~

M

ij

+

~

T

MD

��

2

: (4:6)

The perpendicular error is not invariant with respect to changes in scale, and therefore

the transformation minimizing equation 4.6 is not the inverse of that which minimizes

equation 4.5. The latter equation is appropriate for model matching.

By the construction already shown above, it should be apparent that minimizing equa-

tion 4.1, and hence equation 4.5, is straight forward. However, this same construction is not

directly applicable to equation 4.6. A somewhat more involved construction will show that

minimizing equation 4.6 reduces to the problem of solving a 2x2 eigenvector problem.

To see the reduction to an eigenvector problem, begin by noting that the inner product

of vectors

^

N

i

and

~

M

ij

is invariant under rotation R

MD

. Therefore

�

R

MD

^

N

i

�

�

�

s

MD

R

MD

~

M

ij

�

= s

MD

�

^

N

i

�

~

M

ij

�

= s

MD

�

i

where �

i

is the shortest distance from the ith model line to the origin.

It is worth emphasizing that from the standpoint of computing the best-�t transforma-

tion, the terms

^

N

i

,

~

M

ij

and

~

D

ij

are constants de�ned by the initial geometry of the model

and data segments. Hence, �

i

depends only upon the initial placement of the model segment

in the model's coordinate system.

Equation 4.6 may now be rewritten as:

E =

n

X

i=1

2

X

j=1

��

R

MD

^

N

i

�

�

�

~

D

ij

�

~

T

MD

�

� s

MD

�

i

�

2

: (4:7)

Equation 4.7 may be simpli�ed by observing that

�

R

MD

^

N

i

�

�

�

~

D

ij

�

~

T

MD

�

=

^

N

i

�

�

R

DM

~

D

ij

+

~

T

DM

�

;

where

R

DM

= R

-1

MD

~

T

DM

= �R

DM

~

T

MD

:

Equation 4.7 may now be rewritten as:

E =

n

X

i=1

`

i

2

2

X

j=1

�

^

N

i

�

�

R

DM

~

D

ij

+

~

T

DM

�

� s

MD

�

i

�

2

: (4:8)

66

A weighting coe�cient has been added to the perpendicular error terms in equation 4.8.

The squared perpendicular distances for each pair i is multiplied by

`

i

2

, where `

i

is the length

of the data line segment. Length is divided by two in order to take the average between the

two endpoints. Weighting by length is important in order to prevent small fragments from

exerting a disproportionate inuence over the �t of the model to the data.

There is a helpful geometric interpretation for equation 4.8. The data is subjected

to a rigid transformation, R

DM

and

~

T

DM

, while the model is scaled by s

MD

. Since the

sum of squared distances error measure is invariant under rotation and translation alone,

and because the crucial best-�t scale is being computed subject to scaling the model, an

equivalent best-�t pose may be obtained by subjecting the model to the transformation

R

MD

, T

MD

and s

MD

where

R

MD

= R

-1

DM

~

T

MD

= �R

MD

~

T

DM

: (4:9)

4.3.2 Finding the Best-�t Similarity Transform

Solving directly for the rotation R

�

DM

, translation

~

T

�

DM

and scale s

�

MD

which together

minimize equation 4.8 is complicated by the presence of the rotation matrix R

DM

. The

task becomes simpler if R

DM

is replaced with a rotation vector

~

�

DM

analogous to

~

�

MD

in

equation 4.3. In consort with this change, it is necessary to replace the vector

~

D

ij

with the

matrix D

ij

. With these changes, equation 4.8 may be rewritten as:

E =

n

X

i=1

`

i

2

2

X

j=1

�

^

N

i

�

�

D

ij

~

�

DM

+

~

T

DM

�

� s

MD

�

i

�

2

where D

ij

=

x

ij

�y

ij

y

ij

x

ij

: (4:10)

Multiplying out the terms in equation 4.10 and collapsing the sums yields the following:

E =

~

�

T

A

~

� + 2

~

T

T

B

~

� +

~

T

T

C

~

T � 2

~

U

T

~

�s� 2

~

V

T

~

Ts+ ks

2

; (4:11)

A =

P

n

i=1

P

2

j=1

(`

i

=2)D

T

ij

^

N

i

^

N

T

i

D

ij

~

U =

P

n

i=1

P

2

j=1

(`

i

=2) �

i

D

T

ij

^

N

i

B =

P

n

i=1

P

2

j=1

(`

i

=2)

^

N

i

^

N

T

i

D

ij

~

V =

P

n

i=1

`

i

�

i

^

N

i

C =

P

n

i=1

`

i

^

N

i

^

N

T

i

k =

P

n

i=1

`

i

�

2

i

: (4:12)

For simplicity the subscripts have been dropped from the transformation terms: s = s

MD

,

~

� =

~

�

DM

and

~

T =

~

T

DM

.

To compute the best-�t 2D pose, one must solve for s

�

,

~

�

�

and

~

T

�

which minimize

equation 4.11 subject to the constraint that

~

�

T

~

� = 1: (4:13)

To solve for s

�

,

~

�

�

and

~

T

�

, �rst set to zero the derivative of equation 4.11 with respect

to s and solve for s

�

as a function of

~

� and

~

T .

s

�

=

�

~

U

T

~

� +

~

V

T

~

T

�

=k (4:14)

67

Substituting s

�

for s in equation 4.11 yields a new equation:

E =

~

�

T

D

~

� + 2

~

T

T

E

~

� +

~

T

T

F

~

T; (4:15)

where

D = A�

~

U

~

U

T

=k E = B �

~

V

~

U

T

=k F = C �

~

V

~

V

T

=k: (4:16)

Next set the partial derivative of equation 4.15 with respect to

~

T equal to zero and solve for

~

T

�

as a function of

~

�:

~

T

�

= �F

-1

E�: (4:17)

Finally, substitute

~

T

�

into equation 4.15 to get

E =

~

�

T

G

~

� where G = D � E

T

F

-1

E: (4:18)

By Rayleigh's Principle ([91], pg. 429) the vector

~

�

�

which minimizes equation 4.18 is the

unit eigenvector associated with the lesser eigenvalue of the matrix G.

The geometric intuition underlying this result is quite simple. Note that equation 4.18

is quadratic and hence E � 0 for any choice of vector

~

�. Therefore, G is positive de�nite

and the level curves of the error function are ellipses. Moreover, since there are no �rst

order terms involving

~

� in equation 4.18, the ellipses are centered at the origin. Were the

choice of

~

� unconstrained, then

~

� = 0 would minimize equation 4.18. However, remember

from equation 4.3 that

~

� is de�ned to be a vector formed by sin � and cos�. Hence, only

~

�

vectors which lie on the unit circle correspond to valid rotations, and the goal is that vector

~

�

�

on the unit circle at which equation 4.18 obtains a minima.

Why the solution turns out to be the unit eigenvector associated with the lesser eigenvalue

of the matrix G is illustrated in Figure 4.3. The level curves of the perpendicular error, as

a function of the components of the

~

� vector, are ellipses centered about the origin. The

constraint that

~

� be a unit vector restricts the choice of components to the the unit circle.

The points on the unit circle with the lowest error are the two points at which the largest

ellipsoidal level curve to �t entirely within the circle meets and is tangent to the unit circle.

The eigenvectors of G are aligned with the minor and major axes of the ellipsoidal error

curves, and it turns out that the unit eigenvector associated with the lesser eigenvalue falls

on the unit circle at the desired point of lowest error. Therefore, this unit eigenvector is the

rotation vector

^

�

�

which minimizes the perpendicular error.

With

^

�

�

known, the optimal translation

~

T

�

and scale s

�

may be computed from equa-

tions 4.17 and 4.14 respectively. As Figure 4.3 suggests, there are in fact two vectors

^

�

�

, one

for each of the two points where the unit circle and the major axis intersect. If the wrong

^

�

�

is chosen then s

�

will be negative. In this case, the sign on

^

�

�

,

~

T

�

and s

�

can be ipped

to obtain the desired transformation.

4.3.3 Symmetric 2x2 Eigensystems: The Lesser Vector

Finding the unit eigenvector associated with the lesser eigenvalue is conceptually simple.

However, since this operation will be carried out millions of times by the matching algorithms

developed later in this thesis, a practical guide to e�ciently solving this problem will be

68

Emin

Emax

Φ =
φ

x

φ
y

φ
x

φ
y

Φ
max

Φ
min

Figure 4.3 Illustrating elliptical error level curves. The optimal rotation vector

^

�

�

is the

point on the circle where the largest ellipsoidal error curve to fall within the circle contacts

the circle.

helpful for readers interested in how the best-�t weak-perspective pose is most e�ciently

determined.

In a recent article, Newton [90] focuses on e�cient ways of solving 2x2 eigenvector

problems. The following is based upon the method presented in the article, but adapts the

approach to the more restricted case of a 2x2 symmetric matrix. Remember that because

the matrix is symmetric, the eigenvalues are both real though not necessarily �nite.

Let the symmetric 2x2 matrix be

A =

a b

b c

: (4:19)

Newton observes that the paired eigenvalues and eigenvectors associated with matrix A may

be expressed as:

"

a+ bm;

1

p

m

2

+ 1

1

m

#

(4:20)

for each of the roots, m, of the quadratic equation

bm

2

+ (a� c)m� b = 0: (4:21)

When b 6= 0 this may be simpli�ed as:

69

m

2

+ em� 1 = 0 where e = (a� c) =b: (4:22)

Newton gives special consideration to the case of b = 0. In particular, one root of

Equation 4.22 is de�ned as 1. In our special case in which A is symmetric, it further follows

that the other root is m = 0. Therefore, the values and vectors for this case derived from

equation 4.20 are:

"

a;

1

0

"

c;

0

1

#

: (4:23)

Determining which is the lesser eigenvalue is trivial.

Returning to the general case, the two roots of Equation 4.22 are:

m

1

= �

e

2

+

p

e

2

+ 4

2

m

2

= �

e

2

�

p

e

2

+ 4

2

; (4:24)

and the two eigenvalues and eigenvectors are

2

4

a+ bm

1

;

1

q

m

2

1

+ 1

1

m

1

3

5

2

4

a+ bm

2

;

1

q

m

2

2

+ 1

1

m

2

3

5

: (4:25)

It is possible to present a single algorithm, accounting for both numeric accuracy and

special cases, for reliably �nding the lesser eigenvector. The strict equality test shall be

replaced with an approximately equal operator '. For practical purposes this will be

implemented as equal out to the �rst 10 decimal places.

If a� c ' 0 and b ' 0, then the lesser eigenvalue is not well de�ned. The reason is that

the when b ' 0 the two eigenvectors are are simply a and c, and if they are nearly equal

then no well de�ned lesser eigenvalue exists. In this case the best-�t pose algorithm returns

a special ag indicating the pose is unde�ned.

If b ' 0, then the lesser unit eigenvector is aligned with the coordinate axes:

a < c)

1

0

c < a)

0

1

: (4:26)

Otherwise, and this is the general case, the two eigenvalues are:

�

1

= a+ b

�

e

2

+

p

e

2

+ 4

2

!

�

2

= a+ b

�

e

2

�

p

e

2

+ 4

2

!

: (4:27)

Then, the determination of which is the lesser eigenvalue is strictly dependent upon the sign

of b:

b < 0) �

1

< �

2

b > 0) �

1

> �

2

; (4:28)

and consequently the eigenvector associated with the lesser eigenvalue is:

b < 0)

1

q

m

2

1

+ 1

1

m

1

b > 0)

1

q

m

2

2

+ 1

1

m

2

: (4:29)

70

4.4 Integrated Point-to-line Distance

The sum of squared point-to-line distances as described in equation 4.10 has a weakness;

it is not invariant to breaks in the data line segments. For the ith pair of corresponding

segments, the error is the weighted sum of the perpendicular distance v

ij

measured from

endpoints 1 and 2 of the data segment:

E =

n

X

i=1

`

i

2

�

v

2

i1

+ v

2

i2

�

where v

ij

=

�

^

N

i

�

�

D

ij

~

�

DM

+

~

T

DM

�

� s

MD

�

i

�

: (4:30)

This error changes if a single data segment is fragmented. The problem arises because equa-

tion 4.30 concentrates the error at the two endpoints. Integrating the squared perpendicular

distance over the length of the data line segment cures this problem. Hence, the ISPD

�rst presented in Chapter 3 is a preferable measure. Equation 3.4 in Chapter 3 expressed

the perpendicular distance between points on the data segment and the model line as a

parametric function of the distance v

ij

measured from the endpoints of the data segment.

The ISPD for a single pair of segments was given in equation 3.5. Here, this same measure

is shown summed over n corresponding pairs of segments:

E =

n

X

i=1

`

i

3

�

v

2

i1

+ v

i1

v

i2

+ v

2

i1

�

v

ij

=

�

^

N

i

�

�

D

ij

~

�

DM

+

~

T

DM

�

� s

MD

�

i

�

: (4:31)

Equations 4.30 and 4.31 di�er in that equation 4.31 contains a cross term and is renormal-

ized accordingly. When the terms in equation 4.31 are expanded and collected as was done

for equation 4.11, the form of the ISPD error is now identical to that given in equation 4.11:

E

ISPD

=

~

�

T

A

~

� + 2

~

T

T

B

~

� +

~

T

T

C

~

T � 2

~

U

T

~

�s� 2

~

V

T

~

Ts + ks

2

: (4:32)

All constants except for A remain the same as de�ned above, but due to the cross term A

becomes

A =

n

X

i=1

(`

i

=2)

�

D

T

i1

^

N

i

^

N

T

i

D

i1

+D

T

i1

^

N

i

^

N

T

i

D

i2

+D

T

i2

^

N

i

^

N

T

i

D

i2

�

: (4:33)

Since equations 4.11 and 4.32 are identical up to the de�nition of A, the similarity

transform which minimizes ISPD may be found in exactly the same manner as was described

for minimizing equation 4.11.

4.5 Underdetermined Cases and Regularization

The ISDP measure does not uniquely de�ne the model pose for a number of important

con�gurations, such as when two model lines each match a single data line. An example

is provided in Figure 4.4. In this case, the absolute size of the model does not alter the

perpendicular error, and hence the pose is underdetermined. Figure 4.4a shows two model

line segments drawn in bold. Figure 4.4b shows two data line segments drawn in black.

Figures 4.4c and 4.4d show two alternative �ts of this model to this data for which the

ISPD is identical. The only di�erence is that the model is larger in Figure 4.4b than in

Figure 4.4a.

71

(a) (b)

(c) (d)

Figure 4.4 ISPD does not always uniquely determine pose. a) a model consisting of two

segments, b) data segments to which this model may match, c) one possible pose of the

model relative to the data, d) a second pose in which the larger model has equivalent ISPD

error.

72

The reason that underdetermined cases are a problem will become more apparent once

the local search algorithms are introduced in Chapter 5. To give a brief motivation here,

the problem stems from the fact that when model pose is underdetermined the match error

is unde�ned. Consequently, local search is cut o� from considering such correspondences.

Although the correspondences which are typically underdetermined are not generally the

ones ultimately being sought, it is important to have the option of moving through such

matches during search. Speaking very generally, the more that the search space of possible

correspondence mappings is broken up by unde�ned states, the more likely it becomes that

a potential path through the search space will be cut o�.

A regularizing term is added to equation 4.32 to increase the number of correspondences

with well de�ned best-�t poses. The midpoint-to-midpoint Euclidean distance between

corresponding model and data line segments is an excellent regularizing term:

E

PTP

= �

n

X

i=1

`

i

�

D

i

~

� +

~

T � s

~

M

i

�

2

; (4:34)

where

~

M

i

is the midpoint of the ith model line segment and D

i

is the matrix associated with

the midpoint of the ith data line segment using the construction presented in equation 4.10.

The weight � controls the relative importance of the regularization term.

Adding midpoint-to-midpoint error to ISPD yields a new measure:

E = E

ISPD

+ E

PTP

: (4:35)

Using this measure, best-�t poses are uniquely determined for many otherwise under-

constrained matches including the one illustrated in Figure 4.4. Whereas before, all matches

involving only two model line segments were underdetermined, now the best-�t pose using

the regularized �t measure is well de�ned for virtually all such matches.

To avoid biasing otherwise well determined con�gurations, � may be made very small,

for example 10

�4

. In practice this makes the overall e�ect of the term E

PTP

negligible

except in those particular cases for which the transformation minimizing E

ISPD

alone is

underdetermined. Setting � much higher than 10

�2

begins to introduce noticeable biases

into the resulting best-�t poses. Setting � lower than around 10

�6

runs the risk of dropping

the regularization contribution below the oating point precision of the pose algorithm.

Equation 4.34 may be written in our standard form as follows:

E

PTP

=

~

�

T

A

~

�+ 2

~

T

T

B

~

�+

~

T

T

C

~

T � 2

~

U

T

~

�s� 2

~

V

T

~

Ts+ ks

2

; (4:36)

A =

P

n

i=1

�`

i

D

T

i

D

i

B =

P

n

i=1

�`

i

D

i

C =

P

n

i=1

�`

i

I

~

U =

P

n

i=1

�`

i

D

T

i

~

M

i

~

V =

P

n

i=1

�`

i

D

T

i

~

M

i

k =

P

n

i=1

�`

i

~

M

T

i

~

M

i

: (4:37)

In this way the regularized form of the error, equation 4.35, is expressed in the same

form as equations 4.30 and 4.31. The regularized ISPD is obtained by adding the constants

from equation 4.37 to those de�ned in equations 4.33 and 4.12.

There are certainly other ways of dealing with matches for which the optimal pose is

not determined by ISPD. One alternative is to test for and handle underdetermined cases as

special. There is nothing fundamentally wrong with such an approach. However, it involves

extra mechanisms for both detecting and handling individual special cases. The attraction

of the regularization approach lies in its simplicity and generality.

73

4.6 The Special Case of 2D-rigid Transformations

There is a somewhat unexpected result concerning the �tting of 2D-rigid models. This

super�cially simpler case is in fact more di�cult than the variable scale problem addressed

in the previous section. The rigid �tting problem may be obtained by setting s = 1 in

equation 4.32:

E

ISPD

=

~

�

T

A

~

� + 2

~

T

T

B

~

� +

~

T

T

C

~

T � 2

~

U

T

~

� � 2

~

V

T

~

T + k: (4:38)

The rotation

^

�

�

and translation

~

T

�

which minimize equation 4.38 depend upon the roots

of a quartic equation. General closed form solutions for quartics are known. However,

they require considerably more computation than is required to solve a quadratic equation.

There do not appear to be any obvious factorizations which reduce the order of the quartic

equation, and hence it appears that solving the quartic equation is the best way of �nding

^

�

�

and

~

T

�

:

~

T

�

= �C

-1

�

B

~

��

~

V

�

: (4:39)

Substitute

~

T

�

back into equation 4.38 to obtain:

E =

~

�

T

F

~

� + 2

~

W

T

~

� + l; (4:40)

where

F = A�B

T

DB (4.41)

~

W = B

T

D

~

V �

~

U (4.42)

l = k �

~

V

T

D

~

V (4.43)

D =

�

C

-1

�

T

: (4.44)

(4.45)

The optimal rotation

^

�

�

is that vector

~

� which minimizes equation 4.40 subject to the

constraint that

~

�

T

~

� = 1: (4:46)

Unlike equation 4.18 in which the elliptical error function was centered at the origin, the

quadratic form in equation 4.40 is o�set from the origin by an amount determined by

~

W , and

this means the elliptical error curves are no longer centered at the origin. For this reason,

the rigid problem does not reduce to a simple 2x2 eigenvector problem.

This constrained optimization problem may be solved by forming the Lagrangian

H =

~

�

T

F

~

�+ 2

~

W

T

~

� + l + �

�

~

�

T

~

� � 1

�

; (4:47)

and setting the partial of this equation with respect to

~

� equal to zero. This results in two

constraints:

ax+ cy + �x+ d = 0 (4:48)

74

cx+ by + �y + e = 0 (4:49)

where

F =

a c

c b

~

W =

d

e

~

� =

x

y

: (4:50)

A single constraint equation in x and y alone may be obtained by multiplying equa-

tion 4.48 by y, multiplying equation 4.49 by x, and then subtracting one from the other:

cx

2

� cy

2

+ bxy � axy + ex� dy = 0: (4:51)

To solve equation 4.51 subject to the constraint x

2

+ y

2

= 1, the �rst order y terms are

brought over to the right side and both sides are squared. The resulting equation has only

second and fourth order terms in y and the substitution y

2

= 1�x

2

yields a quartic equation

in x alone.

k

1

x

4

+ k

2

x

3

+ k

3

x

2

+ k

4

x+ k

5

= 0: (4:52)

k

1

= a

2

+ b

2

+ 4c

2

� 2ab k

4

= bd� da� ce

k

2

= da� bd+ 2ce k

5

= c

2

� d

2

k

3

= d

2

+ e

2

� k

1

(4:53)

Letting the desired root of equation 4.52 be x

�

= cos �

�

, the best-�t rotation

^

�

�

=

cos �

�

sin�

�

(4:54)

minimizes equation 4.40. The associated optimal translation

~

T

�

follows directly from equa-

tion 4.39. Since closed form methods exist for solving general quartic equations, the solution

to the optimal rigid transform problem is closed form.

It is interesting to consider whether there might be a way of reducing the complexity

to that of solving a third or even a second order polynomial. One avenue of investigation

involves equating this problem to another perhaps more commonly studied one. Toward

this end, consider again the quadratic solution of the variable scale case, and Figure 4.3 in

particular. It was possible to �nd the optimal vector

^

�

�

as the solution to an eigenvector

problem because the origin of the unit circle is coincident with the origin, or bottom of, the

elliptical ISPD error surface. One way to think about what takes place when scale is �xed,

is that this condition no longer holds. The unit circle on which the solution vector

^

�

�

is

constrained to lie may be displaced relative to the elliptical error function.

If this geometric interpretation is pursued, it is possible to transform the rigid �tting

problem into an equivalent problem of determining the point on an ellipse closest to an

arbitrary point in the plane. It might have been hoped that this more basic geometric

problem would posses a general solution simpler than that of solving a quartic equation.

However, this is not the case. To the contrary, it is recognized that this problem has no

better than a general quartic solution [88].

In conclusion, there are strong practical incentives for bypassing the rigid matching case

and moving directly to the variable scale formulation. One of the basic computational costs

of computing the best-�t variable scale pose is that of solving the quadratic equation. In turn,

the principle cost of this computation involves �nding a single square root. In comparison,

the closed form for the quartic equation requires solving 4 square roots. There is also a

comparable increase in the number of oating point additions and multiplications.

C H A P T E R 5

Local Search Geometric Matching

To review the matching problem as it has been developed thus far, Chapter 3 de�ned

the combinatoric space of possible matches and a match error function. The match error

function returns an evaluation for essentially any correspondence mapping between model

and image segments. As emphasized in Chapter 4, to do this requires determining the best-�t

pose of the model relative to the data, and in fact the only correspondences for which the

match error is unde�ned are those for which there is no unique best-�t pose.

This chapter takes up the problem of �nding the correspondence mapping, and hence

match, with the lowest possible match error. The combinatorics of this optimization problem

are daunting. There are 2

n

possible correspondences for n potentially paired segments. It

may surprise some readers that the simple and general algorithms developed here perform

as well as they do. These algorithms probabilistically �nd globally optimal matches for

geometric matching problems of widely varying size and form. As will be described in

Chapter 6, there is empirical evidence suggesting that required computation grows as a

linear function of n

2

rather than exponentially.

Local search is the basis for the algorithms presented below. The �rst uses of local

search on di�cult combinatorial optimization problems is generally considered to be that

of Kernighan and Lin [75, 64, 76]. Of course, some of the constituent ideas date back even

farther. The essentials of local search have been generalized by Papadimitriou and Steiglitz

in their text on combinatorial optimization [92]. Local search has been found to be robust

and practical for a variety of problems. These previous successes, coupled with the elegant

simplicity of the central ideas, has made the adaptation of local search to matching an

attractive and rewarding proposition.

Random-start local search relies principally upon a combination of iterative improve-

ment and random sampling. Iterative improvement refers to a repeated generate-and-test

procedure by which the algorithm moves from an initial state to one that is locally optimal.

Variations of this basically simple idea have appeared under many names, including hill-

climbing, gradient-descent, and greedy search. The essential attribute is that a discrete local

neighborhood of states is de�ned with respect to a current state. Local search moves to

successively better states until it arrives at one which is locally optimal.

Random sampling is often used in conjunction with local search in order to overcome

local optima. One execution of local search may not arrive at the global optimum. It may

in fact become stuck upon a quite undesirable local optimum. However, in a series of trials,

the probability of missing the global optimum drops exponentially with the number of trials.

Adapting local search successfully to the problem of geometric matching of visual models

to image data has required several novel innovations. One is the match error function and

76

�tting procedures introduced in Chapters 3 and 4. Another is the development of new local

neighborhood de�nitions and algorithms which are particularly well-suited to matching. The

�rst neighborhood de�ned in this chapter is the Hamming-distance-1 neighborhood. A more

novel and powerful neighborhood is introduced as part of the subset-convergent local search

algorithm described below. The subset-convergent algorithm is demonstrated to be highly

e�ective on a wide range of matching problems.

Another novel aspect of local search matching is the recognition that local optima are

in some cases desirable. Consider an image with two distinct instances of the same object.

Random imperfections will cause one instance to match slightly better than the other, in

which case a match to one is globally optimal, while a match to the other is not. A series of

multiple instance matching problems are shown in Chapter 6, where each instance is found

as a distinct locally optimal match using the subset-convergent algorithm developed in this

chapter.

5.1 Hamming-distance-1 Steepest-descent Local Search

This section introduces a fairly simple local neighborhood de�nition based on Hamming-

distance. This neighborhood will be shown to be adequate for some problems and inadequate

for others. More will be said later about adequacy below, but for now su�ce it to say a

neighborhood is inadequate when locally optimal solutions proliferate to such an extent that

in practical terms search never �nds the globally optimal match.

5.1.1 The Hamming-distance-1 Neighborhood

A local neighborhood is a set of states obtained by perturbing the current state. A

particularly simple neighborhood consists of all correspondence mappings obtained by adding

or removing a single pair of model data segments from the current correspondence. Recall

the notation developed in Chapter 3 (page 47), and de�ne a neighborhood consisting of all

correspondence mappings c

0

obtained by adding or removing a single pair s 2 S from the

current correspondence mapping c 2 C.

When correspondence mappings are represented as bitstrings, this neighborhood C

1

may

be equivalently described as the `Hamming-distance-1' neighborhood, since it contains all

bitstrings for which Hamming-distance to the current correspondence equals 1. An example

is provided in Figure 5.1. Figure 5.1a illustrates the encoding of correspondence mappings as

bitstrings �rst introduced in Figure 3.4. The speci�c correspondence mapping shown is that

of the globally optimal match. Figure 5.1b illustrates the Hamming-distance-1 neighborhood

de�ned about the optimal match.

The size of the Hamming distance-k neighborhood is n

k

where, as before, n is the number

of candidate pairs in S. Early phases of this work considered the Hamming-distance-2

neighborhood [11]. However, it quickly became apparent that the n

2

neighborhood size was

a problem. As has already been mentioned, and will be described in detail in Chapter 6, the

algorithms developed below require on the order of n

2

time to �nd optimal matches with

high con�dence. An algorithm which requires on the order of n

2

time to examine the local

neighborhood is not interesting.

77

(B) 1 1 0 0 1 0 00 1 0 0 1 01 0

001100101010011

001100100110011

01100100000011

001100100011011

001100100010111

00110010 0100 01

111 000000010

0

010 11 00 11 000 00 11 01

00 1 11010010 01 01

0 0001010 01 001 01

0

0 00 11 000 000 1011

0 0011 1010 010011

1 0 011010 000 1011

00110000000 11 01

001 10 01 10010011

A B C D
0 1 8 11 2 9 10 12 3 7 11 4 5 6 12

4

D

5
6

7

12

11

C

3
10

2

B
9

1

8A0

(A)

Correspondence in Tabular Form

1 1 0 0 1 0 00 1 0 0 1 01 0

Correspondence as bit stringCorrespondence as bit string

k=1 Neighborhoodk=1 Neighborhood

Figure 5.1 Hamming-distance-1 neighborhood. A) The rectangle shown matched to image

data and the bitstring encoding. B) The 15 Hamming-distance-1 neighbors of the optimal

match.

78

5.1.2 Steepest-descent Versus First-improvement

Two common ways of examining a neighborhood are �rst-improvement and steepest-

descent [92]. In �rst-improvement, the �rst neighbor found to be better is adopted as the new

state. In steepest-descent, the entire neighborhood is examined and the neighbor yielding

the greatest improvement becomes the new current state. Early phases of this work [11] used

a �rst-improvement strategy, while more recently steepest-descent has been favored.

One reason for this preference is the tendency of steepest-descent to �nd shorter paths

to better matches. Another is that neighborhood evaluation is more uniform using steepest-

descent, and when an entire Hamming-distance-1 neighborhood is evaluated, there are

mechanisms described in Section 5.2 for making this evaluation more e�cient. Finally,

steepest-descent is the inherently deterministic while, for the reason given below, �rst-

improvement is not.

In �rst-improvement, there is an arbitrary dependence upon the order in which the

neighbors are tested. If several neighbors are better than the current match, then depending

upon which is found �rst, the algorithm may proceed down di�erent search paths to di�erent

locally optimal matches. Because this ordering is arbitrary, it is common to randomize the

selection of neighbors in order to avoid biasing the search. This randomness invalidates the

simple conceptualization of local search to be presented in Section 5.3.2, and it is conceptually

simpler to introduce randomness solely through the selection of random initial matches.

Figure 5.2 and 5.3 provide an example of the Hamming-distance-1 steepest-descent

algorithm. Each row in the table of Figure 5.2 indicates a successively better match, starting

with a match picked at random, and converging to the locally optimal match indicated in row

12. The labeled model and data segments are also shown for convenience. Successive matches

are shown in Figure 5.3 to emphasize the updating of pose using the techniques described

in Chapter 4. Since the initial match was chosen at random, the initial �t between model

and data is poor. The pose improves considerably as pairs of poorly matching segments are

dropped and replaced by pairs of better matching segments.

Looking into the example in Figures 5.2 and 5.3 in greater detail, recall from Sections 3.4

and 3.5 that the match error function is parameterized by maximum displacement � and

attenuation a. In the examples in this chapter, � = 5:0 and a = 0:75. Also recall that the

highest possible omission error is 1:0, and that therefore any correspondence with a match

error above 1:0 can be improved by removing one or more pairs of segments.

The match error of 3:52 for the initial random correspondence in the �rst row of Figure 5.2

is considerably above 1:0. The �rst thing the steepest-descent algorithm does is remove pair

(A; 11), dropping the match error by more than half to 1:52. Two more pairs are removed,

until in row four a correspondence is found with a match error of 0:60. From this match,

the greatest improvement is obtained by adding pair (D; 4). The algorithm continues to add

and remove pairs until it arrives at a locally optimal match in row 12.

Depending upon the choice of the initial starting match, the globally optimal match may

or may not be found. Figure 5.4 shows an example of a locally but not globally optimal

match in the Hamming-distance-1 neighborhood. There is no addition or removal of a single

pair which improves upon the match shown. Overcoming local optima is at the heart of

creating e�ective local search algorithms, and an example of how subset-convergent local

search breaks out of this local optima will be shown below.

79

A B C D
0 1 8 11 2 9 10 12 3 7 11 4 5 6 12Row Error

 1 3.52

 2 1.52

 3 0.81

 4 0.60

 5 0.45

 6 0.38

 7 0.34

 8 0.31

 9 0.30

 10 0.28

 11 0.20

 12 0.10

D

C

B

A

0 1

8

11

2

9

10

12

3

7

4

5

6

Figure 5.2 Hamming-distance-1 search: successive correspondences. Successive rows indicate

successively better matches. The �nal locally optimal match is the same as shown in

Figure 5.1. The labeled model and data segments are repeated for convenience. The

successive matches are shown in Figure5.3

80

 3.52 1.52 0.81

 0.60 0.45 0.38

 0.34 0.31 0.30

 0.28 0.20 0.10

Figure 5.3 Hamming-distance-1 search: successive matches. The model is shown in best-�t

relation to the data for each of the correspondences shown in Figure5.2

81

A B C D
0 1 8 11 2 9 10 12 3 7 11 4 5 6 12Row Error

 1 3.53

 2 0.87

 3 0.34

 4 0.31

 0.31

D

C

B

A

0

8

9

10

3

4

5

1

11

2

12

7

6

 3.53 0.87 0.34

Figure 5.4 Hamming-distance-1 local optima. Starting from the correspondence in the �rst

row, the algorithm arrives at a locally optimal match in 4 steps. There is no single pair

which may be either added or removed from this �nal match so as to reduce the match error.

82

5.1.3 Qualifying the term `Globally Optimal Match'

The use of the terms locally and globally optimal warrants some explanation. In many

di�cult combinatorial optimization problems, it is unrealistic to presume that the true global

optima is known. Consider, for example, an instance of the traveling salesperson problem

with 100 cities. In many cases it will be di�cult, if not impossible, to determine whether

the best tour found by a local search algorithm is in fact the lowest cost tour possible. In

other words, the best or globally optimal tour is not known. Consequently, evaluation of

algorithms is often expressed in terms of how many of the solutions found are within some

� of the best found.

