
ISR3.1 User's Guide & Programmer's Reference

Bruce A. Draper G�okhan Kutlu

March 30, 1995

Contents

1 Introduction 3

1.1 Input/Output (I/O) : 4

1.2 Token Sets : 5

1.3 Utilities : 5

2 Tokens 6

2.1 Simple Tokens : 6

2.2 Tokens with Multiple Inheritance : : : : : : : : : : : : : : : : 7

2.2.1 Multiple Inheritance : : : : : : : : : : : : : : : : : : : 8

2.2.2 Virtual Base Class Inheritance : : : : : : : : : : : : : : 9

3 TokenSets { Storage, Access and Retrieval 10

3.1 TokenSetState : 15

4 Grids 16

5 File I/O 19

5.1 Application-level I/O : 21

5.2 De�ning Token Methods for I/O : : : : : : : : : : : : : : : : : 22

5.3 Foreign File Formats : 28

6 Graphics Methods 30

6.1 Vector Tokens : 31

6.2 Raster Tokens : 33

6.3 Non-graphical Tokens : 36

7 Utilities 36

8 Object Interfaces 36

8.1 Isrstreams : 36

8.2 Tokens : 40

8.3 TokenStreams : 43

8.4 TokenSets : 47

8.4.1 Selection and Retrieval Functions : : : : : : : : : : : : 49

8.4.2 Set Functions : 50

8.4.3 Maintenance Functions : : : : : : : : : : : : : : : : : : 50

1

8.4.4 TokenArray : 51

8.4.5 TokenArrayState : 54

8.4.6 TokenList : 54

8.4.7 TokenListState : 56

8.5 Grids : 56

8.5.1 Basic Functions : 57

8.5.2 Maintenance Functions : : : : : : : : : : : : : : : : : : 58

8.5.3 Rasterization Functions : : : : : : : : : : : : : : : : : 60

List of Figures

1 A simpli�ed version of the Line2D token de�nition showing

the name method de�nition. : : : : : : : : : : : : : : : : : : : 7

2 ISRtokens �le : 8

3 ISR3 Object Class Hierarchy : : : : : : : : : : : : : : : : : : : 11

4 The TokenSet::Union method : : : : : : : : : : : : : : : : : : 13

5 The TokenSet::retrieve function : : : : : : : : : : : : : : : : : 14

6 Finding candidate lines using a Grid structure : : : : : : : : : 17

7 The Grid::gridifyLines method : : : : : : : : : : : : : : : : : : 18

8 A Grid I/O example. : 20

9 Code using MatchFormatToFilename: ISRconvert : : : : : : : 23

10 Output function for the Line2D token class. : : : : : : : : : : 24

11 The input function for the Line2D class. : : : : : : : : : : : : 25

12 A de�nition of the Line2D class : : : : : : : : : : : : : : : : : 26

13 Class de�nition for Line2DPair. : : : : : : : : : : : : : : : : : 27

14 The trace() function de�nition for Line2DPair. : : : : : : : : : 28

15 The input function for Line2DPairs. : : : : : : : : : : : : : : : 29

16 The Draw method for vector graphics. : : : : : : : : : : : : : 32

17 The Draw method of Line2D. : : : : : : : : : : : : : : : : : : 34

18 The BitDraw method for vector tokens. : : : : : : : : : : : : : 35

List of Tables

1 File Formats currently recognized by ISR3.1. : : : : : : : : : : 30

2

1 Introduction

ISR3.1 is a software support tool that helps computer vision researchers store,

retrieve and communicate visual data, with an emphasis on symbolic rather

than image-like data. It was designed based on experience gained at the

computer vision laboratory of the University of Massachusetts, where it was

learned that: 1) vision systems typically create more symbolic data, in the

form of points, lines, and similar structures, than iconic (image-like) data;

2) this symbolic data is often loosely structured into sets or groups; and 3)

the ability to e�ciently store and access this data is critical to the success of

computer vision systems [3]. ISR3.1 therefore supports vision researchers by

providing an in-memory database for C++ class instances with routines for

rapid associative and spatial retrieval.

Another common cause of failure for computer vision projects is sys-

tems integration. Many computer vision systems are supposed to be as-

sembled from semi-independent software modules developed by di�erent re-

searchers, sometimes from di�erent laboratories. Unfortunately, integrating

these pieces into a single coherent system invariably proves to be a complex

and time-consuming process, and sometimes the practical di�culties exhaust

the resources of the project. Mant of these systems integration problems can

be traced to 1) incompatible structures for symbolic image data or 2) in-

compatible storage (typically �le) formats. When the integrated system is

supposed to operate in a real-time environment, interprocess communica-

tion (IPC) becomes a third source of problems. ISR3.1 supports (computer

vision) system integration by supplying a default library of common visual

object classes, such as points, lines and regions. It also provides �le I/O rou-

tines to ensure that such data is written and read uniformly (in either ASCII

or binary format), and for real-time applications an IPC stream mechanism

that complements the current �le I/O capabilities is being developed. Recog-

nizing that many useful vision software modules have already been developed

that do not use ISR3.1 classes or I/O routines, ISR3.1's I/O routines also

support reading and writing �les in many commonly-used formats, including

gif, ti�, vi� and im.

Realistically, however, ISR3.1 is not a software panacea. It cannot turn

poorly written code into e�cient and portable software modules, nor can

the ISR3.1 library anticipate every data structure that a computer vision re-

searcher might need. Instead, ISR3.1 is an object-oriented (OO) system that

3

we hope will encourage vision researchers to develop object-oriented code.

Like all object-oriented systems, the emphasis in ISR3.1 is on software reuse

and system extensibility. We have written data storage and retrieval rou-

tines, I/O functions and the rest so that other vision researcher's won't have

to. If ISR3.1 lacks an object class or functionality that a researcher needs,

its object-oriented structure is designed to allow it to be easily extended.

This will eventually lead to some degree of incompatibility between version

of ISR3, but if researchers who extend the system make their code available,

we can all bene�t from each other's labors.

1.1 Input/Output (I/O)

The core of ISR3.1 is a library of C++ classes de�ning symbolic computer

vision data structures, such as points, lines and faces. These classes are called

token types in ISR3.1, and instances of these classes are called tokens. Each

token contains data describing one visual event, such as a point or line in the

image. In addition, all tokens can be written to and read from �les, or stored

in sets to be retrieved later; some tokens can also be graphically displayed.

Fundamental to the design of ISR3.1 is the notion that new token types can

and should be introduced by the user. Although ISR3.1 comes with an initial

set of token types, including tokens for images, points, regions and lines, there

has been no attempt to forecast all the needs of vision researchers. Instead,

ISR3.1 is designed to be an extensible system that will grow as users de�ne

new token types.

For �le I/O, ISR3.1 de�nes an output stream class called TokenOStream

and an input stream class called TokenIStream. Any token can be written to

a TokenOStream or read from a TokenIStream. If a token contains pointers

to other tokens (for example, a pair token that contains pointers to two line

tokens), ISR3.1 will not only write out the initial token, it will also recursively

write out any token it has a pointer to. When the token is read later on, the

dependent tokens will also be read in and the pointers will be restored. This

capability will work even for circularly linked tokens.

In addition, the �le format of a token stream can be set at run-time.

ISR3.1 has two native �le formats: isra is an ASCII format that is designed

to be easily read by humans, whereas isrb is a more compact binary format.

Typically, tokens will be stored in binary (isrb) format to save disk space,

but these binary �les can be converted to ASCII (isra) any time a person

4

wants to look at their contents. Token streams can also be set to various

foriegn �le formats, such gif (used in Mosaic and on many PCs), ti� (used

on Apple MacIntoshes), vi� (used by Khoros [2]) and im and tks (used in

KBVision [1]). More foriegn �le formats, including jpeg and the IUE data

exchange format are planned.

When development is complete, users often want to embed vision modules

in larger systems by using the output of one module as the input to another.

At this stage, File I/O is no longer appropriate: data should be passed

directly from one module to another. An interprocess communication (IPC)

module is currently under development for ISR3.1 that will let token streams

be bound to other processes (using the UNIX stream mechanism). This will

allow data to be passed directly from one process to another.

1.2 Token Sets

The most important capability of ISR3.1 is the ability to store tokens in

sets, and then retrieve individual tokens or subset of tokens from those sets.

ISR3.1 actually supports many implementations of sets: token sets can be

arrays, lists, hash tables or 2D grids. However, all of these classes of sets

are derived from the TokenSet class, and all provide the same basic storage

and retrieval functions, so for many applications it does not matter which

set implementation is used.

The basic operations on sets are the logical ones; tokens can be added

or removed from sets, or tested for membership in a set; and programs can

take the union, intersection or di�erence of two sets. Functions are provided

for iterating through tokensets, or sets of tokens can be retrieved by their

feature values. Special types of token sets may provide additional retrieval

mechanisms; Grids, for example, allow tokens to retrieved by their 2D spatial

location. TokenSets are typically used to store a set of closely related tokens,

such as the set of line segments extracted from an image. Unlike in previous

versions of ISR, however, it is possible to store several di�erent types of

tokens within a single token set.

1.3 Utilities

In addition to the class library, ISR3.1 comes with a set of executable util-

ity programs. Most of these are simple programs, such as one that converts

5

a system �le from any format known to ISR3.1 to any other. One com-

plex utility, however, is xisrdisplay, a graphics program for displaying tokens.

Xisrdisplay can be used to graphically display the contents of a �le or, by

using token streams as an IPC mechanism, to show intermediate results of a

program as it is running.

2 Tokens

ISR3.1 provides storage, retrieval, I/O and graphics capabilities for tokens,

where a token is an instance of a C++ class that inherits directly or indirectly

from the class Token

1

. In general, storage and retrieval facilities are provided

by the TokenSet and Grid objects; tokens can be stored in tokensets and

later retrieved by their attribute values, or by iterating through the tokenset.

Tokens stored in Grids can be retrieved by their spatial location. Although

TokenSets and Grids are su�cient to support the storage and retrieval needs

of most computer vision algorithms, users are welcome to develop new types

of TokenSets (based on B-trees, or Oct-trees, or whatever) if they so desire.

2.1 Simple Tokens

In order for a C++ class to qualify as a token class, it must inherit from

Token and must provide a de�nition for the virtual function name(). Name

is a simple function that returns a string which is the name of the class; its

primary function is to determine class equality. Two instances are assumed

to be of the same class if their name() methods return the same string.

As an example of what a token class de�nition might look like, Figure 1

shows the de�nition for a class of image line segments called Line2D. This

is a simpli�ed version of the actual Line2D de�nition provided as one of

ISR3.1's initial classes; the full de�nition will be shown later in section ??.

Figure 1 does show the name() method, however, and as such is a su�cient

de�nition to allow Line2D instances to be stored into and retrieved from

TokenSets and Grids.

