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Abstract

This document describes the format of LLVS plane �les in a multi-

architecture environment. The plane �les support di�erent byte orders

and di�erent 
oating point formats. A given machine will write planes

using its \native" format and read planes written by other machines,

1



doing whatever converesions needed to produce an in-core representa-

tion of the data in native form.
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1 Introduction

This manual describes the format used by the VISIONS group to store image

data. Image data is stored as \plane" �les, each of which holds one or more

image planes. Image planes are two dimensional arrays of picture elements,

know as \pixels". There are �ve types of planes: bit (one bit per pixel),

unsigned byte (8 bits per pixel), short integers (16-bits, signed, per pixel),

integer (32-bits, signed, per pixel), and 
oating (32-bit 
oating point). All

of the pixels in a given plane are of the same type. Two data structures are

used to hold information about a plane while it is in main memory: a PLANE

structure (which points at the pixels themselves) and a PLANE INFO structure

which describes the plane. These structures are de�ned as follows:
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/*------------------------------------------------------

*

* PLANE

* This structure describes the format of a plane passed

* to C. Each plane is passed to the C routine as a separate

* argument of type PLANE.

1

From \llvs per plane.h"
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*

*-------------------------------------------------------

*/

typedef struct {

int plane_base[1]; /* plane data starts here */

} PLANE;

/*----------------------------------------------------------

*

* PLANE_INFO

* Other information is available for each plane. This

* information is passed in an array of PLANE_INFO[MAXPLANE].

* The Lisp function BUILD-PLANE-INFO-VECTOR-C may be used to

* build the array. The background-value is passed as a C

* float value if the plane is a floating point plane, C int

* type otherwise.

*

*----------------------------------------------------------
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*/

/* plane info struct */

typedef struct {

long int datatype; /* data type */

#define LLVS_BIT 0 /* bit type */

#define LLVS_BYTE 1 /* unsigned byte type */

#define LLVS_SHORT 2 /* signed 16 bit type */

#define LLVS_INT 3 /* integer type */

#define LLVS_FLOAT 4 /* float type */

#define FLOAT 4 /* float type */

long int level; /* plane level */

long int row_location; /* row location */

long int column_location; /* column location */

long int row_dimension; /* row dimension */

long int column_dimension; /* column dimension */

union {

long int fixnum; /* background value */

float flonum; /* dito, but as a flonum */
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} background;

} PLANE_INFO;

Additional information about planes are stored in a Common LISP as-

sociation list

2

. The association list is used to store information such as the

plane statisics (minimum value, maximum value, etc.) and other user-de�ned

information.

When image planes are written to disk �les, this information needs to be

preserved in a form that can be read on many di�erent systems, since the

one thing all of the various machines have in common is a �le system. Planes

are written to disk �les as four logical records: a plane �le header record, an

association list record, a plane size record, and a plane data record. The plane

�le header record is a �xed-length record containing 32 bytes. It de�nes the

plane's type and contains information about how the plane was written (byte

sex

3

, 
oating point format used), the plane's size, its location, its relative

resolution, etc. The association list record contains the plane's association

list as ASCII text. The plane size record de�nes the plane's dimensions. And
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Common LISP The language, Guy L. Steele Jr., pp 279-281
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byte storage order
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�nally, the plane data record contains the pixel values themselves.

2 The Plane File Header

This structure is de�ned in the �le llvs plane.h.

/* some basic types: */

typedef unsigned char llvs_ubyte; /* unsigned bytes

(8-bits) */

typedef long int llvs_integer; /* long integer

(32-bits) */

typedef float llvs_single_float; /* 32-bit floating

point */

typedef short int llvs_half_integer; /* short integer

(16-bits) */

/* primary header record: LLVS Plane files start with this */

typedef struct {
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llvs_ubyte ptype; /* datatype of plane */

#define LLVS_PLF_BIT 0 /* bit type */

#define LLVS_PLF_BYTE 1 /* unsigned byte type */

#define LLVS_PLF_SHORT 2 /* signed 16 bit type */

#define LLVS_PLF_INT 3 /* integer type */

#define LLVS_PLF_FLOAT 4 /* float type */

llvs_ubyte bsex; /* byte sex (byte order) */

#define LLVS_LOW_BYTE_FIRST 0 /* low byte first

(VAX, 80x86) */

#define LLVS_HIGH_BYTE_FIRST 1 /* high byte first

(680x0, Spark) */

llvs_ubyte floatfmt; /* floating point format */

#define LLVS_DEC_SINGLE_FLOAT 0 /* DEC 32-bit floating point

format (PDP-11, VAX) */

#define LLVS_IEEE_SINGLE_FLOAT 1 /* IEEE 32-bit floating

point format (Sun,

Sequent, Spark, TI

LISPM) */

llvs_ubyte reserved; /* reserved byte - must be
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ZERO at present */

