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Abstract

Sighted individuals draw a significant amount of infor-
mation from signs but this information is denied to the visu-
ally impaired. VIDI is an evolving system for detecting and
recognizing signs in the environment and voice synthesizing
their textual contents. The wide variety of signs commonly
encountered and the uncontrolled nature of the real world
add significant complexity to the problem. VIDI treats the
recognition problem as one of matching an unknown sign
image, obtained from the detection component as a hypothe-
sized sign, to a database of known signs. A color based sup-
port vector machine classifier coarsely picks a group of sign
classes that are the most likely matches to the query. A finer
retrieval technique employing corners and shape contexts
ranks the hypothesized sign classes and verifies whether or
not the top ranked class is the true class of the query. The
database includes a set of real images with a wide variety
of sign classes, each containing multiple signs exhibiting
not only illumination differences, but also rotational vari-
ations. Tested on over 1,200 images, our system correctly
recognizes and identifies the sign class of a query, achiev-
ing a 94.75% accuracy.

1. Introduction

An automated sign detection and recognition system pro-
vides a visually impaired individual a chance to obtain use-
ful information from signs in much the same way a sighted
person does. With an embedded language translator [27], it
further eliminates language barriers. Integrated into a Per-
sonal Digital Assistant platform, the system becomes a mo-
bile traveling aid [28].

Techniques for sign detection and recognition have re-
cently gained attention from several researchers. However,
the limited domain of standardized traffic signs is the main
focus in much of the previous work. Sekanina [22], re-
stricted to Norwegian speed limit signs, used a color-based

filtering and template matching scheme to locate and read
numbers on signs. Liu [14] segmented images via color
thresholding and recognized Stop signs using a neural net-
work. Similarly, but in a broader road sign domain, Es-
calera [9] detected signs using color thresholding and shape
analysis, and classified signs by a trained neural network.
Another work on color thresholding is that of Bénallal [3]
where road signs are detected in real-time.

For a component of the RS2 colorless sign detection sys-
tem where edge orientation and hierarchical templates were
used to search for specific geometrical shapes of signs [13],
Paclík [19] used grayscale information and a moment-based
shape descriptor to categorize signs through multiple classi-
fiers in a decision tree. Other approaches include a Laplace
kernel classifier by Paclík [20] and a single positioning of a
space-variant sensor window by Shaposhnikov [23].

Chen and Yuille [8] developed a visual aid system for the
blind that used Adaboost to learn to identify text regions by
selecting features with low entropy; an OCR system is used
to read or reject the detected text.

Although both text and road signs play an important role
in navigation and contain crucial information for drivers and
pedestrians, other commercial signs, for example restau-
rants and banks, are no less significant in people’s daily
lives. In our work, “sign” is generally defined as any phys-
ical sign, including traffic, government, public, and com-
mercial signs. These signs may or may not contain text. Al-
though conceptually approaches to recognizing these signs
appear to be similar to those used for traffic signs, recogni-
tion of signs under this broader definition is much more dif-
ficult and much more challenging. Complications arise not
only from how signs are embedded in the environment: their
sizes, orientations, and/or occlusions, but also from the ex-
tremely broad variations in both text and symbol structures
as well as an extremely large set of colors and shapes.

The VIDI (for Visual Integration and Dissemination of
Information) for the visually impaired is composed of three
stages: sign detection, sign recognition, and speech synthe-
sis. Our solution for the detection task, achieving 74.73%
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Figure 1. The 2-level hierarchical structure of
the proposed sign recognition system.

detection rate and 1.66% false positive rate, utilizes a con-
ditional random field using color and texture features [26].
The features are based on multiscale, oriented band-pass fil-
ters, and nonlinear grating cell model filters. These features
have been shown to be effective at detecting signs in uncon-
strained outdoor images. In the recognition system, which is
the main focus of this paper, hypothesized sign patches from
the detection are matched against a sign database in two
stages. First, color information is used to restrict the num-
ber of sign classes to be considered. Second, feature points
are used to match the query patch with known sign classes
in the database. This results in a ranking of the database
signs with respect to their similarity to the query and hence
a ranking of possible sign classes for the query. From this
class the sign content is determined and conveyed to the
user via speech synthesis.