1

Inheriting from Token is a necessary but not su�cient condition for being an ISR3.1

token. The next section, Section 2.1, will present the minimal set of methods required of

a token, and then future sections will present additional methods that, if de�ned, increase

the power of a token.

6

class Line2D : public Token {

public:

float x1;

float y1;

float x2;

float y2;

float theta;

float contrast;

float dispersion;

float length;

char *name() { return "Line2D"; }

};

Figure 1: A simpli�ed version of the Line2D token de�nition showing the

name method de�nition.

The second requirement for making a class into an ISR3.1 token class is to

list the class name and source (.h) �le in the system's token �le. By default,

the token �le supplied with ISR3.1 is called ISRtoken, and new tokens should

be added to it. (Applications can also have their own token �les, but that will

not be described here.) Each line of the system's token �le should contain

the name of one token class and the source �le it can be found in, as shown

in Figure 2. If multiple token classes are de�ned in a single �le, each class

should be given its own entry.

2.2 Tokens with Multiple Inheritance

The following section should ONLY be read by users who NEED to de�ne

tokens with multiple inheritance. Most token classes should not need multiple

inheritance, which is supported but discouraged by C++.

Most token classes inherit from a single parent class, which may be either

the Token class or a previously de�ned subclass of Token. In some cases,

however, a token designer may want to take advantage of multiple inheri-

tance, in which a token class derives from two or more parent classes. In

7

BytePlane NewPlane.h

IntPlane NewPlane.h

FloatPlane NewPlane.h

Line2D Line2D.h

Line2DIntersection LinePairs.h

Line2DPair LinePairs.h

UV_transform LinePairs.h

TokenArray Container.h

TokenList Container.h

Edgel Edgel.h

Figure 2: Part of the default ISRtokens �le supplied with ISR3.1. New tokens

should be added one to a line, with each line containing a class name and

corresponding source (.h) �le.

this case, each token class must inherit from Token exactly once, and that

inheritance cannot be via virtual base class inheritance. To understand this

restriction requires a brief detour into multiple inheritance mechanisms in

C++.

2.2.1 Multiple Inheritance

Many object-oriented programming languages, including C++, allow for mul-

tiple inheritance, in which a class is derived from two or more parent classes.

In general, multiple inheritance works like replicated single inheritance, in

that every �eld and method of a parent class is inherited by the child, unless

the child rede�nes the �eld or method. Classes with multiple parents simply

inherit from more than one source.

Multiple inheritance gets tricky, however, when con
icts arise. If more

than one parent de�nes the same method or �eld, which one does the child

inherit? In C++, the child inherits a complete copy of all parents, regardless

of con
icts. If a method foo() is inherited from two di�erent parents A and

B, the child inherits both, with the �rst being referenced as A::foo() and the

second as B::foo().

The scheme of inheritance as concatenation works well as long as none of

the parents share a common ancestor. Otherwise, instances of the child class

8

will include multiple instances of the common ancestor class, as shown in Fig-

ure ??. This is acceptable (although rarely desirable) in some applications,

but not in applications such as ISR3.1 which rely on generic operations. In

particular, ISR3.1 provides many functions that operate on or return pointers

to tokens. As long as a token inherits only one copy of the Token class, the

C++ compiler knows how to promote subclasses up the hierarchy to class

Token, so any of these operations can be applied. If the subclass inherits mul-

tiple instances of the class Token, however, it is ambiguous which instance

of Token the compiler should promote the subclass to, and a compile-time

error results. Similarly, if an ISR3.1 operation returns a pointer to a token

and the user's code tries to cast it to a pointer of a subclass that inherits

Token from more than one parent, that too is a compile-time error. Hence

the restriction that each token class must inherit from Token exactly once

2

.

2.2.2 Virtual Base Class Inheritance

Recognizing that inheriting multiple copies of an ancestor class can be prob-

lematic, the designers of C++ added a second inheritance mechanism called

virtual base class inheritance, in which an instance inherits at most one copy

of any ancestor. If class A is a virtual base class of B, then instances of B

actually inherit pointers to instances of A. Pointers are combined, so that an

instance that inherits A indirectly from two or more parents will inherit mul-

tiple pointers to the same instance of A (although this indirection is hidden

from the user). As a result, using virtual base class inheritance no instance

will get multiple copies of an ancestor class.

Unfortunatly, this only solves half the problem. If a class has multiple

(virtual) parents that (virtually) inherit Token, then ISR3.1 functions that

operate on pointers to tokens can be applied to that class. Unfortunately,

the user is stuck when these operations return a pointer to Token, because

the virtual pointers are one-way; C++ will not allow you to cast a pointer

to Token to be a pointer to a subclass that inherited it virtually. Another

compile-time error results.

3

This leads to the second restriction that ISR3.1

2

An alternative design choice would have been to have these operators take and return

pointers to void. This would have short-circuited all of C++'s type checking mechanisms,

however, and prevented these operators from being methods of Token.

3

This makes sense. The subclass that virtually inherits Token contains a pointer to

an instance of Token, but that instance does not contain a pointer back to the subclass

9

classes cannot inherit Token as a virtual base class.

3 TokenSets { Storage, Access and Retrieval

Although the ISR is centered around the token, in practice, tokens exist

in aggregates and operations are performed on sets of tokens as a whole

rather than on individual tokens in isolation. Many times, features extracted

from images that are related, or multiple occurences of features|e.g. lines

extracted from an image|need to be grouped or structured, to be treated as

single entities, the same operation performed on the whole set, or elements

retrieved in the set that have certain properties. Examples can be given such

as 1) storing lines belonging to the same object in a structure and having

this structure in the system as a single item, 2) �ltering operations such as i)

accessing all the lines belonging to an object that have a certain orientation,

or ii) selecting all the lines which have length greater than 5 pixels (signi�cant

lines), 3) grouping objects that come from the same region in the image and

writing them in a �le, 4) intersecting lines belonging to two regions to obtain

the set of lines that lie in both.

In most computer vision applications, 1) features would be extracted

from an image and stored in some data structure. Other features of the

same kind would be stored in other such structures, and 2) another data

structure|typically an array or a linked list|would be the next place to store

all features of the same kind. Then the user would probably be interested

in 3) performing some operations on the features extracted, especially of

the kind listed in the �rst paragraph in this section. Experience in the

Computer Vision group at the University of Massachussets has shown that

all these steps, especially the third one demands the investment of major

e�orts in the design and coding of
exible data structures and mechanisms

to perform e�cient operations on these data stuctures. The token, discussed

in Section 2, serves as the general data structure in the �rst item here. The

ISR3.1 TokenSet, described in this section, is designed to address the issues

mentioned in the second and third items.

Let us �rst have a look at the ISR3.1 class hierarchy shown in Figure 3.

TokenSet inherits from Token, and TokenArray and TokenList inherit from

(thats not part of the de�nition of Token). Hence, there is no way the system can trace

back and convert a pointer to Token to a pointer to the subclass.

10

i

Tokenset

Array Implementation

of Sets

Indexed Access

TokenArray

Linked-List

Implementation

of Sets

TokenList

Tokenset

Hash Table

Functionality

TokenHashTable

Tokenset

Spatial Storage
&

Retrieval

Grid

Tokenset

Set of Tokens

Loosely Structured

Tokenset

Tokenset

Token

A Visual Event

Figure 3: ISR3 Object Class Hierarchy.

TokenSet. TokenArray and TokenList share the properties of being a 'set

of tokens'|i.e. a logical/abstract grouping of tokens|and a (physical) 'con-

tainer' for tokens. Each of these classes and the methods they support is

described later in section 8.

The TokenSet comprises of an in-memory storage structure and the set

of methods

4

de�ned on this stucture. To make it simpler; a TokenSet is a

place where tokens can be stored and accessed later. ISR3.1 TokenSets come

with functions that can be used to add tokens to TokenSets, remove tokens,

4

The terms function and method are used interchangeably when referring to functions

de�ned within a class

11

access tokens sequentially, perform the set operations of union, intersection,

di�erence, select and retrieve a subset of a set of tokens that satisfy certain

conditions. There is no type restriction on the tokens that are stored in a

TokenSet. Tokens of any kind can be kept in the same TokenSet (unlike in

ISR3), therefore, in case retrieval or set functions are to be invoked for a

TokenSet storing mixed type tokens, it is good practice to specify the type

of token the retrieval is performed on (see section on retrieval functions). A

Transform method performs a transformation on all the tokens stored in a

TokenSet while Draw displays the contents of a TokenSet graphically.

A segment of ISR3.1 code which demonstrates the usage of the add

method can be seen in Figure 4. This example also illustrates how objects

of type TokenSet exist. c2 is an object of type TokenArray. It is converted

to an object of type TokenSet when passed as an argument to the Union

method, since this class inherits from TokenSet. Although the add method

is de�ned virtually for TokenSets, its usage is valid here, since this method is

instantiated by an actual function in the de�nition of the TokenArray class

(see Section 8.4.4). The description of the TokenSetState class is given in the

next section.

The retrieve method is demonstrated in Figure 5, which is a useful func-

tion when tokens in a TokenSet that satisfy certain conditions need to be

accessed. In this example, the requirement is that the lines retrieved have

length in the range 16:0 � length � 22:0.

The storage mechanism of TokenSets is implemented using an array (To-

kenArray) or list (TokenList) structure, as explained in Section 8.4.4 and

Section 8.4.6 respectively. The array implementation is more suitable for

cases where tokens are frequently accessed by their indeces, and removals

are relatively few, whereas the list implementation is more e�cient if tokens

need to be inserted and removed often, and it is common to have searches

visiting all the elements in a set to perform a certain operation. Although the

underlying implementation is transparent to the user and the same methods

can be used regardless of whether the object in hand is a TokenArray or

TokenList, the user would highly bene�t if the structural implementation �ts

the nature of the application.

12

/*--

TokenSet& TokenSet::Union(TokenSet *c2)

- Compute this = this UNION c2;

- Insert every token in c2 into 'this' if not already in it.

--*/

TokenSet& TokenSet::Union(TokenSet *c2)

{

Token *token;

TokenSetState *cs2;

cs2 = c2->state();

/* cycle through all the valid tokens: */

for (token = cs2->value(); token != NULL; token = cs2->next())

add(token); /* add() insert()s into the TokenSet only if

'token' is not already there */

return *this;

} // TokenSet::Union(TokenSet *)

main() {

TokenArray *ta;

TokenList *tl;

ta = new TokenArray;

..

tl->Union(ta);

..

}

Figure 4: The Union method takes the union of this and c2. This example

also demonstrates the usage of the add function and TokenSetState. For the

user unfamiliar with the this pointer: the this pointer points to the object

for which a method is invoked, t1 in this case.