/* the remaining fields are in the format indicated above */

llvs_integer pl_level; /* plane level */

llvs_integer row_location; /* row offset of plane */

llvs_integer col_location; /* column offset of plane */

union {

llvs_integer iback; /* integer background value

*/

llvs_single_float fback; /* floating point background

value */

} background; /* plane background value */

llvs_integer alist_length; /* length of alist record */

llvs_integer data_length; /* length of data + size

header */

llvs_integer multi_plane_flag; /* Multi-plane flag - if 0

this is the last/only

plane otherwise,

additional planes are

stored after this one.
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*/

} LLVS_PLANE_FILE_HEADER;

The �rst three bytes of this header record describe the format of the

plane data: its data type, its \byte sex" (byte ordering of multi-byte nu-

merical values), and the 
oating point number format used for 
oating point

numbers.

3 The Association List Record

Following the plane �le header record is a variable-length record containing

the plane's association list. This record contains ASCII text which is the

printed representation of a Common LISP association list. This record is not

bounded - code that reads plane �les should make sure that the bu�er used

is large enough, as indicated by the alist length �eld on the header record.

4 The Plane Size Record

Following the association list record is the plane size record:
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typedef struct {

llvs_integer datatype_again; /* plane data type (redundant) */

llvs_integer row_dimension; /* plane row dimension */

llvs_integer col_dimension; /* plane col dimension */

} LLVS_PLANE_SIZE_HEADER;

This record describes the size of the plane in elements, giving the plane

dimensions. The plane data is actually just a two-dimensional array of nu-

merical values, each element of which represents a single picture element

(called a \pixel").

5 The Plane Pixels

After the size record, comes the plane data itself. This is also a variable

length record. Its size is 12 bytes less than the value of the data length

�eld in the plane �le header record. (The data length �eld in the plane

�le header record includes the size of the plane size record.) The data is

stored in \scan" order: top-to-bottom, left-to-right. The �rst element is the

top-left picture element, the next element is the next picture element to the

right, etc., that is the data is stored by rows, starting with the top row of
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the image.

6 Multi-Plane Files

Some image data consists of a group of related planes, such as the red, green,

and blue planes of a color image or the left and right views of a stereo pair,

etc. For ease of transport and handling, it is posible to store multiple planes

in one �le. The multi plane flag �eld in the plane �le header is used to

indicate when multiple planes are stored in a given �le. If this �eld is equal

to zero, then only one plane is stored in the �le. If this �eld is not equal

to zero, then another plane �le header record, association list record, plane

size record, and plane data record follow after the current plane data record.

The last plane has a plane �le header record with its multi plane flag �eld

set to zero. The value stored in this �eld is the number of remaining planes

in the �le. That is, if the �le contains three planes, the value in the �rst

plane's multi plane flag header �eld is 2, the value in the second planes'

multi plane flag header �eld is 1, and the value in the third (and last)

multi plane flag header �eld is 0.
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7 Summary

A LLVS plane �le looks like this:

Plane File Header Record 32 bytes

Association List Record alist length bytes

Plane Size Record 12 bytes

Plane Data Record (data length� 12) bytes

This structure is repeated if the multi plane flag �eld in the Plane File

Header Record is not equal to zero. The last (or only) Plane File Header

Record has its multi plane flag �eld set to zero.
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A Actual C code to read in a single plane

This is the actual C code

4

to read in a plane �le. The function read plane

takes as arguments a pointer to a pointer to a PLANE structure, a pointer

to a pointer to a PLANE INFO structure, a pointer to a string pointer, and a

string pointer. This function allocates space (via malloc() and calloc())

for the PLANE, the PLANE INFO, and the associations list and it side-a�ects

its �rst three arguments, which should be either addresses of variables or

array or structure slots. read plane returns -1 on error and the value of the

multi plane flag on success.

#define BLOCKSIZE 512 /* max number of bytes to read at a time */

/*

* read_plane(plane,plane_info,associations,filename) - read

* in a plane file. plane is a pointer to a pointer to a

* PLANE object, plane_info is a pointer to a pointer to a

* PLANE_INFO object, associations is a pointer to a pointer

4

From \read write plane.c".
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* to char, and filename is a pointer to a char.

* plane, plane_info, and associations are set to malloc'ed

* space, so should be addresses of cloberable pointers (i.e.

* addresses of variables or structure fields, etc.).

