
STRATEGIES FOR AUTOMATIC TIE-POINT DETECTION 1

Frank Stolle, Gary Whitten, and Allan Hanson
Department of Computer Science, University of Massachusetts at Amherst

Commission III Working Group 1

KEY WORDS:  Automatic Tie-Point Extraction, Matching

ABSTRACT

Recently the Computer Science and Forestry and Wildlife Management Departments at the University of Massachusetts, Amherst
were awarded a grant to investigate automatic classification of tree species in forests from aerial data. Faced with the problem of
registering immense numbers of small-scale aerial photographs and video data, it quickly became apparent that automation of tie-
point selection and bundle adjustment would greatly improve productivity. It was decided to investigate the possibility of building
such a system. The need for automatic processing also originated from another project, which concentrates on building site models of
urban areas from aerial data. Both projects rely heavily on aerial views, but the type and quality of the imagery is different. While the
former uses a combination of small-scale aerial photography and video imagery, the latter relies on classical large-scale aerial
photography.
As different operators and strategies show varying behavior under different contexts, it was felt that the selection of interest operator
and strategy was important enough to explore several possibilities. Specifically, two methodologies were explored. The first
approach to finding tie-points that was investigated is based on interest points generated by an operator proposed by Förstner
(Förstner, 1994), the second is adapted from a research effort on a model-based automated target recognition system by Whitten
(Whitten and Rosenfeld, 1996).
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1 INTRODUCTION

Research by Ackerman (Ackerman and Tsingas, 1994) and
Krzystek (Krzystek, 1998), Tang (Tang and Heipke, 1994) and
Schenk (Schenk and Toth, 1993) has made significant progress
towards robust automated point selection and matching for use
with a photogrammetric bundle adjustment procedure. Based on
this research, several extraction and matching systems have
been built and have had success, some in the commercial
market.  PHODIS-AT (Tang and Heipke, 1994), MATCH-AT
(Ackerman and Tsingas, 1994), and Schenk's (Schenk and Toth,
1993) system use low-level image features (such as relative
edge orientation) as tie-points along with a second stage
refinement technique, usually using least-squares matching.
Some systems integrate block adjustment into the process of tie
point selection and matching (MATCH-AT) whereas others
require a separate block adjustment package (PHODIS-AT) to
eliminate error points. Because neither of these systems
provided the architecture we required, an effort was launched to
create our own.

2 TIE POINTS FROM LOCAL CURVATURE

The first approach to finding tie-points that we investigated is
fairly traditional. It is based on interest points generated by the
operator proposed by Förstner (Förstner, 1994). The operator is
well-known and we will not go into great detail to describe it
here. This operator evaluates local curvature in a window. It
takes as parameters the window size, a weight threshold w, and
a curvature threshold q. In our experiments, w is set to 0.95 and
q to 0.75. These numbers were determined empirically. The
operator returns a list of interest points for each image.

Since one of the immediate needs was to recover the epipolar
geometry (relative orientation) to facilitate DEM generation via

a stereo system, initial experiments were conducted on pairs of
images. The control strategy proceeds as follows. In an iterative
fashion, the interest operator is applied to each of a pair of
images across a range of scales (window sizes). Points are
ordered by the variance in the operator window.

The next step is to calculate the cross-correlation between
windows in the first image, centered around the top 50% of the
first interest point list, and windows in the second image
centered around all points of the second list. This step is again
carried out iteratively across a range of scales. It requires that
approximate relative orientation information is provided. A
correlation threshold is used, and all correspondences that fall
below are rejected. In our experiment, the threshold was
empirically set to 0.8 The window size for correlation is a
variable parameter, updated during each iteration. Pairs of
points are ordered first by the number of scales that are found to
be above the correlation threshold, and within that ordering by
the highest correlation coefficient.