13

main() {

Isristream isr_in;

Isrostream isr_out;

TokenArray *ta1, *ta2;

int type;

/* Find out the type of the file to open from its extension. */

match_stream_to_filename(isr_in, argv[1]);

isr_in1.open(argv[1], ios::in); // open file

if (!isr_in1) {

cerr << "Unable to open file " << argv[1] << endl;

exit(-1);

}

/* Find out the type of the file to open from its extension. */

match_stream_to_filename(isr_out, argv[3]);

isr_out.open(argv[3], ios::out); // open file

if (!isr_out) {

cerr << "Unable to open file " << argv[3] << endl;

exit(-1);

}

/* Read tokens from ISR input stream isr_in into ta1. */

ta1 = (TokenArray *) read_token_ptr(isr_in);

type = token_index("Line2D");

/* Find all lines whose length is in the range (16.0, 22.0). */

ta2 = (TokenArray *)

ta1->retrieve(type, OFFSET(Line2D, length), 16.0, 22.0);

isr_out << ta2;

isr_out.close();

}

Figure 5: The retrieve function in practice. Lines are read from a �le and

the ones which satisfy the condition 16:0 � line!length � 22:0 are retrieved

and stored in another �le.

14

3.1 TokenSetState

A structure that is used in conjunction with TokenSets is the TokenSetState:

class TokenSetState {

public:

virtual Token* value();

virtual Token* next();

};

The user who wants to access the tokens in a TokenSet sequentially has to

know how to use the TokenSetState structure. TokenSetStates are objects

that exist only in relation to a TokenSet object. They are \one-directional"

indeces into TokenSets, useful for a single scan of the tokens in a container.

The following is an example of how to use the TokenSetState structure :

TokenSetState *cs;

TokenSet

5

*ct;

Token *token;

cs = ct->state();

for(token = cs->value(); token != NULL; token = cs->next())

Perform some operation on token;

TheTokenSet::state function returns a TokenSetState pointer initially point-

ing to the token that is passed as an argument, if any, or to the �rst to-

ken in the TokenSet. The TokenSetState::next function returns the next

valid token if such a token exists and NULL otherwise. This is a useful

feature, especially in cases when the tokens are not contiguously located

in the container|as when a token is removed from an array, and the po-

sition that token previously occupied is empty and a gap is created. The

TokenSetState::value function returns a pointer to the current token the

TokenSetState \contains".

TokenArrayStates and TokenListStates, the instantiations of TokenSetStates,

are described in Sections 8.4.5 and 8.4.7 respectively.

5

See note at the end of Section 8.4.

15

4 Grids

2- and 3-dimensional data such as lines, regions, and surfaces are commonly

used in Computer Vision. Many applications require frequent storage and

access of sets of multi-dimensional structures. The search for items in the

set satisfying certain spatial requirements is an expensive task that often

becomes a bottleneck and seriously a�ects overall performance of vision sys-

tems. A solution to this problem is to store data in a way that re
ects

the spatial relationships among the data items in the set. Knowledge about

the underlying storage structure can then be taken advantage of in order to

access and retrieve stored data according to the requirements.

The Grid is the 2-dimensional storage and retrieval structure in ISR3.1,

representing spatially-ordered sets of tokens. A Grid is a 2D array of \cells"

which overlays an image, with each cell containing a set of tokens. The idea is

to partition a region of interest into uniform-sized grids, and assign a storage

bucket for each grid. Objects that are falling in the same grid are stored in

the same storage bucket. An object that spans grid boundaries is stored in

multiple buckets. The duplication is kept at the pointer level, by allowing

storage of pointers to objects only. A bucket in ISR3.1 is called a Cell and

the data structure that represents a Cell is the CellElement.

The basic operations de�ned on a grid are to store a token in a set of

cells and to retrieve tokens from a set of cells. The only way to store a

token in a cell is to activate the desired cell and call the function Grid::add.

activateCell and deactivateCell are used to activate and deactivate cells.

Typically, the cells that a token falls into are activated and the token is added

into these cells. After this sequence of operations is performed for a set of

tokens, the Grid is deactivated and speci�c cells that we are interested in are

activated for the retrieval of the tokens stored in them. Then the retrieve

function is called to access the tokens in the activated cells.

In the example in Figure 6, a grid is deactivated, and cells within a box

around line are marked as ACTIVE by the function rasterizePolygon (see

Section 8.5.3). Then the part of the lines that are outside the box are clipped

and the ones that have orientation close to line are �ltered.

Rasterization routines are supplied for selecting the cells that intersect a

point, circle, line, scan-line rectangle or convex polygon.

These rasterization functions can be used either before or after a token

is added to a grid. Before: to store a token into marked cells; After: to

16

Grid *lgrid;

Line2D *line;

COORDINATE box[4];

TokenArray *lines, *inBoxCoarse, *inBoxFine, *sameTheta;

lgrid->gridifyLines(lines); /* lines is a TokenArray of Line2D

objects */

...

/* A box is formed around 'line'. The code is omitted here. */

...

lgrid->deactivateGrid();

lgrid->rasterizePolygon(box, 4);

inBoxCoarse = lgrid->retrieve();

if (inBoxCoarse == NULL) continue;

/* Find the lines which are completely inside the box, and clip the

ones which pass through the box, so that the resulting lines lie

completely inside the box: */

inBoxFine = ISRclipLinesInBox(box, inBoxCoarse);

sameTheta = ISRorientationFilter(inBoxFine, pLine->theta, dt);

...

Figure 6: The lines around line within a box are retrieved. deactivate

deactivates all cells in lgrid, rasterizePolygon marks all cells within box

as ACTIVE and retrieve returns the tokens stored in the cells that fall in

box. Another function, ISRorientationFilter, restricts the retrieved lines

to lines which have orientations close to line.

17

/***

* Grid::gridifyLines

* Store every token in a TokenSet of lines into the grid.

***/

int Grid::gridifyLines(TokenSet *ts)

{

Line2D *line;

TokenSetState *cs = ts->state();

Token *token;

/* For each line, store the token into activated grid cells */

for(token = cs->value(); token != NULL; token = cs->next()) {

line = (Line2D *) token;

deactivate();

/* Activate all grid cells which the line passes through */

traceLine(line->x1, line->y1, line->x2, line->y2, ACTIVE);

/* Store line token into all activated grid cells */

add(line);

}

...

}

Figure 7: Grid::gridifyLines stores each line in ts into the cells that the line

passes through. This is done by activating the cells that the line crosses by

a call to traceLine and add ing the line into the activated cells.

mark (activate) cells in which tokens are stored that we desire to retrieve.

For example, to store a set of line tokens in a grid, the function in Fig-

ure 7 (provided as a method in ISR3.1) marks cells as active and tokens

are stored in these ACTIVE cells. And then, as in the example in Figure 8,

theGrid::rasterizeRectangle method marks (activates) the cells for token

retrieval.

As with TokenSets, the contents of a Grid can be output to a �le with the

<< operator as in the example in Figure 8. Here, Line2D tokens are read from

a �le into a TokenSet and then stored in gr with a call to Grid::gridifyLines.

Then all the lines which lie in the rectangle (2.0, 3.0) (13.0, 27.4) are acti-

18

vated (Grid::rasterizeRectangle), retrieved (Grid::retrieve) and output

to another �le.

5 File I/O

One of the basic capabilities provided for tokens in ISR3.1 is �le I/O. In

particular, ISR3.1 provides functions for writing tokens to �les in either an

ASCII format or a more compact binary one, and for reading tokens from

�les of either format. In addition, for speci�c token types, the ability to

read and write tokens in \foreign" formats, such as vi�, im or tks, is also

provided. (The �le I/O functions discussed here are also compatible with

the stream-based interprocess communication (IPC) facilities currently under

development.)

The basic paradigm for using ISR's I/O functions is that an application

program will open a �le and either write or read a single token. ISR's func-

tions will write (or read) the indicated token, plus any token it contains a

pointer to, and any tokens they contain pointers to, etc. As a result, it is

easy to write or read an entire tree of data with one command, and all point-

ers between tokens are preserved

8

. A typical �le might therefore contain a

TokenSet of line segments (or points, or surfaces). Such a �le is written by

writing the TokenSet; the line segments will be written automatically be-

cause the TokenSet contains pointers to them. Similarly, the TokenSet can

be read by a single command that returns a pointer to the TokenSet, with

the individual line segments being read as a side-e�ect. Note that if the to-

kens contain circular pointers, either direct (A has a pointer to B which has

a pointer to A, or A has a pointer to itself) or indirect (A points to B points

to C : : :points to A), ISR3.1 will still write and read the pointers correctly,

without getting into an in�nite loop.

8

Note that the semantics of pointers are preserved, not their values. If token A has a

pointer to token B, then if they are written to �le and read back in, A will still point to

B. However, both A and B will have new locations in memory, so the value of the pointer

will be di�erent.

19

TokenIStream isr_in;

TokenOStream isr_out;

TokenArray *ta;

TokenSet *ts;

Grid *gr = new Grid(-1, 32, 32); /* Declare a Grid of size 32x32, with

the other parameters set to default

values.*/

isr_in.MatchFormatToFilename(argv[1]);

isr_in.open(argv[1]); /* Open a TokenIStream. */

if (!isr_in) {

cerr << "Unable to open file " << argv[1] << endl;

exit(-1);

}

ts = (TokenSet *) isr_in.read_token_ptr(); /* Input tokens into

TokenSet. */

isr_in.close(); /* Close input stream. */

gr->gridifyLines(ts); /* Store lines in Grid. */

gr->deactivate(); /* Deactivate the whole grid. */

gr->rasterizeRectangle(2.0, 3.0, 13.0, 27.4); /* Mark cells within

rectangle. */

ta = (TokenArray *) gr->retrieve(); /* Retrieve tokens in marked cells.*/

isr_out.MatchFormatToFilename(argv[2]);

isr_out.open(argv[2]); /* Open a TokenOStream. */

if (!isr_out) {

cerr << "Unable to open file " << argv[2] << endl;

exit(-1);

}

isr_out << gr; /* Output contents of Grid. */

isr_out.close(); /* Close output stream. */

}

Figure 8: Tokens are read in from a �le and stored in gr. The

ones lying within a desired rectangle are marked with a call to

Grid::rasterizeRectangle, retrieved and output to another �le.

20

5.1 Application-level I/O

To use ISR3.1's I/O facilities in an application program, the program must

declare a TokenIStream (for input) or a TokenOStream (for output).

Tokenstreams are streams to which only tokens can be written, and which

have two properties, a format and a �lename. In applications which do not

use foreign �le formats (see Section 5.3), the only formats a �le will have are

ISR3.1's ascii �le format isra and its more compact binary format isrb. As

with standard C streams, the �lename speci�es what �le a stream is bound

to.

When declaring a tokenstream, an application program may specify the

format and/or �lename, but is not required to specify either. If a �lename

is not speci�ed when a stream is declared, one must be speci�ed by the

open(char *) method before the stream can be written to (or read from).