In this paper, we address the sign recognition problem in
a general domain. Our proposed 2-level hierarchical frame-
work is outlined in Figure 1. A Support Vector Machine
(SVM) learns to coarsely classify signs based on their ap-
parent colors. This coarse classification is followed by a
finer search using interest points (here corners) and local
statistical shape information around the points.

Colors, corners, and shape contexts reinforce one an-
other. While colors may not be present or usable all the
time and may be highly affected by natural lighting varia-
tions when they are present, corners and shape contexts pro-
vide a more stable set of features. Furthermore, corners and
shape contexts capture spatial information, which is lost in
the construction of color histograms.

Although it might appear that a search via a correspon-
dence of corners and associated contexts might be sufficient
to solve the problem, the high computational complexity of
this technique makes it difficult to apply corner matches to
a large database. For this reason, the color-based SVM clas-
sifier, which quickly narrows down a search, is an important
focus of attention mechanism.

2. Color-Based SVM Classifier

Humans are remarkably good at adapting to most color
variations that occur in the real world, including (but not
limited to) lighting effects, reflections, refractions, specu-
larity, and shadowing. In computer vision, color as a fea-
ture works well in restricted domain but becomes very un-
stable in natural uncontrollable settings. In order to over-
come these phenomena and to build more stable color
models, Buluswar [5] constructed a model of the mea-
sured color of daylight for a broad range of sky condi-
tions and adapted the Dichromatic Reflectance model to
use the daylight model. This approach relies heavily on de-
tailed weather and sky conditions when the sample mea-
surements are taken. Miller [15] developed a flow-based sta-
tistical model of color changes that work quite well in pre-
defined indoor settings.

Under outdoor imaging with unspecified conditions, in
contrast, it is virtually impossible to eliminate illumination
effects or to firmly establish color constancy. On the other
hand, throwing away very distinctive color information is
not desirable. As a compromise, we use color information
for a coarse classification of signs to quickly narrow down
the search space to a few possibilities, which are then fur-
ther explored using more powerful features.

We represent an image using a color feature vector [24],
which is a concatenation of two 1-dimensional histograms
corresponding to hue and saturation in the hue-saturation-
value (HSV) color model. The value component is ignored
because it relates to scene brightness which varies consid-
erably. While hue characterizes the color of a pixel, satu-
ration reflects how much pure hue mixes with white light.
The contribution of the pixel colors, i.e. hue values, to the
hue histogram should vary proportionally to their purity,
stability, and reliability, i.e. saturation values. This obser-
vation is naturally encoded during the histogram construc-
tion by weighting the contribution of a pixel to the hue his-
togram by its saturation value (as opposed to a pixel count
as commonly used). Furthermore, only pixels with a satu-
ration value above a predefined threshold contribute to the
hue histogram. This is to account for the undefined nature of
hue when there is insufficient color information (grayscale).

Once color feature vectors are formed, a SVM classifier
learns to coarsely classify signs, narrowing down the search
to a few classes with similar colors. SVM is chosen as a
classifier due to its ability to generalize well. SVM is an ap-
proximate implementation of the Structural Risk Minimiza-
tion induction principle [18] in which a generalization error
is minimally bounded and a margin is maximized. Formu-
lated for dichotomy, a multi-class categorization is handled
by a one-against-all voting scheme [10].
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3. Corners and Shape Contexts

Another useful discriminating feature is shape. A key
question is what shapes are and how to identify them. In a
traffic sign domain only a few shapes are typically found,
which can be easily modeled using standard techniques,
such as the Hough transform [25]. In the general case, signs
can be of arbitrary shape and so it is neither possible nor
practical to model them with a set of discrete well defined
shapes. We explore the use of a statistical shape descrip-
tor that represents an object by a set of points; from these
points local shape information is inferred from the charac-
teristic of this point set. Shape information is determined by
the geometric relations between the points as a whole [12].

Shape contexts have been proposed and success-
fully applied to a number of applications [2, 17] ex-
hibiting both rigid and non-rigid transformations. How-
ever, in most cases, the images are fairly clean and salient
points can be accurately selected so the registration be-
tween a pair of images can be well established. Unfortu-
nately, this is not usually the case in outdoor images, where
occlusions and lighting conditions make the point corre-
spondence/registration problem difficult.

