
Universal LLVS Plane File Format

Robert Heller

April 30, 1993

Copyright
c

1989,1993 by the University of Massachusetts

All rights reserved.

Permission to copy and modify this software and its documentation only for

internal use in your organization is hereby granted, provided that this notice is

retained thereon and on all copies. UMASS makes no representations as to the

suitability and operability of this software for any purpose. It is provided "as is"

without express or implied warranty.

UMASS DISCLAIMS ALL WARRANTIES WITH REGARD TO

THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL

UMASS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSE-

QUENTIAL DAMAGES OR ANY OTHER DAMAGES WHATSO-

EVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,

WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR

OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNEC-

TIONWITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

No other rights, including, for example, the right to redistribute this software

and its documentation or the right to prepare derivative works, are granted unless

speci�cally provided in a separate license agreement.

Abstract

This document describes the format of LLVS plane �les in a multi-

architecture environment. The plane �les support di�erent byte orders

and di�erent
oating point formats. A given machine will write planes

using its \native" format and read planes written by other machines,

1

doing whatever converesions needed to produce an in-core representa-

tion of the data in native form.

2

1 Introduction

This manual describes the format used by the VISIONS group to store image

data. Image data is stored as \plane" �les, each of which holds one or more

image planes. Image planes are two dimensional arrays of picture elements,

know as \pixels". There are �ve types of planes: bit (one bit per pixel),

unsigned byte (8 bits per pixel), short integers (16-bits, signed, per pixel),

integer (32-bits, signed, per pixel), and
oating (32-bit
oating point). All

of the pixels in a given plane are of the same type. Two data structures are

used to hold information about a plane while it is in main memory: a PLANE

structure (which points at the pixels themselves) and a PLANE INFO structure

which describes the plane. These structures are de�ned as follows:

1

/*--

*

* PLANE

* This structure describes the format of a plane passed

* to C. Each plane is passed to the C routine as a separate

* argument of type PLANE.

1

From \llvs per plane.h"

3

*

*---

*/

typedef struct {

int plane_base[1]; /* plane data starts here */

} PLANE;

/*--

*

* PLANE_INFO

* Other information is available for each plane. This

* information is passed in an array of PLANE_INFO[MAXPLANE].

* The Lisp function BUILD-PLANE-INFO-VECTOR-C may be used to

* build the array. The background-value is passed as a C

* float value if the plane is a floating point plane, C int

* type otherwise.

*

*--

4

*/

/* plane info struct */

typedef struct {

long int datatype; /* data type */

#define LLVS_BIT 0 /* bit type */

#define LLVS_BYTE 1 /* unsigned byte type */

#define LLVS_SHORT 2 /* signed 16 bit type */

#define LLVS_INT 3 /* integer type */

#define LLVS_FLOAT 4 /* float type */

#define FLOAT 4 /* float type */

long int level; /* plane level */

long int row_location; /* row location */

long int column_location; /* column location */

long int row_dimension; /* row dimension */

long int column_dimension; /* column dimension */

union {

long int fixnum; /* background value */

float flonum; /* dito, but as a flonum */

5

} background;

} PLANE_INFO;

Additional information about planes are stored in a Common LISP as-

sociation list

2

. The association list is used to store information such as the

plane statisics (minimum value, maximum value, etc.) and other user-de�ned

information.

When image planes are written to disk �les, this information needs to be

preserved in a form that can be read on many di�erent systems, since the

one thing all of the various machines have in common is a �le system. Planes

are written to disk �les as four logical records: a plane �le header record, an

association list record, a plane size record, and a plane data record. The plane

�le header record is a �xed-length record containing 32 bytes. It de�nes the

plane's type and contains information about how the plane was written (byte

sex

3

,
oating point format used), the plane's size, its location, its relative

resolution, etc. The association list record contains the plane's association

list as ASCII text. The plane size record de�nes the plane's dimensions. And

2

Common LISP The language, Guy L. Steele Jr., pp 279-281

3

byte storage order

6

�nally, the plane data record contains the pixel values themselves.