A stream may be reused within an application by closing it and then re-

opening it with a di�erent �lename (or the same �lename, if the point is

to overwrite the original �le). If the format is not speci�ed when a stream

is declared it defaults to isrb, but the format can be changed using the

SetFormat(FileFormat) method. The user should be wary of changing a

�le format once reading or writing has begun, however, as this will almost

certainly lead to errors!

In general, the recommended way to use tokenstreams is to supply nei-

ther the format nor the �lename in the declaration. Instead, the �lename

should be supplied by the user, generally in the form of a command line

argument. The stream format can then be set using the MatchFormat-

ToFilename(char *) method of token streams, which sets the format of

the stream to match the �lename extension: ascii if the �lename ends in

.isra, binary if it ends in .isrb. This method also recognizes many foreign �le

extensions, such as .plane, .vi� and .im (see Section 5.3), so it creates code

that can be applied to a wide variety of �le formats.

Once a TokenOStream has been declared (and opened, if no �lename

was initially provided), tokens can be written to it with the standard <<

operator. For TokenIStreams, tokens can be read two ways: either by creat-

ing a token instance and �lling it using the standard >> operator, or more

commonly by declaring a pointer to a token and using the read token ptr()

method of TokenIStream. Read token ptr() returns (Token *), so its return

value must be cast to the appropriate token type.

21

A good example of using token streams correctly can be seen in Figure 9.

The ISRconvert function simply reads in a data �le and writes it back out

again { but since the stream formats are set to match the �lename arguments,

it can be used to convert �les from ascii to binary or from binary to ascii.

(This amazingly useful, albeit simple, utility is supplied as a executable �le

in ISR3.1.)

5.2 De�ning Token Methods for I/O

Note: readers who are not interested in designing new token types may skip

this section.

Unlike many other visual representation systems, ISR3.1 encourages its

users to create new token classes to express new types of visual data. This

can be done by adding new features to existing token classes (creating sub-

classes) or by starting from scratch and de�ning entirely new token types.

In either case, three virtual functions must be de�ned in order for ISR3.1 to

read and write the new token type. The �rst function, trace(), is used to

determine how tokens are connected; it returns void after calling the function

Register(token *) on every token instance that the current token instance

has a pointer to. The default de�nition for trace is a no-op, so token classes

that do not contain pointers to any other tokens do not need to rede�ne

trace.

The output(Isrostream&) method speci�es how instances of a token

class should be written. It returns void, but take as an argument an Is-

rostream. Isrostreams (and Isristreams, their input counterpart) are the

objects that write (read) tokens in ISR3.1's native data formats; they should

not be manipulated at the level of applications programs (use TokenOS-

tream and TokenIStream for this purpose; see Section 5.1). In most ways,

Isrostreams are like standard C++ ostreams

9

, except that Isrostreams have

a format �eld that speci�es whether the stream is ASCII or BINARY. In

ASCII format, all numbers are written as sequences of ASCII digits, whereas

in BINARY format all numbers are written in binary. The other major dif-

ference between Isrostreams and standard C++ ostreams is how strings are

written and read. When a character string is sent to an Isrostream, it checks

9

Isrostreams ought to be subclasses of ostreams, so that all valid operations on ostreams

could be applied to Isrostreams as well. Unfortunately, a bug in the GNU C++ compiler

(version 2.6) seems to prevent this.

22

main(int argc, char *argv[])

{

TokenIStream isr_in;

TokenOStream isr_out;

Token *data;

if (argc != 3) {

cout << "Usage: ISRconvert filename1 filename2\n";

return 0;

}

isr_in.MatchFormatToFilename(argv[1]);

isr_in.open(argv[1]);

if (!isr_in) {

cerr << "Unable to open file " << argv[1] << endl;

exit(-1);

}

data = isr_in.read_token_ptr();

isr_out.MatchFormatToFilename(argv[2]);

isr_out.open(argv[2]);

if (!isr_out) {

cerr << "Unable to open file " << argv[2] << endl;

exit(-1);

}

isr_out << *data;

}

Figure 9: ISRconvert uses the MatchFormatToFilename method of token

streams to set token stream formats to match the �lename extensions pro-

vided by the user. As a result, this simple program that reads in a �le data

and then writes it back out again can be used to convert a �le from ascii to

binary or vice-versa. It can even translate �les between foreign �le formats,

or convert foreign formats to/from ISR3.1 formats.

23

void Line2D::output (Isrostream& dest)

{

dest << "Line2D from (" << x1 << ", " << y1 << ") to (";

dest << x2 << ", " << y2 << ")\n";

dest << "Theta = " << theta << ", Contrast = " << contrast;

dest << ", Disp = " << dispersion << "\n";

dest << "Length = " << length << "\n";

}

Figure 10: Output function for the Line2D token class. If the Isrostream

is an ascii stream, this will produce a human-readable �le in which every

feature value is preceeded by the feature name, and numbers are written in

ascii. If the Isrostream is binary, on the other hand, none of the feature

names or other character string will be printed, and all feature values will be

written in binary.

whether the stream is BINARY or ASCII. If the stream is ASCII is prints

the string, but if the stream is binary the string is ignored.

The reason for de�ning the Isrostream class is to make it easy to write

a single output(Isrostream&) function that writes in both ascii and binary

formats. For example, Figure 10 shows the output function for the Line2D

token class discussed earlier. If the Isrostream argument dest is an ascii

stream, it will print not only the endpoints of the line and other feature

values, but it will preface each value with the string giving the feature name;

the numbers, of course, will be written in ascii. The result is a �le that

is easy for people to read, even though it is very large. If dest is a binary

stream, on the other hand, none of the feature names or other character

strings (including newlines) will be printed, and the numbers themselves will

be printed in binary. The result is a �le that is usually about one �fth the

size of the corresponding ascii �le.

One disadvantage of Isrostreams occurs when a token has a character

string �eld, the value of which should be written even to a binary �le. In this

case the output function should use the print string(char *) method of the

Isrostream (or write(char *, int)) to print the character stream regardless

of format.

24

void Line2D::input (Isristream& source)

{

source >> "Line2D from (" >> x1 >> ", " >> y1 >> ") to (";

source >> x2 >> ", " >> y2 >> ")";

source >> "Theta = " >> theta >> ", Contrast = " >> contrast;

source >> ", Disp = " >> dispersion;

source >> "Length = " >> length;

}

Figure 11: The input function for the Line2D class. The only di�erence to

the body of the code between this and Line2D::Output(Isrostream&) is

the direction of the double arrows.

The Input(Isristream&)method is the inverse of output(Isrostream&);

it reads tokens that have been written using output. Not surprisingly, the

Isristream class is to a standard C++ istream what Isrostreams are to os-

treams { that is to say they are similar, but have two formats, ascii and

binary. In ascii mode they expect to read numbers written as strings of ascii

digits, while in binary mode they expect binary numbers. Furthermore, Is-

ristreams handle strings a special way: if is is an ascii Isristream, the line of

code

is >> ``foo'';

expects to �nd the string \foo" (not including the quotation marks) at the

current point in the �le. If it does, it skips over the string, advancing the �le

pointer to the end of the string. If it doesn't �nd the string, it is an error, so

that the �le pointer is not advanced and the command !is will return true.

Conversely, if the Isristream is in binary mode, the above line code is a no-op.

As a result, in many cases it is possible to de�ne the input function just by

\turning around" the operators in the output function, as in Figure 11, which

shows the input function for the Line2D class. The only signi�cant di�erence

between the bodies of code in Figure 10 and Figure 11 is the direction of the

double arrows: \>>" vs. \<<".

Since the Line2D class is a simple token structure that does not contain

pointers to any other tokens, there is no reason to de�ne a trace() function for

25

class Line2D : public Token {

public:

float x1;

float y1;

float x2;

float y2;

float theta;

float contrast;

float dispersion;

float length;

void output(Isrostream& os);

void input(Isristream& is);

char *name() { return "Line2D"; }

};

Figure 12: A de�nition of the Line2D class that supports �le I/O as well as

storage and retrieval.

it. We can therefore expand the Line2D token de�nition shown in Figure 1

to the one in Figure 12 that will support I/O operations over line segments.

To give an example of how trace functions are de�ned, lets consider the

Line2DPair token class. Line2DPair tokens describe the relationship between

a pair of line segments, in terms of their point of intersection (itself an ISR3.1

token whose de�nition is not given here), a non-symmetric transform between

the two lines called the UV transform (again a token), and various measures

of overlap, as described in [4]. As shown in Figure 13, the class de�nition

for Line2DPair includes pointers to the line segments that make up the pair.

As a result, a trace function must be de�ned for Line2DPairs so that when

a pair is written to a �le, the component line segments are also included in

the �le. The trace method de�nition for Line2DPairs is shown in Figure 14.

The output(Isrostream&) function for Line2DPairs is straightforward

and requires no special provisions; the �elds that are pointers to tokens

are output using the << operator just like all the other �elds. The in-

put(Isristream&) function, however, does have to handle pointers to to-

26

class Line2DPair : public Token {

public:

Line2D *lineA; /*Line A of pair AB*/

Line2D *lineB; /*Line B of pair AB*/

UV_transform *UVtrans; /*UV_transform of pair AB*/

Line2DIntersection* intersection;/*Point of intersection*/

float displacement; /*Lateral displacement*/

float displacementpix; /*Lat disp in pixels*/

float separation; /*Relative separation*/

float separationpix; /*Separation in pixels*/

float delta_theta; /*Rotation from A to B*/

float TA_separation; /*Separation along A

from segment to inter.*/

float TA_separationpix; /*TA_Separation in pixels*/

float TB_separation; /*Separation along B

from segment to inter.*/

float TB_separationpix; /*TB_Separation in pixels*/

void trace();

void input(Isristream&);

void output(Isrostream&);

char *name() { return "Line2DPair"; }

};

Figure 13: Class de�nition for a pair of image line segments (Line2Ds). Be-

cause the de�nition includes pointers to other tokens, a trace() function has

to be de�ned.

27

void Line2DPair::trace ()

{

Register(lineA);

Register(lineB);

Register(UVtrans);

Register(intersection);

}

Figure 14: The trace() function de�nition for Line2DPair. The trace function

tells ISR3.1 which tokens a Line2DPair points to.

kens as a special case, so that the values of the pointers are updated to re
ect

the new memory positions of the tokens in the �le. Figure 15 shows the in-

put function for Line2DPairs. Numeric token �elds such as displacement and

seperation are read using the >> operator, as in the Line2D case. Pointers

to tokens, however, are read using the read token ptr(Isristream&) func-

tion, which returns the new memory address of the token being pointed to.