In contrast, with geometric matching it is often possible to tell from inspection whether

a match is globally optimal. The match error quanti�es the basic factors which go into how a

person might judge a match. Consequently, when image data is not particularly ambiguous,

as is the case for the rectangle, it is possible to be certain which match is globally optimal. Of

course this is not always possible. For example, it is more di�cult to be sure from inspection

precisely which match is globally optimal in a case such as the car tracking example in

Figure 1.6 (page 12). Nonetheless, when a geometric match is said here to be globally

optimal, it is to be understood that this has been judged by visual inspection.

0 1 2 3 4 5 6 7 8 9 10 11 12

A
B
C
D

0 1 2 3 4 5 6 7 8 9 10 11 12

A
B
C
D

D

C

B

A

0

1

2

3

4

5

7

8

11

6

9

10

12

D

C

B

A 3

4

5

0

1

2

7

8

11

6

9

10

12

(a) (b)

Figure 5.5 Symmetricmodels mean several matches are equally good. Black squares indicate

matched segments, white squares indicate potentially matched pairs. The remaining pairs

are not considered potential matches. a) one match, b) model rotated 180 degrees.

83

A comment should be made about symmetric models such as the rectangle. For such

models there are multiple equivalent `global' optima. The two equivalent matches for the

rectangle are illustrated in Figure 5.5. The search space in this case is constrained to pairs

S such that roughly horizontal image segments potentially match roughly horizontal model

segments and similarly for vertical segments.

In the interests of brevity, the existence of the equivalent solutions will not typically be

mentioned when they are of equivalent quality. More will be said in Chapter 6 about the

relationship between symmetric and partially symmetric models and search. It will turn

out that one of the strengths of random-start local search is that it is quite good at �nding

symmetric models. Moreover, and this is a very interesting alternative use of probabilistic

local search, it turns out local search may be used to identify partial symmetries in a model.

This is done by matching a model to itself and identifying distinct local optima which

approach the global optima in overall match quality.

5.2 E�cient neighborhood evaluation

Steps can be taken to make the evaluation of the Hamming-distance-1 neighborhood

more e�cient. An understanding of these details is not essential and therefore this section

may be skipped. However, those concerned with e�ciency issues or desiring to build such

an algorithm should be aware of these steps.

5.2.1 Incrementally Computing Fit Error

The �rst major computational saving comes from streamlining the way in which the

best-�t pose is computed when testing the n neighbors of the current correspondence c. It

is possible to compute these best-�t poses `incrementally' o� the current best-�t pose rather

than computing them from scratch.

To see this, recall that weak-perspective �tting equation 4.11 (page 66) is multiplied

out so as to be expressed in terms of matrices, vectors and a scalar, each of which is in

turn summed over the set of pairs s 2 c. What this means is that given these sums for the

current match, the new values associated with adding or removing a particular pair may be

computed incrementally by adding or subtracting the contribution associated with that pair.

The less e�cient alternative would recompute the matrices, vectors and scalar in equa-

tion 4.11 for each neighbor. This in turn would be done by evaluating the sums over the set

of pairs in the neighboring correspondence. Using this less e�cient method, the complexity

of computing E

�t

for a neighborhood would be order the number of pairs in the match.

Using the incremental approach, the complexity is constant: it does not depend upon the

number of pairs in the the match.

5.2.2 Considering only Localized Changes in Omission Error

In contrast to the constant time required to compute E

�t

for neighbors of the current

match, the time required to compute the omission error E

om

depends both upon the number

of model segments and the number of pairs in the correspondence. This suggests it might be

84

expedient to try to avoid computing E

om

in cases where the increase in E

�t

relative to the

current match almost certainly precludes the neighboring match from being better than the

current match. One way of doing this is to only consider the change in omission associated

with the speci�c model line segment a�ected by the change in the correspondence. In other

words, only the model segment for which the corresponding data segment is being either

added or removed is examined.

The advantage of only considering localized changes to E

om

is that it precludes the

need to transform all model segments to the best-�t pose for all neighbors being tested.

This saves computation. The disadvantage is that it means that indirect bene�ts associated

with a change in correspondence may be missed during search, an a better match may be

overlooked during neighborhood evaluation. An example of such an indirect e�ect will be

illustrated using the example in Figure 5.6.

D

C

B

A

11

2

5

0

1

8

9

10

37

4

6
12

A B C D
0 1 8 11 2 9 10 3 7 11 4 5 6 12

D

C

B

A

2

5

0

1

8

11

9

10

3

7

4

6
12

A B C D
0 1 8 11 2 9 10 3 7 11 4 5 6 12

0.63 = 0.02 + 0.61 0.59 = 0.00 + 0.59

(a) (b)

Figure 5.6 Indirect Omission E�ects. a) Match with three image segments. b) Match with

two image segments for which E

om

is lower. Increased coverage of segmentsB and D makes

up for the loss of coverage of segment A.

The correspondence for the match in Figure 5.6a is ((A; 11); (B; 2); (D; 5)). The cor-

responding data segments are darker than the others. Note that the second two pairings

are a part of the globally optimal correspondence shown in Figure 5.2, while the pairing

(A; 11) is not. The match error for this correspondence is 0:63 while the match error for

the match obtained by removing pair (A; 11) and shown in Figure 5.6b is 0:59. Removing

(A; 11) improves the match.

With the pair (A; 11) removed, the model translates up relative to the two other data

85

1
2

3 45

A

Portion of Model Segment A Covered

Portion of Model Segment A Omitted

Figure 5.7 More precisely how omission is measured. Endpoints of model segment A are

indicated with large dots. Portions of A omitted are shown in dark grey.

segments. This is because the midpoint-to-midpoint regularization measure described in

Section 4.5 is being used, and with (A; 11) gone, the only constraint in the direction of

segmentsB and D is to minimize the squared distance between midpoints of paired segments

B and 2 and D and 5. As a consequence of translating the model, the remaining data

segments 2 and 5 more completely cover B and D. Note for instance that the segment D

now lies completely on top of 5, and that no portion of 5 is visible in Figure 5.6b. As a

consequence of this translation, the overall omission error drops from 0:61 to 0:59, despite

the fact that A is completely uncovered in the latter case.

When the overall omission error is computed in evaluating a change such as that illus-

trated from the match in Figure 5.6a to the match in Figure 5.6b, the local search algorithm

will identify this as a better match. However, if the change in omission error associated only

with the model segment involved in the change is considered, in this case segment A, then

the new match will not appear to be an improvement. This improved match in Figure 5.6b

would be overlooked testing only for localized change in E

om

.

5.2.3 Sorting Endpoint Projections to Compute Omission Error

It is worth saying a little bit about the mechanics of how E

om

is computed. The

�rst step is to transform the model line segments to the best-�t pose. It is with respect

to these segments that coverage by corresponding data segments is measured. Then for

each model segment the endpoints of corresponding data segments are projected onto the

in�nitely extended model line.

Figure 5.7 illustrates a model segment A in relation to corresponding data segments

1 through 5. The model segment has been fattened to permit alternative �ll patterns to

indicate the portions which are and are not covered by data. The projections of the data

segment endpoints are indicated with line segments perpendicular to A. The endpoints of

line segment A are shown as large dots. The portion of the in�nite line containing A is

mapped to the unit interval, with the origin at the left endpoint and coordinate 1:0 at the

right endpoint. For every data segment i, it is possible to write a pair (l

i

; h

i

) representing

the lower and higher coordinate of the endpoint projections.

86

For the example, this yields a list of pairs:

f(l

1

; h

1

); (l

2

; h

2

); (l

3

; h

3

); (l

4

; h

4

); (l

5

; h

5

)g : (5:1)

These pairs may be interpreted as representing bounded intervals along the in�nite line.

The fraction of the model segment omitted may be described as the union of these low-high

intervals intersected with the unit interval (0; 1).

A fairly e�cient way to compute this fraction is to begin by removing intervals from

the initial list which do not intersect the model line. In the example, this removes (l

5

; h

5

),

leaving the shortened list:

f(l

1

; h

1

); (l

2

; h

2

); (l

3

; h

3

); (l

4

; h

4

)g : (5:2)

To determine the portion of the interval (0; 1) not included in this list, it is helpful to sort

the list based in ascending order of l

i

. Again for the example, this gives a new list:

f((l

2

; h

2

); l

1

; h

1

); (l

3

; h

3

); (l

4

; h

4

)g : (5:3)

It is now a simple matter to go through this list `marking-o�' covered portions of (0; 1).

To be a bit more speci�c, for each successive element in the list, it is possible to mark the

portion of the segment beginning with l

i

and ending with h

i

as covered.

In order to try to make the potentially expensive sorting step e�cient, a sorted list

based upon the current correspondence is always maintained. When E

om

is computed for a

neighboring match, the assumption is that the pose does not generally change dramatically,

and therefore the problem of sorting the endpoints after they have been projected from the

new pose is one of resorting a nearly sorted list. Bubble sort is known to be fairly e�cient

under these conditions and is therefore used.

5.3 Local Optima and Random Sampling

Random sampling is commonly associated with local search as a means of overcoming

local optima. More generally, it is a common technique for taking a statistically unreliable

process, one which fails more than it succeeds, and through repeated trials producing a new

reliable process. Readers already familiar with this idea will �nd the motivation familiar.

However, it is important to understand how random sampling is not only used to solve

individual problems, but how it is used to measure the di�culty of a new problem domain

and thereby determine how many trials to run on problems drawn from this domain.

5.3.1 Using Independent Random Trials

Initiating t trials of local search from randomly and independently selected initial corre-

spondences can dramatically improve the probability of �nding the globally optimal match.

Let P

s

be the probability of successfully �nding the globally optimal match on a single trial

starting from a randomly selected initial correspondence. The probability of failing on all t

trials is conjunctive:

Q

f

= (P

f

)

t

; where P

f

= 1� P

s

: (5:4)

87

Table 5.1 Trials required to probabilistically solve problems as function of P

s

. The number

of trials required to ensure seeing the global optimum with con�dence 0:90, 0:95 and 0:99

for selected values of P

s

ranging from 0:75 to 0:01.

P

s

0.75 0.50 0.40 0.30 0.20 0.15 0.10 0.05 0.03 0.01

Trials 90 2 4 5 7 11 15 22 45 76 230

Trials 95 3 5 6 9 14 19 29 59 99 299

Trials 99 4 7 10 13 21 29 44 90 152 459

Given this relationship, it is possible to compute the number of trials t

s

required to succeed

with probability Q

s

= 1�Q

f

:

t

s

= dlog

P

f

Q

f

e: (5:5)

To provide some intuition for the relationship expressed in equation 5.5, Table 5.1 gives the

number of trials required to succeed with probability 0:90, 0:95 and 0:99 for a range of P

s

values. So long as P

s

does not drop below 0:05, 100 trials is su�cient to insure success with

probability better than 0:99.

Two important conclusions can be drawn from Table 5.1. First, even a fairly weak

algorithm, for example one which succeeds only 5 out of 100 times, can be used to solve a

problem with very high con�dence: better than 99% con�dence if 100 independent trials are

run. Second, the number of trials required to solve a problem begins to go up dramatically as

the probability of success on a single trial begins to drop below about 0:05, and this imposes a

practical limit on just how weak an algorithm can get and still be saved by random sampling.

Knowing how many trials are required to con�dently solve a particular matching problem

requires an estimate for P

S

. Random sampling can be used to estimate P

S

. To see this, let

 be the space of possible geometric matching problems. This encompasses the geometric

layout of model and data, the de�nition of the objective function, and the discrete space of

possible correspondence mappings. Let 	 be the space of possible random-start local search

algorithms. This includes the neighborhood de�nition and the randomized procedure for

selecting initial matches. Let O = fs; fg be the possible outcomes, where s indicates search

has found the globally optimal match, and f it has not. Now P

s

may be more precisely

de�ned as

P (s j !;): (5:6)

If t independent trials of algorithm on matching problem ! succeeds l

i

times, then

^

P (s j !

i

;) =

l

i

t

(5:7)

is the maximum likelihood estimate for the true probability of success.

Provided a su�cient number of trials t are run, this estimate will be quite accurate;

exactly how accurate can be derived based upon the underlying binomial distribution of

the success/failure process. Table 5.2 shows 95% percent con�dence ranges for the true

probablity of success based upon t = 100 trials. The table is read as follows: given an

estimate of the probability of success, here denoted simply

^

P

s

, the table says that with

probability 0:95 or better, the true probability of success lies between P

<s

and P

>s

.

88

Table 5.2 Con�dence bounds on probability of success estimates

^

P

s

P

<s

P

>s

^

P

s

P

<s

P

>s

^

P

s

P

<s

P

>s

^

P

s

P

<s

P

>s

^

P

s

P

<s

P

>s

0.01 0.00 0.03 0.11 0.05 0.17 0.21 0.14 0.29 0.31 0.22 0.40 0.41 0.32 0.51

0.02 0.00 0.05 0.12 0.06 0.18 0.22 0.14 0.30 0.32 0.23 0.41 0.42 0.33 0.52

0.03 0.00 0.06 0.13 0.07 0.20 0.23 0.15 0.31 0.33 0.24 0.42 0.43 0.34 0.53

0.04 0.01 0.08 0.14 0.08 0.21 0.24 0.16 0.32 0.34 0.25 0.43 0.44 0.35 0.54

0.05 0.01 0.09 0.15 0.09 0.22 0.25 0.17 0.33 0.35 0.26 0.44 0.45 0.36 0.55

0.06 0.02 0.11 0.16 0.09 0.23 0.26 0.18 0.35 0.36 0.27 0.45 0.46 0.37 0.56

0.07 0.03 0.12 0.17 0.10 0.24 0.27 0.19 0.36 0.37 0.28 0.46 0.47 0.38 0.57

0.08 0.03 0.13 0.18 0.11 0.25 0.28 0.20 0.37 0.38 0.29 0.47 0.48 0.39 0.58

0.09 0.04 0.15 0.19 0.12 0.27 0.29 0.21 0.38 0.39 0.30 0.49 0.49 0.40 0.59

0.10 0.05 0.16 0.20 0.13 0.28 0.30 0.22 0.39 0.40 0.31 0.50 0.50 0.40 0.60

To move from an individual problem to domain of problems, �rst identify a test suite

of problems which are representative of the domain. Next, run many trials on each test

problem in order to estimate

^

P

s

for each problem. Finally, a conservative strategy is to use

the lowest measured

^

P

s

to determine the number of trials to run on new problems. If the test

suite is large, it may be desirable to throw out a few of the lowest

^

P

s

estimates as protection

against the possibility of getting an uncharacteristically low estimate.

5.3.2 Searching the Forest

The work by Tovey [106] makes several insightful observations about local search. The

�rst is that a `forest structure' is imposed upon the search space by steepest-descent local

search. To be more speci�c, the space may be viewed as a `forest' of trees, with the root of

each individual tree a locally optimal match. From nodes which are not locally optimal, there

is path leading `down' the tree to the root. These paths represent the successive matches

found by a steepest-descent algorithm. There is one tree, the globally optimal tree, whose

root is the global optima

1

. Figure 5.8 illustrates these ideas.

The form taken by these trees, their number and size for example, are a combined product

of the local search neighborhood de�nition and the speci�c problem instance. This interplay

between the neighborhood de�nition and the evaluation function de�ned over the state space

makes formal analysis of local search di�cult [106].

The ideal neighborhood would induce one and only one tree for every possible problem

instance. In this way, local search initiated from any point in the search space would be guar-

anteed of reaching the global optima. In the local search literature, this is called an `exact'

neighborhood [92]. In general, and certainly for matching, tractable exact neighborhoods do

not exist.

1

For simplicity, ties for `best' are ignored.

89

0000
1

0001
7

0010
0

0011
10

0100
4

0101
5

0110
6

0111
9

1000
3

1001
11

1010
14

1011
8

1100
12

1101
2

1110
13

1111
15

0000
1

0001
7

0010
0

0011
10

0100
4

0101
5

0110
6

0111
9

1000
3

1001
11

1010
14

1011
8

1100
12

1101
2

1110
13

1111
15

State ID

Error

A Local Search Algorithm Imposes a Forest Structure on a Search Space

Element Legend Search Space with 16 Elements

Forest for Hamming Distance 1 Steepest Descent Search

Tree 1 (Global Optimum) Tree 2 Tree 3

Figure 5.8 A forest imposed on a discrete search space. Steepest-descent local search with

the Hamming-distance-1 neighborhood divides the search space into trees. The root of each

tree is a locally optimal state. Local search initiated from a state leads down the tree to the

root. If random-start local search uniformly selects starting points, then P

s

is the ratio of

size of the tree leading to the global optimum over the size of the search space.

5.3.3 Randomly Landing on Trees

Random sampling may now be reinterpreted with respect to this forest. Consider the

probability of success P

s

introduced above. Another interpretation of P

s

is that it represents

the probability of randomly selecting an initial match which lies on the globally optimal tree.

This gives us a more general framework for describing the relationship between P

s

and the

structure of the search space.

One of Tovey's conclusions is that NP-complete problems will, under any reasonable

neighborhood de�nition, induce an exponentially large number of trees in the forest. In

other words, there will be an exponentially large number of local optima. At �rst this would

appear to doom local search. However, Tovey also observes that it is incorrect to assume

that all trees are of equal size.

This key issue is not the number of trees, but the size of the globally optimal tree. If

initial starting points are drawn uniformly from the search space, then P

s

is the ratio of the

number of matches on the globally optimal tree over the total number of possible matches

in the space. If the globally optimal tree contains a reasonable portion of the states in the

search space, then the probability of success will be modestly good. Whether the remainder

90

of the space is made up of one tree or a million trees is irrelevant.

An exciting aspect of using local search as a tool is that random sampling o�ers a means

not only of �nding globally optimal matches, but also of exploring empirically the structure

of the matching search space. Running a series of trials and recording how often the globally

optimal match is found is a means of estimating the structure of the forest.

5.3.4 Non-uniform Sampling, Trying for the Best Tree

The choice of initial random starting matches need not be uniform, and it is common

here and elsewhere [92, 106] to bias the choice of starting matches so as to improve the

probability that they lie on the globally optimal tree. Bias is introduced into the random

selection of initial correspondences by de�ning a binding probability P

B

. A pair s 2 S is

included in the initial correspondence with probability P

B

. The binding probability for a pair

depends upon the model segment m in the pair. It is parameterized by r, which establishes

the target number of data segments per model segment. To be more speci�c, let k(m) be

the total number of pairs involving m, then the binding probability is de�ned as:

P

B

(m) = max(0:5; r=k(m)): (5:8)

In the implemented system, the parameter r is called the `start-loading'. The rule of

thumb used in this thesis is to set r = 2 for problems in which model pose is constrained,

and r = 4 for problems which lack a pose constraint. Generally, the globally optimal match

has between one and two data segments matched to each model segment, and it seems to

help to start with matches involving approximately the same number of pairs as ultimately

are expected to be in the best match. Those problems lacking a pose constraint are in some

sense harder, since every model segment potentially matches every data segment. In these

problems, empirical observation has suggested it is better to assign more pairs than are

expected in the optimal match.

5.4 Subset-Convergent Local Search

Experience has shown that the Hamming-distance-1 local search algorithm described

above is not alway adequate. For some classes of problems, such as those in which the set

of candidate pairs S contains all possible pairings, S = MxD, the probability of success

P

s

becomes quite low. To boost performance, the more sophisticated subset-convert local

search algorithm has been developed.

The central idea of subset-convergent local search is to test whether subsets of a locally

optimal match in the Hamming-distance-1 neighborhood are `consistent' with the overall

match. For a truly good match, a Hamming-distance-1 local search initiated from subsets

of the match should converge back to the same match. On the other hand, if the match is

globally poor, then subsets of the match are probably incompatible. Drawing upon the ideas

of the previous section, subsets of the match may lie on di�erent trees as induced by the

Hamming-distance-1 neighborhood, and steepest-descent initiated from these subsets can

jump to these other trees and lead to overall better matches. Our experiments have shown

this intuition to be correct. Of course the subset-convergent algorithm does not guarantee

91

that the globally optimal match will be found on a single trial of random-start local search,

but it does tend dramatically increase the probability of �nding the optimal match on a

single trial.

5.4.1 Subset Selection

How exactly to best select the subsets has not been a topic of major concern. The one

guiding principle has been that the total number of subsets remain small. All the experiments

in this and succeeding chapters have used no more than 4 automatically selected subsets. The

�rst heuristic tried was found to be highly e�ective, and variations have not been explored. It

is conjectured that the exact choice of subsets is not tremendously important, and therefore

�ne tuning the subset selection process has been a low priority.

The heuristics used to automatically select subsets of the model generalize the notion

of a corner. Subsets are de�ned in terms of model segments, and the selection of subsets

is performed o�-line rather than during matching. The selection process selects pairs of

non-parallel model lines with proximal endpoints. The speci�c selection algorithm begins

with a list containing all

m(m�1)

2

pairs of model segments. It then applies, in sequence, the

following operations:

Remove nearly parallel pairs of segments: Remove pairs of segments di�ering in ori-

entation by less then 5 degrees. The reason is that parallel segments constrain pose,

speci�cally translation, less than non-parallel segments.

Retain the m pairs with nearest endpoints: Sort the remaining pairs in ascending or-

der according to the minimum Euclidean distance between endpoints. Retain the �rst

m pairs in this list, thus selecting the m pairs with the closest endpoints. It seems wiser

to pick subsets which are spatially localized sub-features of the model.

Retain 4 disjoint pairs containing longest line segments: Sort them pairs in descend-

ing order according to the sum of the lengths of the two segments. Longer line segments

generally are more likely to appear in the data. Select the �rst 4 disjoint pairs in this

list to serve as the subsets for the subset-convergent algorithm. To keep the local

neighborhood of the algorithm from becoming excessively large, it is important not to

let the total number of subsets grow as a function of m. This last step is modi�ed for

models containing fewer than 8 segments so that 4 subsets are still selected, even if they

are not disjoint.

Provided there are at least 4 pairs of non-parallel model segments to begin with, this

algorithm will always select 4 pairs of model segments to serve as subsets for the subset-

convergent local search algorithm.

5.4.2 A Simple Illustration

A sample run of the subset-convergent local search algorithm is illustrated in Fig-

ures 5.9 and 5.10. The subset selection algorithm has automatically selected the subsets

fA;Bg ; fB;Cg ; fC;Dg and fA;Dg, which represent the four corners of the rectangle. For

92

A B C D
0 1 8 11 2 9 10 12 3 7 11 4 5 6 12Row Error

 1 3.53

 2 0.87

 3 0.34

 4 0.31

 5 * 0.66

 6 * 0.51

 7 * 0.34

 8 0.31

 9 * 0.63

 10 * 0.48

 11 * 0.34

 12 * 0.31

 13 0.30

 14 0.28

 15 0.20

 16 0.10

 17 * 0.54

 18 * 0.33

 19 * 0.17

 20 0.10

 21 * 0.51

 22 * 0.35

 23 * 0.26

 24 * 0.55

 25 * 0.28

 26 0.10

 27 * 0.58

 28 * 0.29

 29 * 0.16

 30 0.10

Random Start

Test Subset
k=1 Optimal

Test Subset
k=1 Optimal

Test Subset
k=1 Optimal

Test Subset
k=1 Optimal

Test Subset
k=1 Optimal

Test Subset
k=1 Optimal

Subset Optimal

A, B

B, C

A, B

B, C

C, D

D, A

Figure 5.9 Subset-convergent local search: successive correspondences. Successive rows

trace out the search path. The starting correspondence and �rst 4 steps are the same as in

Figure 5.4. In row 5, subset testing begins. Rows noted with an asterisk are worse than the

best seen so far.

93

 1, 3.53 2, 0.87 3, 0.34 4, 0.31 5, 0.66

 6, 0.51 7, 0.34 8, 0.31 9, 0.63 10, 0.48

11, 0.34 12, 0.31 13, 0.30 14, 0.28 15, 0.20

16, 0.10 17, 0.54 18, 0.33 19, 0.17 20, 0.10

21, 0.51 22, 0.35 23, 0.26 24, 0.55 25, 0.28

26, 0.10 27, 0.58 28, 0.29 29, 0.16 30, 0.10

Figure 5.10 Subset-convergent local search: successive matches. These matches go along

with the correspondences shown in Figure 5.9.

94

this illustration, the same starting point used to illustrate local optima in Figure 5.4 is used

here. Observe that the �rst 4 steps are identical to those already shown. However, when the

algorithm reaches the Hamming-distance-1 locally optimal match, it records this match and

proceeds to search from a subset of the corresponding model-data pairs. For each of the 4

model segment subsets selected o�-line, only those pairs of model-data segments including

model segments in the selected subset are retained.

In testing from the subset fA;Bg, all data segments not matched to this subset are

dropped from the correspondence. The resulting match indicated in row 5 of Figure 5.9

is worse than the previous match. This is not surprising, since dropping segments often

increases omission error. The algorithm resumes a Hamming-distance-1 search from this

new match, and in this case arrives back at the same match in row 8. Next the subset

fB;Cg is tested. From this match, search proceeds until an overall better locally optimal

match is found in row 16.

The speci�c search path found by the steepest-descent Hamming-distance-1 algorithm in

moving from the the match in row 9 to the match in row 16 is interesting. The 4 steps leading

to row 13 involve adding pairs of segments to the match. As can be seen in Figure 5.10, in

doing this the best-�t pose gets successively closer to the pose associated with the globally

optimal match. In fact, evaluated from the best-�t pose for the correspondence in row 13,

the pair of segments (B; 10) no longer belongs in the match, and it is removed in the next

step. With data segment 10 no longer matched to model segment B, matching data segment

2 to B is now an improvement, and (B; 2) is added in moving from row 14 to row 15. It is

then one last step, dropping pair (B; 9), to the globally optima match.

The subset-convergent algorithm treats this Hamming-distance-1 locally optimal match

as it would any other, and proceeds to initiate Hamming-distance-1 search from each of the

4 subsets. By row 30 none of this additional searching has revealed a better match, and the

match found originally in row 16 is declared to be subset-convergent locally optimal.

Hamming-distance-1 and subset-convergent local search have been compared for the

search space illustrated in Figure 5.5. In 1000 trials, subset-convergent local search found

the optimal match 88 percent of the time. In contrast, Hamming-distance-1 search found the

optimal match only 34 percent of the time. In the 1000 trials, Hamming-distance-1 found

over 50 di�erent locally optimal matches. The subset-convergent algorithm, in contrast, �nds

only one other match. This is the smaller rectangle formed by data segments 2, 3, 11 and

12, whose error is larger than for the best match, but less than most of the locally optimal

matches found by the Hamming-distance-1 algorithm.

5.4.3 Examples Using Actual Image data

This section describes several examples of subset-convergent local search applied to

matching problems involving data line segments extracted from actual intensity images.

Three examples will be discussed: the aerial photography example from Chapter 1, the car

tracking example from Chapter 1, and a telephone pole matching example presented here.

The example of �nding the building in the aerial photograph presented in Figure 1.4 on

page 11 is exactly the type of problem that originally inspired the work in this thesis. Many

problems like it have been studied, and this is the sort of problem on which local search

excels. On this particular problem, little e�ort was expended analyzing performance. The

95

entire experiment took under a half hour, including time to setup the model by hand and

perform 20 trials of subset-convergent local search. The match shown is the best found in

these 20 trials.

In contrast, a detailed analysis of performance on the car tracking example in Chapter 1,

Figure 1.6 on page 12, is presented here. The model is a hand picked subset of the straight

line segments extracted from the image in Figure 1.5a, and the individual model segments are

labeled and shown again in Figure 5.11a. This model is matched to segments extracted from

each of the three images shown in Figure 1.5. Figure 5.11 shows in more detail the match

to the line segments extracted from the image in Figure 1.5b. Figure 5.11b shows the data

line segments labeled with numbers, and the table speci�es the correspondence space with

squares which indicate those pairs which are candidate matches. Filled in squares indicate

a pair of model and data segments correspond to each other in the optimal match. The

�rst match shown in Figure 1.6a involves something not typical in many model matching

problems; the model is a subset of the data segments in Figure 1.6a, and therefore a perfect

match is possible.

The following parameter settings were used in this example. The maximumdisplacement

� (Section 3.5) was set to 3:0. This means that lines displaced beyond 3 pixels will be dropped

from the optimal match. The attenuation a on the omission error (Section 3.4) was set to

0:5. This means it is much more important to half cover two model segments than to fully

cover only one. The incrementally computed �t error and local change in omission heuristic

(Section 5.2) were used in this example. The weighting of omission error for individual model

line segments was based upon relative length (Section 3.4). A scale transformation error term

was added to the match (Section 3.6.2) in order to penalize matches for making the model

either too small or too large. There is no pairwise error term (Section 3.6.1) included in the

match error. Finally, the binding-probability r used to bias the number of initial random

correspondences (Section 5.3.4) was set to 2:0. The 4 subsets of model segments used by

the subset-convergent local search algorithm were selected o�-line for the model using the

heuristic selection criterion explained in Section 5.4.1.

To generate performance statistics, 100 trials of subset-convergent local search were run

on each of the three matching problems. The resulting best matches are shown in Figure 1.6

and the match from Figure 1.6b is shown in more detail in Figure 5.11. Table 5.3 summarizes

the results of these 100 trials. For each matching problem, the local optima found are listed

by ascending match error. The number of times the optima was found is indicated. For

example, the perfect match with zero match error was found in 78 out of the 100 trials.

The number of pairs of potentially matching pairs of segments, n, is indicated for each

problem in Table 5.3, along with the resulting size of the search space: jCj = 2

n

. There

are 27 model segments and 65, 61 and 65 data segments for the three problems respectively.

The initial placement of the model is used to �lter the set of candidate matching segments

S � MxD. Thus, in the �rst problem only 631 of the 1,755 possible pairs are considered

candidates. Even with this �ltering, it must be remembered that the search space contains

2

641

distinct correspondence mappings.

The values shown in the columns of Table 5.3 are explained here:

Fr. The frequency with which the local optima was found.

E

match

The match error for the local optima.

96

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z AA

AA Z

YXW

VU
T

S
R

Q
P

O N
M

L

K

J
I

H
G

F

E
D C

B

A

20

22

21
3

30

35

9

11

15

55
53 54

51
48

49
52

0

41

6

1

31
29

13
42

2

7

10

16
17

23 24 25
26

2728

34 36

37

38 39
40

43
46

56

59

60

12

14

57

45

47

5

50

8

18

44

58

19

32 33

4

(a)

(b)

Figure 5.11 Detailed look at one car match from Figure 1.6: a) the car model, b) the

data from Figure 1.6b extracted from the image in Figure 1.5b. The correspondence space

of potentially matched pairs is indicated by the table. A square indicates a pair which

potentially match, and a �lled in square indicates a pair belonging to the optimal match.

97

Table 5.3 Performance summary for car tracking example in Figure 1.6. Each locally optimal

solution found in 100 trials is listed in order of ascending match error, and the number of

times each solution was found is indicated. Other entries are explained in the accompanying

text.

Trials Summary for Figure 1.6a Example, n = 631, jCj = 2

631

Fr. E

match

�

1

�

2

�

E

�t

E

om

E

F

Moves Tests Full Tests Seconds

78 0.000 0.00 0.00 0.00 229 146,789 44,552 70.7

1 0.451 0.05 0.40 0.00 178 114,098 35,999 56.4

1 0.498 0.11 0.39 0.00 117 74,997 24,535 37.2

1 0.520 0.04 0.48 0.00 117 74,997 22,894 36.7

8 0.522 0.05 0.47 0.00 127 81,407 25,886 40.1

8 0.547 0.06 0.48 0.00 115 73,715 23,784 36.2

3 0.558 0.10 0.46 0.00 132 84,612 27,984 41.9

Trials Summary for Figure 1.6b Example, n = 559, jCj = 2

559

Fr. E

match

�

1

�

2

�

E

�t

E

om

E

F

Moves Tests Full Tests Seconds

59 0.160 0.09 0.07 0.00 221 123,539 37,586 59.8

11 0.521 0.04 0.48 0.00 123 68,757 20,832 33.6

7 0.588 0.11 0.48 0.00 109 60,931 19,168 30.0

1 0.598 0.10 0.50 0.00 112 62,608 19,698 30.7

2 0.621 0.06 0.56 0.00 109 60,931 18,958 30.2

20 0.724 0.00 0.72 0.00 82 45,838 15,072 23.0

Trials Summary for Figure 1.6c Example, n = 521, jCj = 2

521

Fr. E

match

�

1

�

2

�

E

�t

E

om

E

F

Moves Tests Full Tests Seconds

56 0.253 0.15 0.10 0.00 249 129,729 36,604 62.1

3 0.539 0.06 0.47 0.00 111 57,831 18,055 28.5

1 0.581 0.08 0.50 0.00 122 63,562 17,331 30.3

38 0.582 0.04 0.54 0.00 106 55,226 17,302 27.2

2 0.587 0.09 0.50 0.00 116 60,436 18,810 30.1

98

�

1

�

2

�

E

�t

The �t error contribution to E

match

.

E

om

The omission error contribution to E

match

.

E

F

The scale transformation error contribution to E

match

.

Moves The average path length of a local search trial. Path length is the number of

steps taken by the Hamming-distance-1 steepest-descent algorithm being used

by the subset-convergent local search algorithm.

Tests The average number of correspondence mappings tested during one trial. This

value is the average number of moves times the neighborhood size n.

