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Abstract

Visually impaired individuals are unable to utilize the

significant amount of information in signs. VIDI is a system

for detecting and recognizing signs in the environment and

voice synthesizing their contents. The wide variety of signs

and unconstrained imaging conditions make the problem

challenging. We detect signs using local color and texture

features to classify image regions with a conditional maxi-

mum entropy model. Detected sign regions are then recog-

nized by matching them against a known database of signs.

A support vector machine classifier uses color to focus the

search, and a match is found based on the correspondences

of corners and their associated shape contexts. Our dataset

includes images of downtown scenes with several signs ex-

hibiting both illumination differences and projective distor-

tions. A wide range of signs are detected and recognized

including both text and symbolic information. The detec-

tion and the recognition components each perform well on

their respective tasks, and initial evaluations of a complete

detection and recognition system are promising.

1. Introduction

An automated sign detection and recognition system pro-

vides a visually impaired person the chance to obtain useful

information from signs the same way a sighted individual

does. With an embedded language translator [25], it fur-

ther eliminates language barriers. Integrated into a Personal

Digital Assistant platform, the system becomes a mobile

traveling aid [26].

Several techniques for sign detection and recognition

have recently been studied. Much of the previous work

has focused on a constrained domain of standardized traffic

signs (e.g., [18, 2]). Many systems rely on the knowledge

that traffic signs are designed to be easily noticeable, with

colors that stand out from the background. Others [15] ig-

nore color cues. Instead, edge orientations and hierarchical

templates are used to search for specific geometrical shapes

of signs, which are then classified by a decision tree and a

moment-based shape descriptor.

Many approaches to text detection have been developed

[11, 12, 13, 24]. Some have created systems specifically

to detect and read text from signs in natural images. Chen

and Yuille [9] demonstrate a visual aid system for the blind

that employs a chain of AdaBoost classifiers to detect text

regions using highly selective features. After binarization,

an OCR system is used to read or reject the detected text. In

other similar work, Chen et al. [8] detect Chinese characters

in natural images, which are then recognized and translated

into English.

Although both text and road signs play an important role

in navigation and contain crucial information for drivers

and pedestrians, other commercial signs, such as restau-

rants and banks, are no less significant to the visually im-

paired. Broader than previously proposed systems, our goal

is to detect and recognize a wide variety of “sign”, includ-

ing traffic, government, public, and commercial signs. In

this unconstrained domain, signs may be of arbitrary colors

and shapes. They may be composed solely of text, symbolic

signs containing logos alone and no text, or a combination

of both text and logos. While approaches to detecting and

recognizing such signs appear to be similar to those used

for traffic signs or text, detection and recognition of signs

under this broader definition is more challenging. Compli-

cations arise not only from how signs are encountered in the

environment – their sizes, orientations, and possible occlu-

sions – but also from the broad variations in both text and

symbols as well as colors and shapes.

Our system is called VIDI (for Visual Integration and

Dissemination of Information). It will be a wearable de-

vice with a head mounted camera attached to a mobile com-
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putational platform, allowing a visually impaired user to

receive useful information about the presence of signs in

the immediate environment. The process consists of three

stages: sign detection, sign recognition, and speech synthe-

sis. The detection stage uses a discriminative maximum en-

tropy model to classify image regions based on local color

and texture features. The recognition matches hypothesized

sign regions against a database of signs in two steps. First,

color information is used to limit the number of signs con-

sidered. Second, salient corner features and shape informa-

tion are used to rank possible matches for the query. The

content of the best matched sign is determined and con-

veyed to a user via speech synthesis, where every sign has

a vocalized message, such as the reading of text or its sym-

bolic meaning when no text is present.

2. Detection

Generic sign detection is a challenging problem. Signs

may be found at any size, anywhere in an image. Our goal

is to detect signs containing an extraordinarily broad set of

fonts, colors, arrangements, graphics, etc. As a result, we

need a representation that treats images somewhat generi-

cally, yet captures the broad traits of signs in order to ade-

quately distinguish them from uninteresting background.