2 The Plane File Header

This structure is de�ned in the �le llvs plane.h.

/* some basic types: */

typedef unsigned char llvs_ubyte; /* unsigned bytes

(8-bits) */

typedef long int llvs_integer; /* long integer

(32-bits) */

typedef float llvs_single_float; /* 32-bit floating

point */

typedef short int llvs_half_integer; /* short integer

(16-bits) */

/* primary header record: LLVS Plane files start with this */

typedef struct {

7

llvs_ubyte ptype; /* datatype of plane */

#define LLVS_PLF_BIT 0 /* bit type */

#define LLVS_PLF_BYTE 1 /* unsigned byte type */

#define LLVS_PLF_SHORT 2 /* signed 16 bit type */

#define LLVS_PLF_INT 3 /* integer type */

#define LLVS_PLF_FLOAT 4 /* float type */

llvs_ubyte bsex; /* byte sex (byte order) */

#define LLVS_LOW_BYTE_FIRST 0 /* low byte first

(VAX, 80x86) */

#define LLVS_HIGH_BYTE_FIRST 1 /* high byte first

(680x0, Spark) */

llvs_ubyte floatfmt; /* floating point format */

#define LLVS_DEC_SINGLE_FLOAT 0 /* DEC 32-bit floating point

format (PDP-11, VAX) */

#define LLVS_IEEE_SINGLE_FLOAT 1 /* IEEE 32-bit floating

point format (Sun,

Sequent, Spark, TI

LISPM) */

llvs_ubyte reserved; /* reserved byte - must be

8

ZERO at present */

/* the remaining fields are in the format indicated above */

llvs_integer pl_level; /* plane level */

llvs_integer row_location; /* row offset of plane */

llvs_integer col_location; /* column offset of plane */

union {

llvs_integer iback; /* integer background value

*/

llvs_single_float fback; /* floating point background

value */

} background; /* plane background value */

llvs_integer alist_length; /* length of alist record */

llvs_integer data_length; /* length of data + size

header */

llvs_integer multi_plane_flag; /* Multi-plane flag - if 0

this is the last/only

plane otherwise,

additional planes are

stored after this one.

9

*/

} LLVS_PLANE_FILE_HEADER;

The �rst three bytes of this header record describe the format of the

plane data: its data type, its \byte sex" (byte ordering of multi-byte nu-

merical values), and the
oating point number format used for
oating point

numbers.

3 The Association List Record

Following the plane �le header record is a variable-length record containing

the plane's association list. This record contains ASCII text which is the

printed representation of a Common LISP association list. This record is not

bounded - code that reads plane �les should make sure that the bu�er used

is large enough, as indicated by the alist length �eld on the header record.

4 The Plane Size Record

Following the association list record is the plane size record:

10

typedef struct {

llvs_integer datatype_again; /* plane data type (redundant) */

llvs_integer row_dimension; /* plane row dimension */

llvs_integer col_dimension; /* plane col dimension */

} LLVS_PLANE_SIZE_HEADER;

This record describes the size of the plane in elements, giving the plane

dimensions. The plane data is actually just a two-dimensional array of nu-

merical values, each element of which represents a single picture element

(called a \pixel").

5 The Plane Pixels

After the size record, comes the plane data itself. This is also a variable

length record. Its size is 12 bytes less than the value of the data length

�eld in the plane �le header record. (The data length �eld in the plane

�le header record includes the size of the plane size record.) The data is

stored in \scan" order: top-to-bottom, left-to-right. The �rst element is the

top-left picture element, the next element is the next picture element to the

right, etc., that is the data is stored by rows, starting with the top row of

11

the image.