Full Tests The number of neighbors for which it was necessary to do a full evaluation

of omission error. Recall from Section 5.2 that to save time omission is not

computed for all neighbors.

Seconds The average number of seconds taken by a trial on a TI Explorer II Lisp

Machine. Recent results suggest the algorithm runs roughly 60 times faster

written in C and running on a Decstation 5000.

Subset-convergent local search does well on this example. In all three cases the best

match is found in the majority of trials, and the perfect match seems highly attractive,

being found 78 out of 100 times. It is likely that the algorithm is �nding the globally

optimal matches. However, this is not certain, since ambiguous local structure in this data

makes it di�cult to verify by eye whether the matches being found are globally optimal.

There is no guarantee that better matches are found more often. In the second problem, the

second to worst of the local optima found was found in 38 out of the 100 trials. Although

of poor quality, this optima is clearly attractive in the sense that many trials converge to it.

The distributions of optima shown for these problems is typical, with better matches being

found with greater frequency.

A look at the constituent parts of the match error shows the �t error is roughly compa-

rable for all local optima. The di�erence between the optimal and sub-optimal matches is

in omission. This indicates that the sub-optimal matches consist of well �tting but smaller

sets of data segments. Given how �t and omission compete, as described in Section 3.5, this

result is to be expected.

It may seem odd to include the scale transformation error in this table, since it is zero for

every locally optimal match shown. The intention is to emphasize, as discussed in Section 3.6,

that although this term plays no role in ranking locally optimal solutions, it plays a signi�cant

role in directing local search to desirable local optima. Were this term not included in the

match error, the algorithm would �nd many locally optimal matches in which the model is

shrunk to perhaps 1=100th of its original size, and the frequency with which the best match

is found would drop signi�cantly.

A closer look at the local search path length, `moves', indicates a desirable property of

local search matching. For all three problems, the average path length for the best match is

considerably longer than for the others. Often the di�erence is as great as two to one. This

observation is not surprising given the discussion in Section 5.3.3 of how random sampling

relates to the forest structure of the search space. The more attractive matches tend to be on

larger trees, and on average, search paths to the optima down these trees tend to be longer.

A consequence of this is that local search leading to less attractive optima tends to expend

less e�ort, and this in turn means that local search matching has the attractive property of

not running away and doing uncontrollable amounts of search when started from poor initial

99

matches.

Recall the local omission heuristic described in Section 5.2. Comparing the entries in the

`Tests' and `Full Tests' columns indicates how much computation is being saved by using this

heuristic. The �t error �r neighbors is computed e�ciently, and often the growth in �t error

is so large as to o�set any possible local gain associated with reduced omission error. For

these cases, no further examination of the match is necessary. To illustrate, for the optimal

match with zero error (top of Table 5.3), the average number of neighbors tested on one trial

of local search was 146; 789. For only 44; 552 of these 146; 789 matches, or roughly one third,

was it worthwhile to compute the change in omission error after computing the change in �t

error.

Two possibly related trends are evident in this example: the match error goes up for the

two scenes involving increasing scale change, and the frequency of �nding the best match

goes down. The match error is 0:00, 0:160 and 0:253 for the three problems respectively.

The frequency of �nding the best match is 78, 59 and 56. The probable explanation for the

rising match error is that the segments extracted from the �rst image match less well the

further the car moves from its original position. Whether local search tends to �nd better

matches more frequently is an interesting conjecture, but one which would be hard to prove.

Granting that three experiments is too few to safely generalize to a problem domain,

it is nevertheless instructive to go through the mechanics of generalizing as described in

Section 5.3.1. The maximum likelihood estimate for the probability of success is 0:78, 0:59

and 0:56 for the three problems respectively. Picking 0:56 to be conservative, equation 5.5

indicates that 4 trials of local search are required to solve these problems with 95% or

better con�dence; 6 trials to reach 99% con�dence. To indicate what this suggests about the

associated amounts of search and the time required, 4 trials would on average require 256,

186 and 187 seconds respectively, and testing of 587; 156, 494; 156 and 586; 916 correspon-

dence mappings respectively. The search spaces for these problems contains well over 10

150

possible correspondence mappings, and to con�dently �nd optimal matches in these spaces

by examining less than 600; 000 states seems a very good result.

The last example presented in this section is that of recognizing a telephone pole in an

outdoor image. Figure 5.12 shows a 512x512 intensity image taken looking down a walkway.

The blow-up gives a better indication of the image quality. The cross bar at the top of

telephone pole is no more than about two pixels across, and aliasing along this structure

is pronounced. Figure 5.13 illustrates the telephone pole model, the image data, and the

best match. Black squares in the table indicate matching segments. White squares indicate

candidate pairs of segments not included in the optimal match. Grey areas indicate pairs of

segments not considered candidates based upon the initial projection of the telephone pole

into the scene.

The di�culty of this recognition task may not be immediately obvious. After all, the

model appears simple, consisting of only three line segments, and the data to which it is to

be matched contains an apparently modest number of horizontal and vertical line segments.

However, this problem is di�cult in part precisely because the model is so simple. There

are a variety of ways of partially matching these three segments to the data shown. The two

vertical sides of the telephone pole are a good match to the vertical sides of the street lamp.

In fact, if the omission error is weighted by the relative length of model line segments as

described in equation 3.13 (page 55), the match to the vertical lamp post sides has a lower

100

(a) (b)

Figure 5.12 Outdoor scene looking down walkway. a) full 512 by 512 image, b) section of

image containing telephone pole and street lamp.

match error than the one shown. Adopting a uniform weighting between all three segments

places greater emphasize on �nding a mate for the top horizontal segment, and makes the

match shown here the globally optimal match for this problem.

5.4.4 A Di�cult Matching Task

To further illustrate the power of subset-convergent local search, consider the following

example. Figure 5.14 shows data containing instances of the two models shown on the left.

The models each contain 9 line segments. There are 61 data line segments. Roughly 1=3

of the data lines are broken and skewed pieces of the Deer model, and 1=3 are pieces of

the Gira�e model. The remaining lines are random clutter. The search space in this case

is the power set of the 549 possible model-data pairs. This problem was generated using a

synthetic problem generator described in Chapter 6.

The model segment subsets automatically selected by the subset-convergent algorithm

are:

Deer ! fB;Eg ; fC;Dg ; fH; Ig ; fA;Fg

Gira�e ! fA;Eg ; fB;Dg ; fC; Ig ; fF;Gg

Each of these models contains more than 8 segments, and hence the automatic selection

101

C

BA

2

8

12

3

14 15

1

4

56

7

9

0

10

11
13

16 1718

192021

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

A
B
C

(a) (b) (c)

(d)

Figure 5.13 Telephone pole match example: a) the model segments labeled with letters,

b) data segments labeled and those matched to model indicated in black, c) the model

�t to the data for the optimal match found using subset-convergent local search, d) table

indicating correspondence space. Squares indicate pairs in the search space, and �lled in

squares indicate pair belonging to the optimal match.

102

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

A
B
C
D
E
F
G
H
I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

A
B
C
D
E
F
G
H
I

32

33

35

31

30

28

29

25

26

27

24

2223

21

0
1

2

3

4

5
6

7 8

9

10 11

12
13

14
15

16

17

18 19
20

34

36

37

38

39

40

41

42

43

44
45

46

47

48

49

50

51 52

53

54

55

56

57

58

59

60

Deer

Giraffe Data

Optimal Match for Deer

Optimal Match for Giraffe

F

G

A

E

B

HI

D

C

D

B

H
E

F

G

A

I
C

Figure 5.14 Subset-convergent local search �nds both the Deer and Gira�e. The Deer is

found 15=100 times and the Gira�e 8=100 times. The optimal correspondence mappings are

indicated by the tables: �lled in squares indicate matched segments. Readers unable to see

the matches may look ahead to Figure 5.15

103

algorithm is able to pick 4 disjoint pairs of segments. This is di�erent from the rectangle,

for which the subsets shared model segments.

In 100 independent trials, subset-convergent local search found the best match for the

Deer model 15 times, and the best match for the Gira�e model 8 times. This means that

roughly 15% and 8% of the initial matches respectively lead the to globally optimal match.

Considering the search space contains 2

549

possible correspondence mappings, this result is

both encouraging and perhaps might be a little surprising to some readers.

The initial random correspondences for these experiments were not drawn uniformly

from the space of all possible correspondences, but were instead selected using the biased

selection process described in Section 5.3.4. In particular, the target number of pairs per

model segments r was set to 10. This tends to `ood' the initial match and encourage local

search to begin by removing those pairs which seem most unlikely to match. It isn't obvious

whether in general such ooding actually helps. Qualitatively similar results to these will be

shown in Chapter 6 using r = 2 rather than r = 10, but a full empirical study of how best

to select r has not been conducted.

5.4.5 The Deer and Gira�e are Hard to See

Many people have found recognizing the Deer and the Gira�e in Figure 5.14 to be

di�cult. This observation has no direct bearing on the practical utility of local search

matching. These algorithms are intended to provide practical solutions to a broad range of

geometricmatching problems, and were never intended as a model of human vision. However,

it is interesting to discover that these probabilistic techniques readily solve problems which

are di�cult for people.

To be a bit more precise, people seem to have to study the image data for up to several

minutes before they �nd both animal �gures. For readers who �nd this true, Figure 5.15

highlights the two matches. To o�er a bit of speculation, this seems to support the claim of

David Lowe [80] and others that discernment of key-features plays a crucial role in human

perception.

Lowe argues that people rely upon �nding discernible, distinctive, features. He likewise

argues for computer vision algorithms which do the same. A likely explanation for why

people have trouble �nding the two animals in Figure 5.14 is that the clutter interferes with

people's ability to discern such features. This also suggests that key-feature based computer

vision algorithms might su�er a similar fate in some contexts.

This speculation underscores the fact that local search matching is not a key-feature

approach to matching. It is possible in a �rst reading to confuse the subsets used in subset-

convergent search with key-features. However, the di�erence between these subsets and

key-features is fundamental. Key-features are structures searched for independently in an

image. If for some reason this search fails, then recognition fails. In contrast, the role

of subsets in subset-convergent local search is to provide a mechanism for breaking out of

Hamming-distance-1 local optima. The subset features are not searched for independently,

and it does not matter whether or not they are distinctive.

104

(a) (b)

Figure 5.15 Showing the Deer and Gira�e matches. a) data segments matching the Deer,

b) data segments matching the Gira�e.

5.5 Conclusion

Now having seen the examples in this chapter, it should be clear why so much attention

was given to the problem of �tting models to data in Chapters 3 and 4. Without the ability

to �t a model, and therefore accurately assess the global consistency of a hypothesized

correspondence mapping, none of what has been presented in this chapter would be possible.

It is worth again drawing attention to the subtle interplay between �tting and search:

recognizing while locating is a critical aspect of local search matching. In particular, recall

the square example from Figures 5.9 and 5.10 how the evolving best-�t of the model was

absolutely critical to local search discovering a path from the less desirable match indicated

in row 8 to the globally optimal match in row 16.

The subset-convergent algorithm developed in Section 5.4 is a novel and signi�cant con-

tribution of this thesis. It capitalizes upon the principal attribute of geometric matching not

shared bymost other commonly studied combinatorial optimization problems, the underlying

coupling of evaluation through a single pose transformation. In contrast, in the Traveling

Salesperson problem (TSP), when two cities are swapped in a tour, the change to the overall

length of the tour depends only upon segments of the tour directly associated with these

two cities. There is a locality of e�ect which is lacking in geometric matching. In geometric

matching, when a pair of segments is added or removed from a match, the best-�t pose

changes, and the match error associated with all other pairs of segments change.

Global coupling through the best-�t pose computation is a factor completely missing

from problems such as TSP [76] and graph partitioning [64]. This coupling through the

best-�t pose is one of the factors which makes geometric matching di�cult. However, by

testing for pose consistency between subsets of a match, subset-convergent local search takes

this complicating factor and turns it into an asset. This suggests there are probably other

105

geometric problems which share this basic property with the line segment matching problem

studied in this thesis, and that subset-convergent local search may be an e�ective and general

tool for solving such problems.

Finally, it is important to understand that random sampling not only probabilistically

solves geometric matching problems, it o�ers a principled way of studying problem di�culty.

The crucial question facing anyone wishing to use probabilistic local search is: `how many

trials must be run?' Sections 5.3.2 and 5.3.3 have shown that the number of trials needed

depends upon how many states in the search space lie on the globally optimal tree and the

likelihood of landing on this tree given the random sampling procedure. Sections 5.3.1 has

shown this can be rigorously estimated for individual problems and generalized to problem

domains given a representative suite of test problems.

This empirical approach to characterizing algorithm performance is extremely attrac-

tive when one considers that analytically predicting performance under other than ideal-

ized assumptions has been a major problem for the computer vision community. Grim-

son [45, 48, 49] has analyzed the performance of several general matching techniques, and

these analyses are insightful and useful. However, in places Grimson has been forced to

make questionably simplistic assumptions; for example assuming that clutter in an image is

randomly distributed and is therefore not structured.

C H A P T E R 6

How Easy is Local Search Matching

6.1 Introduction

This chapter explores how well the subset-convergent local search algorithm, developed

in the previous chapter, performs on a test suite of geometric matching problems. Several

aspects of performance are considered. One is sensitivity to changes in the geometric form

of the model and image data. The algorithm does well in this regard, reliably �nding simple

models, moderately complex models, and partially symmetric models. Another aspect of

performance is sensitivity to `tuning'. To put it di�erently, consider whether it is necessary

to make changes to the algorithm in order to solve problems of di�ering form or size. Here

too, the algorithm does well, with the same set of parameters able to solve all problems in

the test suite. However, changing the match error does change how local search performs,

and this connection is explored.

In general, how performance varies with problem size is a major consideration. In

particular, how much longer does it take to reliably solve larger matching problem? Recall

that the size of the search space grows as 2

n

, where n is the number of potentially matching

line segments. It may therefore surprise some readers that over the range of problems studied

for this chapter, no evidence of an `exponential wall' has been found. Quite to the contrary,

for the test suite of problems, required computation rises steadily and average growth is

bounded by n

2

.

It is conjectured that the average case computational demand of local search matching

developed in this thesis is bounded by n

2

. Obviously, this conjecture is based upon an

optimistic interpretation of the data. It is always possible that the computational demand

of the algorithm becomes exponential just beyond the range tested. As partial justi�cation

for this optimistic conjecture, performance has been measured for n ranging over two orders

of magnitude. This chapter presents results for n between 12 and 1; 296. More strikingly,

this means the search spaces range in size from 2

12

to 2

1;296

. If there were an exponential

wall out there, it can be argued that these experiments should have found it.

Ultimately, formal analysis will be required to prove a complexity bound. However,

such analysis is very di�cult. There is a developing study of complexity issues associated

with local search. For example, Johnson and Papadimitriou [62] consider questions such as

whether a state may be determined to be a local optima in polynomial time.

1

However,

quoting from a recent paper by Krentel [67] on the topic of local search and complexity:

1

Johnson and Papadimitriou are thanked for inspiring the title to this chapter with their own title: 'How

Easy is Local Search?'

107

Although these methods seem to converge quickly in practice, very little is known

about them theoretically, or more generally, about the complexity of �nding locally

optimal solutions.

Analytically deriving complexity bounds for speci�c local search algorithms applied

to speci�c problems, such as TSP or geometric matching, is complicated by several fac-

tors. Analytically capturing the problem-speci�c nature of the objective function, the local

neighborhood, and the interplay between them is particularly di�cult. As discussed in

Section 5.3.2 of chapter 5, the number of local optima in the space doesn't matter. What

matters is the probability that a randomly selected initial state leads to an optimal state, and

that traversing this search path requires a predictable and tractable amount of computation.

As Tovey [106] suggests, it is di�cult to derive this probability through formal analysis.

Given these obstacles to formal analysis, this chapter adopts the common approach [60, 61]

of empirically studying algorithm performance.

An n

2

bound on computation, although profoundly better than an exponential bound,

still has a practical down side: even a parabola begins to look like a wall as n gets large.

This rate of growth places a practical ceiling upon the size of problem to be solved. These

limits, with di�erent constant factors, are shared by the other algorithms summarized in

Section 2.4.9 of Chapter 2, so subset-convergent local search is not alone in this regard.

6.2 A Suite of Test Problems

A test suite of matching problems based upon 6 geometric object models and 48 image

data sets provides a controlled test of the subset-convergent algorithm. The 6 geometric

models are shown in Figure 6.1, and will be used in this chapter to empirically explore the

performance of the subset-convergent algorithm. These models have been chosen to test

subset-convergent local search on a variety of geometric forms, some of which are known to

be problematic for other matching algorithms. The Pole, for example, is interesting because

of its extreme simplicity. This model lacks the distinctive structure required by key-feature

and geometric hashing approaches. As will be seen, instances of this model are readily

matched using subset-convergent local search.

The Dandelion is interesting because it is has an approximate 16 fold rotational sym-

metry. Only the stem gives it a distinctive orientation. To put it another way, it is possible

to partially match the Dandelion with itself in each of 16 distinct orientations. From the

standpoint of �t and omission, 15 of these matches are nearly as good as the one true

match. Nearly symmetric models of this form are a particularly demanding test of any

matching algorithm, yet subset-convergent local search does successfully �nd the correct

globally optimal match in problems involving this model. However, when the problems of

symmetry is compounded by the presence of multiple instances of the model in the image

data, then subset-convergent local search is only reliable if the match error function includes

the pairwise error term de�ned in Section 3.6.1.

The polygonal curve approximation in the Leaf is interesting because it leads to match-

ing problems requiring many-to-many mappings between model and image segments. As

illustrated with a simpler example in Figure 3.5 in Chapter 3, break points on the piecewise

linear curve approximation of the model are di�erent from the break points in the image

108

data. As discussed in Chapter 2, solving for many-to-many correspondences is an important

strength of the local search approach not shared by other algorithms.

Rectangle Pole Dandelion

Deer Tree Leaf

Figure 6.1 Six geometric object models. Some of these are problematic for approaches

other than local search. The simplicity of the pole means it lacks distinctive structure and

hence will not be recognizable using key-feature or geometric hashing. The 16 fold rota-

tional symmetry of the Dandelion will confound both key-feature and constraint-based tree

search approaches. The polygonal curve approximation in the Leaf requires many-to-many

mappings between model and image features.

Instances of these models are corrupted in order to create synthetic test data. A

synthetic problem generator was developed to provide a controlled means of corrupting model

instances and adding clutter segments. The problem generator begins by randomly rotating,

translating and scaling an instance of a model. It then randomly fragments and skews model

segments. Finally, it adds zero or more random clutter segments. The extent of corruption

is controlled by parameters of the problem generator, such as probability of fragmentation

per unit length of model line segment, and standard deviation of endpoint skewing. The

matching problem is then to successfully �nd the model instance in the corrupted data.

Figures 6.2 and 6.3 show this synthetic image data. There are 4 sets of image data for each

model containing 0, 10, 20 and 30 randomly distributed background clutter segments.

Randomly distributed clutter is often considered the norm for algorithm evaluation [80,

48], but it may be misleading. Clutter is, more often than not, the result of unmodeled

structure in a scene. In the extreme, clutter mimics the object model itself, and leads to

problems in which there are multiple instances of the same model present in the image data.

If the additional instances are incomplete, then they are suboptimal. Alternatively, if two

or more instances are of comparable quality, then they represent comparable local optima.

109

Figure 6.2 Rectangle, Pole and Dandelion with random clutter.

110

Figure 6.3 Deer, Tree and Leaf with random clutter.

111

Multiple instance problems are known to be di�cult for tree search algorithms [48], and can

be expected to cause problems for key-feature and geometric hashing approaches.

The synthetic problem generator was also used to produce 24 problems with multiple

corrupted instances of the same model. The resulting image data is shown in Figures 6.4

and 6.5. This represents the opposite extreme from random clutter, with additional segments

mimicing the structure of the model. To generate this data, the synthetic problem generator

produces between 1 and 4 corrupted copies of the model. The �rst instance, which repeats in

each of the 4 sets, is generated with less severe corruption parameters, and hence is expected

to be the globally optimal match. As will be seen, subset-convergent local search readily

�nds the globally optimal matches in these 24 problems.

6.3 Experiment and Algorithm Setup

To observe the performance of the subset-convergent local search algorithm, parameters

such as the weighting coe�cients in the match error are �xed, and then 100 trials are run

on each of the 48 data sets presented in Figures 6.2 through 6.5. The matching problem is

to �nd the globally optimal instance of the appropriate model in the corrupted image data.

Unlike some of the problems presented earlier, no initial assumptions about the pose of the

model are used to �lter the set of possibly matching pairs of segments. In other words, the set

of candidate pairs is the cross product of the sets of model and data segments: S = M �D.

For each run of 100 trials, the resulting matches are recorded and ranked. The key

statistic is how often search �nds the globally optimal match, and this statistic is reported

in Section 6.5.1. However, much can be learned by studying the nature of the sub-optimal

matches, and Section 6.4 considers in greater detail the results for 2 of the sets of image

data. Also of interest is the total time required to con�dently solve each problem, and these

time estimates are reported in Section 6.6.

There are two dimensions along which to measure performance, problem variation and

algorithm tuning. The aim of this chapter is to study variation over a range of di�erent

problems, not to make a thorough study of possible algorithm parameter settings. However,

changing the objective function does modify performance, and results for the complete suite

of 48 problems are presented for two di�erent match error settings. These will be called `case

1' and `case 2'.

Case 1 and 2 di�er in two respects. In case 1, the maximum displacement parameter

� is set to 2:0, while in case 2, � is set to 5:0. Remember from Section 3.5 that � controls

how far a data line segment may be displaced from a model segment and still be considered

a good match. The other di�erence is that in case 1 the pairwise error term described in

Section 3.6.1 is included in the match error, while in case 2 it is not. To summarize:

Case 1 Maximum-displacement � = 2, pairwise error term.

Case 2 Maximum-displacement � = 5, no pairwise error term.

Ideally these changes would be studied independently as well as together, giving rise to four

rather than two cases. However, running 100 trials of subset-convergent local search on the

48 data sets for the two cases took over 750 hours, or about a month, on a TI Explorer II

Lisp Machine. Time did not permit the testing of additional cases. Since a new C version of

112

Figure 6.4 Multiple instances of the Rectangle, Pole and Dandelion.

113

Figure 6.5 Multiple instances of the Deer, Tree and Leaf.

114

the matching algorithms appears to run roughly 60 times faster, additional studies will be

made in the near future.

The following parameters are set identically for both case 1 and case 2. Choices are

based upon past experience with the algorithm and are adequate but not necessarily optimal.

The omission attenuation parameter a, described (Section 3.4) is set to 0:75. This setting

favors matches with more model segments partially matched than with fewer model segments

completely matched. The regularization weight � (Section 4.5) for resolving otherwise

underdetermined best-�t model pose is set to 10

�4

. This setting reliably resolves otherwise

pose-ambiguous matches, while not introducing any noticeable midpoint-to-midpoint bias

in the �tting. The scale transformation error r (Section 3.6.2) is used to penalize matches

which make the model either to large or to small. The parameter is set to 2, and thus a

penalty is exacted if the model shrinks below half its original size or grows to more than

twice its original size. The binding-probability used to bias the selection of initial random

matches (Section 5.3.4) is set to bind, on average, 4 data segments to each model segment.

This appears to be a reasonable setting when all possible pairs of segments are candidate

matches. Finally, to make local search more e�cient, the omission error is only computed for

an entire model when the change in �t error relative to the local change in omission suggests

it is worthwhile to do so. This is the local omission heuristic described in Section 5.2.

In case 1, the pairwise error term (Section 3.6.1) is con�gured with a lower bound

of �

l

= 8 degrees and an upper bound of �

u

= 16 degrees. When matched segments

di�er in relative orientation by less than 8 degrees, there is no penalty, while as above 8

degrees, a penalty is added, and this penalty reaches 1:0 when relative orientation reaches 16

degrees. Because decreased omission cannot make up for a penalty of 1:0, segments di�ering

in orientation by more than �

u

= 16 degrees will never be included in a locally optimal

match.

6.4 A Look at Local Optima for 2 Select Problems

This section examines in detail the results for 2 of the 48 matching problems for each of

the two match error cases. The two problems are for the Tree and Dandelion models without

any random clutter, and are shown in the upper left of Figure 6.3. Speci�c matches will be

shown along with histogram information showing the relative frequency and quality of the

locally optimal matches found by subset-convergent local search.

Figure 6.6 shows the globally optimal match for the Tree matching problem. As with

all the problems studied in this chapter, all pairs of segments are candidates for matching.

The absolute match error di�ers depending upon the setting of �, with E

match

= 0:042

for � = 2:0 and E

match

= 0:035 for � = 5:0. The larger � value not only increases the

acceptable displacement between corresponding segments, it also discounts the �t error and

yields an overall lower match error.

The 2nd and 3rd ranked locally optimal matches for match error case 1 are interesting

for what they suggest about the partial symmetry of the Tree. These two matches are shown

in Figure 6.7. The branches of the Tree form a repeated chevron pattern, and as these two

locally optimal matches show, the model can be shifted up or down one in this pattern and

still be a moderately good match to the data.

The histograms in Figure 6.8 summarize E

match

and the frequency of all the locally

115

LK
J

I
H G

F E

D C

B A

0

1
2

3

4

5

6
7

8 9

10 11

12

0 1 2 3 4 5 6 7 8 9 10 11 12

A
B
C
D
E
F
G
H
I
J
K
L

(A) (B)

(C) (D)
Figure 6.6 Globally optimal match for the Tree model. This match is best for both match

error case 1 and 2. a) Model segments labeled, b) data segments labeled, c) the model �t

to the data, d) the correspondence mapping. Filled in squares indicate matching segments.

E

match

= 0:042 when � = 2:0 and E

match

= 0:035 when � = 5:0.

116

0 1 2 3 4 5 6 7 8 9 10 11 12

A
B
C
D
E
F
G
H
I
J
K
L

0 1 2 3 4 5 6 7 8 9 10 11 12

A
B
C
D
E
F
G
H
I
J
K
L

(A) (B)

(C) (D)

Figure 6.7 The 2nd and 3rd ranked Tree matches for case 1 with � = 2. a) The model �t

to the data for the 2nd best match, b) the model �t to the data for the 3rd best match, c)

the correspondence mapping for the 2nd best match, d) the correspondence mapping for the

3rd best match. The match errors are E

match

= 0:304 and E

match

= 0:316 respectively.

117

0

0.5

1

0 5 10 15 20 25 30 35

M
a

tc
h

 E
rr

o
r

Local Optima

(a)

0

0.5

1

0 5 10

M
a

tc
h

 E
rr

o
r

Local Optima

(b)

0

10

20

30

40

50

0 5 10 15 20 25 30 35

F
re

q
u

e
n

c
y

Local Optima

(c)

0

10

20

30

40

50

0 5 10

F
re

q
u

e
n

c
y

Local Optima

(d)

Figure 6.8 Histograms ranking local optima for the Tree model. Local optima are ranked

along the x axes by ascending match error: a) Case 1 E

match

for local optima, b) Case

2 E

match

for local optima, c) Case 1 frequency of occurrence, d) Case 2 frequency of

occurrence.

optimal matches found in 100 trials on the Tree model. Figures 6.8a and 6.8b show E

match

for the local optima found for match error cases 1 and 2 respectively. Figures 6.8c and 6.8d

show the associated frequency of occurrence for each of the local optima. With the increase

in � moving from case 1 to 2, the number of locally optimal matches falls from 34 to 9, and

the frequency with which the globally optimal match is found rises from 22 to 48.

The change in the match error alters the frequency with which the globally optimal

match is found. In addition, it changes the remaining locally optimal matches. The 2nd

ranked local optima di�er between match error case 1 and 2. The increased � for case 2

causes pairs (A; 11) and (B; 10) to be added to the match shown in Figure 6.7a. Another

change is that the match shown in Figures 6.7b and 6.7d disappears in case 2, in that it is not

found by any of the 100 trials. There are two possible explanations for the dissappearance of

the match in Figures 6.7b and 6.7d. First, it could be that changing � dramatically reduces

the number of paths in the search space leading to this match. Alternatively, it is possible

that the change in � has opened up a path between this match and the globally optimal

match, and thereby made the match no longer locally optimal.

In general, increasing � makes local search less anxious to remove pairs of segments. In

the limiting case of � = 0, local search will simply remove pairs of segments until there are

118

0 1 2 3 4 5 6 7 8 9 10 11 12

A
B
C
D
E
F
G
H
I
J
K
L

0 1 2 3 4 5 6 7 8 9 10 11 12

A
B
C
D
E
F
G
H
I
J
K
L

(A) (B)

(C) (D)

Figure 6.9 For match error case 2, the 3rd and 4th ranked tree matches. a) 3rd ranked

match with E

match

= 0:523, b) 4th ranked match with E

match

= 0:575, c) 3rd ranked

correspondence mapping, d) 4th ranked correspondence mapping.

119

none left to remove.

2

The higher �, the sooner local search may begin to start adding pairs,

and this may alter signi�cantly the path taken by local search.

Most locally optimal matches are not as interesting as those shown. The vast majority

represent poorly matching collections of segments which seldom account, in the omission

sense, for more than 50% of the model. To illustrate, Figure 6.9 shows the 3rd and 4th

ranked matches for match error case 2. In each case, the trunk of the Tree, segments K

and L, have become stuck upon data segment 9. The remaining model segments attach

themselves to nearby data where possible. The most noteworthy attribute of these matches

is that subset-convergent local search is unable to �nd a path leading from them to one

which is better.

Figure 6.7 has already shown one situation in which local search interacts with the partial

symmetries of an object model to produce interesting local optima. The Dandelion model

provides an even more compelling example. Figure 6.10 shows sixteen distinct matches

between the Dandelion model and the data shown in the upper left corner of Figure 6.5.

If one scans Figure 6.10 from left to right, and from top to bottom, the Dandelion rotates

clockwise. The �nal match, in the bottom right, is the globally optimal match.

Histograms in Figure 6.11 summarize the match error and frequency of occurrence for the

local optima encountered in the Dandelion matching problem. Results for both the match

error cases are shown, and the layout of Figure 6.11 is the same as Figure 6.8. A quick

comparison of the histograms in Figure 6.8 and Figure 6.11 reveals signi�cant di�erences.

For the Tree, the globally optimal match is signi�cantly better than the other local optima,

while for the Dandelion there is a whole set of fairly good matches. In Figure 6.11a, the

di�erence between the �rst 18 local optima and the remaining 7 is particularly striking. These

�rst 18 local optima are a consequence of the rotational symmetry illustrated in Figure 6.10.

There are more than 16 reasonably good local optima because the corrupted data segments

happen to generate 2 additional locally optimal matches which are combinations of the other

16.

The match error distributions for the Dandelion are quite atypical, while the distributions

for the Tree are typical. The data shown in Figures 6.2 through 6.5 generally supports

only a small number of good matches, and all others are considerably worse. Partially

symmetric models and multiple model instances are the two factors which generate multiple

local optimal of reasonable quality, and these circumstances conspire most dramatically in

the matching problem involving 4 instances of the Dandelion (shown in the bottom right of

Figure 6.4). Each instance generates at least 16 local optima of reasonable quality, yielding

at least 64 reasonable local optima for this problem. There are also local optima with no

meaningful geometric interpretation. Evidence of such local optima is seen in the 7 worst

local optima plotted in Figure 6.11a.

There is an encouraging trend evident in the frequency of occurrence histograms in

Figures 6.8 and 6.11: the best match is found more frequently than any other. There are

no guarantees that this will be the case, but the following section shows it is the rule rather

than the exception.

2

To be precise, it will remove pairs until no additional pair may be removed without producing an

unde�ned best-�t pose.

120

 0.177

 0.173

 0.171

 0.157

 0.171

 0.177

 0.171

 0.184

 0.160

 0.156

 0.185

 0.178

 0.170

 0.188

 0.156

 0.104

Figure 6.10 Sixteen locally optimal matches for the Dandelion model. The model in black

is shown in best-�t registration with the data in grey. The match error for each is shown,

the best match is on the bottom right.

121

0

0.5

1

0 5 10 15 20 25

M
a

tc
h

 E
rr

o
r

Local Optima

(a)

0

0.5

1

0 5 10 15 20

M
a

tc
h

 E
rr

o
r

Local Optima

(b)

0

5

10

15

20

25

0 5 10 15 20 25

F
re

q
u

e
n

c
y

Local Optima

(c)

0

5

10

15

20

25

0 5 10 15 20

F
re

q
u

e
n

c
y

Local Optima

(d)

Figure 6.11 Histograms ranking local optima for the Dandelion model. Local optima are

ranked along the x axes by ascending match error: a) Case 1 E

match

for local optima, b)

Case 2 E

match

for local optima, c) Case 1 frequency of occurrence, d) Case 2 frequency of

occurrence.

6.5 Performance Summary Over the Entire Test Suite

The previous section looked in detail at the performance of subset-convergent local search

on 2 of the 48 matching problems associated with the data sets presented in Section 6.2. In

this section, the performance of the subset-convergent algorithm will be summarized for all

48 matching problems and for the 2 match error cases. For the 96 distinct experiments,

in which 100 trials of subset-convergent local search were run, this section reports the

estimated probability of success,

^

P

s

, and the associated required number of trials,

^

t

s

, needed

to con�dently solve each problem.

