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Abstract. We propose two 3D methods to segment magnetic resonance
imagery (MRI) of ischemic stroke patients into lesion and background,
and hence to estimate lesion volumes. The first is a hierarchical, regular-
ized method based on classical statistics that produces a rigorous confi-
dence interval for lesion volume. This approach requires a limited amount
of user interaction to initialize, but this step can be time-consuming. The
second method integrates the first into the deformable models frame-
work. This hybrid approach combines intensity-based information pro-
vided by the statistical method and shape-based information given by
the deformable model. It also requires less initialization than the sta-
tistical method. Both procedures have been tested on real MR data,
with volume estimates within 20% of those derived from doctors’ hand
segmentations. According to the physicians with whom we are working,
these results are clinically useful to evaluate stroke therapies.

1 Introduction

In evaluating therapies for ischemic stroke patients, many physicians are inter-
ested in finding consistent, reliable estimates of lesion volume from MR images.
We introduce two new methods to segment three-dimensional (3D) images into
lesion and background, and thus to estimate lesion volumes. In section 2 we
present the first procedure, called “packing,” which is a hierarchical, regularized
method based on classical statistics. Several other research groups have used
statistical approaches to segment tissue types in MRI (see [1,8,12,13], e.g.),
with varying degrees of user interaction, but with no single method emerging
as superior. As in those methods, we are concerned with producing consistent
estimates with limited user interaction, but our procedure goes beyond them in
producing an assessment of the error of our estimate, in the form of a rigorous
confidence interval for lesion volume. While this idea has been explored in [11]
for near-infrared imaging, we do not know of any such results for MRI.

The packing method requires sometimes time-consuming user interaction to
initialize, and uses only the statistical information in the image. By integrating



packing with the well-known deformable models (“snakes”) framework [6], we
reduce user interaction and take advantage of of geometric as well as statistical
information in the image. Our second procedure (see section 3) is therefore a
3D “hybrid” method that uses a version of packing as an additional external
energy term. Also, the addition of statistical information into the deformable
models framework helps to suppress some of the limitations of snakes, including
sensitivity to strong gradients produced by other nearby objects and the inability
to adjust to large changes in lesion size from one slice to another.

We have tested the new procedures on actual MRI, and found that both
methods are consistently estimating lesion volumes to within 20% of those de-
rived from doctors’ hand segmentations. According to the doctors, these results
(see section 4) are clinically useful.

2 The Packing Method

We assume the lesion is imaged as a “bright spot” lesion, which means that the
mean lesion intensity pr, is higher than the mean of the intensities of any other
tissue type in the region of interest (ROI). The diffusion-weighted pulse sequence
shows an ischemic stroke lesion as the only bright object, so that the ROI can be
the entire set of imagery. However, for pulse sequences such as 7> and FLAIR,
the user must extract the ROI manually.

Aside from choosing a ROI, the only other manual step necessary to initialize
the process is to sample the data. The user chooses a “base slice” from the stack
of two-dimensional images, and two regions bounded by closed contours in that
slice: one region completely inside the lesion and the other in the background.
The pixels inside these contours constitute the lesion and background samples
that our statistical analysis will be based upon. This step tupically requires less
than a minute of user interaction.

2.1 Coarse-Grid Segmentation

The method continues with no more outside assistance. We will describe this
multi-step procedure by first explaining the mechanics of it at step 4,¢ = 1,..., D
(usually D = 2 or 3), with L;_; the set of voxels classified as lesion in previous
steps, and Ly the lesion sample. We cover the ROI by a grid of cubes of edge
length d;, so that each cube contains d} voxels. In the initial steps of the method,
we use large cubes, typically di = 8 or 4, and decrease the size for later steps,
making this a hierarchial procedure. We will discuss this further in section 2.2.

At step 1, for each such cube C' that borders but does not intersect L;_1, we
consider the following hypothesis test:

Hy : C is entirely inside the lesion
H4 : C is not entirely inside the lesion.

More precisely, H 4 says that at least one voxel in C' is not completely inside the
lesion. We write these qualitative hypotheses more precisely as follows:



Ho:po > pr — ki (1)
HA:,U/C</J/L_ki,La (2)

where pc is the mean intensity of the cube being tested, and k; 1 is a pre-set
parameter that depends on i and the pulse sequence used to acquire the imagery.