One of the goals is to remove erroneous correspondences in the
final list. The search space is generally very large, so restrictions
are imposed on the search by initial estimates of the camera
orientation and simple topological constraints. At present, only
one topological test is employed. It is based on separating the
plane into half-planes. The procedure starts with an empty set S.
Two pairs of corresponding points (A,A`), (B,B`) are found and
inserted into the set. In each of the two images, a line is
generated between consecutive points in each of the two images
(A-B) and (A’-B’). The ordering of points implies a line
direction. A new point pair can be joined into the set only if the
points in both images are on the same side of the line.

In case the initial correspondences are wrong, almost none of
the remaining points will pass the test. We use a search
procedure to backtrack and use a starting point lower in the list
if this occurs.



Figure 3 illustrates the constraint. When more than two pairs of
points are in the set, the line constraint is tested on all
consecutive pairs of points. The procedure works well in
eliminating outlier pairs, but may also remove good pairs. This
occurs because some points fall very close to a line, and due to
local surface and viewing geometry could appear in one image
on one side of the directed line, but on the other side in the
other image.  More sophisticated topological tests are the focus
of ongoing research. Specifically, we are planning to employ
other orientation and inclusion tests.

2.1 Data sets and results of first approach

For our initial experiments, we selected images from two of the
ISPRS tie-point test data sets (Munich, Echallens), and a data
set taken with our own sensor package (Winrock). The former
were taken using a photogrammetric camera, the latter using a
small-scale commercial camera. The data are presented with
correspondences found, in Figures 1,2 and 4, respectively.

Parameters were set to detect a large number of possible
correspondence candidates, and to significantly reduce that
number using the correlation and topology tests. Parameters are
given in Table 1and results are summarized in Table 2.

In each of the image pairs, sufficiently many points were
detected for recovery of relative orientation. The ratio of
outliers is significantly below 50%, which allows a standard
robust estimator to be used for bundle adjustment. The results
were obtained with standard parameters across the data sets. No
specific parameter tuning was performed.

While the results are acceptable, we found some problems with
this approach. The distribution of points in the images is not
optimal. Points tend to be clustered, and some obvious outlier
points are not removed. As an example, in Figure 2, most of the
points are concentrated around the buildings.

Figure 3:  Topology constraint. A-A` and B-
B` are already part of the set. C-C` could be
included if other conditions  are met, but C-
D` does not pass the test
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Figure 1: Munich image pair
Figure 2: Echallens image pair



At this points we turned our attention to a system already at
hand, that, while designed for another purpose, promised to be
useful in our problem domain. This is described in greater detail
below.

3 VERTEX SPACE SYSTEM

The second system explored here utilizes model-based
recognition techniques developed and implemented by Whitten
(Whitten and Rosenfeld, 1996). It uses a localized interest
operator based on curvature to generate points in the two
images. The points are then matched using a special Hough-like
2D feature representation. The system’s original problem
domain of target recognition is very similar to that of tie point
extraction on urban aerial imagery.  It involves detection of
rigid polyhedral structures, mostly in the form of land vehicles.
Buildings and cultural objects found in urban scenes possess
many of the same characteristics of those vehicles (i.e. clear
faces and edges that form vertex junctions).

In the original problem domain, recognition is performed using
a transformation invariant representation of features taken from
the image data to index into a database. The database contains
multiple representations of objects, each corresponding to a
different view of one of the target models. In the case of tie-
point selection, one of the two images (the reference image) is
considered to be the target view. Low-level feature extraction is

done on both images (described in detail below). Features from
each of these extractions are mapped into respective vertex
space (VS) representations. VS is a 2D map of the extracted
features based on two key feature parameters: angular size and
orientation. It is insensitive to 3D transformations with the
exception of any rotation about the optical axis, which will be
determined through a search process.

3.1 Curvature features

The curvature operator measures the orientation of each pixel to
determine contour edges.  Convolution of Gaussian derivatives
is used to find pixel orientation and is subject to a threshold to
impose strength requirements on edge contrast.  Given an
orientation image, the operator examines each pixel for
curvature.  A circle of a user-defined radius is placed around the
pixel of interest.  Each pixel that lies on the circle around that
central reference pixel is examined for direction consistency.  A
pixel on the circle has directional consistency with the central
pixel if a line extended from the pixel in the direction of its
orientation passes through or within some maximum distance
from the central pixel.  If the pixel on the circle points towards
the central pixel it is taken to be on the same contour as the
central pixel.