Before moving on to the probability of success estimates, the previous section concluded

that subset-convergent local search appears to �nd the global optima more frequently than

any other local optima. This is true for 64 of the 96 experiments run. Table 6.1 shows the

actual breakdown by match error case and matching problem.

122

Table 6.1 Best match as the the most frequently found optima. Problems for which the

best match is found more frequently than any other local optima are indicated with a 3.

Individual columns for the random clutter problems are labeled with the number of clutter

lines added to the data. The individual columns for the multiple model instance problems

are labeled with the number of model instances present in the data.

Random Clutter Multiple Instances

Case 1 Case 2 Case 1 Case 2

Model 0 10 20 30 0 10 20 30 1 2 3 4 1 2 3 4

Rectangle 3 3 3 3 3 3 3 3 3 3 3 3

Pole 3 3 3 3 3 3 3 3 3 3

Deer 3 3 3 3 3 3

Tree 3 3 3 3 3 3 3 3 3 3 3

Leaf 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Dandelion 3 3 3 3 3 3 3 3 3 3

6.5.1 Probability of Success

^

P

s

and Required Trials

^

t

s

Whether the globally optimal match is the most frequently encountered match is inter-

esting. However, it is less interesting than the probability that local search initiated from a

randomly selected match will �nd the globally optimal match. It is this latter probability of

success which dictates how many trials must be run to con�dently solve a problem, and by

implication, the di�culty of the matching problem.

Recall from Section 5.3.1 that for a particular matching problem ! and local search

algorithm , the maximum likelihood estimate of the true probability of success,

^

P

s

, is the

ratio of the number of times the globally optimal match is found over the total number

of trials run. The

^

P

s

estimates for each of the 48 matching problems associated with the

data in Figures 6.2 through 6.5 and the two match error cases are based upon 100 trials

of the subset-convergent local search algorithm. These estimates are show in Table 6.2a.

The layout is the same as Table 6.1. No estimates are provided for the 3 and 4 instances

Dandelion problems using match error case 2. As will be discussed below, for these two

problems 100 trials was inadequate to reliably estimate

^

P

s

. Subsequent additional trials

suggest

^

P

s

is around 0:01 for the 3 instance problem.

The required number of trials may be computed from

^

P

s

using the relation de�ned in

equation 5.5 on page 87. Here, equation 5.5 is repeated with the con�dence threshold Q

s

set

to 0:99:

^

t

s

= dlog

^

P

f

0:01e where

^

P

f

= 1�

^

P

s

: (6:1)

The values of

^

t

s

corresponding to the estimates for

^

P

s

in Table 6.2a are shown in Table 6.2b.

6.5.2 Observation: Changing Match Error Changes

^

P

s

The failure to reliably �nd the globally optimal match for the 3 and 4 instance Dandelion

problem and match error case 2 is the most marked di�erence to arise out of the change

in match error. However, a quick scan of Table 6.2a shows

^

P

s

frequently di�ers for the

123

Table 6.2 Estimates

^

P

s

and

^

t

s

for the 96 experiments. a) Maximum likelihood estimates for

the probability of success

^

P

s

, b) Associated number of trials

^

t

s

required to solve matching

problem with 99% con�dence. The `*' indicates problems for which 100 trials were insu�cient

to reliably estimate

^

P

s

. Case 1 uses � = 2 and pairwise error. Case 2 uses � = 5 and no

pairwise error.

Random Clutter Multiple Instances

Case 1 Case 2 Case 1 Case 2

Model 0 10 20 30 0 10 20 30 1 2 3 4 1 2 3 4

Rectangle .25 .20 .27 .11 .56 .50 .30 .20 .28 .15 .16 .12 .59 .16 .26 .13

Pole .43 .06 .07 .04 .40 .14 .12 .03 .35 .19 .22 .12 .29 .22 .11 .04

Deer .21 .17 .10 .08 .94 .95 .07 .12 .64 .24 .09 .05 .90 .95 .91 .02

Tree .22 .17 .08 .11 .48 .10 .15 .15 .31 .16 .13 .19 .94 .75 .62 .26

Leaf .47 .15 .27 .14 .57 .22 .20 .03 .47 .04 .05 .07 .44 .07 .07 .03

Dandelion .19 .19 .13 .17 .23 .33 .38 .51 .07 .02 .02 .08 .06 .06 * *

(a)

Random Clutter Multiple Instances

Case 1 Case 2 Case 1 Case 2

Model 0 10 20 30 0 10 20 30 1 2 3 4 1 2 3 4

Rectangle 17 21 15 40 6 7 13 21 15 29 27 37 6 27 16 34

Pole 9 75 64 113 10 30 35 182 11 22 19 37 14 19 40 113

Deer 20 25 44 56 2 2 64 37 5 17 49 90 2 2 2 228

Tree 19 25 56 40 8 44 29 29 13 27 34 22 2 4 5 16

Leaf 8 29 15 31 6 19 21 152 8 113 90 64 8 64 64 152

Dandelion 22 22 34 25 18 12 10 7 64 228 228 56 75 75 * *

(b)

124

same image data and model. The di�erences are greater than can be accounted for by

the con�dence intervals shown in Table 5.1 on page 87, and the natural conclusion is that

changing the match error changes how local search explores the search space and consequently

^

P

s

.

Match error case 2 performs better than case 1 in the following sense: the estimate

^

P

s

is

greater in 18 out of the 24 random clutter problems, and 15 out of the 24 multiple instance

problems. Breaking this down further into the arguably easier and harder problems, for the

no clutter and single instance problems,

^

P

s

for case 2 is higher for 8 out of 12 problems. For

the problems with either 30 clutter lines or 4 model instances, case 2 is higher for 6 out of 12

problems. The drop in relative performance for the harder problems is interesting. However,

it is risky to infer too much from such a small data set.

There is another side to the comparison between case 1 and 2. The average drop in

^

P

s

as

either random clutter or multiple instances are added to a data set is nearly twice as high for

case 2 as for case 1. The average di�erences are 0:22 and 0:41 for cases 1 and 2 respectively.

Performance, as measured by

^

P

s

, is deteriorating more quickly with added clutter and model

instances for case 2. This is most evident in the di�erence between the 3 and 4 instance Leaf

problem, where

^

P

s

drops from 0:91 to 0:02. This trend can be seen as foreshadowing the

problems with the 3 and 4 instance Dandelion problem.

It is di�cult to know for certain what is causing case 2 to perform so badly compared

to case 1 on these two problems. However, a likely guess concerns the way the pairwise

error term directs the early course of local search initiated from a randomly selected match.

With the pairwise error based upon relative orientation included in the match error, local

search tends to begin by removing pairs of matched segments which are not consistent

with the initial orientation of the model. This orientation is, remember, a consequence

of the initial random assignment of correspondences. By removing pairs of segments with

dissimilar orientation at the beginning of the search, the algorithm is more likely to �nd

a match whose orientation is similar to the initial random pose. Consequently, matches of

di�ering orientation have a fairly uniform chance of being found, and this in turn seems to

help the algorithm to �nd the globally optimal match. In contrast, it appears without the

pairwise constraint search is sometimes drawn away from matches at the correct orientation.

Estimates for

^

P

s

for the 3 and 4 instance Dandelion problems for match error case 2 could

be obtained given su�cient trials. Reporting failure should be understood as acknowledging

that 100 trials is insu�cient, and not taken to mean that

^

P

s

has necessarily fallen signi�cantly

below 0:01. Given additional trials, the globally optimal match would probably appear a

su�cient number of times to reliably estimate

^

P

s

. For example, an additional 100 trials were

run for the 3 instance problem, and the globally optimal match did appear in 2 out of the

additional 100 trials, meaning it appeared in 2 out of a total of 200 trials.

6.6 Run-time Growth

The average time required to complete a single trial of subset-convergent local search,

r, has been recorded for the 48 matching problems associated with match error case 1.

Estimating the time required to con�dently solve each matching problem given r and

^

t

s

(shown in Table 6.2b) is a simple matter. The estimated run-time r̂

s

is the average time for

a single trial multiplied by the required number of trials:

125

r̂

s

=

^

t

s

r: (6:2)

This section will look into how r̂

s

varies as a function of problem size n. Here, as

elsewhere, problem size n is the number of possibly matching pairs of features. Bear in mind

that if there are m model segments, an equal number of data segments, and no pose �ltering

limiting the possible pairings between segments, then n = m

2

. Thus, adding equal numbers

of model and data segments to a matching problem causes n to grow quadratically.

Regression analysis reveals the exponent for the best polynomial curve �t to r̂

s

versus n

is 1:23. The relationship appears polynomial over the range measured, and rounding up to

the next highest integer suggests n

2

as an upper bound on average growth. This is equivalent

to a bound of m

4

for the restricted conditions just mentioned above. Match error case 1

is considered because 100 trials was su�cient to reliably estimate the probability of success

for all 48 matching problems. The average run-times r were measured on a TI Explorer II

Lisp Machine. It should be noted that recent experiments suggest a new C version of the

algorithm running on a Decstation 5000 is roughly 60 times faster than the Lisp version.

The estimated run-times r̂

s

are shown in Table 6.3. Problems are identi�ed by the model

name and the number of random clutter segments or model instances added to the image

data. The problem size n is shown along with the estimate run-time r̂

s

. Run-times vary

between 9 seconds and 57:3 hours, and so for convenience r̂

s

is reported both in seconds and

hours. The entries are sorted by n.

Some interesting problem-speci�c di�erences are evident in Table 6.3. For example, going

from the Leaf problem with 30 clutter segments to the Leaf problem with 3 instances, r̂

s

grows from 4:3 to 34:2 hours. This growth takes place despite the fact that the problems

are of comparable size, with n values of 846 and 882 respectively. In general, for similar

values n, the multiple instance problems tend to take longer. However, the di�erence is

usually less pronounced than in the case just cited. For example, n = 261 for both the Deer

with 20 clutter segments and the Deer with 3 instances, while r̂

s

is 0:9 hours and 1:4 hours

respectively.

The two problems requiring the most time are the 2 and 3 instance Dandelion problems,

each of which have

^

P

s

of only 0:02. Perhaps somewhat surprisingly,

^

P

s

goes up to 0:08 for

the 4 instance Dandelion problem. For both the 2 and 3 instance problems,

^

t

s

= 228, and

the jump from 44:5 hours to 57:3 hours is due entirely to an increase in the average run-time

per trial r.

6.6.1 Regression Analysis of Run-time Versus Problem Size n

Linear regression analysis won't answer the most important question associated with the

run-time data presented in Table 6.3. The plots below show r̂

s

growing non-linearly as a

function of n. Characterizing the non-linearity is the key issue. To do this the following

parameterized polynomial curve is �t to the observed data:

y = ax

p

+ b: (6:3)

For a given exponent p, the best-�t regression parameters a and b are determined analytically.

To �nd the best choice of p, possible values between 0:10 and 3:0 are sampled in 0:01

increments. It is p which is of greatest interest, since it suggests the degree of non-linearity

126

Table 6.3 Tabulated estimated run-times r̂

s

.

Random Clutter

Problem Size Time r̂

s

Model Cl. n Sec. Hrs.

Pole 0 12 9 0.0

Rectangle 0 28 73 0.0

Pole 10 42 270 0.1

Rectangle 10 68 262 0.1

Pole 20 72 378 0.1

Deer 0 81 664 0.2

Pole 30 102 1,017 0.3

Rectangle 20 108 309 0.1

Rectangle 30 148 1,144 0.3

Tree 0 156 1,858 0.5

Deer 10 171 1,677 0.5

Deer 20 261 3,071 0.9

Dandelion 0 272 6,123 1.7

Tree 10 276 3,508 1.0

Leaf 0 306 2,397 0.7

Deer 30 351 5,835 1.6

Tree 20 396 11,066 3.1

Dandelion 10 432 9,119 2.5

Leaf 10 486 10,469 2.9

Tree 30 516 11,024 3.1

Dandelion 20 592 17,952 5.0

Leaf 20 666 7,338 2.0

Dandelion 30 752 16,735 4.6

Leaf 30 846 15,522 4.3

Multiple Instances

Problem Size Time r̂

s

Model In. n Sec. Hrs.

Pole 1 24 24 0.0

Pole 2 42 84 0.0

Rectangle 1 52 214 0.1

Pole 3 81 162 0.0

Pole 4 96 370 0.1

Deer 1 99 214 0.1

Rectangle 2 108 835 0.2

Rectangle 3 124 724 0.2

Rectangle 4 168 1,450 0.4

Deer 2 180 1,251 0.3

Tree 1 216 2,054 0.6

Deer 3 261 5,194 1.4

Deer 4 342 11,412 3.2

Leaf 1 342 3,073 0.9

Dandelion 1 416 29,485 8.2

Tree 2 432 7,387 2.1

Tree 3 552 13,121 3.6

Leaf 2 648 70,930 19.7

Dandelion 2 736 160,147 44.5

Tree 4 780 10,650 3.0

Leaf 3 882 123,183 34.2

Dandelion 3 1136 206,317 57.3

Leaf 4 1296 89,837 25.0

Dandelion 4 1296 69,272 19.2

127

in the relationship between x and y. For example, If p = 2, this suggests a quadratic

relationship.

The independent variable x is always problem size n. Analysis is presented with di�erent

choices of y. Speci�cally, the growth of the average run-time per trial r, the estimated

number of trials

^

t

s

, and the estimated run-time r̂

s

is studied. As will be seen, comparing the

growth rate of r and

^

t

s

independently to the growth rate of r̂

s

is interesting because of the

relationship between them expressed in equation 6.2. Regression is �rst performed on the

complete set of 48 problems, making no distinction between random clutter and multiple

model instance problems. Random clutter and multiple instance problems will be analyzed

separately in Section 6.6.2.

Figure 6.12 shows the average run-times per trial r for all 48 matching problems. The

best-�t curve is shown. Problem size varies along the x axis of the plot, and average run-times

measured in minutes along the y axis. The equation for the best-�t curve is

r = 0:0038n

1:23

� 0:44: (6:4)

The exponent, p = 1:23, is the best polynomial estimate for how average run-time per trial

grows as a function of problem size n.

The standard deviation for the curve with p = 1:23 is 1:98 minutes. The standard

deviations for p equals 1 and 2 are 2:04 and 2:40 respectively. The di�erences in standard

deviation suggests the curve with p = 1:23 is a much better �t than the quadratic case

p = 2. The di�erence in �t between the p = 1:23 curve and the linear case p = 1 is less

signi�cant.

The required number of trials

^

t

s

is plotted versus n in Figure 6.13. Recall this is the

number of trials required to �nd the globally optimal match with probability 0:99 or better,

and that these values are tabulated in Table 6.2b. The best-�t curve is also shown and the

exact parameters of the curve are

^

t

s

= 0:0133n

1:22

+ 24:87: (6:5)

The standard deviation is 41:53 trials. This value is high and reects the obvious scattering

of points in this plot. The standard deviations for p equals 1 and 2 are 41:58 and 41:97

respectively. The relation between problem size n and

^

t

s

is weak. Although the overall trend

is upward, there are many smaller problems which require more trials than larger problems.

The best estimate is that

^

t

s

grows as n

1:22

, although with such a high standard deviation,

this is not a particularly accurate estimate.

Estimated run-times r̂

s

required to con�dently solve each problem are plotted versus n

in Figure 6.14. Equation 6.2 is used to compute r̂

s

. The y axis gives run-time in hours. The

best-�t curve is shown, and the exact parameters are

r̂

s

= 0:00052n

1:53

� 1:08: (6:6)

The standard deviation is 8:11 hours. The standard deviations for p equals 1 and 2 are 8:33

and 8:22 respectively.

Since multiplying r and

^

t

s

yields r̂

s

, if r and

^

t

s

were uncorrelated, then multiplying the

approximating functions in equations 6.4 and 6.5 ought to yield a good estimate of growth

in r̂

s

as a function of n. The resulting exponent would be 2:50, the sum of 1:23 and 1:22.

128

-5

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400

R
u

n
-t

im
e

 p
e

r
tr

ia
l
in

 m
in

u
te

s

Number of pairs

Figure 6.12 Average time to run r for 1 trial plotted versus n. The best-�t curve with

exponent p = 1:23 is shown.

Table 6.4 Co-occurrence of r̂

s

and

^

t

s

above/below average. Count of problems falling above

and below predicted values of r and

^

t

s

show that most frequently both fall below the predicted

value.

Required Trials

^

t

s

Average time

per trial r

Above Below

Above 3 13

Below 14 18

129

0

50

100

150

200

250

0 200 400 600 800 1000 1200 1400

R
e

q
u

ir
e

d
 t

ri
a

ls
 f

o
r

9
9

%
 c

o
n

fi
d

e
n

c
e

Number of pairs

Figure 6.13 Estimated required trials

^

t

s

plotted versus n. The best-�t curve with exponent

p = 1:22 is shown. However, the standard deviation for quite high.

This is considerably higher than the 1:53 measured for the actual run-time estimates plotted

in Figure 6.14.

This apparent discrepancy is explained by the fact that r and

^

t

s

are correlated. Table 6.4

shows how the 48 problems break down in terms of falling either above or below the values

predicted by equations 6.4 and 6.5. For instance, the upper left corner indicates 3 of the 48

problems had both r and

^

t

s

falling above the predicted values. In contrast, for 18 out of the

48 problems, both values fell below the predicted value. Finally, for 27 out of 48 problems,

when one value fell above the average, the other fell below. The net e�ect is to produce a

measured rate of growth, equation 6.6, lower than predicted by multiplying equations 6.4

and 6.5.

Equation 6.6 is the key result of this section. It represents the best guess of how run-time

r̂

s

grows as a function of n, subject to the assumed polynomial form of equation 6.3. In

particular, it says the exponent p = 1:53 is the best guess given the observed data. Rounding

up to the next whole integer, and conjecturing that run-time growth is bounded by n

2

, seems

the most natural extrapolation given the observed data.

6.6.2 Random Clutter and Multiple Instance Problems

By design, the above analysis makes no distinction between the random clutter and

multiple instance matching problems, and performance over both sets of problems has been

averaged. Analyzing r̂

s

separately for each supports the contention that matching problems

130

-10

0

10

20

30

40

50

60

0 200 400 600 800 1000 1200 1400

R
u

n
-t

im
e

 f
o

r
9

9
%

 c
o

n
fi
d

e
n

c
e

 i
n

 h
o

u
rs

Number of pairs

Figure 6.14 Estimated run-times r̂

s

plotted versus n. The best-�t curve with exponent

p = 1:53 is shown.

involving multiple model instances are more di�cult to solve. Figure 6.15 shows

p

r̂

s

for

the 24 random clutter and 24 multiple model instance matching problems. Unlike before, in

these two plots the y axis is the square root of estimated run-time in hours. Square root of

run-time is plotted to make the error bars described below easier to see. It also lessons the

dominance of points with high n.

The polynomial from equation 6.3 is �t to the data shown in Figure 6.15. The resulting

best �t curves are shown. For the random clutter matching problems

q

r̂

s

= 0:058n

0:56

� 0:277: (6:7)

For the multiple instance matching problems

q

r̂

s

= 0:033n

0:74

� 0:656: (6:8)

For the random clutter problem, the standard deviations are 0:20, 0:27 and 0:24 for p equals

0:56, 0:10 and 1:00 respectively. For the multiple model instance problems, the standard

deviations are 1:12, 1:30 and 1:15 for p equals 0:74, 0:10 and 1:00 respectively.

Squaring the exponents in equations 6.7 and 6.8 suggests the run-time for the random

clutter matching problems grows as roughly n

1:2

, while for multiple instance problems run-

time grows as n

1:5

. These measurements show one concrete sense in which the multiple

instance problems are more di�cult. However, both of these growth rates fall below an n

2

upper bound.

131

0

1

2

3

0 200 400 600 800 1000 1200 1400

S
q
u
a
re

 r
o
o
t
o
f
ru

n
-t

im
e
 i
n
 h

o
u
rs

Number of pairs

(a) Random Clutter

0

1

2

3

4

5

6

7

8

0 200 400 600 800 1000 1200 1400

S
q
u
a
re

 r
o
o
t
o
f
ru

n
-t

im
e
 i
n
 h

o
u
rs

Number of pairs

(b) Multiple Instances

Figure 6.15 Run-time plots for random clutter and multiple instance problems. The square

root of r̂

s

versus n is plotted to accentuate error bars for smaller n problems.

132

The error bars suggest how much of the individual variation between problems may be

ascribed to the sampling process used to estimate

^

P

s

and thus

^

t

s

. Recall that Table 5.2

on page 88 provides con�dence intervals for

^

P

s

. These are propagted through equations 6.1

and 6.2 and plotted in Figure 6.15.

In Figure 6.15a, the regression curve passes through most of the con�dence intervals

associated with measured values of

p

r̂

s

. It is plausible that the variance in measured

performance is due solely to the process of estimating

^

t

s

from 100 trials of local search.

However, this is not the case for Figure 6.15b, where some problems clearly lie above the

curve, and others below it. The geometric form of a particular matching problem clearly

seems to inuence performance.

These results strongly suggest the principal factor governing problem di�culty is the

number of candidate pairs of features n. However, factors such as the geometric form of

the model also come into play. The internal symmetries of the Dandelion make it a more

challenging model. The geometric form of the clutter also matters. Matching a model when

the clutter segments are randomly distributed is easier than when additional segments mimic

the geometric form of the model, and in the extreme tested here, represent distinct 2nd, 3rd,

and 4th instances of the same model.

6.7 Speculation: Why Don't Run-times Grow Faster?

It may have surprised some readers that the growth in average run-time for both random

clutter and multiple instance matching problems should appear bounded by n

2

. The search

spaces contain 2

n

matches, and for the larger problems, as few as 12 out of 1; 296 potentially

matching pairs of segments participate in the optimal match. That 100 trials of subset-

convergent local search typically discovers these small sets of optimally matching pairs of

segments is a startlingly good result.

It is di�cult to explain precisely why subset-convergent local search does this well. Two

outwardly plausible explanations are considered. The �rst is that expanded problem size

means expanded options for local search, and this in turn eases the relative di�culty of

larger problems. Recall the Hamming-distance-1 neighborhood de�ned in Section 5.1. For

this neighborhood, if n = 10, then local search may select from among 10 options, while if

n = 1; 000, local search may select from among 1; 000 options. More options implies greater

mobility, and may explain why paths from randomly selected initial matches to globally

optimal matches are found with reasonable probability for both large and small problems.

This explanation is explored in Section 6.7.1

The second explanation is that random sampling, by chance, generates initial matches

which are `close' to the optimal match. Because this explanation is intuitively attractive,

it will be considered further. It is hypothesized that local search succeeds only when some

fraction of the paired segments in the globally optimal match are included in the initial

randomly selected match. Performance predicted by this hypothesis is compared to that

actually observed, with the result that predicted performance falls orders of magnitude short

of that observed on larger problems. Readers already content that this is not a plausible

explanation may wish to pass over Section 6.7.2.

133

6.7.1 Likely Explanation: Larger n Means More Options

The relatively strong performance of the subset-convergent local search algorithm might

be explained by considering how increasing the size of the search space changes the options

available to local search. For instance, increasing the number of data segments in an image

increases the options, or potential paths through the search space. It is entirely possible

that a clutter segment may act as a `bridge', permitting local search to move away from an

undesirable match. In this way, adding clutter can create pathways through the search space

that would not otherwise exist.

This may explain some otherwise surprising results. Consider the probability of success

estimates

^

P

s

in Table 6.2a (page 123) for the problem of matching the Dandelion with

random clutter. For case 1,

^

P

s

remains roughly constant as clutter is added. With no

clutter,

^

P

s

= 0:19, and with 30 additional clutter segments,

^

P

s

= 0:17. For case 2,

^

P

s

increases monotonically from 0:23 to 0:51. The fraction of the initial randomly selected

correspondences leading to the optimal match is remaining roughly constant in case 1 and

actually increasing in case 2, and this despite the fact that the underlying search space

is growing exponentially. Evidently, the growth in the number of matches leading to the

globally optimal match is keeping pace with the exponential growth of the search space.

Adding model segments may also add pathways from initial to optimal matches, and

this suggests

^

P

s

may not necessarily decrease as models get larger. Table 6.5 permits this

hypothesis to be tested visually. There is one row for each model, sorted in ascending order

of model sizem. Models get larger going from top to bottom. Both model sizem and number

of candidate pairs n are shown. Columns are ordered by descending probability of success

^

P

s

.

Problems to right have lower probability of success on a single trial. If larger models generate

matching problems with lower probability of success, then the models shown in Tables 6.5a

and 6.5b ought to line up along the left to right descending diagonal. With the striking

exception of the Leaf model, this is somewhat the case for the problems without random

clutter. However, almost the reverse can be seen for the 30 clutter segments problems.

There is a semi-intuitive explanation for why

^

P

s

is so high for the Leaf model without

clutter. The Leaf model is a piecewise linear approximation to the curved outline of an

elongated region. If local search is able to get the model pointed in roughly the correct

direction relative to the data, then it often `walks into' the optimal match by adding and

removing pairs of segments along the boundary. In contrast to the Leaf problem, the

Dandelion problem (already discussed in Section 6.4) is made di�cult by the many partial

symmetries of the model.

Table 6.5b shows that adding 30 clutter segments alters the relative di�culty of the

matching problems associated with the di�erent models. Most striking is the move of the

Dandelion from being having the lowest

^

P

s

estimate without clutter to having the highest

with clutter. The absolute value for

^

P

s

is essentially the same in both cases, even though the

size of the search space expands from 2

272

to 2

752

. In general, the pattern in Table 6.5b is

almost the opposite of what might be expected, with problems tending to get easier as they

get larger. The only real explanation for this observation is that adding segments opens up

new paths to the globally optimal match at a rate su�cient to keep

^

P

s

reasonably high, even

while the search space is growing exponentially.

134

Table 6.5 Matching problems ranked by size and

^

P

s

. Models are ranked from smaller to

larger going down, and higher to lower

^

P

s

from left to right.

Matching Problems with No Clutter Segments

^

P

s

m n 0.47 0.43 0.25 0.22 0.21 0.19

3 12

4 28

9 81

12 156

16 272

18 306

(a)

Matching Problems with 30 Clutter Segments

m n 0.17 0.14 0.11 0.11 0.08 0.04

3 102

4 148

9 351

12 516

16 752

18 846

(b)

135

Table 6.6 Percentage of pairs included in optimal matches over n. The number of good

pairs g is divided by the total number of pairs n. The average number of pairs l included in

initial matches are also shown.

Random Clutter Multiple Instances

Model l g 0 10 20 30 g 1 2 3 4

Pole 12 4 33.3 9.5 5.6 3.9 8 33.3 19.0 9.9 8.3

Rectangle 16 6 21.4 8.8 5.6 4.1 12 23.1 11.1 9.7 7.1

Deer 36 9 11.1 5.3 3.4 2.6 9 9.1 5.0 3.4 2.6

Tree 48 13 8.3 4.7 3.3 2.5 15 6.9 3.5 2.7 1.9

Dandelion 64 17 6.2 3.9 2.9 2.3 21

a

5.0 2.3 1.8 1.6

Leaf 72 20 6.5 4.1 3.0 2.4 12

b

3.5 2.2 1.4 0.9

a

For the 2 instance problem the 2nd instance with g = 17 is optimal

b

For the 2 instance problem the 2nd instance with g = 14 is optimal

6.7.2 Unlikely Explanation: Random Sampling Finds Good Starts

The Ransac algorithm [35] and some median �ltering algorithms [70] use random sam-

pling to generate a subset of data samples which are correct. In the context of matching,

such samples are model-data pairs which match and are therefore elements of the globally

optimal correspondence c

�

. First this section shows the complete impracticality of this exact

strategy for the matching problems presented in this chapter. It is then asked whether

subset-convergent local search is �nding c

�

because random sampling is generating initial

correspondences c

i

which, although not proper subsets of c

�

, do contain some fraction of the

pairs in c

�

.

The percentage of the possible pairs of features belonging to c

�

is a key determinant of

problem di�culty for approaches such as Ransac and median �ltering. These algorithms

uniformly select k pairs of features until they are con�dent that one or more of the samples

contain only 'good' pairs. Here, a good pair is one belonging to c

�

. The probability of

obtaining k good pairs is (g=n)

k

, where g out of n pairs are good. The approach is reasonable

so long as g=n > 0:5 and k is small. However, if g=n drops signi�cantly below 0:5 or k gets

larger, the approach fails badly.

Table 6.6 shows the ratios g=n as percentages for the 48 matching problems associated

with match error case 1. The l values, which indicate the average number of pairs included

in an initial random correspondence, are set to 4 times the number of model segments m.

This choice approximates the biased random selection used in the experiments presented

earlier. These l values will play an important role in the analysis which follows.

Random sampling to generate a small set of good pairs is infeasible for most of the

matching problems. For instance, only 0:09% of the possible pairs are good for the 4 instance

Dandelion problem. Using the approach employed by Ransac or median �ltering to �nd 3

correctly matching pairs with probability better than 0:99 would require over 6 million

independent samples (in marked contrast, subset-convergent local search need only draw 56

samples in order to con�dently �nd the globally optimal match).

In contrast to these other techniques, local search matching is is able to remove pairs

136

from a correspondence mapping c

i

, and therefore c

i

need not be a proper subset of c

�

. In

other words, local search may �nd c

�

starting with a correspondence c

i

containing pairs of

segments not in c

�

. What is of interest is whether it appears that a fraction of pairs must

be common to both c

i

and c

�

in order for subset-convergent local search to �nd c

�

starting

from c

i

.

Imagine a fairly simple relationship, one where local search initiated from an initial

correspondence c

i

leads to c

�

so long as every `bad' pair in c

i

is o�set by a `good' pair.

A good pair is one which is an element of c

�

, a bad pair is not. The intuition is rather

simplistic; it is that local search can make up for an incorrect pairing so long as there is a

correct pairing to counteract it. This may be called the one-good-o�sets-one-bad rule, and

it is illustrated in Figure 6.16.

0 0 0 1 1 0 0 0 1 0 1 1 0 0 0 0

1 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

c*

c1

c2

g=6
n=16

Optimal Correspondence

Example Initial Correspondence

Example Initial Correspondence

Figure 6.16 Optimal correspondence c

�

with g `good' bits on the left. By the

one-good-o�sets-one-bad rule, local search from c

1

would lead to c

�

while local search from

c

2

would not.

The one-good-o�sets-one-bad rule is illustrated in Figure 6.16. An optimal correspon-

dence c

�

is written as a bitstring with all the 1 bits associated with the matching pairs

on the left. There are g = 6 such bits in this example, and the ratio g=n = 0:38.

Two possible initial correspondences, c

1

and c

2

, are shown. By the assumption that the

one-good-o�sets-one-bad rule is valid, local search from c

1

will lead to c

�

while local search

from c

2

will not.

The one-good-o�sets-one-bad is intuitively simple, but it does not explain the observed

performance of the subset-convergent local search algorithm. For most of the problems in

Table 6.6, the number of bits l initially set is over twice the total number of good bits,

and the one-good-o�sets-one-bad suggests complete failure. Picking some smaller fraction,

such as 1=4 (one-good-o�sets-two-bad) instead of 1=2, doesn't help much. Consider the

multiple instance Leaf problems. The globally optimal correspondence c

�

contains only 12

137

Table 6.7 Measured

^

P

s

over predicted P

s

using 1=10 correct rule.

Random Clutter Multiple Instances

Model 0 10 20 30 1 2 3 4

Pole 0.4 0.3 1.0 1.1 0.7 1.0 3.9 3.0

Rectangle 0.3 0.9 2.6 1.9 0.8 1.4 2.0 2.6

Deer 0.3 1.8 4.3 9.8 1.5 3.0 3.9 5.6

Tree 0.8 4.3 9.1 40.3 3.1 26.7 64.6 463.4

Dandelion 3.5 43.6 199.0 1,171.0 12.9 120.1 2,009.8 19,250.3

Leaf 12.9 74.1 1,172.5 3,400.3 24.8 143.1 1,647.1 40,567.6

pairs of segments, while l = 72. Yet as shown in Table 6.2b,

^

P

s

never drops below 0:04

for this set of problems. Even picking a smaller fraction, such as 1=10, doesn't lead to

predicted probabilities of success P

s

remotely resembling those actually measured for the

larger matching problems.

This failing may be demonstrated by comparing the probability of success P

s

implied

by this rule to the maximum likelihood estimates

^

P

s

measured for each matching problem.

To de�ne P

s

, recall the bitstring representation for correspondence mappings illustrated in

Figure 6.16. The leftmost g bits indicate pairs in c

�

. Presuming bitstrings c

i

are selected

uniformly from the set of all strings with l bits set to 1, then P

s

is the ratio of the number

of strings leading to c

�

over the n choose l possible bitstrings:

P

s

=

P

l

i=h

g

i

!

n� g

l� i

!

n

l

!

: (6:9)

The numerator sums all the possible ways that between h and l on bits (1's) can appear

in the g leftmost good bits. The g choose i term accounts for the ways of distributing i

1's among the leftmost g bits. The n � g choose l � i term accounts for all the ways of

distributing l � i remaining 1's in the remaining n� g bits.

Table 6.7 shows the ratio of

^

P

s

from Table 6.2a over P

s

predicted by equation 6.9 for

the 48 matching problems associated with match error case 1. A large value indicates the

equation is grossly underestimating

^

P

s

. The predicted probabilities of success are computed

using

h = dl=10e: (6:10)

The rule implied by this equation says that at least 1=10th of the l bits must be among

the g correct bits in order for local search to �nd c

�

. Outwardly, it doesn't seem like much

to ask that 1 out of 10 be correct. However, the predicted probabilities of success begin to

drop precipitously compared to the actual measured values for the larger matching problems.