Assuming that intensity follows a normal distribution [9], we use the standard
two-sample t-test of size p- [5] to test Ho vs. Ha, where a is a fixed constant
between 0 and 1, and N; is the number of cubes being tested at step i. A type
I error occurs if C is actually inside the lesion, but is not accepted into it.

Using Bonferroni’s inequality [5], it can be shown that the overall probability
of a type I error can be controlled when all the cubes in the grid are tested. That
is, let Cym,m = 1,..., N;, denote the cubes in the covering of the ROI at step @
that border but do not intersect L; 1, and let £; denote the set of cubes Cj,
that are actually in the lesion. Then

P(all C;yy, € L; are accepted into the lesion) > 1 —

3)
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2.2 Coarse-to-Fine Aspect

After step i is completed, we have L;, the set of voxels classified as lesion in
steps 1, ...,4, and we now use it as the lesion sample for step i + 1, yielding the
sample statistics Tz, and s7_. In step i + 1, we cover the ROI with (smaller)
cubes of edge d;11 < d;. This coarse-to-fine aspect of the method allows us to
update our coarse segmentation from the previous steps into a more accurate
one by “packing” it with smaller cubes.

At step i + 1, we test each cube C(iy1ym,m = 1,..., Niy1, that borders but
does not intersect L;, for acceptance into the lesion via the two-sample t-test.
We repeat for all steps ¢ = 1, ..., D, so that Lp is the final segmentation of the
lesion. Equation 3 says that we can control the overall probability of a type I
error at each step; similarly we can also show that we can control the type I
error for the entire multi-step procedure, namely,

D
P(ﬂ [all Cipm, € L; are accepted into the lesion]) > 1 — a. 4)
i=1
Proofs of the results (3) and (4) are in [10]. We could continue the procedure
to the finest resolution, so that dp = 1. However, in practice we stop before
this finest level to diminish the effect of the high variability present in individual
voxels; this helps us to regularize the segmentation.

2.3 One-sided Confidence Bound for Volume

A lesion volume can be estimated by counting the number of voxels that are
accepted into the lesion. From (4), we know (with (1 — a)100% confidence) that



Fig. 1. Coarse-to-fine aspect of packing. Left: Sample slice (restricted to a ROI). Cen-
ter: Lesion segmentation after 4 x 4 x 4 boxes are tested. Right: Final segmentation
after 2 x 2 x 2 boxes are tested, which overestimates the lesion (see section 2.3).

we will admit all cubes that actually belong in the lesion. In terms of the volume
estimate V, and the actual volume V', we have that

PV >V)>1-a. (5)
However, we do not control the possibility of admitting cubes that do not belong
in the lesion. Cubes with a mixture of lesion and background voxels are especially
susceptible of being incorrectly admitted. Thus V, is not an unbiased estimator
of the lesion volume, but rather an upper confidence bound of V.

2.4 Two-Sided Confidence Interval and Point Estimate for Volume

Using the same method as above to pack the background, we obtain another
segmentation of the image. The resulting lesion volume Vg provides a lower
confidence bound for V: P(Vg < V) > 1 — a. Combining this with (5), we have

PV <V <VL)>1- 2. (6)

Therefore, the interval (Vg, V%) is a (1 — 2a)100% confidence interval for the
lesion volume. Any combination of Vg and Vi, (the average, e.g.) is a valid point
estimate for V. We will apply this method to real MRI in section 4.

Fig. 2. Results for the packing method. Left: Sample slice. Center: Lesion segmentation
via forward packing (an overestimate). Right: Lesion segmentation using background
packing (an underestimate).



3 Hybrid Method

3.1 Deformable Models

A modeling techinique known as “active contours” or “snakes,” is a semi-automatic
approach to segmentation, originally proposed in [6]. It belongs to a class of
methods known as deformable models. The idea is that a contour may be placed
near some image feature and then deformed to optimally fit the feature.

The contour, or snake, is deformed automatically by minimizing an “energy
functional,” given by

Etotal = Eint + Eez‘t = /ant + /Fezt- (7)

The internal energy, Fin¢, is typically defined as a smoothness constraint on the
contour, F.;:, the external energy, is commonly defined as the negative of the
gradient of the image, which pushes each portion of the snake to the strongest
and nearest edge. Fj,; and F,;; are the corresponding forces, which we integrate
over the contour.

External forces other than the image gradient have been proposed (see [4],
e.g.). In section 3.2 we propose a new force, based on statistical packing, to help
regularize the model. When the snake has converged to a minimal energy state,
we classify the area inside it as lesion; see [6] for the computational details.