Figure 5 illustrates the operator. If two pixels or clusters of
pixels are found to have directional consistency with the central
pixel, this indicates that there exists a contour that passes
through the two perimeter pixels and the central pixel.

Further support for existence of a vertex is found by taking the
pixels that are directionally consistent with the central pixel and
stepping outwards in the direction determined by that pixel’s
orientation.  If the pixels found when stepping outward are
directionally consistent with the previous pixel then there is
greater support for a vertex located at the central pixel.

The curvature operator is likely to produce clusters of candidate
vertex pixels in close proximity. To ensure uniqueness, these
clusters are merged using morphological region operators.
Some cluster regions can be eliminated based on a connected
region size threshold (number of pixels) and then nearby
regions are combined using merging and splitting.  Finally, the
resultant regions are collapsed down to a single vertex at the
position of the region centroid. Vertex locations are stored
along with angular size, orientation, and coordinates for the two
endpoints of the vertex at a distance equal to the radius of the
inner circle of the curvature operator.

The features that will be stable and consistently extracted over a
broad range of viewpoints in aerial images will generally be

Figure 5: Directional consistency constraint of
curvature operator

Figure 4: Winrock image pair



larger features, such as vertices found at the corners of buildings
or in ground patterns (i.e. roads and sidewalks). These larger
cultural features are more likely to be visible from a broad range
of viewing angles (off the vector normal to the ground plane)
because they are less likely to be obscured. It was found
experimentally that larger features corresponding to vertices
found along contours that are several meters long provided
good candidates for use as tie points. Consequently, the interest
neighborhood of the curvature operator was set to only extract
vertices with such longer contours.  A summary of the
parameters is given in Table 3.

Aliasing problems in some of the data were counteracted by
smoothing the input image using uniformly weighted averaging.

3.2 Vertex space

Extracted features can be directly mapped into VS using the
size and orientation attributes of the features (see Figure 6).
The motivation behind using VS is that the search space is 2D
thus keeping complexity down (versus six dimensions of search
for full 3D representation), and VS is relatively insensitive to
3D translation. However, VS representation is susceptible to
rotation about the optical axis, which would manifest as a
constant offset between the vertices of two different VS maps.
VS is sensitive to general 3D rotation to the extent that
perspective distortion due to rotation affects the vertex angular
size. VS is insensitive to scale as it is based on the vertex
features which are determined only by a localized neighborhood
of interest.

For illustration, in Figure 6, an example extraction is given of
an image containing two rectangles.  The VS map shows that all
vertices have the same size (lying in the same size bin) of 90°
with a constant shift on the orientation axis.  The size of this

constant shift (between corresponding X’s and O’s) gives the
orientation difference between both objects.  If these two
objects were to be matched based on VS information alone, the
only discrepancy in the correspondence would be this
orientation shift. In this trivial example, corresponding corner
vertices have exactly the same shift and all support the same
hypothesis for orientation offset.  In real data, however, due to
complexity and poor image quality the candidate orientation
offset may not have such strong support.  The mechanisms for
determining offset are described in detail below.

3.3 Matching

In its original domain, the matching process in the target
recognition system determines the correspondence between

features in the image data and those in the model data. The
appropriate target model is identified from these
correspondences, as well as estimates for the relative pose
transformation including the 3D orientation of the target and the
rotation within the image plane. Relative scale information is
also provided from the verification process.

For generation of tie points from stereo image pairs, issues of
target model and viewpoint indexing are irrelevant.  No search
is necessary to find the proper view as it is given as the second
image. Accurate knowledge of viewing geometry (besides
rotation around the optical axis) is not needed as long as the
difference in viewpoints does not cause perspective distortion to
affect the angular size of the extracted vertices significantly. If
this assumption does not hold for the input image data then a
strategy for finding the appropriate difference in viewing
perspective must be examined.