For example, P

s

computed using equation 6.9 is over one thousands times smaller than the

actual estimate

^

P

s

for the Dandelion matching problem with 30 random clutter segments.

The predictions get even an order of magnitude worse for the 4 instance Leaf and Dandelion

problems. In short, local search is actually performing up to ten thousand times better than

138

predicted by this simplistic model.

The analysis just presented should dispel any notions that subset-convergent local search

is performing as observed because the randomly selected initial correspondences are close

to, or similar to, the optimal correspondence. Given the precipitous drop in P

s

predicted by

such an assumption, and the failure to detect such a drop in actual performance, it must

be concluded that other factors are at work and causing subset-convergent local search to

be e�ective. As described in Section 6.7.1, a likely explanation lies in the way increasing

problem size increases search options, and thereby permits local search to move from initial

correspondences c

i

to optimal correspondences c

�

, even when these correspondences may

share few if any pairs of model-data line segments.

6.8 Conclusion

When the experiments reported in this chapter were initially designed, it was by no

means obvious that subset-convergent local search would perform as well as observed. This

chapter has demonstrated that for all the matching problems set forth in Section 6.2, subset-

convergent local search �nds the globally optimal match with probability 0:99 or better.

Further, doing so requires fewer than 100 independent trials for all but the hardest of these

problems; the multiple instance Dandelion problems.

It is signi�cant that the experiments reported in this chapter found no evidence for

an exponential relationship between run-time and problem size. Certainly it is possible

such evidence would have been found given larger problems. However, in defense of these

experiments, remember search spaces ranging in size from 2

12

to 2

1;296

were tested, and that

no distinctions were made between random clutter matching problems, multiple instance

matching problems, and matching problems involving symmetric models. As Section 6.6

demonstrated, n

2

appears to bound average run-times observed for all these problems.

The n

2

bound bound on average case growth in run-time conjectured here, if true,

would be a lower bound than for any other known general geometric matching algorithm.

Tree search shares this bound for random clutter matching problems, but is exponential for

multiple instance matching problems [48]. It would be of great theoretical interest to try to

validate this bound analytically. However, for all the reasons discussed at the beginning of

this chapter, this could prove very di�cult.

Theoretical concerns aside, n

2

growth is still m

4

growth in model size when all model

segments might match any data segment, and it represents a serious practical limitation for

subset-convergent local search, just as it does for all other known general geometric matching

algorithms. To test the power of subset-convergent local search algorithm by itself, this

chapter made no use of ancillary information. However, this is not the best way to use the

subset-convergent local search algorithm. Any source of information which can reduce n by

reducing the size of the set of possibly matching pairs will improve performance signi�cantly.

An initial pose estimate for an object is an obvious additional source of constraint, and the

usefulness of initial pose estimates has already been demonstrated in matching problems

presented in Chapters 1 and 5

Up to now, this thesis has considered only essentially 2D or weak-perspective matching

problems. This is in keeping with the precedent set by the vast majority of the previous

work on geometric matching. However, the next two chapters will extend the local search

139

matching in order to �nd globally optimal correspondence mappings and associated 3D-to-2D

pose estimates for geometric matching problems involving full 3D perspective. To do this,

Chapter 7 will summarize the work of Kumar [68, 69] on computing 3D-to-2D pose, and

show how his algorithm can be modi�ed to e�ciently support full-perspective matching.

Using the pose algorithm to �t 3D models to 2D image data, Chapter 8 will extend the local

search algorithm presented in Chapter 5 to perform full-perspective matching.

C H A P T E R 7

Fitting Under Full-Perspective

7.1 Introduction

Computing the 3D pose of a 3D object model relative to corresponding features in

an image is similar in concept to the problem of computing 2D pose already described

in Chapter 4. Here 3D pose is de�ned to be the position and orientation of the model

relative to the image plane, and hence the camera, which minimize a sum of squared errors.

The error measure for 3D pose is a point-to-plane distance measure described below. The

problem of �nding the best-�t 3D pose is a non-linear optimization problem, and while the

weak-perspective-2D best-�t pose is determined analytically, the 3D full-perspective pose

must be determined using an iterative technique.

The basic measure and associated algorithm used to compute 3D pose is the same as

that developed and studied by Kumar [70]. Kumar's nonlinear least-squares optimization

algorithm used to �nd the best pose is adapted from Horn [52], and in particular uses

quaternions to represent rotation in order to speed convergence. Here, three enhancements

to Kumar's algorithm are developed. First, a midpoint-to-midpoint regularizing term is

added to Kumar's original measure. In a manner analogous to that already described for

weak-perspective �tting in Section 4.5, this added measure will yield a unique best-�t pose

in many cases where such a unique pose would not otherwise be de�ned.

The second enhancement is related to the �rst, and that is the use of the Levenberg-

Marquardt method within the inner loop of the iterative pose algorithm. The Levenberg-

Marquardt method [93] is a good way of solving systems of equation which may be nearly

singular. In particular, it only incurs an additional computational cost when the equations

are near singular. It has been used by David Lowe [82] to solve pose equations similar to

those developed here. The introduction of the regularization term makes otherwise singular

cases near singular, and hence it is necessary to use the Levenberg-Marquardt method to

solve these cases.

The third enhancement is to completely rederive the 3D pose update equations in order

to characterize pose in terms of a sum of state vectors: one vector per pair of corresponding

line segments. The motivation is to support incremental evaluation of the best-�t pose and

associated �t error for the Hamming-Distance-1 neighbors of a match. Recall that this was

described for weak-perspective �tting in Section 5.2.1. Removing the summation over the

complete set of corresponding segments within the inner loop of the iterative pose algorithm

will make full-perspective matching more e�cient.

Kumar [69] has recently developed newer �t measures for determining 3D pose which

are much closer to the ISPD measure used for weak-perspective �tting. Unfortunately, for

141

the following reasons, they are not used in this thesis. The �rst reason is that Kumar's

original �t measure and associated pose algorithm can be recast in the more e�cient state

vector form just mentioned. Unfortunately, this is not feasible for the pose algorithm using

the newer measures. The second reason is timing; the newer measures did not mature soon

enough to be incorporated into this work. Some of the algorithms introduced below make

sparing use of the 3D pose algorithm, and in the future these should probably use Kumar's

newer measure.

The following section presents the original point-to-plane squared error measure and

iterative pose algorithm developed by Kumar [68]. Section 7.3 introduces point-to-ray

regularization of Kumar's original algorithm which is analogous to the point-to-point regu-

larization for weak-perspective �tting introduced in Section 4.5. Section 7.4 derives the linear

update equation used in the inner loop of the pose algorithm using state vectors associated

with individual pairs of 3D world line segments and 2D image line segments.

7.2 Kumar's Algorithm

A line in an image and the focal point of the camera de�ne a plane in 3-space. If

3D models were perfect, and no errors were introduced in during image feature extraction,

then model lines in 3-space projecting onto this line in the image would lie in this plane.

This simple observation is the basis for the �t measure used in Kumar's original 3D pose

algorithm. As illustrated in Figure 7.1, the origin of the camera coordinate system is the

camera focal point, and the focal point plus the two endpoints of an image line segment

de�ne a plane in 3-space. If the image line segment is the projection of a line in the 3D

world, then this 3D world line segment must lie on this plane. Due to noise, the segment

usually will not lie exactly in the plane, but the distance from the 3D world segment to

the plane should be small. Kumar's pose algorithm solves for rigid transformation which

minimizes the sum-of-squared distances between points on 3D world lines and these planes.

The point-to-plane distance between endpoints of the 3D world line segment and the

plane formed by the image line segment may be written as the dot product of the unit normal

to the plane and the 3D endpoints transformed into camera coordinates. The sum-of-squared

perpendicular distances may thus be written as

E =

n

X

i=1

2

X

j=1

�

^

N

i

�

�

R

~

P

ij

+

~

T

��

2

: (7:1)

The sum is over n pairs of corresponding 3D and 2D line segments. The unit normal to the

plane de�ned by each 2D segment is

^

N

i

. The endpoints of the corresponding 3D segments are

~

P

i1

and

~

P

i2

. The pose of the 3D segments relative to the 2D segments, and hence the camera,

is expressed as a rotation R and translation

~

T applied to the 3D points. The perpendicular

point-to-plane distances for endpoint

~

P

i1

is shown in Figure 7.1. Observe that although

endpoints of 3D line segments are used here, in general any set of 3D points assumed to

project to the image line could be used.

The best-�t 3D pose for a set of corresponding 3D and 2D line segments is de�ned

by the rotation R

�

and translation

~

T

�

which minimize equation 7.1. Solving for R

�

and

~

T

�

is a non-linear optimization problem. The approach proposed by Kumar is to linearize

142

Image Line

3D World Line

Camera
Coordinates

World
Coordinates

Image Plane

Camera Focal Point and Im
age Line Plane

Minimize E

�t

� E

E =

P

n

i=1

P

2

j=1

�

^

N

i

�

�

R

~

P

ij

+

~

T

��

2

^

N

i

Z

c

Y

c

X

c

Z

w

Y

w

X

w

~

P

i1

^

N

i

�

�

R

~

P

i1

+

~

T

�

Figure 7.1 Point-to-plane �t measure for 3D-to-2D pose algorithm.

143

the measure about some estimated pose R

e

and

~

T

e

. In particular, Rodriguez's formula

approximating a rotation with a cross product is used to derive a linear version equation 7.1:

E =

n

X

i=1

2

X

j=1

�

i

�

^

N

i

�

�

R

e

~

P

ij

+ � ~w �

�

R

e

~

P

ij

�

+

~

T +�

~

T

��

2

: (7:2)

The term inside the quadratic is now linear in � ~w and �

~

T .

A weighing term �

i

has also been added to the sum. There are several ways this weight

may be used to alter the relative importance of particular sets of corresponding segments.

One is to reect the relative length of the corresponding 2D data line segments in order to

give longer segments greater inuence over R

�

and

~

T

�

. Another use is to o�set the tendency

for 3D line segments far from the camera to exert a disproportionate inuence relative to

endpoints near the camera. This latter bias is explained below. In practice, �

i

is typically

selected so as to both reect relative length of the image line segments and to o�set the

distant 3D points bias.

The heart of the distance bias lies in the fact that the same amount of error or noise

applied to a point in the image plane gives rise to a larger perpendicular point-to-plane

distance for 3D points lying farther from the image plane. Figure 7.2 illustrates how

perpendicular error is accentuated for points farther from the image plane. the same camera

coordinates, image plane, and image line segment in Figure 7.2 is the same as in Figure 7.1.

Figure 7.2 shows the point-to-plane distance two points:

~

P

near

and

~

P

far

. Both points project

to the same image point, and hence the displacement o� the true line in the image plane

is the same for both. However, the 3D point-to-plane distance is larger in absolute terms

for

~

P

far

than for

~

P

near

. This means that the same amount of pixel noise applied to the

projection of a point far from the image plane will exert a greater inuence on the optimal

pose estimateR

�

and

~

T

�

than for a point nearer the image plane. An approximate correction

for this problem is to set �

i

to be the reciprocal of the distance from the 3D endpoint and

the camera focal point given the initial pose estimate R

e

and

~

T

e

.

The basis for the 3D pose algorithm is to set the partial derivative of equation 7.2 with

respect to � ~w and �

~

T equal to zero. Doing this yields the following set of equalities:

n

X

i=1

2

X

j=1

�

i

�

^

N

i

��

~

T +

��

R

e

~

P

ij

�

�

^

N

i

�

� � ~w

�

^

N

i

=

�

n

X

i=1

2

X

j=1

�

i

�

^

N

i

�

�

R

e

~

P

ij

+ T

e

��

^

N

i

(7.3)

n

X

i=1

2

X

j=1

�

i

�

^

N

i

��

~

T +

��

R

e

~

P

ij

�

�

^

N

i

�

� � ~w

� ��

R

e

~

P

ij

�

�

^

N

i

�

=

�

n

X

i=1

2

X

j=1

�

i

�

^

N

i

�

�

R

e

~

P

ij

+ T

e

�� ��

R

e

~

P

ij

�

�

^

N

i

�

(7.4)

Equations 7.3 and 7.4 together constitute six linear equations in six unknowns: the individual

elements of � ~w and �

~

T . The � ~w and �

~

T values solving this system of equations minimize

the linearized error in equation 7.2.

The iterative step of the pose algorithm repeatedly solves for � ~w and �

~

T and uses these

144

Camera
Coordinates

Image Plane
Z

c

Y

c

X

c

~

P

far

~

P

near

Figure 7.2 Point-to-plane error accentuated for

~

P

far

versus

~

P

near

.

145

values to update R

e

and

~

T

e

. Iteration terminates with the best-�t pose R

�

and

~

T

�

when both

� ~w and �

~

T are essentially zero or when the relative change in �t drops below a threshold.

The linear equation may be written more compactly as follows:

C D

D

T

F

!

�

~

T

� ~w

!

=

~

G

~

H

!

; (7:5)

where

C =

n

X

i=1

2

X

j=1

�

i

^

N

i

^

N

T

i

(7.6)

D =

n

X

i=1

2

X

j=1

�

i

^

N

i

��

R

e

~

P

ij

�

�

^

N

i

�

T

(7.7)

F =

n

X

i=1

2

X

j=1

�

i

��

R

e

~

P

ij

�

�

^

N

i

� ��

R

e

~

P

ij

�

�

^

N

i

�

T

(7.8)

~

G = �

n

X

i=1

2

X

j=1

�

i

�

^

N

i

�

�

R

e

~

P

ij

+ T

e

��

^

N

i

(7.9)

~

H = �

n

X

i=1

2

X

j=1

�

i

�

^

N

i

�

�

R

e

~

P

ij

+ T

e

�� ��

R

e

~

P

ij

�

�

^

N

i

�

: (7.10)

Equation 7.5 is essentially equivalent to equations 19 and 20 in Kumar [70]. From an

e�ciency standpoint, the problem with using the terms de�ned in equations 7.7 through 7.10

is the presence of the current best estimatesR

e

and

~

T

e

within the sums. These termsmust be

recomputed on each iteration of the pose algorithm, and doing this means iterating over the

n pairs of corresponding segments: iteration over improved pose estimates is compounded

by iteration over matching pairs of segments. Section 7.4 will show how this costly internal

summing over pairs can be avoided. But �rst, it is helpful to add a regularizing point-to-ray

term to the point-to-plane �tting error just de�ned.

7.3 Point-to-Ray Regularization

For a number of common geometric con�gurations, such as three 3D segments meeting

at a vertex, there is no unique pose R

�

and

~

T

�

which minimize equation 7.1. From the

standpoint of local search, this is a problem. Recall from Chapter 5 that the match error is

unde�ned when a unique best-�t pose cannot be determined. Correspondence mappings

without unique best-�t poses are o�-limits to the local search process, and experience

suggests this can cut o� potential paths to better matches.

To produce a unique best-�t pose for many of these geometric con�gurations, an addi-

tional squared error term is added to the existing point-to-plane measure. This additional

term measures 3D point-to-ray distance for corresponding 3D model line segments and 2D

image line segments. The ray is de�ned by the focal point of the camera and the midpoint

of each of the image line segments. The regularization term is the 3D distance from this ray

to the midpoint of the corresponding 3D model line segment.

146

This point-to-ray distance is easily computed in the framework already developed. Note

that the squared distance from a 3D point to a ray may be computed as the sum of two

point-to-plane distances. All that is required is that both planes contain the ray and that

they be orthogonal. The following equation shows equation 7.2 extended to include the

point-to-ray distance measure.

E =

n

X

i=1

2

X

j=1

�

i

�

^

N

i

�

�

R

e

~

P

ij

+ � ~w �

�

R

e

~

P

ij

�

+

~

T +�

~

T

��

2

+

n

X

i=1

�

i

�

�

^

N

i

�

�

R

e

~

P

im

+ � ~w �

�

R

e

~

P

ij

�

+

~

T +�

~

T

��

2

+

n

X

i=1

�

i

�

�

^

O

i

�

�

R

e

~

P

im

+ � ~w �

�

R

e

~

P

ij

�

+

~

T +�

~

T

��

2

(7.11)

The additional terms measure point-to-plane distance from the midpoint

~

P

im

of the 3D

model segment to the plane de�ned by the unit normal

^

N

i

and two a second plane passing

through the midpoint of the 2D image segment and orthogonal to the �rst. The unit normal

of this second plane is

^

O

i

. The relative importance of the regularizing term is controlled by

the additional weight � .

Equation 7.11 is rewritten more compactly by combining the summation over endpoints

and midpoints:

E =

n

X

i=1

4

X

j=1

�

ij

�

^

N

ij

�

�

R

e

~

P

ij

+ � ~w�

�

R

e

~

P

ij

�

+

~

T +�

~

T

��

2

; (7:12)

and accordingly equating new terms indexed by i and j with the terms appearing in equa-

tion 7.11:

�

i1

= �

i

�

i2

= �

i

�

i3

= ��

i

�

i4

= ��

i

^

N

i1

=

^

N

i

^

N

i2

=

^

N

i

^

N

i3

=

^

N

i

^

N

i4

=

^

O

i

~

P

i1

=

~

P

i1

~

P

i2

=

~

P

i2

~

P

i3

=

~

P

im

~

P

i4

=

~

P

im

:

Choosing the proper weight � is a matter of striking a balance between two conicting

constraints. If � is too large, then the point-to-ray distance begins to signi�cantly inuence

the best-�t pose. Since, as has been said many times, data segments fragment, this introduces

a negative bias into the pose estimate. However, for otherwise underconstrained cases,

as � is made smaller, the linear equation 7.5 becomes more nearly singular. In practice,

� = 10

�2

or � = 10

�3

appears to strike a reasonable balance between these two competing

considerations.

To solve linear equation 7.5 for �

~

T and � ~w when using regularization, it has proven

important to use the Levenberg-Marquardt method. This is a clever way of smoothly

combining �rst-order and second-order iterative techniques within one algorithm. The

Levenberg-Marquardt method will automatically use a quick to converge second-order tech-

nique when possible. However, if problems arise due to near singularities in the error measure,

it will switch to a slower and more reliable �rst-order technique. A more complete description

of the Levenberg-Marquardt method can be found in [93].

147

7.4 The State Vector Approach

Using equation 7.5 to repeatedly solve for �

~

T and � ~w requires recomputing the sums

in equations 7.7 through 7.10 for each iteration. This is necessary because R

e

and T

e

are

updated each time through the loop based upon � ~w and �

~

T . Replacements for equations 7.7

through 7.10 are derived in this section for which there is no need to sum over the n

corresponding features within the inner loop of the pose algorithm.

By multiplying out the square and rearranging terms, it possible to rewrite equation 7.2

as follows:

E =

~

R

v

A

~

R

T

v

+ � ~w

T

R

m

AR

T

m

� ~w + 2

~

R

v

AR

T

m

� ~w + 2

~

R

v

B

�

~

T +�

~

T

�

+

2� ~w

T

R

m

B

�

~

T +�

~

T

�

+

�

~

T

T

+�

~

T

T

�

C

�

~

T +�

~

T

�

: (7.13)

Written in this way, teh summation over the pairs of corresponding segments has been hidden

within the terms A, B and C. These terms will be described in detail below. The 9 element

vector

~

R

v

and the 3x9 matrix R

m

are alternative arrangements of the row vectors in the

original rotation estimate matrix R

e

:

R

e

=

~

U

T

~

V

T

~

W

T

~

R

v

=

~

U

~

V

~

W

R

m

=

0 �

~

W

T

~

V

T

~

W

T

0 �

~

U

T

�

~

V

T

~

U

T

0

: (7:14)

De�ning

~

R

v

and R

m

simpli�es equation 7.13.

Taking the same basic approach as in Section 7.2, the partial derivative of equation 7.13

is set to zero and new de�nitions for the terms in equations 7.7 through 7.10 are derived:

D = R

m

B (7.15)

F = R

m

AR

T

m

(7.16)

~

G = �C

~

T �B

T

~

Rv (7.17)

~

H = �D

~

T �R

m

A

~

Rv: (7.18)

The C matrix remains as originally de�ned in equation 7.6.

The A and B matrices are de�ned as follows:

A =

n

X

i=1

4

X

j=1

�

ij

�

^

N

ij

�

~

P

ij

� �

^

N

ij

�

~

P

ij

�

T

(7.19)

B =

n

X

i=1

4

X

j=1

�

ij

�

^

N

ij

�

~

P

ij

�

^

N

T

ij

(7.20)

where the Kronecker product of

^

N

ij

and

~

P

ij

is

148

^

N

ij

�

~

P

ij

=

n

ij x

p

ij x

n

ij x

p

ij y

n

ij x

p

ij z

n

ij y

p

ij x

n

ij y

p

ij y

n

ij y

p

ij z

n

ij z

p

ij x

n

ij z

p

ij y

n

ij z

p

ij z

(7:21)

^

N

ij

=

n

ij x

n

ij y

n

ij z

(7.22)

~

P

ij

=

p

ij x

p

ij y

p

ij z

(7.23)

It is only a small step from the de�nitions of A, B and C to a state vector

~

S, where

this vector completely captures the information required to determine 3D pose. The vector

~

S is nothing more than the union of the unique elements of A, B and C. For the sake of

completeness, the 60 elements of

~

S

i

are enumerated in Table 7.1. Table 7.1 is divided into

three sections, with headings indicating which elements of

~

S

i

are associated with A, B and C.

To obtain the state vector

~

S

c

for a correspondence mapping c, the individual contributions

from the n corresponding pairs of segments are summed:

~

S

c

=

n

X

i=1

~

S

i

: (7:24)

In the context of matching, there are three distinct ways in which the state vector

approach saves computation compared to using the original equations 7.6 through 7.10.

The �rst saving is in having only to compute the state vectors

~

S

i

once when the initial

set of potentially matching pairs of 3D model segments and image segments is de�ned.

During matching, the state vectors for di�erent correspondence mappings can be computed

by summing as indicated in equation 7.24.

A greater savings is realized within the inner loop of the pose algorithm. Recall n is the

number of paired features, and that the complexity of the pose algorithm using the original

set of equations 7.6 through 7.10 is the number of iterations multiplied by n. This can

make computing pose costly if either the number of iterations or n gets large. Removing

summation over n makes the complexity of the pose algorithm independent of n. To put it

another way, the time required to compute 3D pose no longer depends upon the size of the

match. For larger matches this can save a great deal of time.

The �nal and most pronounced savings is realized when evaluating a Hamming-distance-

1 neighborhood as part of local search. Using the state vector form, it is possible to

incrementally compute the 3D pose for the Hamming-Distance-1 neighbors of a current

correspondence c. Let

~

S

c

be the state vector for c and let neighbor c

0

be obtained by

removing the kth pair from c:

~

S

c

0

=

~

S

c

�

~

S

k

: (7:25)

To add the kth pair, add rather than subtract

~

S

k

.

149

Table 7.1 Fully de�ned 3D pose determining state vector.

C Matrix A Matrix

~

S

i

(1) =

P

4

j=1

�

ij

n

ij x

n

ij x

~

S

i

(25) =

P

4

j=1

�

ij

n

ij x

n

ij x

p

ij x

p

ij x

~

S

i

(2) =

P

4

j=1

�

ij

n

ij x

n

ij y

~

S

i

(26) =

P

4

j=1

�

ij

n

ij x

n

ij x

p

ij x

p

ij y

~

S

i

(3) =

P

4

j=1

�

ij

n

ij x

n

ij z

~

S

i

(27) =

P

4

j=1

�

ij

n

ij x

n

ij x

p

ij x

p

ij z

~

S

i

(4) =

P

4

j=1

�

ij

n

ij y

n

ij y

~

S

i

(28) =

P

4

j=1

�

ij

n

ij x

n

ij x

p

ij y

p

ij y

~

S

i

(5) =

P

4

j=1

�

ij

n

ij y

n

ij z

~

S

i

(29) =

P

4

j=1

�

ij

n

ij x

n

ij x

p

ij y

p

ij z

~

S

i

(6) =

P

4

j=1

�

ij

n

ij z

n

ij z

~

S

i

(30) =

P

4

j=1

�

ij

n

ij x

n

ij x

p

ij z

p

ij z

B Matrix

~

S

i

(31) =

P

4

j=1

�

ij

n

ij x

n

ij y

p

ij x

p

ij x

~

S

i

(7) =

P

4

j=1

�

ij

n

ij x

n

ij x

p

ij x

~

S

i

(32) =

P

4

j=1

�

ij

n

ij x

n

ij y

p

ij x

p

ij y

~

S

i

(8) =

P

4

j=1

�

ij

n

ij x

n

ij x

p

ij y

~

S

i

(33) =

P

4

j=1

�

ij

n

ij x

n

ij y

p

ij x

p

ij z

~

S

i

(9) =

P

4

j=1

�

ij

n

ij x

n

ij x

p

ij z

~

S

i

(34) =

P

4

j=1

�

ij

n

ij x

n

ij y

p

ij y

p

ij y

~

S

i

(10) =

P

4

j=1

�

ij

n

ij x

n

ij y

p

ij x

~

S

i

(35) =

P

4

j=1

�

ij

n

ij x

n

ij y

p

ij y

p

ij z

~

S

i

(11) =

P

4

j=1

�

ij

n

ij x

n

ij y

p

ij y

~

S

i

(36) =

P

4

j=1

�

ij

n

ij x

n

ij y

p

ij z

p

ij z

~

S

i

(12) =

P

4

j=1

�

ij

n

ij x

n

ij y

p

ij z

~

S

i

(37) =

P

4

j=1

�

ij

n

ij x

n

ij z

p

ij x

p

ij x

~

S

i

(13) =

P

4

j=1

�

ij

n

ij x

n

ij z

p

ij x

~

S

i

(38) =

P

4

j=1

�

ij

n

ij x

n

ij z

p

ij x

p

ij y

~

S

i

(14) =

P

4

j=1

�

ij

n

ij x

n

ij z

p

ij y

~

S

i

(39) =

P

4

j=1

�

ij

n

ij x

n

ij z

p

ij x

p

ij z

~

S

i

(15) =

P

4

j=1

�

ij

n

ij x

n

ij z

p

ij z

~

S

i

(40) =

P

4

j=1

�

ij

n

ij x

n

ij z

p

ij y

p

ij y

~

S

i

(16) =

P

4

j=1

�

ij

n

ij y

n

ij y

p

ij x

~

S

i

(41) =

P

4

j=1

�

ij

n

ij x

n

ij z

p

ij y

p

ij z

~

S

i

(17) =

P

4

j=1

�

ij

n

ij y

n

ij y

p

ij y

~

S

i

(42) =

P

4

j=1

�

ij

n

ij x

n

ij z

p

ij z

p

ij z

~

S

i

(18) =

P

4

j=1

�

ij

n

ij y

n

ij y

p

ij z

~

S

i

(43) =

P

4

j=1

�

ij

n

ij y

n

ij y

p

ij x

p

ij x

~

S

i

(19) =

P

4

j=1

�

ij

n

ij y

n

ij z

p

ij x

~

S

i

(44) =

P

4

j=1

�

ij

n

ij y

n

ij y

p

ij x

p

ij y

~

S

i

(20) =

P

4

j=1

�

ij

n

ij y

n

ij z

p

ij y

~

S

i

(45) =

P

4

j=1

�

ij

n

ij y

n

ij y

p

ij x

p

ij z

~

S

i

(21) =

P

4

j=1

�

ij

n

ij y

n

ij z

p

ij z

~

S

i

(46) =

P

4

j=1

�

ij

n

ij y

n

ij y

p

ij y

p

ij y

~

S

i

(22) =

P

4

j=1

�

ij

n

ij z

n

ij z

p

ij x

~

S

i

(47) =

P

4

j=1

�

ij

n

ij y

n

ij y

p

ij y

p

ij z

~

S

i

(23) =

P

4

j=1

�

ij

n

ij z

n

ij z

p

ij y

~

S

i

(48) =

P

4

j=1

�

ij

n

ij y

n

ij y

p

ij z

p

ij z

~

S

i

(24) =

P

4

j=1

�

ij

n

ij z

n

ij z

p

ij z

~

S

i

(49) =

P

4

j=1

�

ij

n

ij y

n

ij z

p

ij x

p

ij x

~

S

i

(50) =

P

4

j=1

�

ij

n

ij y

n

ij z

p

ij x

p

ij y

~

S

i

(51) =

P

4

j=1

�

ij

n

ij y

n

ij z

p

ij x

p

ij z

~

S

i

(52) =

P

4

j=1

�

ij

n

ij y

n

ij z

p

ij y

p

ij y

~

S

i

(53) =

P

4

j=1

�

ij

n

ij y

n

ij z

p

ij y

p

ij z

~

S

i

(54) =

P

4

j=1

�

ij

n

ij y

n

ij z

p

ij z

p

ij z

~

S

i

(55) =

P

4

j=1

�

ij

n

ij z

n

ij z

p

ij x

p

ij x

~

S

i

(56) =

P

4

j=1

�

ij

n

ij z

n

ij z

p

ij x

p

ij y

~

S

i

(57) =

P

4

j=1

�

ij

n

ij z

n

ij z

p

ij x

p

ij z

~

S

i

(58) =

P

4

j=1

�

ij

n

ij z

n

ij z

p

ij y

p

ij y

~

S

i

(59) =

P

4

j=1

�

ij

n

ij z

n

ij z

p

ij y

p

ij z

~

S

i

(60) =

P

4

j=1

�

ij

n

ij z

n

ij z

p

ij z

p

ij z

150

7.5 Conclusion

This chapter presented the 3D pose algorithm developed by Kumar [68, 69], along with

a series of modi�cations to make the algorithm more useful for local search matching. To

extend the algorithm to work on problems involving small numbers of model and image

features, Section 7.3 introduced a regularization term. To make pose determination more

e�cient, particularly in the context of local search, Section 7.4 rederived the basic pose

update equations in terms of state vectors associated with pairs of model and image line

segments.

Chapter 8 will show how, using the 3D pose algorithm, local search matching can �nd

optimal correspondence mappings and 3D pose estimates between 3D object models and

image features. Where before, E

�t

was de�ned in terms of the residual integrated squared

perpendicular distance between model and image line segments in the image plane, a new

local search algorithm will de�ne E

�t

in terms of the residual 3D point-to-plane distances

measured between corresponding 3D world line segments and image lines. Where before, the

best-�t pose was a 2D similarity transformation between model and image line segments,

with the new algorithm it will be the best-�t 3D rotation R

�

and translation

~

T

�

relating the

3D object to the camera.

For full-perspective matching, the initial pose estimate R

e

and

~

T

e

takes on added

importance. In weak-perspective matching, it was optionally used to constrain the set of

possibly matching pairs of model and image features. With full-perspective matching, it

is a required input to the 3D pose algorithm. For an added computational burden, the

pose algorithm could be run without an initial estimate by coarsely sampling the space of

possible poses [69]. However, this would both be expensive and beg the more fundamental

question of determining which 3D features are visible. For both these reasons, the work on

full-perspective matching will assume the initial pose of the 3D object is roughly known.

C H A P T E R 8

Matching with 3D Perspective

8.1 Introduction

The matching problems considered in Chapters 5 and 6 were solved using weak-perspective

matching as de�ned in Section 1.3. The previous chapter presented Kumar's [70, 71] full-

perspective 3D pose algorithm, and this chapter will use this 3D pose algorithm to develop

new full-perspective matching algorithms. These algorithms will solve optimal correspon-

dence and pose problems without imposing the restrictive weak-perspective imaging assump-

tion.

Problems requiring full-perspective matching arise in the context of landmark-based

robot navigation. In landmark-based navigation, a robot has a partial model of its environ-

ment, and through recognizing these landmarks, the robot maintains an up-to-date estimate

of where it is in the environment. Such knowledge is a prerequisite of intelligent navigation

for both people and robots: it is hard to go where you want if you don't know where you are.

Landmark-based navigation is further described in the following section, and the importance

of accounting for full-perspective when navigating indoors will become apparent.

The terms full-perspective and weak-perspective are used to describe imaging, matching

algorithms and matching problems. A review of how these terms are used will be helpful.

Recall that Section 1.3 de�nes weak-perspective and full-perspective as types of imaging.

Full-perspective imaging is de�ned as the mapping between 3D object features and 2D image

features implied by perspective projection and associated with a pin-hole camera model.

Weak-perspective imaging, or more precisely weak-perspective-2D imaging, approximates

full-perspective by projecting 3D features into the 2D image plane based upon a single �xed

pose estimate, and subsequently involves rotating, translating and scaling these projected

features in the image plane to vary an object's appearance.

A weak-perspective matching algorithm is de�ned as one which uses only weak-perspective

imaging to account for the changes in appearance of a model relative to corresponding

image data. The Hamming-distance-1, steepest-descent algorithm introduced in Section 5.1,

and the subset-convergent algorithm introduced in Section 5.4, are both weak-perspective

matching algorithms. In contrast, a full-perspective matching algorithm is de�ned as one

which uses full-perspective imaging to account for changes in the appearance of a model.

To do this, the full-perspective matching algorithms introduced in this chapter will use the

full-perspective �tting algorithm (3D pose algorithm) presented in Chapter 7.

