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Abstract
    This paper presents a systematic approach to automatic
construction of a dynamic and multi-resolution 360°
panoramic (DMP) representation from image sequences
taken during camera rotation and zoom. Although a
simple 2D rigid motion model is used to estimate inter-
frame motion parameters, our mosaicing methodology
enables precise cylindrical panoramic mosaic. Moving
objects are detected and separated from images based on
motion information, and their accurate contours are
extracted using a modified active contour algorithm. A
multi-resolution representation is built for the more
interesting areas by means of camera zooming. The DMP
construction method is fast, robust and automatic,
achieving 1 Hz on a 266MHz PC. No camera calibration,
feature extraction, image segmentation or complicated
nonlinear optimization processing is required in our
algorithms. The construction of the panoramic
representation can be used in virtual reality and very low
bit-rate video coding.
    Keywords: Image-based VR, panoramic representation,
dynamic mosaic, multi-resolution, object extraction

1. Introduction

A panoramic representation of image sequences has a
wide application scope, including virtual reality (VR),
interactive 2D/3D video, tele-conferencing, content-based
video compression and manipulation, and full-view video
surveillance. For virtual reality, it has advantages of
simplicity for rendering, photographic quality realism, and
3D illusion experienced by users. For video analysis and
coding, it is superior to existing coding approaches in that
it is a content-based representation with a very low bit-
rate. In the sense of advanced human-computer interaction
(HCI), these two categories will merge into a more general
approach of interactive video (e.g. virtual conferencing),
which adds the flexibility of synthesizing images with
interactivity, selectivity, and enhanced field of view and
resolution.
   A wide field of view (FOV) lens, e.g. a fish-eye [1] or
panoramic lens [2-6], can be a solution for generating
panoramic presentations. Besides the expense of these

specially designed image sensors, the image obtained will
have substantial distortions, and mapping an entire scene
into the limited resolution of a video camera compromises
image quality. Constructing a panoramic representation by
mosaicing image sequences captured by ordinary cameras,
on the other hand, meets the requirements of many
applications where high image resolution, low bit-rate,
interactivity and photographic realism are needed.

Apple’s QuickTime VR [7] captures a 360-degree
panoramic image of a scene with a camera panning
horizontally from a fixed position. The overlap in images
are registered first by the user and then “stitched” together
by the software in a best match. Similarly in [8] mosaics
were constructed by registering and reducing the set of
images into a single, larger resolution frame. However the
final image mosaic is not a full 360-degree view. Plenoptic
modeling [9] adds ranges (using a disparity map) to each
panoramic image, thereby allowing reprojection from
other viewpoints. The concept of plenoptic function is
further explored by light field methods [10,11], which
attempt to fully sample the plenoptic function within a
subset of space. Clearly the generation of a full-view
panorama is the foundation of these methods.

Shum & Szeliski [12] proposed a mosaic representation
that associates a transformation matrix with each input
image, rather than explicitly projecting all of the images
onto a common surface (e.g., a cylinder). However the
decomposition of the projective transformation matrix into
rotation angles and the focal length is known to be very
sensitive to image noise. Kang & Weiss [13] analyzed the
error in constructing panoramic images and proposed a
technique that has the advantage of not having to know the
camera focal length a priori. In order to create a
panorama, they first had to ensure that the camera is
rotating about an axis passing through the nodal point, and
the focal length of the camera cannot be changed
throughout the rotation. Xiong and Turkowski [1]
proposed a method to create image based VR using a self-
calibrating fisheye lens. They take four pictures by
rotating the camera 90 degrees around the nodal point and
formulate the registration and self-calibration constraints
as a single nonlinear minimization problem in which 34
parameters need to be determined. Manifold projection



[14] enable the fast creation of low distortion panoramic
mosaics under a more general motion than the exact
panning. The basic principle is the alignment of the strips
that contribute to the mosaic, rather than the alignment of
the entire overlap between frame. However the issues of
full view panorama, independent object motion and
camera zoom are not considered in this approach.

Static scenes are a common assumption in image
mosaicing and image-based rendering [1, 7, 9-14], with
the exception of a dynamic mosaic approach proposed by
Irani et al [15] to describe dynamic events. However the
accuracy of the contour of a moving object was not
addressed, which is important for synthesis of fine detail
of the dynamic events based on the mosaic representation.
In our work we utilized a modified active contour method
to extract the contour of the moving object. In the existing
algorithms [17-19], only the intensity information was
used. In order to detect and rapidly separate the dynamic
and deformable objects from the scene, both motion and
shape information will be utilized in our method.