The reference image VS map for the hypothesized model view
is used to index back into the second image VS map to
determine orientation offset hypotheses. Each vertex
correspondence between the VS maps defines an orientation
offset. Offsets from each of the correspondences are collected in
a histogram where peaks indicate hypotheses for the actual
relative orientation difference about the optical axis for the two
images. The peaks of the offset histogram determine the order in
which hypothesis offsets are later verified.

The final stage in the matching process involves verifying the
hypotheses produced by indexing. The orientation offset
selected through indexing is a hypothesis based only on
information available from VS maps, namely vertex size and
orientation.  To verify these hypotheses only the coordinates of
the vertex features in the images are used (size and orientation
are ignored in this step). The position of the features can be
utilized to examine the relative spatial relationship of the
extracted features. Comparison of overall spatial structure of the
features between the two images will serve to verify the
hypothesis. If correspondence is correctly hypothesized,
corresponding objects in both images should yield vertices with
a relatively similar spatial arrangements. Orientation offset is
also verified by comparing the relative orientation of the spatial
structure of the features in both images.

Consistency of the hypothesized orientation offset is verified by
first taking pairs of correspondences from each image and
determining if they are geometrically consistent with the offset
hypothesis.  For every pair of features in the reference image,
the orientation of the line connecting the two points is
calculated and compared with the orientation of the line
connecting the corresponding features in the second image.

If the angular difference between orientations of these two lines
falls into the same orientation bin as the hypothesized
orientation offset, then the pair of correspondences is said to be
pair-wise consistent.  This consistency checking is done for
every pair of correspondences between the images. To further
constrain the verification of the geometric relationship between
features, each pair-wise consistency found above is searched to
find consistencies that have a mutual vertex in common (to
ensure that consistency is maintained across two or more
vertices).  Scale information is then calculated as the ratio of the
distances between two correspondences.

Figure 6: Constant orientation offset shown in
VS map



3.4 Results of vertex space system

The first experiment used the Munich data since it provided
typical conditions for aerial urban images.  The image, shown in
Figure 7, is of an urban area densely packed with building
structures (mostly connected) and a few other cultural and
natural objects (tree, cars, and people).   

To evaluate the matching system, especially the indexing and
orientation offset hypothesis generation, a pair of input images
was created by taking the original image from Figure 7 as one of
the two, and then rotating a copy of that image by some preset
amount to create the other image.  This manual rotation of the
second image is useful since the true orientation offset is known
exactly and therefore the hypothesis generated through indexing
can be verified.

Figure 7: Munich images with extracted
vertices (original, smoothed, rotated smoothed)

Figure 8: Matched vertices in Munich images

Figure 9: VS maps for original and rotated images
in Munich scene



For this experiment, both the original image from Figure 7, and
a copy of it rotated 45° were smoothed. This pair of images was
passed into the system, with the rotated image coming second in
order. 60 vertices were extracted. On operator inspection of the
extracted vertices in both images, at least 17 vertices should
intuitively match as they are extracted from well-defined
corners of buildings. Later it will be shown that all of these
candidate matches were found.

As was described in Section 3.1, the feature extraction process
begins by calculating the gradient direction at each pixel.  The
gradient mask is applied in the horizontal and vertical directions

from which, by taking each directional response to be a
component of a 2D vector, the absolute direction of the pixel (as
belonging to a local edge) can be calculated.  As a result of this
calculation an orientation field is generated through assignment
of a local orientation to each pixel (determined by a
neighborhood corresponding to the gradient kernel size).

In the post-processing stage, regions created by the curvature
operator are manipulated to combine adjacent vertices and to
eliminate vertices which do not have enough curvature support.
After this manipulation is complete, a single vertex is extracted
from each connected region.

We can see from Figure 7 the effect of requiring larger features.
It precludes vertices that lie on shorter but strong edges from
being extracted.  Also, poor contrast on some edges weakened
the gradient signature thus making many edge pixels fall below
the gradient magnitude threshold.