We begin by dividing the image into square patches that

will be the atomic units for a binary classification deci-

sion on whether the patch contains sign or not. A patch

could consist of just one pixel, but such fine-grained deci-

sions are not necessary. Since the image is being arbitrarily

discretized into decision regions, they must only be small

enough to ensure that the smallest signs to be detected are

always well-covered.

In the following we describe the features that are calcu-

lated for each patch and the classification method that yields

our detection results.

2.1. Features

Our overall approach to sign detection operates on the

assumption that signs belong to some generic class of tex-

tures, and we will seek to discriminate such a class from the

many others present in natural images.

It is well-established that a bank of scale and orientation-

selective filters are effective as the first stage of image pro-

cessing and mimics the so-called “simple cells” of mam-

malian visual systems. We follow this general framework,

using the statistics of filter bank responses to describe local

texture. Specifically, we use the statistics proposed by Por-

tilla and Simoncelli [17], which are based on the steerable

pyramid decomposition of an image into scale and orienta-

tion components. In addition to the usual central moments

of filter responses, the features include correlations between

the responses at different scales and orientations that prove

necessary for texture synthesis. The pyramid is computed

once for the entire image, and then these statistics are com-

puted on a “sub-pyramid” corresponding to a region around

each patch.

Scale and orientation-selective filters respond indiscrim-

inately to singular step-edges and one or more bars. How-

ever, the text prominent in many signs may be thought of as

a series of short bars that are similar to a grating. Recently,

neurons were discovered in the visual cortex of monkeys

that discriminate between one bar and a grating of several

bars. One computational model for these so-called “grat-

ing cells” has been proposed by Petkov and Kruizinga [16].

We employ a slightly modified version of this model grating

cell to measure more distinct local features, especially as an

aid in detecting signs that contain text.

For a given scale and orientation, our modified version of

the non-linear grating filter requires at least three proximal

and nearly equal responses to a simple filter of that scale

and orientation. The “receptive field” (or support) of a grat-

ing filter is a line segment orthogonal to the simple filter’s

orientation and six times the scale length (since a grating

is defined as three bars). The three strongest simple filter

response maxima are found along the line, and if they are

all within some fraction (i.e., 90 percent) of the maximum

response in the receptive field, then that maximum becomes

the filter output; otherwise the response is zero. More de-

tails may be found in [23].

Additionally, histograms of patch hue and saturation are

used. According to a likelihood-gain feature ranking [10],

the top three most discriminative of these features turn out

to be (in order): (i) the level of green hue (easily identifying

vegetation as background) (ii) mean grating cell response

(easily identifying text) and (iii) correlation between a ver-

tically and diagonally oriented filter of moderate scale (the

single most useful other textural feature).

2.2. Classification

Once features are calculated at each patch, we must

classify them as sign or background. For this we em-

ploy a discriminatively-trained maximum entropy probabil-

ity model, commonly used in language modeling [3]. Class-

conditional maximum entropy models have been widely

used for texture synthesis (e.g., the FRAME method of

Zhu, Wu, and Mumford [27]) and require slow approxima-

tion methods for training and inference or sampling. For

classification, an alternate approach is to train an image-

conditional maximum entropy model. For the binary case,

p (y | x,Λ) =
1

Z (x)
exp (δ (y − 1) Λ · F (x)) ,

where y ∈ {0, 1} represents the class of a patch in image

x, Λ is a parameter vector of weights, and F is the feature
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Figure 1. ROC curve for the probability that a

patch is sign.

vector for the patch (as described above). Since the normal-

izing partition function Z is simply a sum over the two class

labels rather than a sum over all possible images, no expen-

sive approximation methods are necessary. With a labeled

training sample of patch features, the maximum-likelihood

estimate of parameters Λ may be found by convex optimiza-

tion. A prior on the parameters is commonly used for reg-

ularization, leading instead to a MAP estimate. We follow

this strategy using the typical Gaussian prior [7].