We extend the shape context design so that it is more
suitable to the complex outdoor sign recognition task. Cor-
ners are used as salient points; these are extracted using a
detector that is based on an analysis of local anisotropism
[6]. The shape context is modified so that it is both rota-
tion and scale invariant. The final matching cost between
any image pair is computed through a correspondence prob-
lem, an attempt to map a corner point set of one image onto
the other based on characteristics of their shape contexts.

3.1. Corner Detection

Since a corner marks an intersection of lines, every cor-
ner point lies on edges. Instead of an original image, we
detect corners on a grayscale image whose brightness rep-
resents edge strength computed by a Canny edge detector
[25]. Another advantage of this is a reduction of noise that
transfers to an increased accuracy in corner detection.

In the detection of corners, we modify the definition
given in [6] where corners are points with strong gradient
intensity and without a single dominant gradient orienta-
tion. The cornerness c(�x) of any point �x ∈ �2 on an inten-
sity image I is defined as

c(�x) =
{ ‖∇I(�x)‖ for g(�x) < 0.5

0 for g(�x) ≥ 0.5 (1)

g(�x) =
(
∫∫

Ω
(I2

x − I2
y )dxdy)2 + (

∫∫
Ω

2IxIydxdy)2

(
∫∫

Ω
(I2

x + I2
y )dxdy)2

(2)

θ(�x) = tan−1

∫∫
Ω

2IxIydxdy∫∫
Ω
(I2

x − I2
y )dxdy

(3)

g(�x) and θ(�x) are the strength and the orientation of the
anisotropism of a pattern within a small neighborhood Ω
centered at a point �x. ‖∇I(�x)‖ is a gradient magnitude at
�x. The range of an inverse tangent function is defined for
[−π, π] radians.

Post-processing on a cornerness map includes non-
maximum suppression [11, 25]. Ridges around local max-
ima are thinned by identifying along the direction of
the gradient a pixel with the maximum gradient magni-
tude. This finds a corner center producing a 1-pixel wide
corner feature point.

Additionally, every corner has at least two arms (asso-
ciated edges) and should have sufficient support from its
arms. To incorporate this, we measure and threshold ψc(�x),
the likelihood of neighboring pixel �x of a corner c being
arms of c [6]. α is an angle between θ(�x) and a directional
vector from c to �x.

ψc(�x) = g(�x) · ‖∇I(�x)‖ · cos3 α (4)

3.2. Shape Context

Assume n salient points are detected. A shape context as-
sociated with any sample point is a distribution of relative
positions from the point itself to all other n−1 points. Since
the descriptor should be more sensitive to neighboring pix-
els than to those further away, histogram bins are uniformly
quantized in a log-polar space.

Mathematically, a shape context at a point pi is a his-
togram whose kth bin equals the cardinality of the set

{pj �= pi : [� (pi, pj) and log(dist(pi, pj))] ∈ bin(k)} (5)

dist(pi, pj) =
pj − pi

max∀l,m∈[1,n](pm − pl)
(6)

where i, j ∈ [1, n], � (pi, pj) and pi − pj , respectively, are
an angle and a Euclidean distance between points pi and pj .
The denominator in dist(pi, pj) is a normalizing factor that
makes the shape context scale invariant.

3.3. Solving the Correspondence Problem

Let a shape context be denoted by a histogram h and let
h(r, s) denote a value at a bin (r, s) of h that accounts for
neighboring points within rotation angle r ∈ R and dis-
tance s ∈ S where R bins are used along an angular dimen-
sion and S bins along a radial distance.

ht(r, s) = h(mod(r + t, R), s) (7)

defines a shift t of a histogram h, where t, r ∈ [0, R−1]
and s ∈ [0, S−1]. By construction, a t-shifted shape con-
text is equivalent to a shape context of an image physically
rotated by t · (2π/R) degrees counterclockwise. The dis-
tance Ct

i,j ≡ Ct(pt
i, qj) with respect to a shift t between
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two shape contexts, pi at a point on the first image and qj at
a point on the second image, is measured based on normal-
ized cross correlation.