A weak-perspective matching problem is de�ned as a problem which can be solved using

weak-perspective matching. To be more precise, it is a problem for which weak-perspective

imaging is adequate to register corresponding model and data features. Whether a matching

152

problem is a weak-perspective matching problem depends in part upon the pose estimate

used to project the 3D model into the 2D image plane; the projection must be transform to

�t the image data using only rotation, translation and scaling in the image plane. If this is

not already obvious, examples in the following section will help. A full-perspective matching

problem is de�ned as one which can be solved using full-perspective matching, and as a

matter of practice, this term is reserved for problems requiring full-perspective matching.

This chapter develops three di�erent full-perspective matching algorithms, and tests

each on the same set of full-perspective matching problems. The �rst is called the full-

perspective-inertial-descent algorithm, and it is the most obvious and brute-force extension of

the weak-perspective steepest-descent algorithm introduced in Section 5.1. Starting with the

weak-perspective algorithm, this new algorithm is obtained by completely replacing the weak-

perspective �tting algorithm de�ned in Chapter 4 with the full-perspective �tting algorithm

de�ned in Chapter 7. In addition, steepest-descent is replaced by a strategy called here

inertial-descent. Inertial descent caches potentially good moves detected when evaluating

the n neighbors of a match, and tries these before again testing the entire neighborhood.

This is described further in Section 8.3.1.

The inertial-descent-full-perspective algorithm uses the iterative 3D pose algorithm every

time it tests a match, i.e. for every change in model-data correspondence. This means it runs

the pose algorithm n times when testing the n Hamming-distance-1 neighbors of a match.

This is fairly expensive, and the motivation behind the second full-perspective matching

algorithm is to save time during neighborhood evaluation by using the weak-perspective

pose update and associated match error to approximate a full-perspective pose update and

match error computation. The hope is that often the cheaper weak-perspective test will

suggest the same neighbor, and that the 3D pose recovery algorithm need only be run after

the most promising neighbor has been selected. This algorithm is called the hybrid-weak-full-

perspective algorithm because it utilizes both weak-perspective and full-perspective during

local search.

The third full-perspective matching algorithm developed in this chapter is called the

hybrid-subset-convergent algorithm. The motivation for this algorithm is found in the relative

strength of the subset-convergent local search algorithm from Section 5.4 compared to the

Hamming-distance-1 steepest-descent algorithm from Section 5.1. Recall that the subset-

convergent algorithm is, in some sense, built on top of the Hamming-distance-1 steepest-

descent algorithm. More precisely, the subset-convergent algorithm uses the Hamming-

distance-1 steepest-descent algorithm to �nd paths from subsets of a Hamming-distance-1

locally optimal match to new, often better, matches. In similar fashion, the hybrid-subset-

convergent algorithm de�ned in this chapter uses the hybrid-weak-full-perspective algorithm

to �nd paths from subsets of a hybrid-weak-full-perspective locally optimal match to new,

often better, matches.

The following section introduces geometricmatching problems associated with landmark-

based robot navigation. The importance of 3D perspective in these problems is empha-

sized. Section 8.3 presents the three full-perspective matching algorithms: inertial-descent-

full-perspective local search, hybrid-weak-full-perspective local search, and hybrid-subset-

convergent local search. Section 8.3.4 summarizes the salient attributes of these algorithms

and of the weak-perspective-steepest-descent algorithm presented in Section 5.1. Section8.4

153

compares the performance of these three algorithms, plus that of the weak-perspective-

steepest-descent algorithm, on the full-perspective matching problems introduced in Sec-

tion 8.2.

8.2 Landmark-Based Robot Navigation

One of the many domains in which geometricmatching problems arise is that of landmark-

based robot navigation. For example, a robot moving through a hallway tracks its progress

using vision, and it acquires images such as shown in Figures 8.1a and 8.1b. It must test and

update its position and orientation estimate based upon the appearance of known landmarks.

To infer its 3D pose relative to the known landmarks, it must solve for the correspondence

between modeled landmark features and image features.

As illustrated in Figure 8.2, modest changes in position can introduce pronounced

perspective e�ects. Figure 8.2a shows 9 di�erent poses for a robot. A partial wire frame

model of the hallway is shown in relation to these poses. To give a sense of scale to this

illustration, pose 5 is 40 feet from the doorway at the end of the hallway. Image 1 in

Figure 8.1a is taken from pose 5. Figure 8.2b shows the prominent landmark features as

they would appear from each of the 9 indicated poses. These features are 3D segments from

a partial wire frame model of the hallway.

The recognition problems suggested by Figure 8.2 are `perspective-sensitive' because

small changes in robot position introduce signi�cant perspective e�ects. For example, it

simply isn't possible using weak-perspective to accurately �t the projection of the landmark

as it appears from pose 2 to segments extracted from image 1. An easy way to see this

is to consider �tting the projection from pose 2 to the projection from pose 5. There is

no way using only 2D rotation, translation and scaling to introduce the changes in relative

orientation between segments evident in these two projections. It is also worth noting that

these perspective e�ects arise with relatively minor changes in robot position. Pose 2 is only

2 feet to the left of pose 5.

The partial hallway model, the 9 pose estimates, and the two images shown above

will form the basis for the experiments presented below. The goal of the experiments in

Section 8.4.1 is to recover the true pose that produced the image of Figure 8.1a; each of

the 9 pose estimates shown in Figure 8.2 will be used as initial estimates of robot position.

The experiment presented in Section 8.4.2 treats a harder problem; that of recovering from a

larger error in initial pose estimate. The robot poses from which the two images in Figure 8.1

are taken di�er by over 10 feet. The problem in the second experiment is to recover the pose

using the data from one image and the pose from the other as an initial estimate.

8.3 Three Full-perspective Matching Algorithms

Three distinct full-perspective local search matching algorithms are de�ned in this sec-

tion. The �rst is a brute-force extension from weak-perspective to full-perspective in which

the weak-perspective �tting from Chapter 4 is completely replaced by the full-perspective

�tting, or 3D pose computation, from Chapter 7. The second algorithm, in the interests

of saving computation, uses the less expensive weak-perspective �tting to evaluate local

154

(a)

(b)

Figure 8.1 Two hallway images. a) Image 1, b) Image 2.

155

a

1 4 7

2 5 8

3 6 9

1 4 7

2 5 8

3 6 9

b

Figure 8.2 Perspective views of landmarks: a) Robot in relation to a partial model of the

hallway. The image in Figure 8.1a was taken from pose 5. Each of the 9 poses shown are used

as initial estimates from which landmark recognition tries to recover the robot's true pose.

The eight poses around pose 5 are obtained by moving the robot forward and backward 4

feet and side-to-side 2 feet. b) Landmark features as they would appear from each of the 9

poses. The relative orientation of the baseboards and the door frame change as the robot's

pose estimate shifts laterally.

156

neighborhoods and recomputes 3D pose only when adopting a new improved match. Finally,

the third algorithm extends the second using the same subset-convergent search strategy

presented in Chapter 5.

For all three algorithms, the omission error E

om

is computed for 2D model segments

after they have been projected into the image plane based upon the 3D pose estimates.

Additionally, a clipping algorithm is used during projection to remove segments, or portions

of segments, not projecting into the bounded image plane. Consequently, omission is com-

puted only for those portions of the 3D model actually visible from the best-�t 3D pose.

The rationale is that it is unreasonable to penalize a match for failing to �nd data outside

the image, and this approach seems adequate for the experiments presented here. However,

this approach appears to be a source of problems on recent and very preliminary tests for

matching models to the outdoor scene shown in Figure 5.12. How best to handle omission

for features projecting outside the image plane needs further study.

8.3.1 Full-perspective-Inertial-Descent Matching

The full-perspective-inertial-descent algorithm uses a modi�ed version of the match error

in which the �t error E

�t

is de�ned to be a function of the residual point-to-plane squared

error terms used by the 3D pose algorithm described in Chapter 7. This means the 3D pose

of the object model relative to the camera is computed for every match which is tested. In

particular, the iterative nonlinear optimal 3D pose is run for each of the n neighbors in the

Hamming-Distance-1 neighborhood.

Evaluating the n neighboring matches using the 3D pose algorithm is computationally

demanding. Using the steepest-descent strategy, n 3D poses must be computed before every

step in the local search process. In an e�ort to save computation, a modi�ed strategy named

here inertial-descent is used in place of steepest-descent. The idea is to exploit information

obtained when testing the n neighborhoods in order to choose a sequence of moves through

the search space. When the n neighbors of a current match are evaluated, those neighborhood

transformations which lead to better matches are ranked in order of improvement and stored

in a list. Provided this list is not empty, the algorithm applies the �rst transformation and

thus moves to a new, and guaranteed to be improved, match state. At this point, rather

than completely evaluate the n neighbors of this new match, the inertial-descent algorithm

tests whether the second ranked transformation applied to this new match generates an even

better match. If it does, it repeats this process with the third ranked transformation, and

so on. This is done until either the list of transformations is exhausted or a transformation

is encountered which no longer yields improvement. Once this occurs, then all n neighbors

are tested and a new list built. Like steepest-descent, the algorithm terminates when none

of the n neighbors are better than the current match.

Figure 8.3 illustrates the di�erence between steepest-descent and inertial-descent on a

simple example. The search space contains 64 states with error values assigned at random.

Figure 8.3a illustrates a steepest-descent search path. The initial state is 10, and the 6

neighbors of 10 are generated by toggling each bit in the bitstring representation of 10. The

scores for all 6 neighbors are shown below move 1, with the best neighbor shown in black.

For each neighbor the following are shown: the state number, the error value, the actual

bitstring representation, and the bit which is toggled in order to generate this neighbor.

157

42

26

 2

 8

11

14

58

10

18

24

27

30

56

 8

16

26

25

28

48

 0

24

18

17

20
10

St Err Bits
10 0.6 001010

 St Err Bits Tg
 42 0.7 101010 1
 26 0.4 011010 2
 2 0.5 000010 3
 14 0.8 001110 4
 8 0.6 001000 5
 11 0.9 001011 6

 St Err Bits Tg
 58 0.5 111010 1
 10 0.6 001010 2
 18 0.3 010010 3
 30 0.3 011110 4
 24 0.2 011000 5
 27 0.6 011011 6

 St Err Bits Tg
 56 0.6 111000 1
 8 0.6 001000 2
 16 0.0 010000 3
 28 0.5 011100 4
 26 0.4 011010 5
 25 0.2 011001 6

 St Err Bits Tg
 48 0.2 110000 1
 0 0.1 000000 2
 24 0.2 011000 3
 20 0.3 010100 4
 18 0.3 010010 5
 17 0.2 010001 6

Move 1 Move 2 Move 3Initial Match No Improvement

(a)

42

26

 2

 8

11

14

58

10

18

24

27

30

16

48

 0

24

18

17

20
10

St Err Bits
10 0.6 001010

 St Err Bits Tg

 42 0.7 101010 1

 26 0.4 011010 2
 2 0.5 000010 3

 14 0.8 001110 4

 8 0.6 001000 5

 11 0.9 001011 6

 St Err Bits Tg

 58 0.5 111010 1
 10 0.6 001010 2

 18 0.3 010010 3
 30 0.3 011110 4

 24 0.2 011000 5

 27 0.6 011011 6

 St Err Bits Tg
 16 0.0 010000 3

 St Err Bits Tg

 48 0.2 110000 1
 0 0.1 000000 2

 24 0.2 011000 3

 20 0.3 010100 4
 18 0.3 010010 5

 17 0.2 010001 6

Move 1 Move 2 Move 3Initial Match No Improvement

(b)

Figure 8.3 Illustrating the di�erence between steepest and inertial-descent. a) Steep-

est-descent performs 4 neighborhood evaluations to �nd the optimal state, b) inertial-descent

performs 3 neighborhood evaluations on the same search problem.

158

In move 1, bit 2 is toggled in order to move from state 10 to state 26. Successive moves

lead search to state 16, which is optimal. Observe that the only information used from each

neighborhood evaluation is the identity of the single neighbor yielding greatest improvement.

Figure 8.3b shows how inertial-descent performs on the same simple example. Inertial-

descent has found the same optima as steepest-descent, but with one less neighborhood

evaluation. Move 3 is made based upon the results of the neighborhood test in move 2. This

represents a 25% savings relative to steepest-descent in this example. To step through the

example in Figure 8.3b, move 1 is still to state 26, but now both the transition to state 26

and state 2 are shown in black in the ranked transitions displayed under the move. This

signi�es that both transitions lead to better matches. This other transition, toggling bit 3, is

tried after move 1. In this case, it does not yield improvement and the entire neighborhood

is again evaluated. However, after this evaluation, toggles of bits 5, 3 and 4 all yield better

matches than state 26. Move 2 toggles bit 5 and moves search to state 24. Then from state

24, toggling bit 3 yields a better match and hence search moves to state 16.

A B C D E F I J
10 11 13 14 17 3 6 9 12 15 16 18 19 5 7 8 2 4 5 8 2 1 0

217.67
 85.81
 10.72
 8.10
 5.49
 1.61
 0.89
 0.70
 0.55
 0.51
 0.50
 0.48
 0.41

A B C D E F I J
10 11 13 14 17 3 6 9 12 15 16 18 19 5 7 8 2 4 5 8 2 1 0

 84.48
 10.21
 2.94
 0.77
 0.66
 0.59
 0.49
 0.41

10

11
13

14

17

3
6

9

12

15

16

18 19

5

7

8 2
4

1

0

J

IH

G

FEDC

B

A

Local Search from Random Start, Example 1

Local Search from Random Start, Example 2

Figure 8.4 Example of the full-perspective-inertial-descent algorithm.

An example of the full-perspective-inertial-descent algorithm is presented below using

Figures 8.4 and 8.5 for illustration. The matching problem is to match the landmark model

shown in Figure 8.2 to data extracted from Image 2, shown in Figure 8.1b. The initial pose

estimate is pose 5, shown in relation to the 3D landmark model in Figure 8.2a. The model

and data line segments are shown on the right hand side of Figure 8.4. The model line

segments are shown projected into the image plane as they would appear from pose 5.

Figure 8.4 also shows a complete trace of two independent runs of the inertial-descent

159

Table 8.1 The improvement lists generated by the inertial-descent algorithm each time it

tests adding/removing a single pair. The highlighted pairs, applied in sequence, lead to

improved matches.

Match Improvements in Descending Order

84.48 ((D;4)(D; 2)(E; 5)(I; 1)(J; 0)(B; 15)(B; 12) : : :

10.21 ((C;7)(J; 0)(I; 1)(E; 5)(B; 12)(B; 15)(A; 11))

2.94 ((D;2)(E; 5)(E; 8)(A; 11)(B; 12)(B; 15))

0.77 ((D;4)(A;13)(A;14)(E;8)(A; 17)(B; 15)(B; 16))

0.41 ()

algorithm. As with previous illustrations, each successive row indicates a successively bet-

ter match. Table 8.1 illustrates the sorted lists of transformations (bit toggles) yielding

improvement for example 1 (Figure 8.4). The highlighted pairs at the head of the lists

actually lead to improved matches. For the �rst three matches, inertial-descent didn't save

any computation relative to steepest-descent. From the new match obtained by toggling

the �rst pair on the list, the second pair no longer improved the match, and therefore all n

neighbors of the new match were tested. However, for the fourth match, the list allowed the

algorithm to apply four changes in correspondence in succession without expending e�ort

testing alternatives. This reduced by nearly 50% the number of 3D pose calculations required

to solve this example.

 84.48 10.21 2.94 0.77

 0.66 0.59 0.49 0.41

Figure 8.5 Landmark projections for full-perspective-inertial-descent example.

To emphasis that new 3D poses are generated during search, Figure 8.5 shows the

projection of the landmark from these updated poses for the successively better matches

found in example 1, Figure 8.4. The initial projection looks genuinely awful, as is to be

expected given an initial random assignment of landmark to image features. It is the view

160

of the landmark as it would appear to a robot downstairs and in a room o� to the right

of the hallway, and of course presuming the robot could see through oors and walls. One

reason to show this initial projection is to emphasize that it need not itself be good, or even

logical. What matters only is that local search is able to discover a path from this initial

match to one which is better. This is the case here, and by the fourth match the match

error has dropped from 84:48 to 0:77 and the projection is looking reasonable. The last four

steps in the search path do not dramatically alter the appearance of the projected landmark.

However, they do represent re�nements in the correspondence mapping which improve the

accuracy of the �nal robot pose estimate.

8.3.2 Hybrid Weak-perspective and Full-perspective Matching

Even using inertial-descent rather than steepest-descent, the cost of computing the 3D

pose for all n neighbors in the Hamming-distance-1 neighborhood makes the full-perspective-

inertial-descent algorithm rather slow. In rough terms, it is an order of magnitude faster

to compute the pose of a neighboring match using the closed-form weak-perspective pose

algorithm than it is to compute the pose with the iterative 3D pose algorihtm. Clearly, there

is an incentive to see whether the weak-perspective algorithm might be substituted for the

full-perspective algorithm when testing neighbors in the Hamming-distance-1 neighborhood,

and this is done by the hybrid-weak-full-perspective algorithm presented in this section.

The hybrid-weak-full-perspective algorithm uses the weak-perspectivematch error E

match

de�ned in Chapter 3. To be precise, the �tting of model to image features is done after

the model has been projected into the image plane, and using the weak-perspective �tting

algorithm of Chapter 4. However, and this is a major di�erence, when a new match becomes

the current match, 3D pose is recomputed and the model is reprojected. In this way, the

hybrid-weak-full-perspective is able to take account for full-perspective and recover from

perspective distortions associated with an errorful initial pose estimate.

Figure 8.6 illustrates the essential idea of hybrid-weak-full-perspective by showing tran-

sitions to successively better match states in a search space. Nodes are drawn with the

weak-perspective match error E

match

displayed inside. These states are contrived. Their

purpose is to show exactly where in the search process 3D pose is updated. To begin search,

3D pose is computed for the initial match and the model is projected into the image. Using

these projected model features, the weak-perspective match error E

match

is computed for

all n Hamming-distance-1 neighbors. The neighbor with the lowest error is selected to be

the next match. Search moves to this match, and in so doing, it recomputes the 3D pose

and again projects the 3D model features into the 2D image, this time using the updated

3D pose estimate. This operation on the new match is indicated in Figure 8.6 by two bold

lines connecting a node representing the selected match prior to the 3D pose update, and a

node representing the match after the 3D pose update.

The possible change to E

match

resulting from the 3D pose update puts a new twist on

local search. Although generally E

match

will still be lower than for the previous match, this

need not always be the case. When E

match

goes up, there are only a couple of options. One

is to immediately terminate search. Another is to go back and start trying other neighbors in

the hopes of �nding one for which E

match

stays down after 3D pose is updated. The third

alternative, and the one used here, is to remember the match that was best and continue

161

Move 1 Move 2Initial Match No Improvement

0.7

0.6

0.5

0.7

0.8

0.7

0.9

0.8

0.5

0.2

0.3

0.1

0.6

0.4

0.0

0.2

0.3

0.1

0.4

0.3

0.5

3D Pose
Update

3D Pose
Update

Figure 8.6 3D pose update placement in hybrid-weak-full-perspective search. The nodes in

the search space are shown with the weak-perspective match error E

match

written inside.

The 3D pose is updated after a best neighbor is selected. Updating pose usually alters

E

match

.

searching from the new, worse, match.

The strategy of going on to explore matches worse than already seen is in principle

somewhat antithetical to local search, which in concept only moves to better states. However,

in practice it is quite common. In this thesis, it has already been used by the subset-

convergent local search algorithm, which remembers a match as locally optimal in the

Hamming-distance-1 neighborhood, and then initiates search from subsets of this match.

For the hybrid-weak-full-perspective algorithm, the strategy for exploring worse matches is

to continue search for some �xed number of moves. In all the experiments in this chapter,

up to 10 exploratory moves are permitted. If, during this exploration, a match better than

that being remembered is found, then local search continues and the previously best match

is forgotten. If nothing better is found, then the best match being remembered is returned.

Checks must be put in to prevent search from cycling back to the already discovered

best match. Cycling defeats the purpose of getting away from this match. There is a variant

of local search called tabu search [40] (spelling is `tabu') which embodies this idea: making

moves which in some sense lead backwards taboo. A transformation for the hybrid-weak-

full-perspective is taboo is it adds or removes a pair of model-data features already added

or removed since the last best match was found. Thus, for example, it is not possible for

local search to remove a pair in one move and then undo the e�ect by immediately adding

it back in.

Figure 8.7 illustrates a single trial of the hybrid-weak-full-perspective algorithm with

a randomly chosen initial correspondence is indicated by the �rst row in the table. The

provision for adopting worse matches is seen in the increased match error between rows 1 and

2. The �nal solution is the correct, globally optimal, match. The landmark projected over

the image segments for the �rst 5 matches and the optimal match are shown in Figure 8.8.

162

24 25

23

16 12
15

11

9

8
6

1

2 4

5

22

29

33

35

3

19 20

26
27

28
30

3132

34

36

14

18

21

7

0

10

13
17

J

I
H

G

FEDC

B

A

A B C D E F G H I J
2 4 5 22 24 25 29 33 35 3 19 20 23 26 27 28 30 31 32 34 36 14 16 18 21 11 12 7 15 18 21 11 0 9 8 12 6 10 1 13 17

 97.09
158.17
 74.60
 29.98
 15.58
 6.90
 1.47
 0.71
 0.56
 0.33
 0.18
 0.12
 0.10
 0.08
 0.08

Figure 8.7 Example search trace for the hybrid-weak-full-perspective search. The match

error does increase in the �rst move, but then decreases in all successive moves.

163

 97.09

158.17

 74.60

 29.98

 15.58

 0.08

Figure 8.8 Landmark projections for the hybrid-weak-full-perspective search. The �rst 5

matches are shown along with the �nal optimal match.

164

8.3.3 Hybrid Subset-Convergent Matching

The hybrid-weak-full-perspective algorithm is based upon the Hamming-distance-1 neigh-

borhood, and like the weak-perspective-steepest-descent algorithm introduced in Section 5.1,

it can become stuck on undesirable local optima. To overcome this problem in the weak-

perspective-steepest-descent algorithm, Section 5.4 introduced the subset-convergent local

search algorithm. Recall this algorithm used the weak-perspective-steepest-descent to search

for better matches from subsets of weak-perspective-steepest-descent locally optimal matches.

This section de�nes a hybrid-subset-convergent algorithm for full-perspective matching

which is identical to the subset-convergent local search algorithm from Section 5.4, except

that the weak-perspective-steepest-descent algorithm is replaced by the hybrid-weak-full-

perspective algorithm. The expectation is that testing from subsets will help to eliminate

undesirable local optima for full-perspective matching, just as it did for weak-perspective

matching in Chapter 5. The experiments presented in Section 8.4 test this expectation,

and whether the additional search pays o� in terms of overall time required to reliably �nd

globally optimal matches.

How the subsets are selected for the hybrid-subset-convergent requires some explanation.

The subset selection algorithm described in Section 5.4.1 might select di�erent subsets for

di�erent perspective projections of a 3D model. In principle, the subsets might be updated

dynamically to reect such changes during search. However, in practice this would be

computationally expensive, and instead the subsets are selected based upon the projection

of the 3D model from the initial 3D pose estimate. For example, the automatically selected

4 subsets for the landmark model as projected in Figure 8.7 are model segment pairs

(A;D); (B;C); (F; I) and (E; J).

8.3.4 Comparison and Review of Algorithms

Table 8.2 summarizes the major attributes of the three full-perspective matching algo-

rithms just de�ned. The weak-perspective-steepest-descent de�ned in Section 5.1 is also

included. In the next section, the performance of these four algorithms will be compared on

a series of landmark recognition tasks. Referring back to Table 8.2 may prove a helpful way

of recalling the salient di�erences between the four algorithms.

Algorithm type, either weak-perspective of full-perspective, is indicated for each. The

algorithm type is a direct consequence of whether a full-perspective 3D pose update is

performed after each move taken during local search. All four algorithms are shown to

use the Hamming-distance-1 neighborhood. In addition, the hybrid-subset-convergent algo-

rithm uses the larger neighborhood consisting of matches reached by searching from subsets

of Hamming-distance-1 locally optimal matches. Only the full-perspective-inertial-descent

algorithm uses the full-perspective 3D pose algorithm when testing matches in the Hamming-

distance-1 neighborhood. All the other algorithms use the cheaper weak-perspective pose

algorithm.

Each algorithm uses a somewhat di�erent control strategy to direct search. The weak-

perspective-steepest-descent algorithm uses the basic steepest-descent local search strat-

egy. The full-perspective-inertial-descent algorithm uses the inertial-descent-strategy. The

hybrid-weak-full-perspective algorithm uses the variant on steepest-descent that allows it to

165

Table 8.2 Comparing the attributes of four matching algorithms. The four algorithms are the

weak-perspective-steepest-descent algorithm from Section 5.1 and the three full-perspective

matching algorithms just presented.

Algorithm Type

Pose Update Between Moves

Local Neighborhood(s)

Hamming-1 Neighbor Tests

Local Search Stragetgy

Weak-perspective

Full-perspective

Weak-perspective

Full-perspective

Hamming-distance-1

Subset-convergent

Weak-perspective

Full-perpective

Steepest-descent

Inertial-descent

Steepest-descent-tabu

Subset-convergent

Weak-perspective-steepest-descent

Full-perspective-inertial-descent

Hybrid-weak-full-perspective

Hybrid-subset-convergent

166

move to worse matches and de�nes some transitions as taboo in order to avoid doubling

back. Finally, the hybrid-subset-convergent algorithm uses the subset-convergent strategy

to try to break out of matches which are local optima for the hybrid-weak-full-perspective

algorithm.

8.4 Comparing Performance

This comparison is divided into two experiments. The �rst involves recognizing the

hallway landmark segments in Image 1 from each of the 9 initial pose estimates shown in

Figure 8.2a. This is a modestly di�cult problem, in particular because of the perspective-

sensitive nature of the domain. However, the positional errors in pose covered by this problem

are, for the most part, rather modest. At worst, the robot's true position is no more than 5

feet from the true position.

A second experiment involves a greater error in the initial pose estimate. Image 1 in

Figure 8.1 is taken from pose 5 and image 2 is taken from a pose obtained by moving the

robot 11 feet closer to the door and rotating the robot several degrees to the right relative

to pose 5. The task of this second experiment is to use landmark recognition to recover each

pose given the other as the initial estimate.

8.4.1 Experiment 1: Recovering from Modest Pose Errors.

Each of the three algorithms introduced above is tested on the task of recovering the

true pose, pose 5, from each of the estimates shown in Figure 8.2a. The true pose is 41.3 feet

from the doorway and 4 feet from each of the two side walls. The estimates are obtained by

introducing translation errors of 4 feet forward and backward and 2 feet side-to-side.

In addition, as a check on the importance of dealing with perspective during matching,

the weak-perspective-steepest-descent algorithm from Section 5.1 is also run on each of these

pose recovery problems. When using this algorithm, the 2D initial projections shown in

Figure 8.2b are used as landmarks. The resulting optimal weak-perspective correspondence

between model and image segments is then used once by the 3D pose algorithm in an attempt

to recover the robot's true position.

In establishing the search spaces for each of the landmark matching problems, the

predicted appearances of the landmarks, shown in Figure 8.2b, are used to determine the

sets of candidate pairs. A pair s = (m;d) 2 M �D is an element of set S if:

1) d is within 30 degrees of m.

2) d is within 128 pixels of m.

3) d is at least 1=4 the length of m.

4) d and m have the same sign-of-contrast.

The �rst test �lters candidate pairs based upon relative orientation. The second is a rough

proximity test. The image is 512 pixels across, so the threshold of 128 pixels represents one

quarter of the distance across the image. The third test removes excessively small fragments

from consideration. The thresholds for these three tests are picked based upon experience

167

Table 8.3 Size of candidate pair sets with/without the sign-of-contrast. Pairs S are tested

for compatible sign-of-contrast, pairs

�

S are not.

Initial Pose Estimate

1 2 3 4 5 6 7 8 9

jSj 41 45 53 36 37 43 42 42 54

j

�

Sj 87 94 112 75 77 92 89 94 112

with the domain, and are adequate to insure that the correct match is contained in the

resultant search space.

The fourth constraint, sign-of-contrast, is very useful in a domain such as the hallway,

where many of the segments are the result of surface markings rather than occlusion. For

example, it is known with certainty that the top edge of the baseboards in the hallway will be

white on top and black on the bottom, and therefore straight line segments extracted from

the image with the opposite contrast need not be considered. However, sign-of-contrast is not

a reliable constraint for occlusion edges, and so should not be used in these cases. To test the

importance of the sign-of-contrast constraint in helping to solve these landmark matching

problems, all the matching experiments in this section will be conducted using candidate

pairs obtained with and without the sign-of-contrast constraint. The set S denotes pairs

�ltered on contrast and set

�

S not �ltered on contrast. Typically ignoring sign-of-contrast

doubles the number of pairs, and Table 8.3 shows the exact size of these sets for all 9 initial

pose estimates.

Figures 8.9 and 8.10 show speci�cally how changes in the initial pose estimate changes

the exact set of pairs S included in a search space. Figure 8.9 shows the lettered model line

segments as they appear projected from pose 5 and the numbered data segments extracted

from image 1. Figure 8.10 shows explicitly which pairs of segments are considered candidate

pairs based upon the initial projections. The match shown at the bottom is optimal for all

9 of the indicated search spaces. Scanning up the table one can con�rm that these 11 pairs

of segments are included in all 9 search spaces.

The full-perspective-inertial-descent, hybrid-weak-full-perspective, and hybrid-subset-

convergent algorithms recovered the true pose in all the experiments conducted for this

section

1

. There were a total of 18 matching problems resulting from the 9 initial pose

estimates and the two sets of candidate pairs S and

�

S. All three full-perspective matching

algorithms reliably found exactly the same optimal correspondence indicated in Figure 8.10.

Consequently, the robot's true pose is recovered to within the accuracy bounds of our pose

algorithm [71]

2

. The weak-perspective-steepest-descent algorithm did equally well for initial

pose estimates 4, 5 and 6, where perspective has little e�ect. For the other cases performance

was less reliable. Recovered pose di�ered from the true pose by 1 to 2 feet in 5 of the 6 cases,

and by nearly 8 feet in one case.

Between 100 and 300 trials of random-start local search for each of the four algorithms

1

Only the position portion of the pose estimate associated with a match is considered.

2

Speaking loosely, for these problems the 3D pose algorithm appears accurate to within roughly 6 inches.

168

J

I
H

G

FE
DC

B

A
32 33
30

15 12
14 11

10

9

7

0

1

2 4

5
6

21 22

2627

28 29

37
41

43

3

19 20

31

34

35

3638

39

40

4244

13

18

2325

17

24

8

16

Figure 8.9 Labeled model and data segments for experiment 1.

A B C D E F G H I J
1 2 4 5 6 21 22 26 27 28 29 32 33 37 41 43 3 19 20 30 31 34 35 36 38 39 40 42 44 13 15 18 23 25 11 12 17 24 8 14 18 23 25 11 12 17 24 10 13 15 18 19 9 12 17 24 7 8 14 15 18 23 25 0 16 20 24

A B C D E F G H I J
1 2 4 5 6 21 22 26 27 28 29 32 33 37 41 43 3 19 20 30 31 34 35 36 38 39 40 42 44 13 15 18 23 25 11 12 17 24 8 14 18 23 25 11 12 17 24 10 13 15 18 19 9 12 17 24 7 8 14 15 18 23 25 0 16 20 24

A B C D E F G H I J
1 2 4 5 6 21 22 26 27 28 29 32 33 37 41 43 3 19 20 30 31 34 35 36 38 39 40 42 44 13 15 18 23 25 11 12 17 24 8 14 18 23 25 11 12 17 24 10 13 15 18 19 9 12 17 24 7 8 14 15 18 23 25 0 16 20 24

A B C D E F G H I J
1 2 4 5 6 21 22 26 27 28 29 32 33 37 41 43 3 19 20 30 31 34 35 36 38 39 40 42 44 13 15 18 23 25 11 12 17 24 8 14 18 23 25 11 12 17 24 10 13 15 18 19 9 12 17 24 7 8 14 15 18 23 25 0 16 20 24

A B C D E F G H I J
1 2 4 5 6 21 22 26 27 28 29 32 33 37 41 43 3 19 20 30 31 34 35 36 38 39 40 42 44 13 15 18 23 25 11 12 17 24 8 14 18 23 25 11 12 17 24 10 13 15 18 19 9 12 17 24 7 8 14 15 18 23 25 0 16 20 24

A B C D E F G H I J
1 2 4 5 6 21 22 26 27 28 29 32 33 37 41 43 3 19 20 30 31 34 35 36 38 39 40 42 44 13 15 18 23 25 11 12 17 24 8 14 18 23 25 11 12 17 24 10 13 15 18 19 9 12 17 24 7 8 14 15 18 23 25 0 16 20 24

A B C D E F G H I J
1 2 4 5 6 21 22 26 27 28 29 32 33 37 41 43 3 19 20 30 31 34 35 36 38 39 40 42 44 13 15 18 23 25 11 12 17 24 8 14 18 23 25 11 12 17 24 10 13 15 18 19 9 12 17 24 7 8 14 15 18 23 25 0 16 20 24

A B C D E F G H I J
1 2 4 5 6 21 22 26 27 28 29 32 33 37 41 43 3 19 20 30 31 34 35 36 38 39 40 42 44 13 15 18 23 25 11 12 17 24 8 14 18 23 25 11 12 17 24 10 13 15 18 19 9 12 17 24 7 8 14 15 18 23 25 0 16 20 24

A B C D E F G H I J
1 2 4 5 6 21 22 26 27 28 29 32 33 37 41 43 3 19 20 30 31 34 35 36 38 39 40 42 44 13 15 18 23 25 11 12 17 24 8 14 18 23 25 11 12 17 24 10 13 15 18 19 9 12 17 24 7 8 14 15 18 23 25 0 16 20 24

A B C D E F G H I J
1 2 4 5 6 21 22 26 27 28 29 32 33 37 41 43 3 19 20 30 31 34 35 36 38 39 40 42 44 13 15 18 23 25 11 12 17 24 8 14 18 23 25 11 12 17 24 10 13 15 18 19 9 12 17 24 7 8 14 15 18 23 25 0 16 20 24

1

2

3

4

5

6

7

8

9

*

Figure 8.10 Candidate pairs for 9 poses and directed segments. The reader is asked to note

that the semantics of a �lled in square is di�erent in the 9 numbered tables than in other

tables seen before or the bottom table. In these 9 tables, a �lled in square indicates a pair is

a member of S. In the bottom table, indicated with and asterisk, �lled in squares indicate

pairs of segments belonging to the globally optimal match.