We aim at the generation of realistic 2D/3D panoramas
from video sequences with more general motion of a
hand-held video camera. The construction of a layered 3D
panorama from a vibrating translating camera has been
reported in [19]. In this paper a new approach is proposed
to automatically build a dynamic and multi-resolution
360° panorama (DMP), with good image quality, from a
video sequence taken by a hand-held camera undergoing
3D rotation, zooming, and small translations. It should be
noted that this is often the case for the general operations
of a video camera by a cameraman. For construction of a
realistic virtual environment, this requirement can be
easily satisfied. Though the description of the DMP
construction algorithms in this paper is mostly directed
towards a scenario of virtual environment modeling, the
same algorithms with slight modifications can be directly
used in video analysis and coding, and in video
surveillance.

This paper is organized as follows. In Section 2 the
inter-frame motion model is derived and a pyramid-based
motion detection algorithm is described. In Section 3 the
image mosaicing and warping algorithm is presented in
detail. The algorithm for moving object detection and
segmentation from the background is presented in Section
4. Section 5 describes how to build the multi-resolution
representation for the user selected “interesting” regions.
Experimental results are given in the corresponding
sections and a brief conclusion and discussion is provided
in the last section.

2. Inter-Frame Motion Model

    Let us make a basic assumption that the scene is static
and all motions in the image are caused by the movement
of the camera. The independent motion of other objects in
the scene will be considered in Section 3 and Section 4. A

coordinate system XYZ is attached to the moving camera;
the origin O is the optical center of the camera (Fig. 1).
UV is the image coordinate system whose origin is the
intersection of the optical axis with the image plane. The
camera motion has 6 degrees of freedom: three translation
components and three rotation components. Since we use
the camera as the reference coordinate system an
alternative view is that the scene being viewed moves with
6 degree of freedom. Considering only an inter-frame
case, we represent three rotational angles (roll, tilt and
pan) by (α, β, γ) and three translation components by
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Fig. 1.  Coordinate systems of the camera and the image

    With the current frame at time t and the reference frame
at the previous time t’, a 3D point (x, y, z) with image
coordinates (u, v) at time t will move from point (x’, y’, z’)
in the reference time t’, with the image point (u’, v’).
Suppose the camera focal length f is f’ before the motion.
Under a pinhole camera model

(u,v) = (f x / z, f y / z)

the relation between the 3D coordinates is
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where R is the rotation matrix

















β−γ
βα−
γ−α

≈















=

1

1

1

nml

kji

cba

 R

and it can be approximated by the right-hand matrix for
the rotation of successive frames. In order to construct the
360° panorama, panning is the dominant motion of the
camera. Under pure 3D rotation (i.e. Tx = Ty = Tz = 0) , we
have the following homogenous rotation transformation
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which is a special case of planar projective transformation.
With four pairs of matched points in two successive
images, eight parameters ),,,,,,,( MLKJICBA  can be

solved from equation (3), and two images can be
registered exactly to generate a planar mosaic with a larger
field of view. However, the field of view is constrained to
be less than 180° since the points in the direction of ±90°
from the optical axis of the reference frame are mapped to
infinity in the planar mosaic. A full-view cylindrical

panorama can be constructed by decomposing βα,,, ’ff

and γ  from the eight projective parameters [12], but

unfortunately the decomposition of the intrinsic and
extrinsic parameters is very sensitive to noise. Thus we
look for an alternative way to achieve the goal efficiently.

2.1.  2D rigid motion model is plausible

    If the rotation angle is small, e.g., less than 5 degrees,
between the successive frames, equation (2) can be
approximated as
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Let
 ’/)/( fzfTfvus z++β−γ= (5)

we will have
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    Under 3D rotation that is dominated by panning motion,
possibly with zooming and small translation, we have very
small roll α, tilt β and )/,/,/( zTzTzT zyx . Therefore a

2D rigid inter-frame motion model can be used
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where  ’’ ZffZs ≈  is a scale factor associated with

zoom, and Z-translation; (Tu, Tv) ≈ (-γf+fTx/Z, βf+fTy/Z) is
the translation vector representing (pan/X-translation,
tilt/Y-translation); and α is the roll angle. This motion
model is also plausible if the scene is far away. Given
more than 2 pairs of corresponding points between two
frames, we can obtain the least square solution of motion
parameters, s, Tu, Tv and α, in equation (7).  The errors of
approximation are especially small for the narrow vertical
strip in the center of each image that will be used in our
image mosaic algorithm (Fig. 2). This observation can be
easily deduced by comparing equation (7) with equation
(4) when β≈0, u≈0, and  0)/,/,/( ≈zTzTzT zyx . If the

image size is 384×288 and the equivalent focal length of
the camera is 384 pixels, numerical analysis [21] shows
that when all the three angles are less then 2 degrees,
errors are of only 0~2 pixels in the central strip with the

width w < 16 pixels (Fig. 2). The approximation is valid
for image sequences taken by a hand-held video camera.