(read token pointer is de�ned as returning (Token *), so its result must be

cast to a pointer to the appropriate type of token. If it is cast to the wrong

type of token, unpredictable errors will result.) ISR3.1 guarentees that the

structure of a data tree is not disturbed by writting it out and then reading

it back in again, so that if tokens A and B both pointed to token C in the

data tree that was writting out, A and B will point to a single token C when

read back in, not to two seperate tokens with the same feature values.

5.3 Foreign File Formats

In addition to its native ascii and binary formats, ISR3.1 is able to read and

write �les in other data formats. These \foreign" formats are not general

purpose, in that only certain types of tokens can be stored in them, but they

are very useful for passing data to, or getting data from, other systems, such

as KBVision or Khoros.

In general, foreign format interfaces are implemented using the read and

write functions of the foreign system, and therefore the foreign system's code

must be accessible. Vi� �les, for example, are red and written using the func-

28

void Line2DPair::input (Isristream& is)

{

is >> "Line2DPair:: LineA";

lineA = (Line2D *)read_token_ptr(is);

is >> "LineB";

lineB = (Line2D *)read_token_ptr(is);

is >> "UVtrans";

UVtrans = (UV_transform *)read_token_ptr(is);

is >> "intersection";

intersection =

(Line2DIntersection *)read_token_ptr(is);

is >> "Delta_theta" >> delta_theta;

is >> "Displacement" >> displacement >> displacementpix;

is >> "Seperation" >> separation >> separationpix;

is >> "TA_seperation" >> TA_separation >> TA_separationpix;

is >> "TB_seperation " >> TB_separation >> TB_separationpix;

}

Figure 15: The input function for Line2DPairs. Pointers to tokens are read

using the read token ptr(Isristream&) function.

29

Extension Token Types Host System

.isra all (ascii) ISR3.1

.isrb all (binary) ISR3.1

.vi� BytePlane, IntPlane, FloatPlane Khoros

.im BytePlane, IntPlane, FloatPlane KBVision

.tks Line2D (sets) KBVision

Table 1: File Formats currently recognized by ISR3.1.

tions provided with Khoros; users who do not have access to Khoros cannot

read or write vi� �les. Similarly, users who do not have access to KBVision

cannot read or write im or tks �les. To users in the UMass Computer Vision

group, however, this should not present a problem since both systems are

available.

Table 1 shows the foreign �le formats that are currently supported. For

each format, it lists the �le extension and the types of tokens that can be

stored in it, as well as the system for which the format is native. New foreign

�le formats can be (and are being) added to ISR3.1, but a description of how

to add them is beyond the scope of this document.

Since the MatchFormatToFilename method of token streams knows about

all of the �le extensions in Table 1, the ISRconvert function shown in Figure 9

can be used to translate between compatable foreign �le formats as well. For

example, it could be used to convert a Khoros vi� �le into a KBVision im

�le, or to convert either to isra or isrb. Moreover, as long as applications pro-

grammers use MatchFormatToFilename to set stream formats, applications

should work equally well on any format of data, often eliminating the need

to explicitly convert �le types.

6 Graphics Methods

This section explains how to add graphics methods to new token classes.

Readers who are only interested in using prede�ned classes should skip this

section.

One of the most important facilities ISR3.1 provides users is graphics.

ISR3.1 includes a stand-alone executable graphics program called xisrdis-

play that reads and graphically displays the contents of data �les. It allows

30

users to examine data

10

, overlay data, and interactively manipulate data

with a mouse. By using ISR3.1's IPC mechanisms (currently under develop-

ment), users can also create interactive displays of executing programs. By

far the most important feature of xisrdisplay, however, is its extensibility.

New token types can be easily integrated by de�ning either a Draw() method

(for vector tokens) or a BitDraw() method (for rasterized tokens). This sec-

tion describes how to de�ne these methods for new token types, and gives

examples. (Section ?? describes xisrdisplay itself and how to use it.)

6.1 Vector Tokens

For display purposes, tokens can be roughly divided into two categories: vec-

tor tokens that are composed of geometric primitives such as lines and circles

and can be displayed by X11 draw commands, and raster tokens such as im-

ages that are displayed in terms of bitmaps. For vector tokens class designers

should provide a Draw()method, while for raster tokens a BitDraw() method

should be de�ned. (BitDraw() takes more arguments that Draw() because

displaying bitmaps requires extra information about the size and depth of

the window.) Note that class designers should not de�ne both Draw() and

BitDraw(), as that will cause tokens to be displayed twice.

Draw() is a virtual function that takes eight arguments and returns void

(as shown in Figure 16), but draws the token to the screen as a side-e�ect.

The �rst three arguments are the X11 structures required by Xlib drawing

primitives such as XDrawPoint, XDrawLine and XDrawArc. Since xisrdis-

play allows users to interactively set the window size, zoom factor and graph-

ics context there is no reason for the Draw() method to alter any of these

arguments. The fourth argument is the (2D-to-2D) transformation that maps

the token coordinate system onto the window coordinate system, while the

last four arguments are the coordinates of the part of the window that is

being redrawn in token (rather than window) coordinates.

The critical arguments are the token-to-window transformation and the

boundary of the window portion being (re)drawn. In general, the coordinate

system of a token is speci�ed by the CoordSys object associated with the

TokenSet or image it is a part of; this may or may not match the coordinate

10

xisrdisplay is intended for 2D data only. A utility for displaying 3D data will hope-

fully be developed in the future.

31

/*---

display -- X11 display object pointer

drawable -- X11 drawable (opaque pointer)

gc -- X11 graphics context

trans -- Transform2D object

xmin -- minimum X coord to display

ymin -- minimum Y coord to display

xmax -- maximum X coord to display

ymax -- maximum Y coord to display

--*/

void Token::Draw(Display *display, Drawable drawable, GC *gc,

Transform2D *trans, double xmin, double ymin,

double xmax, double ymax);

Figure 16: The Draw method for vector graphics. The �rst three arguments

are passed directly to Xlib functions, the fourth de�nes the token to win-

dow coordinate transformation, and the last three specify the area being

(re)drawn.

32

system of the window (which X11 de�nes as having (0,0) in the upper left

corner). Moreover, the mapping from token coordinates to window coordi-

nates changes interactively as the user zooms and roams around the image.

The fourth argument to Draw() is a pointer to a Transform2D object that

speci�es how the token coordinates should be mapped onto the display win-

dow. Consequently, the apply() method of Transform2D will convert token

(x, y) coordinates into window coordinates that can be used in the Xlib draw

commands, as shown in Figure 17.

The last four arguments to the Draw method specify the rectangular

region of the window that is being (re)drawn. These should be used for

clipping purposes, since it is wasteful to draw tokens that are outside the

boundary of the window. The rectangle is speci�ed in token (rather than

window) coordinates to avoid the cost of transforming token coordinates

if they are outside the range being drawn. The Draw method shown in

Figure 17 shows a particularly simple form of clipping, but it will still try

to draw some tokens that are not visible. Better clipping algorithms can be

found in any graphics book.

6.2 Raster Tokens

Some tokens, such as images, should be drawn not by making repeated calls

to Xlib draw routines, but by creating a bitmap and displaying that. Such

tokens are called raster tokens, and instead of de�ning a Draw() method, the

class designer speci�es a BitDraw() method. The idea behind BitDraw is

the same as the idea behind Draw: it a the function by which xisrdisplay

draws a token. Drawing a bitmap requires additional information about the

depth of the display window (in bits) and the size of window being drawn to.

BitDraw therefore has additional arguments not required by Draw, as shown

in Figure 18.

Internally, BitDraw() methods work by creating an X bitmap and drawing

it via the XPutImage() Xlib function. Generating and manipulating bitmaps

tends to be complex, and no example is given here; readers are referred to

their favorite X11 manual instead. Su�ce it to say that only readers who

are comfortable with X11 should attempt to de�ne a BitDraw method.

33

void Line2D::Draw(Display* display, Drawable drawable, GC gc,

Transform2D* trans, float xmin, float ymin,

float xmax, float ymax)

{

double *pts1, *pts2;

/* clipping */

if ((x1 < xmin) && (x2 < xmin)) return;

if ((x1 > xmax) && (x2 > xmax)) return;

if ((y1 < ymin) && (y2 < ymin)) return;

if ((y1 > ymax) && (y2 > ymax)) return;

/* calculate window coordinates */

pts1 = trans->Apply(x1, y1);

pts2 = trans->Apply(x2, y2);

/* draw line */

XDrawLine(display, drawable, gc,

(int)rint(pts1[0]), (int)rint(pts1[1]),

(int)rint(pts2[0]), (int)rint(pts2[1]));

/* free window coordinate space */

free(pts1);

free(pts2);

}

Figure 17: The Draw method of Line2D. Applying the Transform2D converts

token coordinates to window coordinates, while the last four arguments spec-

ify the rectangle that is being (re)drawn in token coordinates.

34

/*---

display -- X11 display object pointer

drawable -- X11 drawable (opaque pointer)

gc -- X11 graphics context

trans -- Transform2D object

ulx -- upper left X coord to display

uly -- upper left Y coord to display

lrx -- lower right X coord to display

lry -- lower right Y coord to display

visual -- X11 visual of the screen drawable is on

depth -- depth of the display (number of display planes)

cmap -- colormap for the current window

---*/

void Token::BitDraw(Display *display, Drawable drawable,

GC *gc, Transform2D *trans,

double ulx, double uly,

double lrx, double lry,

Visual *visual, int depth,

Colormap cmap);

Figure 18: The BitDraw method for vector tokens. The �rst four arguments

are the same as for Draw(); the remaining seven are for compatibility with

XPutImage().

35

6.3 Non-graphical Tokens

Although the preceeding discussion has divided tokens into those with vector

graphics and those with raster graphics, some tokens types have no graphical

properties at all. The Transform2D token class, for example, represents

transformations from one 2D coordinate system to another. Transformations

as are abstract entities that cannot be easily drawn, and consequently the

Transform2D object has neither a Draw nor a BitDraw method de�ned. Since

the default de�nitions of Draw and BitDraw (inherited from Token) are no-

ops, drawing a Transform2D object produces no graphics at all.

Another approach is to draw an object by drawing its components. The

Draw and BitDraw methods of the TokenSet class, for example, simply call

the Draw and BitDraw methods for every token in the token in the TokenSet.

(Note that this is the only circumstance under which it makes sense to de�ne

both a Draw and a BitDraw method, since presumably every token in the

TokenSet will have one or the othe method de�ned, but not both.) Thus it

is not neccessary for every token to produce graphical output, although most

tokens should.

7 Utilities

8 Object Interfaces

This section contains the public interfaces for the objects described earlier

in the manual, for reference purposes.