169

was run on each of the 18 matching problems. As was done for the study of the weak-

perspective algorithms in Chapter 6, both the fractions of the runs �nding the globally

optimal match and the average run-time per trial were recorded for each algorithm applied

to each problem. From this information, the probability of success estimates

^

P

s

for each

algorithm on each problem are determined. These are plotted in Figures 8.11. Figures 8.11a

shows

^

P

s

for each of the 9 pose estimates and candidate pairs S �ltered by sign-of-contrast.

Figure 8.11b shows

^

P

s

for the corresponding 9 problems using candidate pairs

�

S in which

the sign-of-contrast constraint is ignored.

The

^

P

s

values drop when sign-of-contrast is not taken into account. As measured

by

^

P

s

, matching problems not using the sign-of-contrast constraint are considerably more

di�cult to solve. For instance, the full-perspective-inertial-descent algorithm �nds the

globally optimal match on a single trial with probabilities between 0:17 and 0:55 with the

sign-of-contrast constraint, while without the probabilities range from 0:06 and 0:22. A

potential general explanation for the di�erence lies in size of the search spaces in the two

cases. Without the sign-of-contrast constraint the set of candidate pairs roughly doubles in

size, and the search space grows astronomically. There is another factor quite particular to

this problem. Without the sign-of-contrast constraint, the upper and lower borders of the

hallway baseboards are locally ambiguous. The tops of the baseboard in the model can quite

readily match the bottoms in the image, and vice versa.

Another thing to observe from the plots in Figure8.11 is the relative performance of

the four algorithms. Consistently in both cases, the hybrid-subset-convergent algorithm

is nearly as good as or better than the full-perspective-inertial-descent algorithm. As is

to be expected, the hybrid-subset-convergent algorithm outperforms the hybrid-weak-full-

perspective algorithm. Finally, the weak-perspective-steepest-descent algorithm does worse

than the other three in virtually all instances. Overall, this suggests that the hybrid-subset-

convergent algorithm is reliably outperforming the other three in terms of the likelihood of

�nding the globally optimal match on a single trial.

The next set of plots, Figures 8.12a and 8.12b, show the estimated run-time, r̂

s

, required

to �nd the optimal match with probability 0:95 or better. This run-time is estimated in the

same way run-times were estimated in Chapter 6, Section 6.6. The target con�dence level

has been lowered from 99% to 95%. Based upon the

^

P

s

values already shown, it is possible

to estimate the number of required trials

^

t

s

. Equation 5.5 from Chapter 5 is specialized to

yield:

^

t

s

= dlog

(

1�

^

P

s)

0:05e: (8:1)

The estimated run-time r̂

s

is the average time per trial r multiplied by

^

t

s

.

As with the values for

^

P

s

, perhaps the most striking di�erence is the increase in estimated

run-time for the problems not utilizing the sign-of-contrast constraint. The range of the plot

in Figure 8.12a is 50 minutes, while the range for the plot in Figure 8.12b is 5 hours. Again, it

must be remembered that the search space in the latter case is incomparably larger. It should

be noted that new C version of this algorithm running on a Decstation 5000 runs roughly

50 times faster than the Lisp Machine version reported here. When the sign-of-constrast

constraint is used, this new version will never take longer than 5 seconds on these Hallway

problems.

Overall, the hybrid-weak-full-perspective algorithm seems to be outperforming the oth-

ers. The closest competition comes from the subset-convergent-hybrid algorithm. The

170

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

P
ro

b
a
b
ili

ty
 o

f
S

u
c
c
e
s
s

Initial Pose Estimates

Weak-perspective-steepest-descent
Full-perspective-inertial-descent

Hybrid-weak-full-perspective
Hybrid-subset-convergent

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8 9

P
ro

b
a
b
ili

ty
 o

f
S

u
c
c
e
s
s

Initial Pose Estimates

Weak-perspective-steepest-descent
Full-perspective-inertial-descent

Hybrid-weak-full-perspective
Hybrid-subset-convergent

(b)

Figure 8.11

^

P

s

for matching from 9 pose estimates. a) Candidate pairs �ltered by

sign-of-contrast, b) Candidate pairs not �ltered by sign-of-contrast.

171

0

600

1200

1800

2400

3000

1 2 3 4 5 6 7 8 9

R
u
n
-t

im
e
 (

S
e
c
o
n
d
s
)

Initial Pose Estimates

Weak-perspective-steepest-descent
Full-perspective-inertial-descent

Hybrid-weak-full-perspective
Hybrid-subset-convergent

(a)

0

3600

7200

10800

14400

18000

1 2 3 4 5 6 7 8 9

R
u
n
-t

im
e
 (

S
e
c
o
n
d
s
)

Initial Pose Estimates

Weak-perspective-steepest-descent
Full-perspective-inertial-descent

Hybrid-weak-full-perspective
Hybrid-subset-convergent

(b)

Figure 8.12 Estimated run-times for matching from 9 pose estimates. These times are to run

su�cient trials to solve the each problem with 95% con�dence. a) Using the sign-of-contrast

constraint, the full-perspective-inertial-descent algorithm takes nearly an hour in the worst

case. The hybrid-weak-full-perspective algorithm never takes more than 4 minutes. b)

Without the sign-of-contrast constraint, the full-perspective-inertial-descent algorithm takes

nearly 5 hours in the worst case. The hybrid-weak-full-perspective never takes more than an

hour.

172

Table 8.4 Matching results when poses for Image 1 and Image 2 are confused. The probability

of success

^

P

s

, average run-time per trial r, required trials

^

t

s

, and estimated run-time to solve

the problem r̂

s

are shown for each algorithm applied to each matching problem. Times are

reported in seconds.

Image 2 to Image 1 Image 1 to Image 2

Algorithm.

^

P

s

r

^

t

s

r̂

s

^

P

s

r

^

t

s

r̂

s

Full-perspective-inertial-descent 0:29 172 9 1; 548 0:18 63 18 1; 134

Hybrid-weak-full-perspective 0:02 6 149 894 0:01 5 299 1; 495

Hybrid-subset-convergent 0:09 25 32 800 0:06 11 49 539

worst run-time for the hybrid-weak-full-perspective algorithm is under 4 minutes with using

the sign-of-contrast constraint, and just under an hour otherwise. The run-times for the

hybrid-subset-convergent are tending to run roughly double that required by hybrid-weak-

full-perspective alone. Run-times for the full-perspective-inertial-descent algorithm are much

greater, taking up to nearly an hour with the sign-of-contrast constraint, and 5 hours

otherwise.

These results tell us that although the full-perspective-inertial-descent and hybrid-subset-

convergent algorithms do better on individual trials, they also take more time on each trial.

Moreover, neither does su�ciently better to warrant the additional time per trial. It appears,

for the set of problems tested here, that the hybrid-weak-full-perspective algorithm is the

best choice.

8.4.2 Experiment 2: Recovering from Larger Pose Errors.

In this second experiment, the pose for image 1 shown in Figure 8.1a is given as the

initial estimate of robot pose when the true pose is that for image 2 shown in Figure 8.1b,

and vice versa. Both the landmark projections from the initial pose estimates, as well as the

best matches, are shown for these two problems in Figure 8.13.

These are more di�cult matching problems than those shown in the previous section,

and 300 trials are used to estimate

^

P

s

. Two factors make these more di�cult problems. First,

in one case half the expected segments are not visible while in the other many unexpected

segments are visible. Second, to account for the greater uncertainty in pose, the proximity

constraint used to select the set of candidate pairs S is relaxed to include all segments d

within 256 pixels of a model segment m.

The results for the second experiment are summarized in Table 8.4. Only the three

algorithms capable of handling full-perspective were tested on these problems. The table

reports the estimated probability of success

^

P

s

, the average run-time per trial in seconds r,

the number of trials

^

t

s

required to �nd the optimal match with 95% con�dence, and �nally

the estimated run-time r̂

s

required to con�dently �nd the optimal match. Comparing the

run-times r̂

s

using each algorithm, the hybrid-subset-convergent is superior to the other two.

The highest of the two run-times for the hybrid-subset-convergent algorithm is still lower

than the best time of either of the other two algorithms.

These results provide an interesting example of what is a basic tradeo� in local search: is

173

(a) (b)

(c) (d)

Figure 8.13 Confusing poses for images 1 and 2. a) landmark projected over image 2 data

as it would appear from image 1 pose, b) successful recovery of correct match and pose, c)

landmark projected over image 1 data as it would be seen from image 2 pose. d) successful

recovery of correct match and pose.

174

it better to run a few expensive trials that are more likely to succeed, or instead to run many

cheaper trals that are less likely to succeed? The full-perspective-inertial-descent and hybrid-

weak-and-full-perspective algorithms seem to lie at opposite extremes of this tradeo�. The

full-perspective-inertial-descent algorithm is slow but reliable, �nding the globally optimal

match with modestly high probability on each trial, but expending considerable computation

in the process. In contrast, the hybrid-weak-and-full-perspective only �nds the optimal

match in 1 or 2 out of every 100 trials, but each trial runs in comparatively little time.

In this particular case, the two factors balance, and the run-time r̂

s

is lower for the full-

perspective-inertial-descent algorithm on one of the two matching problems, and higher on

the other problem.

In terms of the tradeo� just mentioned, the hybrid-subset-convergent lies in between the

extremes staked out by the other two. In comparing the hybrid-subset-convergent algorithm

and the hybrid-weak-and-full-perspective algorithm , the increase in

^

P

s

more than makes up

for the increased time taken per trial. For the hybrid-subset-convergent compared to the

full-perspective-inertial-descent algorithm, each trial is su�ciently faster to make up for the

relative drop in

^

P

s

.

The hybrid-weak-and-full-perspective algorithm performed best on the modest pose error

problems studied in the previous section, while the hybrid-subset-convergent algorithm

performed best on the larger pose error problems in this section. This is a rather small

amount of data upon which to draw general conclusions; however, it does seem to suggest

a trend. As matching problems become more di�cult, in that there is greater uncertainty

in the initial pose, the hybrid-subset-convergent algorithm will probably perform better

relative to the hybrid-weak-full-perspective algorithm. This observed trend suggests a general

conjecture: for relatively pose constrained problems the simpler forms of local search are

adequate and even preferable to subset-convergent search, while for less pose constrained

problems the subset-convergent algorithms appears to be superior.

8.5 Conclusion

Weak-perspective matching algorithms are inadequate for landmark-based robot navi-

gation in a hallway, at least for the types of line-segment-based geometric matching prob-

lems studied here. The failure of the weak-perspective-steepest-descent algorithm has been

demonstrated. By implication, the other basic approaches to geometric matching reviewed

in Chapter 2, and which have yet to be demonstrated on perspective-sensitive matching

problems, can also be expected to fail.

It was the indoor robot navigation problems presented here which provided powerful

incentives to develop quantitatively accurate full-perspective matching algorithms. These

algorithms are needed, in part, because often those features which most accurately determine

robot pose are the same features which are most sensitive to perspective e�ects. This is

illustrated here by the baseboards in the hallway. It is the baseboards, far more than any

other features visible in the images shown in Figure 8.1, which must be found in order to

estimate the placement of the robot left-to-right in the hallway. Finding the doorway at the

end of the hallway constrains the distance of the robot from the doorway, but o�ers little

side-to-side constraint.

The experiments with di�erent full-perspective matching algorithms in this chapter

175

have shown that it is the hybrid algorithms, which blend the use of weak-perspective and

full-perspective evaluation of matches during search, which perform best. They categori-

cally beat the weak-perspective algorithm, which fails when the initial estimate of the 3D

object's pose introduces perspective distortion into the initial projection of the model. In

terms of run-time, the hybrid algorithms dramatically outperform the more brute-force full-

perspective-inertial-descent algorithm. The hybrid-weak-full-perspective algorithm appears

to perform somewhat better in terms of overall run-time for the modest pose error problems

in Section 8.4.1, while the hybrid-subset-convergent version seemed more economical on the

problems with larger initial pose error tested in Sections 8.4.2.

The experiments presented here systematically explored performance for typical hallway

navigation problems, and show conclusively that the local search approach to full-perspective

matching works on these problems. Determining how these results will generalize to other

domains, such as outdoor navigation, will require further study. It is expected that the local

search matching approach will generalize well. However, there are many details in need of

further study.

C H A P T E R 9

Conclusion

This thesis has developed a new approach to �nding the best match between a geometric

object model and noisy, fragmented, cluttered image features. The approach adapts a simple

and powerful idea from combinatorial optimization to a common problem in computer vision.

The simple idea is local search, which is one of the most practical ways of �nding near optimal

solutions to di�cult combinatorial optimization problems. The common problem is matching

a geometric object model to features extracted from an image. Matching has been further

de�ned here as the problem of �nding the optimal correspondence mapping between model

and image features subject to the constraint that model and image must be related by a

best-�t pose transformation. Local search has been shown to reliably solve these optimal

matching problems under a wide range of circumstances. This conclusion will summarize

what has been presented, the strengths and weaknesses, and the opportunities for future

work related to local search matching.

9.1 Review

Chapters 3 and 4 formalize the geometric matching problem as a combinatorial opti-

mization problem. They emphasize the factors which go into ranking potential matches,

and especially the fundamental need to estimate object pose as part of match evaluation.

An original and highly e�cient closed form solution to the problem of �tting a line model

under weak-perspective permits evaluation of globally registered matches. The match error

developed here, and in particular the omission term, is a valuable and original contribution.

Chapter 5 presents new local search algorithms for e�ciently �nding globally optimal

geometric matches. Steepest-descent local search using the Hamming-distance-1 neighbor-

hood is introduced, as is random random sampling as a way of overcoming local optima and

of estimating the di�culty of a geometric matching problems. Of special importance, the

subset-convergent local search technique is introduced and demonstrated on quite di�cult

matching problems; including the Deer and Gira�e problem at the close of the chapter.

Chapter 6 explores the range of problems that can be solved using random-start subset-

convergent local search. A suite of weak-perspective matching problems test the algorithm

under a variety of adverse conditions, many of which have been selected speci�cally because

they are known to cause problems for other matching techniques. The object models are

corrupted by fragmentation and skewing. Random clutter is added in some cases, and

multiple instances of the same object in others. The object models are both very simple and

modestly complex, and in one case the objet model is highly symmetric. Under all these

177

conditions, subset-convergent local search reliably �nds the globally optimal match, and in

all but a few cases, 100 independent trials of local search is su�cient to �nd the globally

optimal match with better than 99% con�dence.

Chapter 6 also estimates run-time growth as a function of problem size. Regression

analysis �nds that the best-�t polynomial to the run-times as a function of problem size n

has an exponent of roughly 1:5. Rounding up to the next whole integer, and extrapolating

from these measurements, it is conjectured that average case computational complexity is

O(n

2

). It is readily conceded that this might be viewed as an optimistic conjecture based

upon extrapolation from empirical data. However, failure to observe exponential behavior

does not imply a lack of a practical bound on problem size. For the TI Explorer II lisp

Machine implementation of subset-convergent local search, this threshold is reached for n

around 1; 000. The largest problem tested in this thesis has an n of 1; 296.

The �nal step in this thesis generalizes local search matching to solve full-perspective

matching problems. These are matching problems which cannot be solved without quan-

titatively accounting for full 3D perspective during matching. The matching algorithms

presented in Chapter 8 appear to be the �rst to be able to �nd optimal matches under these

conditions. This extension would not have been possible without the use of the 3D pose

algorithm developed by Kumar [70, 71]. Thanks to this algorithm, it is possible to perform

landmark-based robot navigation in a hallway: a domain with pronounced perspective e�ects.

Three di�erent full-perspective matching algorithms are presented in Chapter 8, and

their performance compared on a set of landmark recognition problems. As a check on

the importance of accounting for full-perspective, the Hamming-distance-1 steepest-descent

algorithm from Chapter 5 is also tested. Several signi�cant conclusions can be drawn from

these tests. First, the pronounced perspective e�ects encountered in the hallway make

the weak-perspective matching algorithm unreliable for robot navigation, and in general

any problem where there is signi�cant disparity in depth of model features and varying

viewpoint. Second, all three of the full-perspective matching algorithms solved all the

problems presented to them, and any of them could be used for robot navigation in this

domain. A hybrid algorithm, utilizing both weak-perspective and full-perspective �tting

during matching, is more e�cient than an algorithm which always uses full-perspective,

and this hybrid algorithm requires no more than twice the time of the fast but unreliable

weak-perspective matching algorithm.

9.2 The Problems

9.2.1 Complexity and Object Indexing

The biggest problem facing someone wishing to use the algorithms developed in this

thesis is essentially the same as would be faced with any of the known general geometric

matching techniques: average run-times grow roughly as a function of the number of paired

features squared, if not faster. Worse yet, in the absence of an initial constraint on object

pose, increasing model size m linearly increases n quadratically, and run-times tend to grow

as function of m

4

. For local search matching, the failure to �nd evidence of exponential run-

time growth in Chapter 6 is of considerable theoretical interest, and it makes the approach

attractive for problems of modest size. However, it does not help someone wishing to �nd a

178

model with 100 segments in an image containing 10; 000 data segments.

A problem with n = 1; 000; 000 is three orders of magnitude larger than any problem

solved in this thesis, and by extrapolation from equation 6.6 in Chapter 6, it would take

nearly a century to solve on a TI Explorer II Lisp Machine. Even accounting for faster and

parallel implementations, projected run-times indicate multiple trials of Subset-convergent

local search initiated from random matches is, by itself, not appropriate for �nding large

models in even larger data sets. As seen in many of the problems shown in this thesis, it

is best applied to problems for which there is an initial object pose estimate, or some other

source of ancillary information which limits possible pairings between features.

Asking where an initial pose estimate comes from leads to the second problem associated

with local search matching: what prompted that algorithm to look for this particular object

in the �rst place. Like most of the previous work on geometric matching, local search

matching assumes a particular object is worth looking for in an image. Local search matching

does not deal with the problem of indexing into a database of geometric object models and

selecting an object likely to be visible in an image. As covered in Chapter 2, geometric

hashing is the only one of the four main approaches to geometric matching to deal with

object indexing.

The lack of indexing, and the apparent average case complexity of local search matching,

means it may be used successfully by itself when:

� Object indexing is not necessary, and either

� models and image data sets are of modest size, or

� there is an initial estimate of the object's pose, or

� ancillary information limits the possible pairing of features.

One reason local search matching is well suited to landmark-based robot navigation is that,

as a problem, it typically satis�es these conditions. When these conditions are not met, then

local search matching must be used in conjunction with other tools. Local search matching

may be coupled with any algorithm which generates object hypotheses, and used to test

and rank hypotheses. It has been used in this capacity as part of Draper's work on learning

knowledge directed scene interpretation strategies [31, 30].

9.2.2 Algorithm Tuning

Presuming someone wishes to apply local search matching to a problem satisfying the

above conditions, there is another area of concern, and that can be briey described as

algorithm tuning. Despite e�orts to keep the local search approach to matching simple,

success lies in the details, and there are a number of important details. For example, success

can depend upon proper selection of terms to include in the match error, and the relative

weights assigned to each term. Recall the telephone pole matching example discussed in

Section 5.4.3 and shown in Figure 5.13. To have the correct match be the globally optimal

match, it was necessary to evenly weight omission error for each of the 3 segments forming

the telephone pole model. Using omission error weighted by relative length not surprisingly

discounted the importance of the shorter cross bar and caused the match error function to

179

prefer a match to the street lamp. Ideally, one set of match error weights and terms would

be appropriate to all the problems presented in this thesis. However, this is not the case,

and thought must be given to how match error ranks competing matches.

In addition, as the match error case 1 versus case 2 performance on the multiple instance

Dandelion problems in Chapter 6 showed, variations in the form or parameterization of the

match error function not only change the ranking of locally optimal matches, they change the

very matches found by local search. This second order e�ect means treating the match error

as a simple statement of what constitutes a desirable match may be inadequate. It may be

necessary to also analyze how the match error leads the algorithms during search. In defense

of local search matching, all signi�cant matching algorithms have parameters, and while

tuning issues for local search matching may be di�erent than those for other algorithms,

local search matching is not alone in being sensitive to details.

There is a very speci�c tuning issue not fully dealt with in this thesis, and it concerns

how a match with only half a model projecting into the scene should be compared to one

with the model entirely in view? This is di�erent from omission due to errorful feature

detection or occlusion by an unidenti�ed object, and concerns the case in which the best-�t

pose indicates portions of the model project outside the bounds of the image. On the one

hand, it seems odd to penalize a match with an omission score for line segments clearly not

in view. On the other hand, not introducing a penalty leaves the algorithm open to �nding

good matches by forcing much of the model out of view.

How to treat features projecting out of the image is a practical concern. Recall from

Section 8.4.2 an experiment where half the model projected outside the image. A clipping

algorithm included in the 3D-to-2D projection was used in this experiment, and therefore

no omission penalty was exacted for portions of the model projecting outside the image. In

this case, success on the problem suggests this was the right way to handle the problem.

However, in recent and very preliminary experiments with full-perspective matching on the

scene shown in Figure 5.12, local search found the ground-truth correct match, but ranked

it lower than alternatives for which most of the near telephone pole projected outside of the

image. Local search had found several correspondences which, although incorrect compared

to ground-truth, let it discount the importance of the nearest telephone pole by forcing

it to project outside of the image. In general, further work on the match error function

is required, both to better understand and handle this problem, as well as to facilitate

comparisons between matches to di�erent object models.

9.2.3 Random-Start Local Search Probably Succeeds

The probabilistic nature of random-start local search matching is a potential source of

trouble. As developed and tested in this thesis, local search matching is a way of �nding

the globally optimal match with high con�dence. The algorithm will not always �nd the

globally optimal match, and when run on a su�cient number of problems, it will �nd sub-

optimal matches on some small number. These probabilities can be characterized for an

application domain, and intelligent choices made to trade run-time costs for con�dence of

match. However, the approach does not guarantee an optimal solution to every problem.

For many of the foreseeable applications the lack of guaranteed success is not excessively

troubling. For instance, on industrial inspection tasks low probability inspection failures

180

at known rates are an accepted fact of life. More generally, it is not a problem for semi-

autonomous systems where occasional human intervention is acceptable. It is also not a

problem for fully automated systems with adequate failure recovery mechanisms. However,

local search matching must not be used under circumstances where �nding occasional sub-

optimal matches will have catastrophic consequences.

9.3 The Strengths

9.3.1 Robust Performance

Probably the most attractive aspect of local search matching is its robust performance

when working with poor quality data, multiple model instances and symmetric models. It

is the only demonstrated technique for �nding optimal many-to-many mappings between

geometric object and image features, and in part this accounts for its strength on problems

involving highly fragmented image features. Recall the examples in Figures 1.4 and 1.6.

Many-to-many mappings also handle polygonal approximations to curved objects as demon-

strated with the Leaf example in Chapter 6.

Local search matching is robust also because it seeks the best match or matches present

in an image regardless of their absolute quality. This contrasts with tree search [48], which

through its need for a termination criteria, relies on a prediction of expected match quality;

if the criteria is set too high, then search will expand an exponential space of partial matches,

if the criteria is too low, then matches of higher quality will be ignored. Random-start local

search discovers a set of locally optimal matches, and with high probability this set will

contain the globally optimal match.

Local search matching randomly samples the space of possible matches in a way that

does not rely upon locally distinctive key-features, and this too makes the technique robust.

This manifests itself in two ways. First, local search matching excels at problems involving

distracting background clutter such as the Deer and Gira�e matching problems presented

at the close of Chapter 5. Second, as demonstrated in Chapter 6, internal symmetries (the

Dandelion), or excessive simplicity (the Pole), do not prevent subset-convergent local search

from picking out the best match against random clutter, and with additional e�ort, from

picking out the best match from among several distinct model instances. Key-features are

problematic in highly cluttered scenes and when using either very simple models or highly

symmetric models.

9.3.2 Trivial to Run in Parallel

With massively parallel computers becoming available, one of the most important ques-

tions about a computer vision algorithm is how it will perform on these machines. Here lies

another major strength of local search matching. The algorithms presented in this thesis

have an obvious parallel forms; each independent trial is run in parallel. Looking only several

years into the future, a geometric matching algorithm used for an important application will

have access to hundreds of moderately powerful processors. A quick sketch of what this

promises is encouraging.

For the sake of argument, assume a production version of the current TI Explorer Lisp

181

Machine implementation were ported to a parallel machine. Presume a 200 fold speedup

running on each processor. This is conservative, since a recently implemented C version on a

Decstation 5000 appears to be between 50 and 75 times faster than the Lisp Machine version.

Next, presume a 100 processor parallel machine. Under these assumptions, the algorithm

could run up to 20,000 times faster than reported for the TI Explorer. The hardest Hallway

matching problem using directed line segments (Chapter 7) required 240 seconds on the TI

Explorer, and could therefore require as little as 12 milliseconds running on this hypothesized

parallel machine. On such a machine, these algorithms could easily run at frame rate as part

of a real-time application.

9.3.3 Broad Applicability

The matching problems solved in this thesis were selected in part to show the broad

applicability of local search matching. It has been demonstrated on weak-perspective model-

to-image matching problems in aerial photography (Figure 1.4) and outdoor scenes [11].

It has been demonstrated on weak-perspective model-to-image matching problems such as

those that arise in outdoor (Figure 5.13) landmark-based vehicle navigation [12, 34], and

it has been demonstrated on full-perspective landmark identi�cation (Chapter 8) on indoor

scenes [9, 10, 8]. Despite the match error being designed for model-to-image matching

problems, it has been used for image-to-image matching in order to track a moving object

(Figure 1.6). It has been tested on synthetic data with large amounts of clutter (Figure 5.14),

multiple model instances (Figures 6.4 and 6.5) and highly symmetric models (Figure 6.10).

Even with the breadth of problems presented in this thesis, they represent only a fraction

of all the problems to which the algorithm has been a applied. It has been used to support

the work of Draper [31, 30] on learning object recognition strategies for outdoor scenes,

where it has been used to derive ground-truth pose estimates and as a knowledge source for

verifying object hypotheses. Recent work with Collins [24] has used local search matching in

conjunction with vanishing point analysis to register aerial photographs taken from widely

di�erent viewpoints. Vanishing point analysis is used to unwarp the perspective views of

the ground plane, and then local search matching �nds the optimal correspondence mapping

and similarity transform relating features in the two images.

9.3.4 Quantitatively Accurate Full-Perspective Matching

Of all the strengths of local search matching, perhaps the most striking is the relative

ease with which it generalizes from essentially 2D weak-perspective matching problems

to full-perspective matching. As reviewed in Chapter 2, a great deal of work has been

done on weak-perspective matching, while there has been almost no work on quantitatively

accurate methods for performing full-perspective matching. With the possible exception

of the work of Lowe [82], which accurately accounts for full-perspective but considers only

modest correspondence problems arising in the context of object tracking, there appears to

be no precedent for the full-perspective matching results presented in this thesis.

182

9.4 The Future

This thesis presents the �rst concerted e�ort to apply the principles of local search to

the problem of geometric matching. As just reviewed, the approach has some problems and

many strengths. However, much remains to be done to both re�ne and extend the approach.

This section will consider six areas in which additional work promises major advancements.

Briey, these areas are:

1. Future work should further explore several of the more important algorithm design

choices and parameter settings used in this thesis.

2. Initializing local search with `better than random' initial matches may lead to utilizing

model-directed feature grouping as part of matching.

3. The match evaluation should be tied into probabilistic models of image formation.

4. Partial symmetries in objects should be detected o�-line and used as neighborhood

permutations during local search.

5. Alternative optimization techniques should be tested as substitutes for local search: for

example stochastic relaxation and parallel genetic algorithms.

6. The full-perspective matching work presented in Chapters 7 and 8 should be extended

to consider alternative measures of �t and alternative forms of hybrid matching.

7. Local search matching promises to facilitate model-directed sensor fusion: for example

using LADAR and CCD image data.

9.4.1 Detailed Exploration of Algorithm Parameters

A number of the factors which go into tuning the local search algorithms appear to be

important. For instance, the results for the two di�erent match error cases in Chapter 6 raise

basic questions which deserve further attention. The change in performance between match

error case 1 and 2 is quite dramatic on some problems, and future experiments should be con-

ducted in order to explore whether the change in maximum allowable displacement between

matched segments � or the pairwise error term is more responsible for these di�erences.

At the least, di�erences observed suggest e�ort should be put into better understanding

how such changes can improve the performance of local search. It can also be expected

that the bias introduced into the random selection of initial matches will signi�cantly alter

performance, and a future study should systematically test how performance varies as a

function of the average number of data line segments initially bound to a model segment.

Alternative heuristics for selecting the subsets used by the subset-convergent algorithm

are not explored in this thesis, and future work ought to consider alternatives. For example,

the subsets selected automatically for the Hallway model in Chapter 8.3.3 (page 164) are not

necessarily the best one could imagine. Two of the subsets, pairs (F; I) and (E; J), consist

of pairs of segments which are very close to each other and have the same basic geometric

form. One might wonder if having picked two less similar subsets might not have improved

183

performance.

Before it terminates, the tabu search component of the hybrid-weak-full-perspective

matching algorithm is allowed to explore up to 10 states without seeing improvement. The

choice of 10 states was made because it seemed su�ciently large to preclude premature

termination. However, it is quite possible that 10 is needlessly large. Future experiments

should pro�le the algorithm in order to determine if a smaller number might accomplish the

same goal with less total computation.

9.4.2 Local Search as Model Directed Feature Grouping

The use of randomly selected initial matches is largely responsible for the robust per-

formance of local search matching. However, this robustness comes with a price. All but

the hardest of the matching problems presented in this thesis could probably be solved more

quickly if e�ort were put into carefully selecting `better than random' initial matches. There

are risks in attempting to focus search in this way: if the bias introduced does not suit the

speci�c problem at hand, then the algorithm will not only be slow, it will fail. However, the

potential pay-o� is a much faster algorithm for many, but not all, problems.

Future work might couple local search matching with key-feature detection, and so

initiate local search from hypothesized key-feature matches. The overall approach would

resemble that laid out by Lowe [80] in his SCERPO system. Given reliable algorithms for

�nding key-features, coupling these to local search matching would yield a reliable and

fast optimal model matcher. In many practical applications this would be worthwhile.

However, this idea still su�ers from all the normal problems associated with de�ning and

reliably �nding key-features. To date, no general mechanisms have been demonstrated for

learning key-features, and therefore this approach assumes someone is willing to invest the

time and energy to identify key-features and program key-feature detectors. Alternatively,

simple heuristics such as used to identify model subsets in the subset-convergent local search

algorithm might su�ce in some cases, but these can be expected not to be distinctive under

some conditions.

Amore intriguing prospect is to use a variant of local search as a uniform control structure

in which to blend bottom-up feature grouping and top-down model matching. In the

past, bottom-up feature grouping and top-down model matching have been largely separate

activities. In concept, the two activities meet gracefully in the middle, with bottom-up

grouping stopping and model directed matching taking over. E�orts to realize this goal

encounter several problems. First, bottom-up grouping often fails to extract features of

su�cient richness to forestall the combinatorial problems of top-down matching. Second,

attempts to lessen the combinatorics of matching by extracting more complex bottom-up

features are hampered by the combinatorics of grouping, and these explode when more

complex groups are sought. Finally, when seeking ever richer bottom-up features, choosing

which groups to form out of the combinatorial space of possibilities becomes almost very

di�cult in the absence of some top-down goal.

A promising way around these problems is to view matching and feature grouping as

one uniform activity. Model-directed search would construct ever more complex assemblies

of features until ultimately a match is found. A single objective function, such as the match

error function de�ned in this thesis, would direct search throughout this process. Here is a

184

sketch for such an algorithm. Begin with a set of n candidate pairs of model-data segments

and use spatial proximity constraints to �lter the set of n

2

pairs-of-pairs down to a more

manageable set of size k n, where k is a constant much smaller than n. Treat these k n

pairs-of-pairs as initial matches and compute the match error for each. Search begins by

initiating one cycle of local search for the best of the k n matches. In other words, evaluate

the Hamming-Distance-1 neighborhood once and update this match accordingly. Typically

this will make the best match better. The algorithm proceeds until it can no longer improve

this match, and then moves on to the second best match, and so on.