Fig. 2.  Mosaicing strips

2.2.  Inter-frame motion detection algorithm

      The inter-frame image displacements are estimated by
using a pyramid-based matching algorithm. The algorithm
consists of the following steps [21]:

(1) Generating the pyramids for the current and the
reference images. For computational efficiency, the final
image displacements are only given for non-overlap image
blocks of a given size, say 16×16, in the finest layer
(original image) of the current frame.  The matching
process is carried out from coarse layers to fine layers,
starting from a layer with certain image size, e.g. two
times large as the matching block size.

(2) Determining the image displacements.  For each
block in a layer of the current frame, the correlation
operation is carried out in an adaptive search window over
the reference frame pixel by pixel. The maximum
correlation is chosen in the search window, and if there are
multiple best matches due to similar patterns in the search
window, then the one with the smallest displacement is
selected. The initial size of the search window is about
half the image size in the first layer but it will be reduced
in the finer layers, and after image warping (see Section
3).  With this search strategy, the likelihood of mismatch
will be reduced if the real motion displacements or the
search windows are smaller. This is the basic principle for
the re-matching-after-warping procedure described in the
next section.

(3) Calculating the belief value of each match by
combining the texture measure with the correlation
measure. This step is important because the belief values
will be used as weights in the parameter estimation. It
should be noted here that the matching process will be
affected by several kinds of noise, such as moving objects,
illumination changes and camera zoom. We will present a
method of two-embedded iterating cycles to deal with this
problem.

3. Image Mosaicing and Rectification

The relation between two frames from pure rigid 3D
rotation is a strict planar projective transformation.
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However, if we use planar reprojection, the field of view is
limited to be less than 180 degrees. In an initial study, we
first utilized a direct linear method similar to that in [12]
to estimate camera parameters from projective
transformation between two frames. The parameters
include relative focal length, nodal point, aspect ratio, and
the three inter-frame rotational angles of the camera.
Theoretically it would be elegant if a cylindrical panorama
can be constructed after the focal length and the three
rotation angles have been decomposed. However,
experimental analysis has shown that this decomposition
is very sensitive to image noise and accuracy of the
recovered motion parameters. Since the motion we
consider in our domain is not a pure rotation, which make
this difficult problem even harder, we adopt an alternative
approach when camera panning is the dominant motion
and the pan covers more than 360° around the viewpoint.
The algorithm consists of the following three steps:
    (1). Estimating the 2D rigid transformation between two
successive frames. This step consists of two embedded
iteration cycles [21]. The first (inner) iteration cycle is
robust motion estimation based on the current motion
vectors from image match. The 2D rigid transformation
between two successive frames is estimated using a
weighted least mean square method. Then an iterating
process is carried out after modifying the weight of each
match by the error between each measured image
displacement and the one calculated from rigid
transformation until the average error is below a certain
tolerance level. Notice that this iterative process is only
carried out on the current motion vectors without re-
calculating them from the original images so the
computation speed is very fast. The re-weighting process
accounts for moving objects and other mismatches that are
not consistent with the estimated rigid motion model. The
second (outer) iteration cycle is for motion detection and
estimation after warping the current frame using the
calculated motion parameters. Then the difference
between the warped image and the reference image
provides residual errors for the motion model. If the
residual is large then the residual motion displacements
are estimated between the warped frame and the reference
frame, and the inner iteration cycle runs again. Since the
residual motion displacements are reduced, the
probabilities of mismatches will be reduced hence the
matching results will be improved. Experiments show that
about two match cycles after rectification can achieve
rather fine registration results.

(2) Mosaicing the image frame by frame. Any frame
(e.g. the first frame, the center frame) is selected as the
reference frame for the mosaic process, and the
accumulating transformation parameters between each
frame and this reference frame are calculated. Then
images are warped and pasted frame by frame onto the
final mosaic. If only one narrow vertical strip in the center

of each frame is utilized, a 2D rigid transformation is
sufficient to merge the successive frames. 2D rigid
mosaicing approximately maps the image to a flattened
conic surface, or sometimes a cylindrical surface,
depending on the orientation of the optical axis (Fig. 3).
The principle behind the conic mosaicing can be explained
as follows. Suppose the central strip is represented in
spherical coordinates. Then the 2D rigid transformation in
equation (7) exactly describes the 3D rotation and zoom of
the camera, even though error is introduced by the
approximation of the circular arc by a planar strip in the
real image. However if the roll and tilt angles are
significantly smaller than the pan angle, then this error is
negligible since the distortion is mostly in the vertical
direction [21]. It also implies that the actual mosaic is a
flattened conic surface rather than part of a sphere since
the strip is planar. The cone is upward if the optical axis of
the reference frame is slightly downward looking and vice
versa (Ic and Ia in Fig.3 (a)). A true cylindrical panorama
can be obtained only if the optical axis is strictly
horizontal (Ib in Fig.3 (a)).