To go from a two-dimensional model to a three-dimensional one we use an
approach similar to that of [2] and [14]. We propagate a final contour from one
slice to serve as the initial contour in the next slice. Contours in adjacent slices
are then connected with an additional force, imposing an overall smoothness
constraint on the model. This 3D force assumes that only small changes in lesion
shape and size occur in neighboring slices.

3.2 The Hybrid Algorithm

The approaches in sections 2 and 3.1 each have some limitations. Packing some-
times requires a large amount of user interaction, since the user must manually
select the 3D ROI and the lesion and background samples. It is also sensitive to
the quality of the initial samples. Meanwhile, the snake approach can be affected
by other nearby objects creating strong edges, and it can perform poorly if there
are significant changes in the size of the lesion in adjacent slices. It also can get
stuck in a local energy minimum.

To minimize the problems of the two approaches, as well as to reinforce their
strengths, we have combined them into a “hybrid” method: use a 2D version of
packing described in [7] to produce a single lesion estimate, and use the gradient
of the resulting binary image to define an additional external energy. The full
algorithm is outlined as follows:

1. Manually initialize a snake in the base slice (Fig. 3A), and let it deform until
it converges (Fig. 3B).



Fig. 3. Steps of the hybrid method (see text). A: Manual initialization of the contour.
B: Converged contour. C: ROI. D: Statistical segmentation. E: Statistical energy.

2. Define a bounding box around the resulting contour, which will serve as the
ROI in the current slice (Fig. 3C). The interior of the contour is used as the
lesion sample, and the remainder of the box is the background sample.

3. Run the packing method and make the result into a binary image (Fig. 3D).

4. Define the negative of the gradient of the image as an additional external

energy term (Fig. 3E).

Run the snake with this added energy to produce a segmentation of the slice.

6. Use the finished contour as the initialization for the adjacent slice. Repeat
steps 2—5 until the number of pixels classified as lesion in a slice is less than
some threshold. This will result in a 3D model of the lesion (Fig. 4).

ot

Fig. 4. Result of the hybrid method. Left: A portion of a 3D MR scan. Right: The lesion
estimate superimposed (in white) onto the original image. 3D visualization software
courtesy of Biomedical Imaging Group, UMass Medical Center, Worcester, MA.

With this approach we greatly reduce the amount of user interaction that the
statistical procedure normally requires. All the user must do is draw a contour
in the base slice; the ROI and the samples will then be obtained automatically.
It also helps deal with the limitations of snakes, by adding the intensity-based
statistical information to the snake model. This helps to keep it from being dis-
tracted by nearby normal, bright structures, and also helps to keep it on track in
case of a non-incremental change from one slice to another. For implementation
details see [7].



4 Results

We have tested the above methods on lesions in axial MRI. We obtained all of
our data sets from Baystate Medical Center (West Springfield, MA) using a 1.5
T Picker Edge machine. One patient was imaged using a T sequence with 1 mm
slice thickness and no gaps. A FLAIR sequence with 2.5 mm slice thickness and
no gaps was used for the other five.

To evaluate our results, we obtained two hand segmentations from each of
two physicians at Baystate for each data set. We compare the volumes derived
from these segmentations to the results for five different initializations of the
packing and hybrid methods. All results are in Table 1.

Hand Segmentation Packing Hybrid
Doctor 1 Doctor 2 Lower CB | Upper CB
Patient|| mean| sd | mean | sd |mean| sd | mean | sd | mean | sd

1 2069 | 120 | 1947.5 | 24.5 ||1914.6| 56.3 | 2337 |108.6(| 1927.6 | 49.3
3416 ({139.7| 3617.5 | 183.8 || 2608 |310.1| 4709 (142.7|| 3841.5|277.8
23555|762.3| 21359 | 618.7 ||20019|1020| 25891 | 760 ||21821.9|617.7
9962.5| 67.2 |10787.5| 449.0 ||9434.5|320.4|11524.5|633.7|| 10031 |906.8
10131|740.7| 9377.5 |1064.2|18603.5|320.2{11443.5|294.4|| 9536.9 |251.8
3452.5| 35.3| 3504 |160.9|(2699.5| 94.5 | 4205 |476.2| 3525 |117.9

O O | W N

Table 1. Results for six MRI scans (in mm?), including the means and standard
deviations of lesion volumes from two physicians, those for the packing method (CB
stands for a 90% confidence bound), using five different initializations, and for the
hybrid method, also using five initializations.