Future work will explore this matching-as-grouping concept. There are several basic

issues which require attention. For example, does the process run to some kind of natural

completion, or should it be terminated at some point. Checks to avoid redundantly traversing

paths to local optima will also be important. Fortunately, this can be done by remembering

past matches and the local optima to which they lead. If found again, these matches can be

immediately equated with the already identi�ed local optima. Finally, care must be taken

to see that the match error guides the initial matching in ways which lead to the detection

of the globally optimal match with as little computation as possible.

9.4.3 Match Error and Formal Image Formation Models

There are two quite di�erent ways of designing a match error function. One is to argue

directly, as this thesis has done, for a function which quanti�es the di�erence between a

perfect match and an observed imperfect match. The other is to formally and fully de�ne

a probabilistic error process, and from this process model derive the match error function

as either a maximum likelihood estimate or a maximum a-posteriori (MAP) estimate. This

thesis asserts that the �t-plus-omission match error is good because: 1) data can fail to �t,

2) data can fail to appear. Future work should augment this with work on formally de�ned

error process models.

This should not be seen as a repudiation of the direct approach taken in this thesis. It is

a mistake to assume either approach is fundamentally superior, and it is best to draw insight

from both. It is instructive to consider that Gauss, who invented the least-squares method

and laid the ground work for maximum likelihood estimation, appears to have preferred the

more direct approach. Consider this quote from the paper \Least-squares estimation: from

Gauss to Kalman" by Sorenson [100].

Gauss proceeded by noting that the maximumof the probability density function is

determined by maximizing the logarithm of this function. Thus he anticipated the

maximum likelihood method, : : : It is interesting that Gauss rejected the maximum

likelihoodmethod [7] in favor of minimizing some function of the di�erence between

estimate and observation, and thereby recast the least-squares method independent

of probability theory.

It is also important to recognize that properly developing a formal error process model

is a major undertaking. An error process model should begin with a perfect model instance,

or instances, and formally characterize each step leading to the ultimately observable and

corrupted image data. It must account for the corruption of model features through skewing,

185

fragmentation, occlusion and outright unexplained omission. It must account for the appear-

ance of unmodeled clutter features, ideally in both random and correlated con�gurations.

Finally, if the resulting numbers are to be meaningfully called likelihoods or probabilities on

real problems, then the entire error process model must be validated, including every choice

of probability density function and associated parameters.

Precedents for doing this are few and partial. Wells [57] goes part way for point rather

than line segment models. He de�nes probability density functions for observable points in

an image. However, he does not specify a complete forward process beginning with a perfect

geometric object model and ending with corrupted image data. Recent work for point

features by Morgan [86] proposes a complete probabilistic error process model including

formal models for noise, omission and clutter.

Error process models for geometric matching may highlight di�erent assumptions under-

lying di�erent objective functions. For instance, preliminary work on a maximum likelihood

interpretation of the �t-plus-omission error suggests it derives from an assumption that

all possible clutter con�gurations are equally likely. This may be seen as justi�cation for

why segments not included in a match do not inuence the match error. In contrast,

Wells's [57] measure appears to derive from an assumption that all possible omissions of

model features are equally likely, but di�ering amounts of clutter appear with di�ering

probability. Consequently, two identical matches score di�erently in Wells's framework,

depending upon the amount of accompanying clutter.

9.4.4 Partial Symmetry and Local Search Matching

Object symmetry has many important rami�cations for robotics and computer vision,

and signi�cant progress has been made in developing an analytic framework to aid in the

development of robotic systems able to reason about symmetry [78, 77]. The performance

of random-start local search when matching partially symmetric object models is interesting

because local search explicitly �nds self-similar mappings between object features. This is

evident in the experiments with the Tree model, as shown in Figure 6.6 and 6.7, and is

pronounced for the Dandelion model, as shown in Figure 6.10. This tendency to �nd self-

similar mappings between di�erent features on a geometric object model has two important

implications.

One implication is that local search is solving a subtle problem: that of detecting self-

similar transformations in models. It may not be immediately apparent, but the geometric

object models used in this thesis present both minor and major problems for traditional

analytic approaches to symmetry. The minor problem is that the models are represented

simply as sets of straight line segments, and this brute force and highly general representation

is too low-level to support many analytic techniques.

The major problem is that traditional techniques are geared to perfect, not partial,

symmetry. The notion that an object is somewhat symmetric raises a host of issues relating

to what it means to be somewhat self-similar. It should come as no surprise that the match

error presented in this thesis provides a practical de�nition of self-similarity, and largely

solves the de�nitional problem. The practical problem of discovering feature transformations

representing self-similar matches can be solved by matching the model to itself.

Detecting self-similarities with local search matching could be useful in a variety of

186

applications. For example, partial symmetries are important in robot manipulation tasks,

and the self-similarities discovered by local search could provide information important to a

robot manipulation system. A more immediate application is to use self-similarities as the

basis for an augmented local search neighborhood.

In the experiments presented in Chapter 6, local search matching can be described

as tolerating the matching problems involving the highly symmetric Dandelion model. It

does not exploit the symmetry. In future work, local search matching should be used to

discover the feature transformations associated with partial symmetries of models, and these

transformations should augment the local neighborhood de�nition. In this way, local search

would move freely between these di�erent matches, and �nding one would be equivalent to

�nding the best. Using this idea, matching problems with highly symmetric object models

should become no harder, and perhaps easier, than problems involving non-symmetric object

models.

9.4.5 Alternative Optimization Techniques

Having formalized the geometric matching problem as a combinatorial optimization

problem, this thesis only explored local search as a way of �nding optimal matches. Other

noteworthy alternative were not considered, and in the future two in particular ought to be

tried: 1) stochastic relaxation, and 2) parallel genetic algorithms. It seems likely local search

will turn out to be advantageous under some conditions, while alternatives will be better

under other conditions. Recall how Johnson [61], discussed in Section 2.4.2, found no clear

winner when comparing simulated annealing and random-starts local search on the graph

partitioning problem.

The Hamming-Distance-1 neighborhood local search algorithm can be transformed into

a stochastic relaxation algorithm. If, during neighborhood evaluation, the next corre-

spondence mapping selected during search were picked probabilistically based upon the

relative increase/decrease in error, then the result would be a stochastic relaxation algorithm.

Intuitively, this does not seem a promising option for the simpler problems presented in this

thesis; those for which between 5 to 20 trials of local search is su�cient to �nd the globally

optimal match. However, stochastic relaxation might perform better on problems requiring

50, 100 or even 200 trials of local search.

Parallel genetic algorithms typically combine local search and recombination of nearby

solutions in order to solve combinatorial optimization problems [29, 87]. It would be useful

to see if this is a good way of �nding optimal geometric matches. The ideas of matching as

model-directed grouping presented earlier de�ned what might be considered a `population'

of matches. The ideas from the previous section might be further extended using some of the

techniques emerging from research on parallel genetic algorithms. For example, matching-

as-grouping has removed randomness from the search process, and may make the algorithm

less robust. Adding a randomized recombination phase might correct this potential failing.

9.4.6 Full-Perspective Matching

The 3D point-to-plane measure of spatial �t has at least two known problems. This

measure was the �rst tested by Kumar [70, 71], and in subsequent work by Kumar [69]

187

it was found to be inferior to a measure de�ned in the image plane, and based upon

in�nitely extended model rather than data line segments. Measuring �t in the image plane

treats measurement errors introduced in the image plane uniformly. Recall, as illustrated in

Figure 7.2 on page 144, that the point-to-plane measure exaggerates errors for points farther

from the image plane. In�nitely extending the model rather than data segments is better

because, as discussed in Section 4.3, data segments are often fragmented and skewed.

Future work on local search matching should incorporate Kumar's more recent 3D pose

algorithm. A 3D pose algorithm might also be developed which minimizes the integrated-

squared-perpendicular-distance (ISPD) measure de�ned in Section 3.3.1. Unfortunately,

these measures preclude the use of the state vector formulation developed in Section 7.4.

To compute 3D pose with these measures, weights of terms in the sum-of-squared errors

must be modi�ed inside the inner loop of the iterative pose algorithm. This makes the

new algorithm computationally unattractive for the algorithms which compute 3D pose for

all the n neighbors of a match, but it is a less serious problem for the hybrid-weak-full-

perspective algorithm. Using an ISPD-like measure could improve the performance of the

hybrid algorithm. In the current version of the algorithm, the 3D pose and weak-perspective

measures of �t are not identical: one in�nitely extends the data segments while the other

in�nitely extends the model segments.

Other ways of combining the cheaper weak-perspective and the more expensive full-

perspective �tting procedures within a single local search strategy should be investigated.

The hybrid-weak-full-perspective algorithm from Chapter 8 is only one of many possi-

ble hybrid algorithms. An interesting variation would be to modify the hybrid-weak-full-

perspective algorithm so that the match error is computed based upon the updated 3D pose

for some number of the most promising neighbors in the Hamming-distance-1 neighbor-

hood. This variant would require more computation than the hybrid-weak-full-perspective

algorithm, less than the full-perspective-inertial-descent algorithm, and just might perform

better than either.

The full-perspective matching work presented in this thesis is limited by the need for an

initial pose estimate. Full-perspective matching algorithms free from this constraint might

be developed by combining the matching-as-grouping idea described above with recent work

on analytically determining 3D pose for small sets of features. For instance, Horaud's [51]

analytic method for 3D pose determination from four sets of matched points does not require

an initial pose estimate. It could be used to generate initial pose estimates under certain

circumstances and thus provide the estimate needed to initiate full-perspective local search

matching. Some insight on how to go about accomplishing this task may be found in the

work of Burns [19]. His system does not pursue this exact idea, but it does aggregate features

through a sequence of controlled matching steps which provide successively tighter matching

constraints.

9.4.7 Model-Based Sensor Fusion

Geometric matching problems arise whenever features on a geometric object model must

be simultaneously matched and registered to features extracted from an image. As shown

in this thesis, problems of this form arise in CCD imagery. They also arise when attempting

to identify modeled objects in other types of imagery, such as 3D LADAR imagery [13] and

188

SAR imagery [86]. The algorithms developed in this thesis, or variations of them, ought to

be useful in these other domains.

Local search matching may also provide the basis for model-directed fusion of features

extracted from multiple sensors. The problem, although more involved than matching to

features from a single image, is similar in basic form. An optimal correspondence mapping

between model features and features from multiple sensors must be found. Optimality

will depend upon how well corresponding features �t and account for the object model.

Fit will depend upon the estimated pose of the object relative to the di�erent sensors.

These pose estimates, in turn, express the registration between images, and hence image

registration and pose estimation become inseparable problems. Consequently, local search

matching on problems involving multiple sensors will simultaneously search for the optimal

correspondence mapping as well as the associated best pose and image registration estimates.

At �rst, it might appear that problems involving multiple sensors will be harder to

solve than those presented in this thesis. Often past e�orts have seperated the data from

di�erent sensors; for instance using data from one sensor for object indexing and another

for veri�cation. Using all the features from multiple sensors simultaneously will tend to

increase the combinatorics of the problem. In addition, solving the combined pose and

image registration problems essential to match evaluation could prove di�cult without initial

estimates for both. However, in many domains such estimates will be available, and the

additional constraints associated with multiple sensor data might well make local search

simpler despite the growth in combinatorial possibilities. Consider, for example, the problem

of recognizing a modeled object in approximately registered CCD and LADAR data. These

two sensors provide complementary information. While LADAR provides direct but often

noisy 3-D surface information, CCD data provides surface boundary information distorted

by perspective projection. Combining constraints from each sensor may create distinct and

easily found optimal matches in the combinatorial spaces of possibilities. Future work should

test this conjecture.

9.5 In Closing

Local search matching is an original contribution to the �eld of computer vision, and as a

consequence of its originality, its performance pro�le is di�erent from that of the other basic

approaches to geometric matching. Unlike most other approaches, it does not rely upon local

geometric constraints associated with small subsets of model and image features to direct

and constrain search. This, more than anything else, accounts for its robust performance

in the presence of highly cluttered and corrupted image data. It also explains the relatively

easy and largely unprecedented extension to full-perspective matching.

Weak-perspective matching problems with high quality image data are probably best

solved using key-feature, generalized Hough or geometric hashing style algorithms. However,

problems involving poor quality data, signi�cant amounts of clutter, occlusion, omission,

symmetricmodels, or full-perspective, should probably be solved using local search matching.

Given the unique strengths of local search matching, it promises to play an important role

in the future development of ever more capable computer vision systems.

B I B L I O G R A P H Y

[1] Ansari, Nirwan and Delp, Edward J. Partial shape recognition: A landmark-based

approach. IEEE Trans. on Pattern Analysis and Machine Intelligence, 12(5):470 {

483, May 1990.

[2] Arkin, Esther M., Chew, L. Paul, Huttenlocher, Daniel P., Kedem, Klara, and Mitchell,

Joseph S. B. An e�ciently computable metric for comparing polygonal shapes.

IEEE Trans. on Pattern Analysis and Machine Intelligence, 13(3):209 { 223, March

1991.

[3] Ayache, N. and Faugeras, O. D. Hyper: A new approach for the recognition and posi-

tioning of 2-d objects. IEEE Trans. on Pattern Analysis and Machine Intelligence,

8(1):44 { 54, January 1986.

[4] Baird, Henry S. Model-Based Image Matching Using Location. MIT Press, Cambridge,

MA, 1985.

[5] Ballard, Dana H. Generalizing the hough transform to detect arbitrary shapes. Pattern

Recognition, 13(2):111 { 122, 1981.

[6] Ballard, Dana H. and Brown, Christopher M. Computer Vision. Prentice-Hall, Inc,

Englewood Cli�s, New Jersey, 1982.

[7] Berkson, J. Estimation by least-squares and by maximum likelihood. In Proc. Third

Berkeley Symp. on Mathematical Statistics, and Probability, volume 1, pages 1 {

11, 1956.

[8] Beveridge, J. Ross. A maximum likelihood view of point and line segment match

evaluation. Unpublished draft., 1992.

[9] Beveridge, J. Ross and Riseman, Edward M. Can too much perspective spoil the view?

a case study in 2d a�ne versus 3d perspective model matching. In Proceedings:

Image Understanding Workshop, pages 665 { 663, San Mateo, CA, January 1992.

Morgan Kaufmann.

[10] Beveridge, J. Ross and Riseman, Edward M. Hybrid weak-perspective and full-

perspective matching. In Proceedings: IEEE 1992 Computer Society Conference

on Computer Vision and Pattern Recognition, pages 432 { 438. IEEE Computer

Society, June 1992.

[11] Beveridge, J. Ross, Weiss, Rich, and Riseman, Edward M. Optimization of 2-

dimensional model matching. In Proceedings: Image Understanding Workshop,

pages 815 { 830, Los Altos, CA, June 1989. DARPA,Morgan Kaufmann Publishers,

Inc (Also a Tech. Report).

190

[12] Beveridge, J. Ross, Weiss, Rich, and Riseman, Edward M. Combinatorial optimization

applied to variable scale 2d model matching. In Proceedings of the IEEE Interna-

tional Conference on Pattern Recognition 1990, Atlantic City, pages 18 { 23. IEEE,

June 1990.

[13] Bevington, James, Johnston, Randy, Lee, Joel, and Peters, Richard. A modular target

recognition algorithm for ladar. In Proc of the 2nd Automatic Target Recognizer

Systems and Technology Conference, pages 91 { 104, Fort Belvoir, VA, March 1992.

[14] Bolles, R. C. and Cain, R. A. Recognizing and locating partially visible objects: the

local-feature-focus method. International Journal of Robotics Research, 1(3):57 {

82, 1982.

[15] Bray, Alistair J. Object recognition using local geometric constraints: A robust

alternative to tree search. In Faugeras, O., editor, Proceedings: First European

Conference on Computer Vision, pages 499 { 515, New York, April 1990. Springer-

Verlag.

[16] Breuel, Thomas M. An e�cient correspondence based algorithm for 2d and 2d model

based recognition. A.I. Memo 1259, MIT, MIT AI Lab, October 1990.

[17] Brooks, Rodney A. Symbolic reasoning among 3-d models and 2-d images. Arti�cial

Intelligence, 17:285 { 348, 1982.

[18] Brown, Christopher M. Bias and noise in the hough transform 1: Theory. Technical

Report TR - 105, Computer Science Department, University of Rochester, June

1982.

[19] Burns, J. B. Matching 2D Images to Multiple 3D Ojbects using View Description

Networks. PhD thesis, University of Massachusetts, Amherst, MA, February 1992.

[20] Burns, J. B., Hanson, A. R., and Riseman, E. M. Extracting straight lines. IEEE

Trans. on Pattern Analysis and Machine Intelligence, PAMI{8(4):425 { 456, July

1986.

[21] Burns, J. B., Weiss, R., and Riseman, E. R. The non-existence of general-case

view-invariants. In Mundy, J. and Zisserman, A., editors, Geometric Invariance

in Computer Vision, page (to appear). MIT Press, Cambridge, 1992.

[22] Cass, Todd A. Polynomial-timeobject recognition in the pressence of clutter, occlusion,

and uncertainty. In Proceedings: Image Understanding Workshop, pages 693 { 704,

San Mateo, CA, January 1992. DARPA, Morgan Kaufman.

[23] Chen, C. H. and Kak, A. C. A robot vision system for recognizing 3d objects in

low-order polynomial time. IEEE Trans. on Syst., Man, Cybern., 19(6):1535 {

1563, November/December 1989.

[24] Collins, Robert T. and Beveridge, J. Ross. Matching perspective views of coplanar

structures using projective unwarping and similarity matcing. In Proceedings: 1993

IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

page (to appear), New York, NY, June 1993.

191

[25] Costa, Mauro, Haralick, Robert M., and Shapiro, Linda G. Optimal a�ne - invariant

point matching. In Proceedings of the IEEE International Conference on Pattern

Recognition 1990, Atlantic City, pages 233 { 236. IEEE, June 1990.

[26] Cox, I. J. and Kruskal, J. B. Determining the 2- or 3-dimensional similarity transforma-

tion between a point set and a model made of lines and arcs. In IEEE Proceedings of

the 28th Conference on Decision and Control, page 1167, Tampa, December 1989.

IEEE Control Systems Society, IEEE.

[27] Davis, Larry S. Hierarchical generalized hough transforms and line-segment based

generalized hough transforms. Pattern Recognition, 15(4):277 { 285, 1982.

[28] Davis, Larry S. and Yam, S. A generalized hough-like transformation for shape

recognition. Technical Report TR{134, University of Texas, Computer Science,

1980.

[29] Davis, Lawrence, editor. Handbook of Genetic Algorithms. Van Nostrand Reinhold,

New York, 1991.

[30] Draper, Bruce A. Learning Object Recognition Strategies. PhD thesis, University of

Massachusetts, Amherst, May 1993.

[31] Draper, Bruce A., Hanson, Allen R., and Riseman, Edward M. Learning knowledge-

directed visual strategies. In Proceedings: Image Understanding Workshop, pages

933 { 940, San Mateo, February 1992. DARPA, Morgan Kaufmann.

[32] Ellis, R. E. A tactile sensing strategy for model-based object recognition. Technical

Report COINS TR87-96, University of Massachusetts, Amherst, 1987.

[33] Faugeras, O. D. and Hergert, M. The representation, recognition, and locating of 3d

objects. The International Journal of Robotics Research, 5(3):27 { 51, 1986.

[34] Fennema, Claude, Hanson, Allen, Riseman, Edward, Beveridge, J. R., and Kumar,

R. Model-directed mobile robot navigation. IEEE Trans. on Syst., Man, Cybern.,

20(6):1352 { 1369, November/December 1990.

[35] Fischler, Martin A. and Bolles, Robert C. Random sample consensus: A paradigm

for model �tting with applications to image analysis and automated cartography

(reprinted in readings in computer vision, ed. m. a. �schler. Comm. ACM, 24(6):381

{ 395, June 1981.

[36] Foley, J. D. and Dam, A. Van. Fundamentals of Interactive Computer Graphics. The

Systems Programming Series. Addison{Wesley, Reading, Massachusetts, 1982.

[37] Gaston, P. C. and Lozano-P�erez, T. Tactile recognition and localization using object

models: The case of polyhedra on a plane. IEEE Trans. on Pattern Analysis and

Machine Intelligence, PAMI { 6:721 { 741, May 1984.

[38] Geman, Donald, Geman, Stuart, Gra�gne, Christine, and Dong, Ping. Boundary

detection by constrained optimization. IEEE Trans. on Pattern Analysis and

Machine Intelligence, 12:609 { 628, 1990.

192

[39] Geman, Stuart and Geman, Donald. Stochastic relaxation, gibbs distribution and the

bayesian restoration of images. IEEE Trans. on Pattern Analysis and Machine

Intelligence, PAMI { 6:721 { 741, November 1984.

[40] Glover, F. Tabu search { part i. ORSA Journal on Computing, 1(3):190 { 206, 1989.

[41] Gottschalk, Paul G., Turney, Jerry L., and Mudge, Trevor N. E�cient recognition

of partially visible objects using a logarithmic complexity matching technique.

International Journal of Robotics Research, 8(6):110 { 131, December 1989.

[42] Grimson, W. E. L. On the recognition of curved objects. IEEE Trans. on Pattern

Analysis and Machine Intelligence, 11(6):632 {643, June 1989.

[43] Grimson, W. E. L. On the recognition of parameterized 2-d objects. Internation

Journal of Computer Vision, 2(4):353 { 372, April 1989.

[44] Grimson, W. E. L. The combinatorics of object recognition in cluterred environments

using constrained search. Arti�cial Intelligence, 44(1):121 { 165, July 1990.

[45] Grimson, W. E. L. and Huttenlocher, D. P. On the sensitivity of the hough tranform for

object recognition. In Proc. of the International Conference on Computer Vision,

pages 700 { 706, 1988.

[46] Grimson, W. E. L. and Lozano-P�erez, T. Localizing overlapping parts by searching

the interpretation tree. IEEE Trans. on Pattern Analysis and Machine Intelligence,

9(3):469 {482, 1987.

[47] Grimson, W. Eric L. The e�ect of indexing on the complexity of object recognition. In

Third International Conference on Computer Vision, pages 644 { 651. IEEE, IEEE

Computer Society Press, December 1990.

[48] Grimson, W. Eric L. Object Recognition by Computer: The Role of Geometric

Constraints. MIT Press, Cambridge, MA, 1990.

[49] Grimson, W. Eric L. and Huttenlocher, Daniel P. On the sensitivity of geometric

hashing. In Proccedings: ICCV 3, pages 334 { 338, Osaka Japan, December 1990.

IEEE Computer Society, IEEE Computer Society Press.

[50] Holland, John H. Adaptaion in Natural and Arti�cial Systems. University of Michigan

Press, 1975.

[51] Horaud, Radu, Conio, Bernard, and Leboulleux, Oliver. An analytic solution for the

perspectve 4-point problem. Computer Vsion, Graphics, and Image Processing,

47:33 { 44, July 1989.

[52] Horn, B. K. P. Relative orientation. International Journal of Computer Vision, 4:59

{ 78, 1990.

[53] Huertas, A., Cole, W., and Nevatia, R. Detecting runways in complex airport scenes.

Computer Vsion, Graphics, and Image Processing, 51(2):107 { 145, August 1990.

193

[54] Huttenlocher, Daniel P. and Ullman, Shimon. Recognizing solid objects by alignment.

In Proc. of the DARPA Image Understanding Workshop, pages 1114 { 1124,

Cambridge, April 1988. Morgan Kaufman Publishers, Inc., New York.

[55] Huttenlocher, Daniel P. and Ullman, Shimon. Recognizing solid objects by alignment

with an image. Internation Journal of Computer Vision, 5(2):195 { 212, November

1990.

[56] Hwang, Vincent S. S. Recognizing and locating partially occluded 2-d objects: Sym-

bolic clustering method. IEEE Trans. on Syst., Man, Cybern., 19(6):1644 { 1656,

November 1989.

[57] III, William M. Wells. Map model matching. In CVPR{91, pages 486{492, 1991.

[58] Ikeuchi, Katsushi and Hong, Ki Sang. Determining linear shape change: Toward

automatic generation of object recognition programs. Computer Vsion, Graphics,

and Image Processing { Image Understanding, 53(2):154 { 170, March 1991.

[59] Illingworth, J. and Kittler, J. A survey of the hough transform. Computer Vsion,

Graphics, and Image Processing, 44:87 { 116, 1988.

[60] Johnson, David S., Aragon, Cecila R., McGeoch, Lyle A., and Schevon, Catherine.

Optimization by simulated annealing: an experimental evaluation; part i, graph

partitioning. Operations Research, 37(6):865 { 893, November{December 1989.

[61] Johnson, David S., Aragon, Cecila R., McGeoch, Lyle A., and Schevon, Catherine.

Optimization by simulated annealing: an experimental evaluation; part ii, graph

coloring and number partitioning. Operations Research, 39(3):378 { 406, May{June

1991.

[62] Johnson, David S., Papadimitriou, Christos H., and Yannakakis, Mihalis. How easy is

local search. Journal of Computer and System Sciences, 37:79 { 100, 1988.

[63] Kalvin, Alan, Schonberg, Edith, Schwartz, Jacob T., and Sharir, Micha. Two-

dimensional, model-based, boundary matching using footprints. The International

Journal of Robotics Research, 5(4):38 { 55, 1986.

[64] Kernighan, B. W. and Lin, S. An e�cient heuristic procedure for partitioning graphs.

Bell Systems Tech. Journal, 49:291 { 307, 1972.

[65] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. Optimization by simulated annelaing.

Science, 220:671 { 680, 1983.

[66] Knoll, T. F. and Jain, R. C. Recognizing partially visible objects using feature indexed

hypotheses. IEEE Journal of Robotics and Automation, 2:3 { 13, 1986.

[67] Krentel, Mark W. Structure in locally optimal solutions. In Proceedings: Symposium

on Foundations of Computer Science, pages 216 { 221. IEEE Computer Society,

Computer Society Press, October 1989.

194

[68] Kumar, Rakesh. Determination of camera location and orientation. In Proceedings:

Image Understanding Workshop, pages 870 { 881, Los Altos, CA, June 1989.

DARPA, Morgan Kaufmann Publishers, Inc.

[69] Kumar, Rakesh. Model Dependent Inference of 3D Information From a Sequence of

2D Images. PhD thesis, University of Massachusetts, Amherst, February 1992.

[70] Kumar, Rakesh and Hanson, Allen. Robust estimation of camera location and orienta-

tion from noisy data having outliers. In Proc. of IEEE Workshop on Interpretation

of 3D Scenes, pages 52 { 60, Austin, TX, 1989. IEEE.

[71] Kumar, Rakesh and Hanson, Allen. Analysis of di�erent robust methods for pose

re�nement. In Proc. of IEEE Workshop on Robust Methods in Computer Vision,

pages 161 { 182, Seattle, WA, 1990. IEEE.

[72] Lamdan, Y. andWolfson, H. J. Geometric hashing: A general and e�cientmodel-based

recognition scheme. In Proc. IEEE Second Int. Conf. on Computer Vision, pages

238 { 249, Tampa, December 1988.

[73] Lamdan, Yehezkel, Schwartz, Jacob T., and Wolfson, Haim J. A�ne invariant model-

based object recognition. IEEE Transactions on Robotics and Automation, 6(5):578

{ 589, October 1990.

[74] Li, S. Z. Matching: Invariant to translations, rotations and scale changes. Pattern

Recognition, 25(6):583 { 594, 1991.

[75] Lin, S. Computer solutions of the traveling salesman problem. Bell Syst. Comput. J.,

44:2245 { 2269, 1965.

[76] Lin, S. and Kernighan, B. An e�ective heuristic algorithm for the traveling salesman

problem. Operations Research, 21:498 { 516, 1973.

[77] Liu, Yanxi. Symmetry Groups in Robotic Assembly Planning. PhD thesis, University

of Massachusetts, Amherst, September 1990.

[78] Liu, Yanxi and Popplestone, Robin. A group theoretic formalization of surface contact.

International Journal of Robotics Research, page to appear, 1993.

[79] Lowe, David G. Solving for the parameters of object models from image descriptions.

In Proc. ARPA Image Understading Workshop, pages 121 { 127, 1980.

[80] Lowe, David G. Perceptual Organization and Visual Recognition. Kluwer Academic

Publishers, 1985.

[81] Lowe, David G. The viewpoint consistency constraint. Iternational Journal of

Computer Vision, 1(1):58 { 72, 1987.

[82] Lowe, David G. Fitting parameterized three-dimensional models to images. IEEE

Trans. on Pattern Analysis and Machine Intelligence, 13(5):441 { 450, May 1991.

195

[83] Lowe, David G. and Binford, T. O. The perceptual organization of visual images:

Segmentation as a basis for recognition. In Proc. Image Understanding Workshop,

Stanford, pages 203 { 209, June 1983.

[84] Merman, Martin and Kanade, Takeo. Incremental reconstruction of 3d scenes from

multiple, complex images. A. I. Journal, 30(3):289 { 341, December 1986.

[85] Mohan, Rakesh and Nevatia, Ramakant. Perceptual grouping for the detection and

description of structures in aerial images. In Proceedings: Image Understanding

Workshop { 1988, pages 512 { 526. DARPA, Morgan Kaufmann, April 1988.

[86] Morgan, Douglas. Point feature detection algorithm explicit state integral version.

Technical Memorandum ADS-TR-06327-025-001, Advanced Decisions Systems,

September 1992.

[87] M�uhlenbein, Heinz. Evolution in time and space { the parallel genetic algorithm. In

Rawlins, Gregory J. E., editor, Foundations of Genetic Algorithms, pages 316 {

337. Morgan Kaufmann, San Mateo, California, 1991.

[88] Nalwa, Vishvjit S. and Pauchon, Eric. Edgel-aggregation and edge-description. In

Proceedings: Image Understanding Workshop, pages 176 { 185, Los Altos, CA,

1985. DARPA, Morgan Kaufmann Publishers, Inc.

[89] Nevatia, R. and Babu, R. Linear feature extraction and description. Computer Vsion,

Graphics, and Image Processing, 13:257 { 269, 1980.

[90] Newton, Tyre A. A simple algorithm for �nding eigenvalues and eigenvectors for 2x2

matrices. The American Mathematical Monthly, 97(1):57 { 59, January 1990.

[91] Noble, Ben and Daniel, James W. Applied Linear Algebra. Prentic-Hall, Inc, Engle-

wood Cli�s, N.J., 2 edition, 1977.

[92] Papadimitriou, Christos H. and Steiglitz, Kenneth. Combinatorial Optimization:

Algorithms and Complexity, chapter Local Search, pages 454 { 480. Prentice{Hall,

Englewood Cli�s, NJ, 1982.

[93] Press, William H., Flannery, Brian P., Teukolsky, Saul A., and Vetterling, William T.

Numerical Recipes in C. Cambridge University Press, Cambridge, 1988.

[94] Rawlins, Gregory J. E., editor. Foundations of Genetic Algorithms. Morgan Kauf-

mann, San Mateo, California, 1991.

[95] Roberts, L. G. Machine perception of three{dimensional solids. In Tippett, James T.,

editor, Optical and Electro-Optical Information Processing, chapter 9, pages 159 {

197. MIT Press, Cambridge, MA, 1965.

[96] Seigel, Andrew F. and Benson, Richard H. A robust comparison of biological shapes.

Biometric, 38:341 { 350, June 1982.

196

[97] Siegel, Andrew F. Geometric data analysis. In Launer, Robert L. and Siegel,

Andrew F., editors, Modern Data Analysis, pages 110 { 122. Academic Press, Inc,

New York, 1982.

[98] Silberberg, T. M., Harwood, D., and Davis, L. S. Object recognition using oriented

model points. Computer Vsion, Graphics, and Image Processing, 35:47 { 71, 1986.

[99] Sitaraman, R. and Rosenfeld, A. Probabilistic analysis of two stage matching. Pattern

Recognition, 22(3):331 { 343, 1989.

[100] Sorenson, H. W. Least-squares estimation: from gauss to kalman. IEEE Spectrum,

pages 63 { 68, July 1970.

[101] Stein, Fridtjof and Medioni, G�erard. Graycode representation and indexing: Fast two

dimensional object recognition. In Proc of 10th ICPR, page ?, Atlantic City, June

1990.

[102] Stein, Fridtjof and Medioni, G�erard. Recognition of 3-d objects from 2-d groupings. In

Proceedings: Image Understanding Workshop, pages 667 { 674, San Mateo, January

1992. DARPA, Morgan Kaufmann.

[103] Stockman, George. Object recognition and localization via pose clustering. Computer

Vsion, Graphics, and Image Processing, 40:361 { 387, 1987.

[104] Swain, M. J. and Ballard, D. H. Indexing via color histograms. In Third International

Conference on Computer Vision, pages 390 { 393. IEEE, IEEE Computer Society

Press, December 1990.

[105] Thompson, D. W. and Mundy, J. Three-dimensional model matching from an un-

constrained viewpoint. In Proc. IEEE International Conference on Robotics and

Automation, pages 208 { 220, 1987.

[106] Tovey, Craig A. Hill climbing with multiple local optima. SIAM J. Alg. Disc. Meth.,

6(3):384 { 393, July 1985.

[107] Weiss, Richard and Boldt, Michael. Geometric grouping applied to straight lines. In

CVPR{86 Proceedings. IEEE Computer Society, June 1986.