M = min
t
{min

σ
[Σn

i=1C
t
i,σ(i)]} (8)

t� = arg min
t
{min

σ
[Σn

i=1C
t
i,σ(i)]} (9)

σ� = arg min
σ

[Σn
i=1C

t
i,σ(i)] (10)

M is the similarity measure between an image pair, n is
the total number of salient points, and σ a permutation of
points on the second image corresponding to a one-to-one
mapping to points on the first image. σ� is the permutation
that leads to minimum matching cost. t� represents an opti-
mal shift, which implicitly states that bringing the two im-
ages in a pair to the best alignment requires an approximate
t�(2π/R) degree rotation of one image.

The minimization of the matching cost over all possible
permutations is an instance of the square assignment prob-
lem. One approach to solving this is the Hungarian tech-
nique [21] with a computational complexity of O(n3). An
implementation by Borlin [4] is used here.

The approach described above is applicable when both
images in a pair have an equal number of salient points.
However, our detector returns all satisfying corners, which
may result in a different number of salient points for each
image. Our solution is to utilize dummy corners in order
to even out the number of points. As a consequence, ex-
tra checks are required to add and drop these dummies for
the final matching result.

4. Experiments and Results

4.1. Data Collection

Images of signs were taken around downtown Amherst,
MA, using a still digital camera (Nikon Coolpix 995) with
automatic white balance on. Spot metering was used along
with manual +/- exposure adjustment to control the amount
of light projected onto the camera sensor.

We capture natural lighting and illumination effects by
taking 5 original images of each perceptual sign class from
the same physical location at five different times of the day,
that is, approximately 2-3 hours apart beginning at daybreak
and finishing at nightfall. The effect of the image back-
ground was eliminated by manually segmenting the images.
Every original image is a frontal view. To obtain images at
multiple in-plane rotations, each original image was rotated
from -90◦ to 90◦ with a 10◦ interval (except at 0◦, which is
the original image). Figure 2 shows an example of one sign
image; its original image along with its segmented and ro-
tated images.

Figure 2. A data sample showing one original
image, its segmented, and rotated images.

Figure 3. Sample of prototypes of the six sign
classes in the blue-colored superclass.

A database consisting of 24 sign classes for a total of
2280 sign images has been constructed and is available on
the VIDI web page [1]. The 24 classes are divided by simi-
larity of colors into 8 superclasses. A brown-colored and 3
other multi-colored signs make up four single superclasses.
The other four superclasses contain 2, 5, 6, and 7 individual
sign classes, corresponding to yellow, red, blue, and green
colored signs. A sample prototype of every sign class in the
blue superclass is shown in Figure 3.

4.2. Color-Based SVM Classifier

Color histograms are constructed for every image (see
Figure 4 for samples of extracted color histograms) and
used as color feature vectors for an SVM classifier [7] with
a Gaussian Radial Basis kernel. A saturation threshold was
arbitrarily set at 0.1 where saturation values range from 0 to
1 inclusively. 64 bins are used for hue and 10 for saturation.
These bins are coarsely defined partially to account for pos-
sible shifts of colors due to illumination effects and other
noises. Since the classifier relies only on colors, clearly it
is unable to distinguish signs whose colors are similar. Two
signs are similar under the HSV color feature when both
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Figure 4. Image features for the CVS sign are
shown on the top row and the Town Hall sign
on the bottom row. The first column shows
detected corners overlay on the sign images.
The second and third columns, respectively,
are the hue and the saturation histograms
where the x-axis represents the histogram
bins from red to magenta for the hue and
from low to high values for the saturation.

contain equal proportions of the same colors. Accordingly,
we divide all signs in the database into superclasses, each
of which consists of classes exhibiting similar colors.

The goal of the color-based SVM is to learn to classify
signs according to their defined superclasses. Our statisti-
cal results on the performance of the SVM is based on a
5-fold cross validation analysis [16], where the classifiers
are trained on 80% of the data and tested on the other 20%
in 5 runs, each run retaining different subsets (20% in each
case) of the data as the test set. The classification accuracy
on the test data portion is 100%.

4.3. Matching of Corners and Shape Contexts

Among all superclasses, those which contain only a sin-
gle sign class are completely classified by the SVM. Other
query images that fall into the other superclasses, which
contain multiple classes, are passed from the SVM to the
corner and shape context matching process comprising the
second stage of the recognition system.