6 Multi-Plane Files

Some image data consists of a group of related planes, such as the red, green,

and blue planes of a color image or the left and right views of a stereo pair,

etc. For ease of transport and handling, it is posible to store multiple planes

in one �le. The multi plane flag �eld in the plane �le header is used to

indicate when multiple planes are stored in a given �le. If this �eld is equal

to zero, then only one plane is stored in the �le. If this �eld is not equal

to zero, then another plane �le header record, association list record, plane

size record, and plane data record follow after the current plane data record.

The last plane has a plane �le header record with its multi plane flag �eld

set to zero. The value stored in this �eld is the number of remaining planes

in the �le. That is, if the �le contains three planes, the value in the �rst

plane's multi plane flag header �eld is 2, the value in the second planes'

multi plane flag header �eld is 1, and the value in the third (and last)

multi plane flag header �eld is 0.

12

7 Summary

A LLVS plane �le looks like this:

Plane File Header Record 32 bytes

Association List Record alist length bytes

Plane Size Record 12 bytes

Plane Data Record (data length� 12) bytes

This structure is repeated if the multi plane flag �eld in the Plane File

Header Record is not equal to zero. The last (or only) Plane File Header

Record has its multi plane flag �eld set to zero.

13

A Actual C code to read in a single plane

This is the actual C code

4

to read in a plane �le. The function read plane

takes as arguments a pointer to a pointer to a PLANE structure, a pointer

to a pointer to a PLANE INFO structure, a pointer to a string pointer, and a

string pointer. This function allocates space (via malloc() and calloc())

for the PLANE, the PLANE INFO, and the associations list and it side-a�ects

its �rst three arguments, which should be either addresses of variables or

array or structure slots. read plane returns -1 on error and the value of the

multi plane flag on success.

#define BLOCKSIZE 512 /* max number of bytes to read at a time */

/*

* read_plane(plane,plane_info,associations,filename) - read

* in a plane file. plane is a pointer to a pointer to a

* PLANE object, plane_info is a pointer to a pointer to a

* PLANE_INFO object, associations is a pointer to a pointer

4

From \read write plane.c".

14

* to char, and filename is a pointer to a char.

* plane, plane_info, and associations are set to malloc'ed

* space, so should be addresses of cloberable pointers (i.e.

* addresses of variables or structure fields, etc.).

*/

read_plane(plane,plane_info,associations,filename)

PLANE **plane;

PLANE_INFO **plane_info;

char **associations;

char *filename;

{

First we declare local variables:

/* plane file header record structure */

static LLVS_PLANE_FILE_HEADER header;

/* plane size header record structure */

static LLVS_PLANE_SIZE_HEADER size_header;

int plsize; /* # bytes in plane */

15

FILE *plfile; /* plane file */

llvs_ubyte *data_pointer; /* pointer to data buffer */

int rbytes, bytesleft; /* I/O byte counters */

int need_swap, need_cvt_float; /* flags to indicate if

conversions needed */

Now we open the plane �le and read in the plane �le header record:

/* open file. abort if open failure */

plfile = fopen(filename,"r");

if (plfile == NULL) return(-1);

/* read header record */

if (fread(&header,32,1,plfile) != 1) return(-1);

Next we generate the conversion
ags. LLVS NATIVE BYTE SEX and LLVS NATIVE FLOATFMT

are macros de�ned in llvs plane.h under control of contitional compilation

macros de�ning the machine type (i.e. VAX, SUN, or SEQUENT, etc.).

need_swap = header.bsex != LLVS_NATIVE_BYTE_SEX;

16

need_cvt_float = header.floatfmt != LLVS_NATIVE_FLOATFMT;

Now we convert the remainder of the header to native internal storage

format:

if (need_swap) swap_longs(&header.pl_level,7);

if (header.ptype == LLVS_PLF_FLOAT && need_cvt_float)

cvt_floats(&header.background,1,header.floatfmt,

LLVS_NATIVE_FLOATFMT);

Now we compute the size of the plane in bytes, allocate the PLANE INFO

structure, �ll in the PLANE INFO structure, and allocate memory for the plane

itself.