(a) spherical and conic representation
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(b) flattened conic mosaicing and rectification
Fig. 3. The strip-mosaicing geometry

    (3) Rectifying the flattened conic mosaic to a flattened
360° cylindrical panorama. This can be achieved by
finding the correspondence of a (virtual) vertical edge in
the head and tail of the conic mosaic. The correspondence
is established automatically by matching the possible
“connecting” frames in the image sequence with the first
frame through the same pyramid-based matching strategy
and selecting the frame with minimum difference with the
first frame. To account for any illumination changes
between the connecting head and tail frames, histogram
specification from the frame in consideration to the first
frame is performed. After the angle range, and the radii of
inner and outer arcs of the flattened cone are computed
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from the head-tail match, the re-projection of the conic
mosaic to the cylindrical panorama can be determined (see
Fig. 3(b)); details can be found in [21].

       

         (a) the current frame          (b) the reference frame
              (Frame no. 245)                     (Frame no. 0)

         

(c) difference image of inital matching, and (d) after re-matching

Fig. 4.  A matching example from the 246-frame original image
sequence (panning from right to left): the first and the last frame

    It should be emphasized that no camera calibration or
intrinsic camera parameters are needed, and the algorithm
is completely automatic.  Fig. 4 shows the matching
process of the head and the tail frame from a 246-frame
image sequence of the Library scene. The motion
parameters from the initial match are

07.49=uT , 72.13=vT , 00.1=s  and 00.0=α , while the

motion parameters resulting from the second match are

05.48=uT , 74.13=vT , 00.1=s and 00.0=α . The

second set of parameters result in a better registration
result, which can be observed from the edges in the
difference images between the two frames, especially the
center strip of the image (e.g. the white lamp in front of
the pine tree and the entrance near that tree), which will be
used for mosaic. A mismatch correction example is given
in [21].
    Fig. 5 and Fig. 6 show the panoramas before and after
cylindrical rectification and head-tail stitching. The conic
panorama is constructed by simply pasting onto the
mosaic one strip that is transformed (rotated, scaled and
translated) from each frame with a width corresponding to
the displacement of each frame in the mosaic. The original
image sequence has 246 frames of 384 x 288 color images,
so the average panning angle between two frames is about
1.5 degrees, which satisfies the condition in equation (7).
The size of the rectified cylindrical panorama is 3494x323.
If the compression ratio of the panorama in JPEG format
is 20:1, the total compression ratio between the JPEG
panorama and the original image sequence is about 500.
Moreover new images of arbitrary viewing angles can be
synthesized interactively, which is essential for
applications of virtual reality and content-based video
manipulation. In the case that there are moving objects in
the scene, median values of the corresponding points in
multiple frames are used to generate the conic panoramic
background. The resulting image is slightly blurred since a
wider strip is used in each frame (see Fig.  9c). The
moving object extraction is presented in the next section.

Fig 5.  Flattened conic mosaic (13% display scale). The original color image is 3806 x 773x24 bits. Notice the curved and uneven
boundary created by the up-tilted angle and unstabilized motion of the hand-held camera, and error accumulating.

Fig.6 Flattened 360-degree cylindrical panorama (14% display scale). The original true-color image is 3494x323 x24 bits.

4. Moving Object Extraction

    As the mosaic is being constructed, difference image
between successive frames is analyzed. In practice, a
difference image is calculated from three successive
images for robustness. Then region analysis is carried out

to determine those regions that may contain moving
objects. In order to realize best figure-ground separation,
the contour of the moving object in each region needs to
be extracted. We apply an active contour model to extract
contours from a noisy image [16, 17,18]. The basic idea of
the active contour algorithm is to constrain the contour of



an object onto a controllable continuous spline. The task is
to minimize an energy function that takes into account
both input image information and constraints on the
continuity of the contour. Our modified active contour
algorithm uses both motion and gradient cues of the
images, and the control parameters are adaptively adjusted
according to objects in the current image. The algorithm
consists of the following four steps:

(1) A difference image is calculated from the current
image and its predecessor and successor frames in the
sequence. Regions with large residuals are detected
through a region-grouping algorithm. Then, in each
region, the difference value is threshold to a binary image,
gaps and holes are filled using morphology-based method,
and a larger scale grouping is used (if necessary) to
generate a single mask for each moving object; this mask
is then used as an initial contour in the following step.