The results show that the methods are consistently estimating lesion volume
to within 20% of the physicians. The results from packing give only the lower
and upper 90% confidence bounds for lesion volume; we use the average of the
bounds to compare with the other estimates. The worst error, compared to
the overall average of the doctors’ estimates, was 6% for packing and 9% for
the hybrid method, well within the 20% threshold that the physicians required.
Comparing standard deviations, we see that the two methods generally are as
consistent as the doctors, and more so in some cases. All pre-set parameters
in the methods were the same for data imaged with the same pulse sequence;
changes were necessary for packing between 7o and FLAIR imagery, whereas
no adjustments were necessary for the hybrid method. We have also tested the
procedures on synthetic imagery, to evaluate them in the situation when the
volume is known. Similar to real MRI, the error of our volume estimates did
not, on average, exceed 5% in all cases.



5 Conclusion

We have introduced two new methods to segment MR imagery and estimate
lesion volumes, one statistical and another that incorporates the statistical ap-
proach into a deformable models framework. Both methods are working well for
actual patient data. The first procedure gives a rigorous confidence interval for
lesion volume, but requires manual ROI extraction. The hybrid method reduces
the user interaction, and generates a model of the lesion, insuring connectivity
and smoothness, but a confidence interval has not yet been derived.

In the next step of our research we plan to integrate a full 3D version of
packing into the snake framework, as well as to utilize the confidence interval
to bound the error of the hybrid method. These steps will further increase the
reliability and robustness of the hybrid method.

References

1. R. Adams and L. Bischof. Seeded region growing. IEEE Trans on Pattern Analysis
and Machine Intelligence, 16:641-647, 1994.

2. I Carlbom, D. Terzopoulos, K. Harris. Computer-assisted registration, segmenta-
tion, and 3D reconstruction from images of neuronal tissue sections, IEEE Trans-
actions on Medical Imaging, 13(2), 351-362, 1994

3. H. Cline, W.E. Lorenson, R. Kikinis, F. Jolesz. Three-dimensional segmentation of
MR images of the head using probability and connectivity. Journal of Computer
Assisted Tomography, 14(6):1037-1045, 1990.

4. L.D. Cohen. On active contour models and balloons. CVGIP: Image Understand-
ing, 53(2):211-218, 1991.

5. R. Johnson and D. Wichern. Applied Multivariate Statistical Analysis. Prentice-
Hall, New Jersey, 1992.

6. M. Kass, A. Witkin and D. Terzopoulos. Snakes: Active contour models. Intl.
Journal of Computer Vision, 1:321-331, 1987.

7. D. Lisin, B. Stein, J. Horowitz, G. Whitten, E. Riseman, D. Geman, R. Hicks, and
B. Pleet. Statistical and computer vision techniques to support the clinical study
of ischemic stroke treatment. Technical Report. UM-CS-2001-019. UMass, 2001.

8. A. Martel, S. Allder, G. Delay, P. Morgan, and A.R. Moody. Measurement of infarct
volume in stroke patients using adaptive segmentation of diffusion weighted MR
images. Proc MICCAI Conference, 1999.

9. J. Sijbers, A.J. Den Dekker, P. Scheunders, and D. Van Dyck. ML estimation of
Rician distribution parameters. IEEE Trans on Medical Imaging, 17:357-361, 1998.

10. B. Stein. Signal formation, segmentation, and lesion volume estimation in magnetic
resonance imagery. Ph.D. dissertation, University of Massachusetts, 2001.

11. T. Tosteson, B. Pogue, E. Demidenko, T. McBride, and K. Paulsen. Confidence
maps and confidence intervals for near infrared images in breast cancer. IEEE
Trans on Medical Imaging, 18:1188-1193, 1999.

12. C. Watson, C. Jack Jr., and F. Cendes. Volumetric magnetic resonance imaging.
Archives of Neurology, 54:1521-1531, 1997.

13. W. Wells, R. Kikinis, W. Grimson, and F. Jolesz. Adaptive segmentation of MRI
data. IEEE Trans on Medical Imaging, 15:429-442, 1996.

14. J. M. Whitaker and M. Braun. 3D image segmentation using active contours with
interslice energy. Proc APRS/CBT Image Segmentation Workshop, 47-51, 1996.