*/

read_plane(plane,plane_info,associations,filename)

PLANE **plane;

PLANE_INFO **plane_info;

char **associations;

char *filename;

{

First we declare local variables:

/* plane file header record structure */

static LLVS_PLANE_FILE_HEADER header;

/* plane size header record structure */

static LLVS_PLANE_SIZE_HEADER size_header;

int plsize; /* # bytes in plane */

15



FILE *plfile; /* plane file */

llvs_ubyte *data_pointer; /* pointer to data buffer */

int rbytes, bytesleft; /* I/O byte counters */

int need_swap, need_cvt_float; /* flags to indicate if

conversions needed */

Now we open the plane �le and read in the plane �le header record:

/* open file. abort if open failure */

plfile = fopen(filename,"r");

if (plfile == NULL) return(-1);

/* read header record */

if (fread(&header,32,1,plfile) != 1) return(-1);

Next we generate the conversion 
ags. LLVS NATIVE BYTE SEX and LLVS NATIVE FLOATFMT

are macros de�ned in llvs plane.h under control of contitional compilation

macros de�ning the machine type (i.e. VAX, SUN, or SEQUENT, etc.).

need_swap = header.bsex != LLVS_NATIVE_BYTE_SEX;
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need_cvt_float = header.floatfmt != LLVS_NATIVE_FLOATFMT;

Now we convert the remainder of the header to native internal storage

format:

if (need_swap) swap_longs(&header.pl_level,7);

if (header.ptype == LLVS_PLF_FLOAT && need_cvt_float)

cvt_floats(&header.background,1,header.floatfmt,

LLVS_NATIVE_FLOATFMT);

Now we compute the size of the plane in bytes, allocate the PLANE INFO

structure, �ll in the PLANE INFO structure, and allocate memory for the plane

itself.

/* compute plane size */

plsize = header.data_length - 12;

/* allocate plane info struct */

*plane_info = (PLANE_INFO *) malloc(sizeof(PLANE_INFO));

if (*plane_info == NULL) return(-1);

/* fill in plane info slots */
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(*plane_info)->datatype = header.ptype;

(*plane_info)->level = header.pl_level;

(*plane_info)->row_location = header.row_location;

(*plane_info)->column_location = header.col_location;

(*plane_info)->background.fixnum =

header.background.iback;

/* allocate plane it self */

*plane = (PLANE *) malloc(plsize);

if (*plane == NULL) return(-1);

Now we allocate space for the associations list and read in the associa-

tions list record. This C function does not actually do anything with the

associations list. In the Common LISP based system, we pass this string

to the Common LISP function READ-FROM-STRING and can then access the

association list with Common LISP association list access functions.

/* allocate space for association list */

*associations = calloc(header.alist_length+1,

sizeof(char));

if (*associations == NULL) return(-1);
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/* read in association list */

data_pointer = (llvs_ubyte *) *associations; /* start of

buffer */

bytesleft = header.alist_length; /* number of bytes to

read */

while (bytesleft > 0) {

rbytes = bytesleft;

if (rbytes > BLOCKSIZE) rbytes = BLOCKSIZE;

if (fread(data_pointer,rbytes,1,plfile) != 1)

return(-1);

data_pointer += rbytes;

bytesleft -= rbytes;

}

Now we read in and convert the size header and �ll in the plane dimension

info.

/* read size header */

if (fread(&size_header,12,1,plfile) != 1) return(-1);

if (need_swap) swap_longs(&size_header,3);
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/* fill in addition slots in plane info */

(*plane_info)->row_dimension = size_header.row_dimension;

(*plane_info)->column_dimension =

size_header.col_dimension;

Finally, we read in the plane data itself, converting the data as we go.

/* read in plane */

data_pointer = (unsigned char *) (*plane)->plane_base;

bytesleft = plsize;

while (bytesleft > 0) {

rbytes = bytesleft;

if (rbytes > BLOCKSIZE) rbytes = BLOCKSIZE;

if (fread(data_pointer,rbytes,1,plfile) != 1)

return(-1);

if (need_swap && header.ptype == LLVS_PLF_SHORT)

swap_words(data_pointer,rbytes >> 1);

if (need_swap && (header.ptype == LLVS_PLF_INT ||

header.ptype == LLVS_PLF_FLOAT))

swap_longs(data_pointer,rbytes >> 2);
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if (need_cvt_float && header.ptype == LLVS_PLF_FLOAT)

cvt_floats(data_pointer,rbytes >> 2,

header.floatfmt,LLVS_NATIVE_FLOATFMT);

data_pointer += rbytes;

bytesleft -= rbytes;

}

When we are done, we close the �le. Read plane returns the value of the

multi-plane 
ag. This will be zero if this �le contained only one plane or

a positive non-zero value indicating the number of additional planes in the

�le. Read plane returns -1 when it encountes a system error (I/O error or a

memory allocation failure).