/* compute plane size */

plsize = header.data_length - 12;

/* allocate plane info struct */

*plane_info = (PLANE_INFO *) malloc(sizeof(PLANE_INFO));

if (*plane_info == NULL) return(-1);

/* fill in plane info slots */

17

(*plane_info)->datatype = header.ptype;

(*plane_info)->level = header.pl_level;

(*plane_info)->row_location = header.row_location;

(*plane_info)->column_location = header.col_location;

(*plane_info)->background.fixnum =

header.background.iback;

/* allocate plane it self */

*plane = (PLANE *) malloc(plsize);

if (*plane == NULL) return(-1);

Now we allocate space for the associations list and read in the associa-

tions list record. This C function does not actually do anything with the

associations list. In the Common LISP based system, we pass this string

to the Common LISP function READ-FROM-STRING and can then access the

association list with Common LISP association list access functions.

/* allocate space for association list */

*associations = calloc(header.alist_length+1,

sizeof(char));

if (*associations == NULL) return(-1);

18

/* read in association list */

data_pointer = (llvs_ubyte *) *associations; /* start of

buffer */

bytesleft = header.alist_length; /* number of bytes to

read */

while (bytesleft > 0) {

rbytes = bytesleft;

if (rbytes > BLOCKSIZE) rbytes = BLOCKSIZE;

if (fread(data_pointer,rbytes,1,plfile) != 1)

return(-1);

data_pointer += rbytes;

bytesleft -= rbytes;

}

Now we read in and convert the size header and �ll in the plane dimension

info.

/* read size header */

if (fread(&size_header,12,1,plfile) != 1) return(-1);

if (need_swap) swap_longs(&size_header,3);

19

/* fill in addition slots in plane info */

(*plane_info)->row_dimension = size_header.row_dimension;

(*plane_info)->column_dimension =

size_header.col_dimension;

Finally, we read in the plane data itself, converting the data as we go.

/* read in plane */

data_pointer = (unsigned char *) (*plane)->plane_base;

bytesleft = plsize;

while (bytesleft > 0) {

rbytes = bytesleft;

if (rbytes > BLOCKSIZE) rbytes = BLOCKSIZE;

if (fread(data_pointer,rbytes,1,plfile) != 1)

return(-1);

if (need_swap && header.ptype == LLVS_PLF_SHORT)

swap_words(data_pointer,rbytes >> 1);

if (need_swap && (header.ptype == LLVS_PLF_INT ||

header.ptype == LLVS_PLF_FLOAT))

swap_longs(data_pointer,rbytes >> 2);

20

if (need_cvt_float && header.ptype == LLVS_PLF_FLOAT)

cvt_floats(data_pointer,rbytes >> 2,

header.floatfmt,LLVS_NATIVE_FLOATFMT);

data_pointer += rbytes;

bytesleft -= rbytes;

}

When we are done, we close the �le. Read plane returns the value of the

multi-plane
ag. This will be zero if this �le contained only one plane or

a positive non-zero value indicating the number of additional planes in the

�le. Read plane returns -1 when it encountes a system error (I/O error or a

memory allocation failure).

/* close file */

fclose(plfile);

return(header.multi_plane_flag);

}

There are 3 conversion functions used by this function: swap longs(),

swap words(), and cvt floats(). These three functions are de�ned in

read write plane.c. The �rst two functions do byte swaping on long ints

21

and short ints and the third function converts
oating point formats. All

three functions modify the memory pointed at by their �rst argument. The

second argument is the count of elelemts to convert. cvt floats has two

additional arguments: the current format of the
oating point numbers and

the desired (i.e. native)
oating point format.

B Actual C code to write out a single plane

This is the actual C code

5

to write out a plane �le. The function write plane

takes as arguments, pointers to a PLANE structure, a PLANE INFO structure,

a string containing the associations list, and a string containing the name of

the �le to write. If the associations list string is a NULL pointer, the string

"NIL" is written to the �le as the associations list record.