Given a query image and a hypothesized superclass, the
matcher attempts to single out the one class that is the most
probable match to the query. Let a prototype be a represen-
tative image of a class in a conjectured superclass; specifi-
cally, the 5 non-rotated original images of each class in the
database are our prototypes. On every prototype and a query
image, corners are detected (see Figure 4 for samples of sign
images with their detected corners marked) and shape con-
texts are extracted (8 bins are defined along the angular di-
mension and 16 along the radial distance). A pair-wise com-
parison between a query and every prototype is performed.

All prototypes are then ranked in increasing order of their
match costs against a query. Implicitly this is a ranking of
corresponding sign classes in order of decreasing likelihood
of being the true class of the query. The most probable class,
ranked first, is hypothesized as the one to which a query im-
age belongs.

Testing on 1,200 queries randomly chosen from a pool of
sign images of the 20 classes that need to be passed from the
first to the second stage of the system, the matcher achieves
94.75% accuracy looking at the first rank alone. A sample
of the ranking is shown in Figure 5. The query is the image
in the upper left corner. The remaining images are those re-
turned by the matcher in order of the match cost (shown
by the bar below each image); recall that low match costs
are good. In this case, the query is highly rotated at 90◦ an-
gle. The five prototypes in the correct class corresponding
to the query are ranked 1 through 5. The second candidate
is another street-name sign whose context is very closed to
that of the query, but the matcher successfully distinguishes
them with a significant difference in the match costs.

Figure 6 shows the average match scores by rank over all
test queries for which the true class of the query appears at
the first rank. Note that the average scores exhibit a sharp
change between the 5th and the 6th rank. This change is
not apparent in Figure 7, which is the same as Figure 6 ex-
cept that in this case the matcher has failed to find the cor-
rect class of the query in the first rank (that is, an incor-
rect class appears in the first rank). What this tells us is that
the correct class is well separated from the others by the
matcher (recall that there are 5 prototypes of each class in
the comparison). That is, the query matches well only with
its true class and that most of the time all of the 5 prototypes
come up at the first 5 ranks. On the other hand, in misclassi-
fied cases, the queries have a hard time matching with both
their true class and the other prototypes resulting in a much
higher match costs across the board.

Figure 8 plots the cumulative classification accuracy of
the matcher where a query is said to be correctly classified
at rank k if at least one of the prototypes of its true class
turns up within the first k ranks in the list. As shown in
the graph, the matcher reaches 100% accuracy at rank 10.
What this means is even though the matcher fails to clas-
sify some of the queries in the first rank, the correct class
is represented in the first 10 ranks. Instead of restricting the
classification decision to only the first rank, one could con-
sider the first few ranks (1 to 10 in our case) and perform a
more refined matching process to verify the real class of the
query within these few prototypes. These results illustrate
the performance of the matching process while the empha-
sis is on a search for the best possible sign class. Our next
step will include the rejection of queries when their corre-
sponding classes are not represented in the database.
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5. Conclusions and Future Work

A 2-level hierarchical system for sign classification and
recognition was proposed and tested successfully on an ex-
perimental database. The first stage of the recognition sys-
tem uses global color features and learns via a support vec-
tor machine to coarsely classify signs. The second stage uti-
lizes global spatial relationships among local corners, en-
coded as shape contexts, to refine the search and hypothe-
sized a single class of sign as the end product. The system
has achieved, based on the experimental dataset, a near per-
fect classification accuracy and a robustness in tolerance to
image rotations and illumination variances.

VIDI is a work in progress. One immediate goal is to ex-
tend the dataset to a larger collection of sign classes. This
extension not only includes a larger set of sign classes but
also a more complicated variation of sign images within a
single class. An influence of occlusion is to be explored;
an effect of a perspective distortion is to be considered, as
well as that of a controllable amount of motion blur. The
increased complexity of the expanded dataset may well re-
duce the SVM accuracy, resulting in erroneous classes be-
ing forwarded to the matcher. At that point, additional steps
will be needed to handle the propagation of errors from one
level of the hierarchy to the next. A second goal is to reduce
the computational complexity of the matching process.

Figure 5. An example of ranking results of
the matcher. The image in the upper left cor-
ner is the query, the remaining 19 images are
the matches in rank order. The length of the
bar on the bottom of each sign represents the
match score.
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Figure 6. The average match scores by rank
of every query correctly classified.
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Figure 7. The average match scores by rank
of every misclassified query.
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Figure 8. Cumulative classification accuracy
of the matcher.
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