8.1 Isrstreams

Note: Isrstreams are the objects by which ISR3.1 implements its native �le

formats. They should not appear inside application programs for I/O; use

TokenStreams for that. See Section 5.2 for a description of Isrstreams, and

Section 5.1 for a description of TokenStreams.

class Isrstream {

public:

int format; /* BINARY or ASCII */

36

char *name; /* filename associated with stream */

};

class Isrostream : public Isrstream {

friend Isrostream& operator << (Isrostream&, const short);

friend Isrostream& operator << (Isrostream&, const int);

friend Isrostream& operator << (Isrostream&, const long);

friend Isrostream& operator << (Isrostream&, const float);

friend Isrostream& operator << (Isrostream&, const double);

friend Isrostream& operator << (Isrostream&, const char*);

friend Isrostream& operator << (Isrostream&, const char);

friend int operator! (Isrostream&);

public:

Isrostream(char *filename, int stream_format = BINARY,

int stream_type = ISR);

Isrostream(int stream_format = BINARY,

int stream_type = ISR);;

~Isrostream();

void print_string(char *);

Isrostream& write(const char *s, int n);

};

Isrostream& operator <<(Isrostream& os, const short val)

Isrostream& operator <<(Isrostream& os, const int val)

Isrostream& operator <<(Isrostream& os, const long val)

Isrostream& operator <<(Isrostream& os, const
oat val)

Isrostream& operator <<(Isrostream& os, const double val)

Print numbers in their ASCII representation if os is an ascii stream, or in

their binary representations if os is a binary stream.

Isrostream& operator <<(Isrostream& os, const char *string)

37

Print string if os is an ascii string, otherwise do nothing.

Isrostream& operator <<(Isrostream& os, const char ch)

Print ch, no matter whether os is ascii or binary.

Isrostream& operator !(Isrostream& os)

Returns 1 if os is in an error state, 0 otherwise. See your favorite C++ book

for a discussion of error states for C++ streams.

void Isrostream::print string(char *string)

Print string to *this, whether the format of *this is ascii or binary. (This is

used to write char * token �elds to �les, since the << operator will ignore

strings when os is binary.)

void Isrostream::write(const char *string, int n)

Print the �rst n characters of string to *this, reagrdless of the format of *this.

class Isristream : public Isrstream {

friend class ISRIStream;

friend Isristream& operator >> (Isristream&, short&);

friend Isristream& operator >> (Isristream&, unsigned short&);

friend Isristream& operator >> (Isristream&, int&);

friend Isristream& operator >> (Isristream&, unsigned int&);

friend Isristream& operator >> (Isristream&, long&);

friend Isristream& operator >> (Isristream&, unsigned long&);

friend Isristream& operator >> (Isristream&, float&);

friend Isristream& operator >> (Isristream&, double&);

friend Isristream& operator >> (Isristream&, const char*);

friend Isristream& operator >> (Isristream&, onst char);

friend int operator! (Isristream&);

public:

TypeDirectory *tokentype_table;

38

char *read_string(int);

Isristream& read(char *ptr, int n);

void putback(char);

char get();

Isristream(char *filename, int stream_format = BINARY,

int stream_type = ISR);

Isristream(int stream_format = BINARY,

int stream_type = ISR);

~Isristream();

};

Isristream& operator >>(Isristream& is, short val)

Isristream& operator >>(Isristream& is, unsigned short val)

Isristream& operator >>(Isristream& is, int val)

Isristream& operator >>(Isristream& is, unsigned int val)

Isristream& operator >>(Isristream& is, long val)

Isristream& operator >>(Isristream& is, unsigned long val)

Isristream& operator >>(Isristream& is,
oat val)

Isristream& operator >>(Isristream& is, double val)

Read numbers from �les according to the format of is, ascii or binary.

Isristream& operator >>(Isristream& is, const char *string)

If is is in ascii format, skip over the string string in the input �le, and position

the �le pointer at the end of the string. If the contents of the �le do not match

string, signal an error. If is is in binary format, do nothing.

Isristream& operator >>(Isristream& is, const char ch)

39

Read the next character from is and compare it to ch. If they are not equal,

unget the read character and put the stream into an error state. (Note that

the format of the stream is not relevent.)

char Isristream::get()

Read one character from *this.

void Isristream::putback(char ch)

Put one character back into the input bu�er of *this.

Isristream & Isristream::read(char *ptr, int n)

ptr should be a pointer to a string of at least n characters. This function

reads the next string (up to n characters from *this, storing them in ptr.

char * Isristream::read string(int n)

Allocates a string of length n, and then reads the next string from *this into

it. If it is unable to allocate memory or the string in the �le is longer than

n, read string will return NULL, otherwise it returns a pointer to the bu�er

it �lled.

8.2 Tokens

Tokens are the top-level object from which all other classes of ISR3.1 tokens

are derived. The class Token mostly serves as a virtual function interface

that de�nes the capabilities a visual token should have. See Section 2 for a

more detailed description.

class Token {

friend class ISROStream;

friend class ISRIStream;

friend Isrostream& operator<< (Isrostream&, Token&);

friend Isrostream& operator<< (Isrostream&, Token*);

friend Isristream& operator>> (Isristream&, Token&);

40

public:

Token();

virtual ~Token();

/* Virtual functions that MUST be defined.*/

virtual char* name();

/* Returns the integer type of any token */

int type_index ();

/* required for I/O capability */

virtual void output(Isrostream&);

virtual void input(Isristream&);

virtual void trace() { return; }

/* required for graphics capability */

/* NOTE: either Draw or BitDraw should be defined,

but not both. */

virtual void Transform(Transform2D *trans);

virtual void Draw(Display* display, Drawable drawable, GC gc,

Transform2D* trans, float xmin, float ymin,

float xmax, float ymax);

virtual void BitDraw(Display* display, Drawable drawable,

GC gc, Transform2D* trans,

float xmin, float ymin,

float xmax, float ymax,

Visual *visual, unsigned int depth,

Colormap cmap);

/* required for TKS compatibility & ISRAccess/ISRPut */

virtual int field_count() { return 0; }

virtual TokenField *fields() { return NULL; }

};

virtual char * Token::name()

Every token must have a name function that identi�es its class, for purposes

of retrieval (accessing only tokens of the correct type) and I/O (identifying

the type of object to be created when a pointer is encountered). The only

41

requirement of a class name is that it be a character string that is di�erent

from all other class names in the system.

int Token::type index()

Unlike most of the functions de�ned for Token, type index() is not a virtual

function that the designer of a subclass must implement { it is already im-

plemented. Type index() returns the integer associated with the class type

of a token. Within an executable module, indexes are consistent, so that two

instances will have the same type index if and only if they are instances of

the same class. These indexes are not necessarily consistent across di�erent

executable modules, however, and they may change anytime the system is

recompiled. Therefore it is not recommended for a user to write these in-

dices to a �le or do anything with them other than comparitive tests between

tokens; in general, name() should be used to check the identity of a token

class.

virtual void Token::input(Isristream& is)

virtual void Token::output(Isrostream& os)

These virtual functions de�ne how instances of a token class are read from

and written to �les. It is important that the two methods be inverses of each

other, so that input() can read what output() writes, in both ascii and binary

modes. Note that input() and output() are only invoked for ISR3.1-format

�les (.isra or .isrb), not when reading or writing foriegn �le formats.

In general, it is a good idea for output() to produce output that can be

easily read by a human when the Isrostream is in ascii mode, and that is

more compact when in binary mode. See Section 5.2 for a description and

example of how this can be accomplished.

virtual void Token::trace()

This function tells the system which tokens another token points to; this is

particularly important during I/O, when the system needs to be able to trace

through a data tree in order to print it.

If a token does not contain pointers to any other token, then its trace()

function does not need to be rede�ned (the default operation is a no-op).

42

Otherwise, its trace function should call the functionRegister(Token *tok)

for every token it points to. (If tok is a NULL pointer, Register(tok) is a

no-op.) Figure 14 gives an example.

virtual void Token::Draw(Display* display, Drawable drawable, GC

gc, Transform2D* trans,
oat xmin,
oat ymin,
oat xmax,
oat ymax)

Draws the token this to display, using drawable drawable and graphics

context gc. (Readers who are not familiar with X11 should not worry about

the intracacies of display, drawables and contexts, other than knowing that

these are the �rst three arguments of Xlib draw routines such as XDrawLine,

XDrawPoint, XDrawArc and XDrawText.) The trans argument speci�es the

token to window coordinate transformation; An (x, y) coordinate in token

space can be converted to window coordinates by using the Apply() method

of Transform2D's (see the example in Figure 17). The last four arguments

specify the coordinates (in token space) of the rectangle being redrawn. These

are useful four clipping purposes, since it is more e�cient not to draw tokens

that lie outside of this rectangle.

virtual void Token::BitDraw(Display* display, Drawable drawable,

GC gc, Transform2D* trans,
oat ulx,
oat uly,
oat lrx,
oat lry,

Visual *visual, unsigned int depth, Colormap cmap)

The BitDraw method renders a token into an X11 bitmap, and then displays

that bitmap to the window display, usually using the XPutImage() Xlib

routine. Three �rst four arguments are the same as for Draw(); the remaining

seven are in the form expected by XPutImage().

8.3 TokenStreams

TokenStreams are top-level objects for token I/O in ISR3.1. They de�ne

streams, similar to ostreams and istreams in standard C++, to which tokens

can be written and read, in any of the various data formats supported by

ISR3.1. See Section 5.1 for a description of TokenStreams and their use.

class TokenStream {

public:

char *name; /* filename or stream name */

43

int openp();

int MatchFormatToFilename(char *filename);

virtual int SetFormat(StreamFormat);

};

int TokenStream::openp()

Returns 1 if the stream *this is open, 0 otherwise.

int TokenStream::MatchFormatToFilename(char *�lename)

Sets the format of a stream to match the extension of a �lename, for example

when the �lename ends in .isra, the stream is set to be an ISR3.1 ascii stream.

The complete set of known �le extensions is given in Table 1.

class TokenOStream : public TokenStream {

friend TokenOStream& operator << (TokenOStream&, Token&);

friend TokenOStream& operator << (TokenOStream&, Token*);

friend int operator ! (TokenOStream&);

public:

int SetFormat(StreamFormat);

void open(char *);

void close();

TokenOStream();

TokenOStream(StreamFormat);

TokenOStream(char *);

virtual ~TokenOStream();

};

TokenOStream& operator <<(TokenOStream& os, Token& tok)

TokenOStream& operator <<(TokenOStream& os, Token* tok)

44

Writes a token to a TokenOStream. Ideally, the stream should have been

opened previously; however, if a �lename has been speci�ed for os, the <<

operator will open the stream (using TokenOStream::open) before writing.

Tok can be either a token or a pointer to a token, it makes no di�erence.

<< returns a TokenOStream reference so that instances of it can be chained

together, as in

os << token1 << *token2;

(assuming token1 and token2 are pointers to tokens).

int operator !(TokenOStream& os)

Returns 1 if token stream os is in an error state, 0 otherwise. Error states

can be created by a variety of conditions, such as exceeding one's disk quota,

etc. Refer to your favorite C++ manual for a discussion of error states and

streams.

void TokenOStream::close()

Closes stream *this. It is an error to close a stream that was not previously

open. Once closed, a stream may be reopened with a new �lename.

void TokenOStream::open(char *�lename)

Open the �le for writing. If the format of *this has not yet been speci�ed,

use MatchFormatToFilename to set the stream format to match �lename.