/*

* write_plane(plane,plane_info,associations,filename) -

* write out a plane.

*/

write_plane(plane,plane_info,associations,filename)

5

From \read write plane.c".

22

PLANE *plane;

PLANE_INFO *plane_info;

char *associations;

char *filename;

{

First we declare local variables:

static LLVS_PLANE_FILE_HEADER header;

/* plane size header record structure */

static LLVS_PLANE_SIZE_HEADER size_header;

int plsize; /* # bytes in plane */

FILE *plfile; /* plane file */

unsigned char *data_pointer; /* pointer to data buffer */

int rbytes, bytesleft; /* I/O byte counters */

Now we open the plane �le and setup the plane �le header record. The

byte sex and
oat format �elds are set to the values \native" to the current

machine. write plane does not convert the data to any particular format.

23

/* open file. abort if open failure */

#ifdef VMS

plfile = fopen(filename,"w", "rfm=var");

#else

plfile = fopen(filename,"w");

#endif

if (plfile == NULL) return(-1);

/* fill in plane file header record */

header.ptype = plane_info->datatype;

header.bsex = LLVS_NATIVE_BYTE_SEX;

header.floatfmt = LLVS_NATIVE_FLOATFMT;

header.reserved = 0;

header.pl_level = plane_info->level;

header.row_location = plane_info->row_location;

header.col_location = plane_info->column_location;

header.background.iback = plane_info->background.fixnum;

header.data_length = plane_size(plane_info) + 12;

if (associations == NULL) associations = "NIL";

header.alist_length = strlen(associations);

24

header.multi_plane_flag = 0;

Now write the header record:

/* write header record */

if (fwrite(&header,32,1,plfile) != 1) return(-1);

/* compute plane size (for use later) */

plsize = header.data_length - 12;

Now write out the associations list:

/* get pointer to associaions list */

data_pointer = (llvs_ubyte *) associations;

/* and length */

bytesleft = header.alist_length;

/* write out associations list */

while (bytesleft > 0) {

rbytes = bytesleft;

if (rbytes > BLOCKSIZE) rbytes = BLOCKSIZE;

if (fwrite(data_pointer,rbytes,1,plfile) != 1)

25

return(-1);

data_pointer += rbytes;

bytesleft -= rbytes;

}

Now �ll in and write out the size header record:

/* fill in size header */

size_header.datatype_again = header.ptype;

size_header.row_dimension = plane_info->row_dimension;

size_header.col_dimension = plane_info->column_dimension;

/* write out size header */

if (fwrite(&size_header,12,1,plfile) != 1) return(-1);

Finally write out the plane's pixels:

/* get pointer & size of plane data */

data_pointer = (unsigned char *) plane->plane_base;

bytesleft = plsize;

/* write plane data */

26

while (bytesleft > 0) {

rbytes = bytesleft;

if (rbytes > BLOCKSIZE) rbytes = BLOCKSIZE;

if (fwrite(data_pointer,rbytes,1,plfile) != 1)

return(-1);

data_pointer += rbytes;

bytesleft -= rbytes;

}

And close the �le when we are done.

/* close file */

fclose(plfile);

return(0);

}

This little function is used to compute the size of the plane in bytes.

/* compute plane size from plane info */

plane_size(plinfo)

27

PLANE_INFO *plinfo;

{

int elements; /* element count */

elements = plinfo->row_dimension *

plinfo->column_dimension;

switch (plinfo->datatype) {

case LLVS_BIT: return((elements + 7) / 8);

case LLVS_BYTE:

return(elements * sizeof(unsigned char));

case LLVS_SHORT:

return(elements * sizeof(short int));

case LLVS_INT:

return(elements * sizeof(long int));

case LLVS_FLOAT:

return(elements * sizeof(float));

}

}

28