The first step in the matching process is to index vertices from
one vertex space map to the other to generate a histogram of
possible relative orientation offsets. Vertex space maps for each
of the input images are given in Figure 9.  It should be stated
that the bin boundaries shown on the vertex space maps in those
figures are not accurate with respect to the actual system.
Actual bin size for the vertex space representation used for
indexing is 10° on both the size and orientation axes. As each

Figure 12: Matched vertices in
Kapellen images

Figure 11: Extracted vertices in Kapellen
images
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Figure 10: Orientation histogram for Munich
images



reference is made between two vertices (which lie in the same
size bin) from the two different images, a vote is cast towards a
certain orientation offset based on the difference between the
orientations of the two vertices. The votes are tallied in a
histogram and the offset bins are verified in order based on the
number of votes. The histogram, shown in Figure 10, correctly
indicates that 45° is the most likely offset between the two
images as that respective bin received the greatest number of
votes.

After formulating the offset histogram, the hypotheses can be
verified using the geometric positional constraints described in
Section 3.3.  Each offset hypothesis is verified by applying
these constraints. 36 vertices were matched automatically by the
system. After operator inspection, it was found that 6 of these
matches were incorrect. The final matched vertices are shown in
Figure 8.

The system was also run on images that are a subset of the
Kapellen data set of the ISPRS tie-point data set collection.
Figure 11 shows the input aerial images (with extracted
vertices) which give two slightly different perspectives of the
scene. These images were not smoothed before being run
through the extraction and matching system. Due to the size and
number of natural features (foliage) in the images, a larger
number of vertices were extracted. 219 vertices were extracted
from both images. Only 84 of the 219 vertices matched because
the features extracted from foliage regions were vastly different
due to the difference in visible shadows. Figure 12 shows the
matched vertices. On operator inspection it was found that the
system had matched 44 vertices correctly. However, the correct
relative orientation offset was found through indexing to be 0°.

4 CONCLUSIONS AND FUTURE IMPROVEMENTS

This paper shows initial findings from a work in progress. We
will continue to analyze the results and make further
improvements, with the goal to build a system that may make
use of the different approaches under different contexts. We are
in the process of integrating the tie-point algorithms with a
bundle-adjustment procedure. This will allow us to implement
better control strategies. Such better control structure could use
orientation and error information output from the bundle
adjustment to direct subsequent extractions of features, thus
iteratively minimizing residual error in extracted feature
locations.

The first approach investigated performed as we would expect
from the literature. We are currently adding more topological
constraints to the system. The possibility of developing a test
bed to use such constraints was a major factor in pursuing this
avenue in the first place.

The second approach appears to be quite applicable to the task,
especially with respect to urban scenes.  It provides for a
mechanism to recover relative orientation and scale with no
initial estimate, which the first one does not.
 Clearly a more comprehensive study of performance and error
analysis using bundle adjustment are essential and will be
performed. We are in the process of collecting more data with
our own sensor package, which also records video data.

Further efforts will be made to extend the techniques to handle
not only image pairs, but strips and blocks as well.
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Parameter Value
Minimum interest operator window size 5x5
Maximum interest operator window size 22x22
Minimum correlation window size 5x5
Maximum correlation window size 22x22
Correlation threshold 0.8

Table 1: Parameter values for first approach

Data set Total # of
points detected

# of points after
topology test

# of correct points
after topology test

% outlier points

Munich 5244 42 33 21.4
Echallens 41870 42 38 9.5
Winrock 2235 14 12 14.3

Table 2: Results of first approach



Parameter Value
Inner Radius of Curvature Operator 10
Outer Radius of Curvature Operator 30
Gradient Kernel Size 9x9
Gradient Smoothing Kernel Size 9x9
Gradient Magnitude Threshold 10
Image Smoothing Kernel Size 7x7
Curvature Region Size Threshold 60

Table 3: Parameter values for second approach

Data set Total # of
vertices

# of vertices
matched

# of correct
vertices matched

% outlier points

Munich 60 36 30 16.7
Kapellen 219 84 44 47.6

Table 4: Results of second approach
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