The exact behavior of this function depends on the format of the stream,

but it will always generate an error if the �le cannot be accessed for writing.

int TokenOStream::SetFormat(StreamFormat frmt)

Sets the format of a TokenOStream to one of the types given in Table 1.

The argument is a StreamFormat, which is an enumerated data type of the

extensions (minus the periods) found in Table 1, such as isra, isrb, vi� and

im.

45

class TokenIStream : public TokenStream {

friend TokenIStream& operator >> (TokenIStream&, Token&);

friend int operator ! (TokenIStream&);

public:

int SetFormat(StreamFormat);

void open(char *);

void close();

Token* read_token_ptr();

TokenIStream();

TokenIStream(StreamFormat);

TokenIStream(char *);

virtual ~TokenIStream();

};

TokenIStream& operator >>(TokenIStream& is, Token& tok)

Fills tok with data read from TokenIStream is. If the �le contains the wrong

type of token, tok will not be modi�ed and is will be put into an error state.

(Check for error states using the ! operator.) Ideally, the stream should have

been opened previously; however, if a �lename has been speci�ed for *is,

the >> operator will open the stream (using TokenIStream::open) before

reading.

>> returns a TokenIStream reference so that instances of it can be

chained together, as in

os >> token1 >> token2;

(assuming token1 and token2 are tokens).

int operator !(TokenIStream& is)

Returns 1 if token stream is is in an error state, 0 otherwise. Error states

can be created by a variety of conditions, including trying to read one type

of token into another. Refer to your favorite C++ manual for a discussion

of error states and streams.

46

void TokenIStream::close()

Closes stream *this. It is an error to close a stream that was not previously

open. Once closed, a stream may be reopened with a new �lename.

void TokenIStream::open(char *�lename)

Open the �le for reading. If the format of *this has not yet been speci�ed,

use MatchFormatToFilename to set the stream format to match �lename.

The exact behavior of this function depends on the format of the stream,

but it will always generate an error if the �le cannot be accessed for reading.

Token * TokenIStream::read token ptr()

Read a token (of arbitrary type) from the TokenIStream and return a pointer

to it. Ideally, the stream should have been opened previously; however, if

a �lename has been speci�ed for *is, read token ptr() will open the stream

(using TokenIStream::open) before reading.

int TokenIStream::SetFormat(StreamFormat frmt)

Sets the format of a TokenIStream to one of the types given in Table 1.

The argument is a StreamFormat, which is an enumerated data type of the

extensions (minus the periods) found in Table 1, such as isra, isrb, vi� and

im.

8.4 TokenSets

The public de�nitions of the TokenSet class structure is as follows

class TokenSet : public Token {

public:

CoordSys2D coords;

void output(Isrostream& os) {coords.output(os); container_output(os);}

void input(Isristream& is) {coords.input(is); container_input(is);}

void trace();

void Transform(Transform2D *trans);

void Draw(Display* display, Drawable drawable, GC gc,

Transform2D* trans,

47

float xmin, float ymin, float xmax, float ymax);

// Set operations:

TokenSet& Union(TokenSet *);

TokenSet& Intersect(TokenSet *);

TokenSet& Diff(TokenSet *);

TokenSet* select(int);

TokenSet* select(char *);

TokenSet* retrieve(int , char *);

TokenSet* retrieve(int, int , char *);

TokenSet* retrieve(int, int);

TokenSet* retrieve(char *, int, int);

TokenSet* retrieve(int, int, int);

TokenSet* retrieve(char *, int, int, int);

TokenSet* retrieve(int, float, float);

TokenSet* retrieve(int, int, float, float);

virtual int count();

virtual int insert(Token *);

virtual int add(Token *);

virtual int remove(Token *);

virtual int member(Token *);

virtual TokenSet *new_inst();

virtual TokenSetState* state();

virtual TokenSetState* state(Token *);

};

The implementation of the functions de�ned for the TokenSet class is

di�erent for the two classes at the next level of the hierarchy, but the func-

tionality remains the same. Therefore, the description of these functions is

given at this level and the user who understands the concepts of inheritance

and is not interested in implementation details can acquire a perspective of

the hierarchy.

Note: An object of type TokenSet cannot be created legally, since there are

pure virtual functions in the de�nition of the TokenSet class. TokenArrays or

TokenLists are the only objects of type|or inheriting from|TokenSet which

can exist. Therefore, some of the examples are delayed until we introduce

the two classes which one can create an instance of, while some examples are

given in which objects of type TokenSet are used, assuming that the user is

aware of this fact. The user is also expected to be familiar with C++.

48

8.4.1 Selection and Retrieval Functions

TokenSet* TokenSet::select(int type)

select returns a TokenSet of tokens in *this of type type.

TokenSet* TokenSet::select(char *name)

select returns a TokenSet of tokens in *this having name name.

TokenSet* TokenSet::retrieve(� � �)

Several retrieve functions exist, which return a subset of a TokenSet consist-

ing of the tokens satisfying certain conditions. The condition is that one of

the �elds (the one o�set bytes from the beginning of the structure de�ning

the token) have a certain value. This o�set and value are passed as argu-

ments. A di�erent function has to be used depending on the type of this

value. One can restrict the search for the tokens that satisfy the condition

to a single type of token. This type has to be speci�ed by passing the type|

or for some functions the name|of the token to the retrieve function. The

following is a list of available retrieve functions:

TokenSet* TokenSet::retrieve(int o�set, char *)

TokenSet* TokenSet::retrieve(int type, int o�set, char *)

TokenSet* TokenSet::retrieve(int o�set, int)

TokenSet* TokenSet::retrieve(char *name, int o�set, int)

TokenSet* TokenSet::retrieve(int type, int, int)

TokenSet* TokenSet::retrieve(char *name, int o�set, int min, int

max)

TokenSet* TokenSet::retrieve(int o�set,
oat,
oat)

TokenSet* TokenSet::retrieve(int type , int o�set,
oat min,
oat

max)

The last argument(s) in each case is (are) the value argument(s). The ones

with two int or
oat arguments return all the tokens of which the value of

the comparison �eld (speci�ed by o�set) falls in the range [min, max].

49

8.4.2 Set Functions

TokenSet& TokenSet::Union(TokenSet *ct2)

Union stores the union of *this and ct2 in *this. Two tokens are considered

to be equal if the pointers pointing to them are equal, so this is not a content-

or property-based union operation.

Similarly,

TokenSet& TokenSet::Intersect(TokenSet *ct2)

and

TokenSet& TokenSet::Di�(TokenSet *ct2)

store the intersection and di�erence of *this and ct2 in *this.

8.4.3 Maintenance Functions

The virtual functions count, insert, add, remove and member are used to

maintain a TokenSet. These functions are rede�ned at the next level of the

hierarchy.

virtual int TokenSet::count()

returns the number of tokens stored in the TokenSet.

virtual int TokenSet::insert(Token *tk)

inserts tk into the TokenSet. insert does not check to see if tk is already

there.

virtual int TokenSet::add(Token *tk)

inserts tk into the TokenSet if it is not already there.

virtual int TokenSet::remove(Token *tk)

removes tk from the TokenSet.

virtual int TokenSet::member(Token *tk)

returns 1 if tk is stored in the TokenSet.

50

8.4.4 TokenArray

An array-based mechanism is used to implement TokenSet storage and access

functions in TokenArrays. Tokens can be accessed sequentially|as given in

Section 3.1 or by directly indexing into the array:

TokenArray *ta;

Token *tk;

int i;

tk = ca[i];

The following is the TokenArray class de�nition:

class TokenArray : public TokenSet {

public:

TokenArray(int init_size = DEFAULT_ARRAY_SIZE,

int incr = DEFAULT_ARRAY_INCREMENT);

virtual ~TokenArray();

char *name() {return "TokenArray";}

TokenSetState* state();

TokenSetState* state(Token* token);

int count() {return token_count;}

int insert(Token *);

int add(Token *);

int remove(Token *);

int member(Token *);

TokenSet *new_inst() { return((TokenSet *) new TokenArray); }

int index(Token *);

Token* value (int index);

Token* operator[] (int index);

int array_size() {return size;}

int max_index() { return max_free_index;}

int extend_array();

int extend_array(int new_size);

51

TokenList *Array2List();

TokenArray& sort();

TokenArray& sort(int (*cmp)(Token *, Token *));

};

char TokenArray::TokenArray(int init size, init incr)

TokenArray returns an object of type TokenArray, initially of size init size.

incr is the size by which the TokenArray will grow everytime it is extended

(see extend array below).

char TokenArray:: TokenArray()

TokenArray frees the space allocated for a TokenArray object when the C++

function delete is called to return the storage allocated by a call to new.

char TokenArray::name()

name returns the name of this token, that is, \TokenArray".

The virtual maintenance functions count, insert, add, remove and member

are instantiated here. These functions operate on the array structure. The

usage and operation of these functions are the same as in the description

given in Section 8.4.

TokenSet * TokenArray::new inst()

new inst returns a pointer to an object of TokenArray, cast into a pointer to

TokenSet.

new inst provides a general mechanism to create new objects of the same

type as the object in hand. Functions that expect an object of any type that

derived from TokenSet, but have to return an object of type TokenSet, can

create new objects of the same type as the object passed to the function.

This becomes important when it is desirable to keep the implementation of

an object. For example, retrieval functions expect an object of type TokenSet.

An object of type TokenArray or TokenList will be passed to such a function

and will be automatically cast into TokenSet. The retrieve function no longer

knows what type of an object was passed as an argument. new inst is used

to create an object of the same type as the object passed as an argument,

52

cast into to TokenSet. An object of type TokenSet is returned, with the

underlying structure preserved. The user has to cast back the result of the

function into an object of desired type. This way, retrieval functions have

uniform return types while the underlying structure (array or linked list) is

kept in the returned object (see example in Figure 5).

int TokenArray::index(Token *tk)

index returns the index of tk in the TokenArray, that is i; such that

ca[i] == token, where ca is a TokenArray.

Token * TokenArray:value(int index)

value returns the token tk such that tk == ca[index].

Token * TokenArray::operator[](int index)

This function is equivalent to the value function, but makes it possible to

treat TokenArrays as arrays, hiding the internal details.

int TokenArray::array size()

array size returns the current size of the array used to store tokens. array size

and token count are the same only if the array is full.

int TokenArray::max index()

In a TokenArray, there is usually more than one position where a new token

can be inserted. There is an index after which the array is empty, and tokens

can be stored starting from that position. That �rst index after which the

rest of the array is uniformly empty is denoted max free index. This is

the minimum index after which we are sure no token is stored in the array.

max free index is useful because it limits the search in the array: we don't

need to look past this index for tokens.

int TokenArray::extend array([int new size])

53

extend array allocates some more space and extends the array to include this

new space. If no size is speci�ed, the array is extended by a �xed amount of

100 tokens, given by the constant DEFAULT ARRAY INCREMENT.