/* close file */

fclose(plfile);

return(header.multi_plane_flag);

}

There are 3 conversion functions used by this function: swap longs(),

swap words(), and cvt floats(). These three functions are de�ned in

read write plane.c. The �rst two functions do byte swaping on long ints
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and short ints and the third function converts 
oating point formats. All

three functions modify the memory pointed at by their �rst argument. The

second argument is the count of elelemts to convert. cvt floats has two

additional arguments: the current format of the 
oating point numbers and

the desired (i.e. native) 
oating point format.

B Actual C code to write out a single plane

This is the actual C code

5

to write out a plane �le. The function write plane

takes as arguments, pointers to a PLANE structure, a PLANE INFO structure,

a string containing the associations list, and a string containing the name of

the �le to write. If the associations list string is a NULL pointer, the string

"NIL" is written to the �le as the associations list record.

/*

* write_plane(plane,plane_info,associations,filename) -

* write out a plane.

*/

write_plane(plane,plane_info,associations,filename)

5

From \read write plane.c".
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PLANE *plane;

PLANE_INFO *plane_info;

char *associations;

char *filename;

{

First we declare local variables:

static LLVS_PLANE_FILE_HEADER header;

/* plane size header record structure */

static LLVS_PLANE_SIZE_HEADER size_header;

int plsize; /* # bytes in plane */

FILE *plfile; /* plane file */

unsigned char *data_pointer; /* pointer to data buffer */

int rbytes, bytesleft; /* I/O byte counters */

Now we open the plane �le and setup the plane �le header record. The

byte sex and 
oat format �elds are set to the values \native" to the current

machine. write plane does not convert the data to any particular format.
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/* open file. abort if open failure */

#ifdef VMS

plfile = fopen(filename,"w", "rfm=var");

#else

plfile = fopen(filename,"w");

#endif

if (plfile == NULL) return(-1);

/* fill in plane file header record */

header.ptype = plane_info->datatype;

header.bsex = LLVS_NATIVE_BYTE_SEX;

header.floatfmt = LLVS_NATIVE_FLOATFMT;

header.reserved = 0;

header.pl_level = plane_info->level;

header.row_location = plane_info->row_location;

header.col_location = plane_info->column_location;

header.background.iback = plane_info->background.fixnum;

header.data_length = plane_size(plane_info) + 12;

if (associations == NULL) associations = "NIL";

header.alist_length = strlen(associations);
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header.multi_plane_flag = 0;

Now write the header record:

/* write header record */

if (fwrite(&header,32,1,plfile) != 1) return(-1);

/* compute plane size (for use later) */

plsize = header.data_length - 12;

Now write out the associations list:

/* get pointer to associaions list */

data_pointer = (llvs_ubyte *) associations;

/* and length */

bytesleft = header.alist_length;

/* write out associations list */

while (bytesleft > 0) {

rbytes = bytesleft;

if (rbytes > BLOCKSIZE) rbytes = BLOCKSIZE;

if (fwrite(data_pointer,rbytes,1,plfile) != 1)
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return(-1);

data_pointer += rbytes;

bytesleft -= rbytes;

}

Now �ll in and write out the size header record:

/* fill in size header */

size_header.datatype_again = header.ptype;

size_header.row_dimension = plane_info->row_dimension;

size_header.col_dimension = plane_info->column_dimension;

/* write out size header */

if (fwrite(&size_header,12,1,plfile) != 1) return(-1);

Finally write out the plane's pixels:

/* get pointer & size of plane data */

data_pointer = (unsigned char *) plane->plane_base;

bytesleft = plsize;

/* write plane data */
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while (bytesleft > 0) {

rbytes = bytesleft;

if (rbytes > BLOCKSIZE) rbytes = BLOCKSIZE;

if (fwrite(data_pointer,rbytes,1,plfile) != 1)

return(-1);

data_pointer += rbytes;

bytesleft -= rbytes;

}

And close the �le when we are done.

/* close file */

fclose(plfile);

return(0);

}

This little function is used to compute the size of the plane in bytes.

/* compute plane size from plane info */

plane_size(plinfo)
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PLANE_INFO *plinfo;

{

int elements; /* element count */

elements = plinfo->row_dimension *

plinfo->column_dimension;

switch (plinfo->datatype) {

case LLVS_BIT: return( (elements + 7) / 8);

case LLVS_BYTE:

return( elements * sizeof(unsigned char));

case LLVS_SHORT:

return( elements * sizeof(short int));

case LLVS_INT:

return( elements * sizeof(long int));

case LLVS_FLOAT:

return( elements * sizeof(float));

}

}
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