(2) Control points are obtained from the initial
contour, and curvatures at the control points are estimated.
The points are evenly spaced although the space is
adaptively changed according to the size of the initial
contour. Then the parameters used in the energy function
are automatically assigned according to the point spaces
and the curvatures.

(3) The energy function is minimized using a
dynamic programming approach to obtain the resulting
contour.

(4) Each dynamic object is separated along its
contour from the original frame and is labeled on the
corresponding location of the panorama, and the dynamic
sub-images of objects are represented individually.

Fig. 7 shows the dynamic mosaic with the walking
person pasted onto the mosaic every ten frames.

Fig. 7.  Moving object detection and separation

5. Multi-Resolution Representation

In VR applications we want the ability to zoom and pan
(under controlled motions) to enhance the visual realism;
in image coding we need to handle the video sequence
with zoom as well as pan. Therefore, we introduce a multi-
resolution representation for each user-specified
“interesting” portion of the panorama. Each of those
regions on the panorama is labeled as a “zooming hot

spot”. This is similar to the sparse pyramid in [15], but our
representation is more purposive and compact. The
representation is constructed by physically zooming the
camera when the more interesting regions of the scene are
viewed. The zoomed frames are separated automatically
from the original panning and zooming image sequence by
observing the accumulating scaling (zoom) factor. An
automatic registration between two zoomed frames is
achieved in a manner similar to that for the panned frames,
but the following step is to select representative frames as
the components of a multi-resolution representation
(instead of mosaicing the frames). It should be noted here
that it is more difficult to accurately assess similarity in
the zooming case than in the panning case, especially
when the scale change is grater than 10%, since the scales
of the match blocks are not the same in the two images. In
this case re-match processing after warping (i.e. re-
zooming) is vital for the accurate estimation of the scale
parameter.

       

(a) the current frame         (b) the reference (preceding)  frame

         

(c) difference image of initial matching and (d) after re-matching

Fig. 8. Iterative matching after image warping (zooming)..

Fig. 8 shows a matching example from the zoomed
segment of the Main Building sequence shown in Fig. 9.
The motion parameters from the initial matching process
are 7.29=uT , 52.0−=vT , 03.1=s and 00.0=α , while

the motion parameters from the second (final) matching
process are 34.0=uT , 99.0−=vT , 12.1=s and

00.0−=α .  The second set of parameters results in a
much better registration of the frames, as can be seen by
comparing Fig.8(c) and Fig. 8(d). The zoom factor
between Fig. 8a and 8b is 1.12.  The reason for successful
match is that every iteration brings the scale factor closer
to the real one.  Fig. 9(b) shows the selected zooming
frames with 1.5 zooming factors between two selected
frames for the Main Building image sequence. The
rectangle in the mosaic and each selected zoom frame
indicates the sub-region that corresponds to the next
selected frame.



6. Conclusion and Discussion

The construction of the DMP (Dynamic and Multi-
resolution Panorama) is fast, robust and automatic. The
processing rate is about 1 frame per second for 384×288
color images using a Pentium II/ 266 MHz PC. A factor of
2 speed-up can be expected by algorithm optimization and
MMX utilization. WE have tested our algorithms on many
long image sequences (typically 100~600 frames)

captured by a hand-held camera for both indoor and
outdoor scenes, and a demo system of VR-based
wandering through Tsinghua Library has been built using
Netscape Plug-In [21]. Besides the most obvious
applications such as virtual reality scene modeling and
very low bit rate video coding, the DMP and the algorithm
is also useful in other applications such as surveillance,
change detection, video enhancement, indexing and
manipulation.

               
 Frame 199 Frame 90

(a) Two original frames with moving objects                                    (b) Three selected zooming frames.

(c) Cylindrical panorama after eliminating the moving objects (image size:3498x303). Notice that the zoom factor is changed.

Fig. 9. Multi-resolution panorama. The original image sequence has 561 frames, which consists of 3 zooming segments among the
panning sequence. There are many moving objects (persons, bicycles) in the scene. Notice that most of the moving objects and
noises (e.g. horizontal lines in frame 199) have been successfully filtered out (cars parked at the roadside remain in the mosaic).
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