TokenList * Container::Array2List()

Array2List converts a TokenArray into a TokenList. The implementation of

the storage mechanism is converted from an array to a linked list.

TokenArray TokenArray::sort([int (*cmp)(Token *, Token *)])

sort sorts the pointers to tokens in the TokenArray in ascending order.

8.4.5 TokenArrayState

class ArrayState : public TokenSetState {

public:

ArrayState(TokenArray* ta, int init_value = 0);

Token* value() {return array_ptr->value(index);}

Token* next();

};

The TokenArrayState functions value and next are instantiations of the

funtions described in Section 3.1 and therefore identical in their usage and

functionality to the value and next functions introduced for TokenSetStates.

8.4.6 TokenList

As in Section 8.4.4, the TokenList class instantiates the virtual Maintenance

functions, with the functions operating on a linked-list structure this time.

The de�nition of the TokenList class is given as

class TokenList : public TokenSet {

public:

TokenList() { head = tail = NULL; token_count = 0;}

virtual ~TokenList();

char *name() {return "TokenList";}

int count() {return token_count;}

54

int insert(Token *);

int add(Token *);

int remove(Token *);

int member(Token *);

TokenSet *new_inst() { return((TokenSet *) new TokenList); }

TokenSetState* state() {return new TokenListState(head);}

TokenSetState* state(Token *token) {return new TokenListState(locate(token));}

TokenArray *List2Array();

TokenList& sort();

TokenList& sort(int (*cmp)(Token *, Token *));

};

char TokenList::TokenList()

TokenList returns an object of type TokenList, initially empty.

char TokenList:: TokenList()

TokenList frees the space allocated for a TokenList object when the C++

function delete is called to return the storage allocated by a call to new.

char * TokenList::name()

name returns the name of this token, that is \TokenList".

The virtual maintenance functions count, insert, add, remove and member

are instantiated here. These functions operate on the array structure. The

usage and operation of these functions are the same as in the description

given in Section 8.4.

TokenSet * TokenArray::new inst()

new inst returns a pointer to an object of type TokenList, cast into a pointer

to TokenSet. See Section 8.4.4 above for the description and the usage of

this method.

TokenSetState * TokenList::state([Token *token])

55

TokenList::state returns a TokenSetState pointer that can be used for pur-

poses described in Section 3.1.

TokenArray * TokenList::List2Array()

List2Array converts a TokenList into a TokenArray. The implementation of

the storage mechanism is converted from a linked-list to an array.

TokenList TokenList::sort([int (*cmp)(Token *, Token *)])

sort sorts the pointers to tokens in the TokenList in ascending order.

8.4.7 TokenListState

class TokenListState : public TokenSetState {

public:

TokenListState(TokenListElement *init = NULL) {tle = init;}

Token* value() {if (tle != NULL) return tle->token; else return NULL;}

Token* next() {if (tle != NULL) tle = tle->ptr; return value();}

};

The TokenListState functions value and next are instantiations of the fun-

tions described in Section 3.1 and therefore identical in their usage and func-

tionality to the value and next functions introduced for TokenSetStates.

8.5 Grids

The public de�nition of the Grid class structure is as follows

class Grid: public TokenSet {

public:

Grid(int tokentype = -1,

int xsize = DEFAULT_XSIZE, int ysize = DEFAULT_YSIZE,

float x_init = DEFAULT_GRID_XINIT, float y_init = DEFAULT_GRID_YINIT,

float x_inc = DEFAULT_GRID_XINC, float y_inc = DEFAULT_GRID_YINC,

int pagesize = DEFAULT_PAGE_SIZE, CoordSys2D *coord_sys = NULL);

~Grid() {free(grid_cell);}

/* Methods to help different tools such as I/O, Draw, Transform: */

char *name() {return "Grid";}

56

TokenSetState* state();

TokenSetState* state(Token *token);

/* Grid maintenance methods: */

int setCellState(int x_coord, int y_coord, int state);

void deactivate();

int activateCell(int x_coord, int y_coord);

int deactivateCell(int x_coord, int y_coord);

int count() { return token_count; }

int insert(Token *token);

int add(Token *token);

int remove(Token *token);

int member(Token *token);

TokenArray *retrieve();

/* Various tools provided: */

int traceLine(float x1, float y1, float x2, float y2, int state);

int gridifyLines(TokenSet *ts);

int rasterizeRectangle(float x1, float y1, float x2, float y2);

int rasterizeCircle(float x0, float y0, float radius);

int rasterizePolygon(COORDINATE points_list[MAX_POINTS],

int num_of_points);

};

8.5.1 Basic Functions

Grid::Grid(int tokentype, int xsize, int ysize,
oat x init,
oat y init,

oat x inc,
oat y inc, int pagesize, CoordSys2D *coord sys)

Grid returns a 2 dimensional grid. xsize and ysize specify the number of

cells in the grid in each dimension, while x inc and y inc specify the size of

a grid cell in each dimension. x init and y init indicate the starting point

(lowest coordinates) of the grid. pagesize is the size of the internal memory

pages used to store tokens in a grid cell. (Since a cell can use multiple pages,

pagesize is not a bound on the number of tokens per cell, although it should

be larger than the expected number of tokens per cell to be e�cient. Users

who are not concerned with e�ciency can use the constant GRIDPAGESIZE.)

The �nal argument, coord sys, is a pointer to a CoordSys2D structure which

speci�es the coordinate system properties.

57

char* Grid::name()

name returns the name of this token, that is, \Grid".

TokenSetState* Grid::state()

TokenSetState* Grid::state(Token *token)

As with TokenSets, the state function returns a one-directional index into a

grid. The elements in a grid can be visited one by one with the help of the

TokenSetState::next and TokenSetState::value functions. The optional

argument token speci�es a token to which the state index will point initially;

the visit to tokens will start from this speci�ed token. See Section 3.1 for a

more detailed description.

8.5.2 Maintenance Functions

int Grid::setCellState(int x coord, int y coord, int state)

setCellState is a helper function for the activation and deactivation functions.

The cell at position (int x coord, int y coord) is activated if state is ACTIVE

and it is deactivated if state is INACTIVE.

void Grid::deactivate()

deactivate switches the states of all the CellElements in the grid to INAC-

TIVE. None of the cells will be considered if retrieve is called immediately

after a call to this method. (See activateCell() for a description of active vs.

inactive cells.)

int Grid::activateCell(int x coord, int y coord)

activateCell activates cell (x coord, y coord) of grid. Once a cell is active,

calls to Grid::add will cause tokens to be stored in the cell, and calls to

Grid::retrieve will cause them to be retrieved from the cell. Many cells can

be active at once, and a cell remains active until Grid::deactivateCell or

Grid::deactivate is called. For grid declared as \Grid *grid;", if

0 � x coord � grid!x size and 0 � y coord � grid!y size,

activateCell returns 0, otherwise activateCell returns -1.

58

int Grid::deactivateCell(int x coord, int y coord)

deactivateCell deactivates the state of the indicated grid cell. Tokens in the

cell will no longer be returned by Grid::retrieve (unless the cell is reac-

tivated later), and Grid::add will no longer store a token to the cell. If

0 � x coord � grid !x size and 0 � y coord � grid !>y size, ISRdeacti-

vateCell returns 0, otherwise it returns -1.

int Grid::insert(Token *token)

insert adds token to every ACTIVE cell of grid regardless of whether it is

already stored in the cell. insert does not a�ect the status of grid cells, so

that any cells that were ACTIVE before a call to insert are still ACTIVE after

it.

int Grid::add(Token *token)

add is similar to insert but token is added to every ACTIVE cell of grid only

if it is not already stored in the cell. The token can be of any type. add does

not a�ect the status of grid cells, so that any cells that were ACTIVE before

a call to add are still ACTIVE after it.

int Grid::remove(Token *token)

remove removes token from every ACTIVE cell in which it is stored. A

list of cell indeces is kept for each token, which protects this function from

exhaustive search when the cells that a token belongs to have to be accessed.

int Grid::member(Token *token)

member returns 1 if token is stored in the grid.

TokenArray* Grid::retrieve()

retrieve retrieves all tokens from every ACTIVE cell in grid, and returns them

in a TokenArray. The TokenArray will not contain any duplicate entries, but

it may be empty.

59

8.5.3 Rasterization Functions

The routines for activating and deactivating cells and for storing and re-

trieving functions provide the basic operations for cells. Starting with these

functions, a programmer can build up the neccessary routines for storing and

retrieving geometric shapes. ISR3.1 includes rasterization routines, however,

for mapping the common shapes onto grids, making it easy for users to store

and retrieve spatially. Warning: These functions make assumptions about

certain token types, and may not be valid if the token de�nitions are changed.

int Grid::traceLine(
oat x1,
oat y1,
oat x2,
oat y2, int state)

traceLine activates every cell touched by the line segment extending from

(x1, y1) to (x2, y2).

int Grid::gridifyLines(TokenSet *ts)

gridifyLines stores each line in ts into the cells that the line passes through.

This is done by activating the cells that the line crosses with a call to trace-

Line and add ing the line into the activated cells. The coordinate system

of grid is set to be the coordinate system of ts. This assumes that tokens

represented in some �xed coordinate system are being and will be stored in

the grid.

int Grid::rasterizeRectangle(
oat x1,
oat y1,
oat x2,
oat y2)

rasterizeRectangle activates every cell touched by the scan-line aligned rect-

angle with corners in (x1, y1) and (x2, y2).

int Grid::rasterizeCircle(
oat x0,
oat y0,
oat radius)

rasterizeCircle activates every cell located within a circle of radius radius

centered at the point (x0, y0).

intGrid::rasterizePolygon(COORDINATE points list[MAX POINTS],

int num of points)

rasterizePolygon activates every grid cell inside of or on the boundary of a

convex polygon. The polygon is speci�ed as an array of COORDINATEs, and

the points must be ordered in a walk around the polygon.

60

References

[1] KBV ision

TM

System User's Guide version 2.5, Amherst, MA, 1990.

[2] J. Argiro. KHOROS documentation, 1991.

[3] J. Brolio, B. Draper, R. Beveridge, and A. Hanson. The ISR: an Inter-

mediate Symbolic Representation for Computer Vision. IEEE Computer,

22(12):22{30, 1989.

[4] G. Reynolds and R. Beveridge. Searching for Geometric Structures in

Images of Natural Scenes. In IUW, Los Angeles, CA,, pages 257{271,

Feb. 1987.

61