After training, classification involves checking whether

the probability that an image patch is sign is above a thresh-

old. For a MAP estimate of the label, the threshold is 1/ 2,

and the test can be determined simply by the sign of the dot

product Λ · F (x).

2.3. Experiments

Tests of our detection method are performed on a hand-

labeled database of 309 images collected from the down-

town area of Amherst, MA with a still camera (available

online [20]). The ratio of background to sign patches is

more than 13:1 in our data set. Patches are 64 pixels on a

side, and we break the 1024×768 images into 713 overlap-

ping regions. For evaluation, we randomly split the images

into ten sets, training on nine and testing on the held out set.

We present the overall results for the entire data set with

each of the ten sets held out in turn.

Figure 1 shows the ROC curve for the probability that a

patch is sign. Although the curve does not directly corre-

spond to the number of signs detected, it nicely illustrates

the trade-off between false positives and the detection rate.

If a higher false positive rate can be tolerated, we may lower

the probability at which we accept a patch as sign and pass

the resulting area to the recognizer.

Figure 2. Example detection results: green

(solid) boxes indicate detected sign patches,

and red (dashed) boxes are false positives.



Table 1. Detection performance at different

probability thresholds. Sign level detection

rate is the percentage of signs in which at

least one patch is detected. When a sign is

detected, coverage describes the percentage

of the sign that is found.

Classification Threshold p ≥ 0.50 p ≥ 0.07

Sign Detection Rate 84.46% 96.07%

Avg. Coverage 81±23% 94±13%

Median Coverage 91.75% 100%

False Alarms/Image 2±2 6±3

Figure 3. Examples of signs that went unde-

tected. Most missed signs are either small

and blurry, have projective distortions, spec-

ular reflections, low contrast, or uncommon

orientation.

Overall detection performance is given in Table 1. Many

of the signs that are labeled in the ground truth are found at

the conservative MAP threshold p ≥ 0.5. On average, there

are only two false positive regions (connected patches) per

image. As we show next, such false positives can be eas-

ily identified by their high match cost during recognition.

These results are illustrated in Figure 2, showing MAP clas-

sification of images from the test set. Note that the signs

contain characters in unconventional fonts, foreign charac-

ters, or no text at all.

We have determined 85 of the 87 signs that are missed

completely suffer from one or more of the following con-

ditions: small and blurry (34%), projective foreshortening

(13%), low contrast (42%), behind glass with specular re-

flection (33%), and text at an uncommon orientation (13%).

Horizontal and vertical text (±30◦) is most common, so the

textural properties are learned by the model, but any re-

Level 1

SVM classifier
color−based sign classes with

similar colors

a set S of selected
|S|=1

a hypothesized class of a query sign

Level 2

and shape contexts
analysis of corners

a query
image of sign classes

known database

no

yes

Figure 4. The structure of the sign recognition

system.

maining text (45 ± 15◦) does not appear often enough to

be learned well. Signs do not need to be parallel to the im-

age plane, as many signs with foreshortening are detected.

However, failure can occur when the projective distortion

shrinks the space between letters enough to virtually elim-

inate the edges and grating effect. The MAP threshold

is conservative, keeping the false alarm rate very low, but

causing these signs to be missed. By lowering the thresh-

old, we can detect 94% of the signs, although with more

false alarms.

3. Recognition

Recognition of a sign in a query image involves a two

level hierarchical framework, as outlined in Figure 4. First a

support vector machine (SVM) classifier narrows the search

based on the apparent colors of a query image. Then the

query and the relevant subset of signs in the database are

compared in detail by ranking the correspondences of cor-

ners and their shape contexts.

Color and shape features contain mostly complementary

image information. Colors may not always be present or

usable and may be highly affected by natural lighting vari-

ations. Corners and shape contexts can provide more stable

recognition by capturing the spatial relations among salient

image points.

Although sufficient for recognition, the computational

complexity of matching via correspondence of corners and

their associated shape contexts makes it impractical to apply

to a large database. For this reason, the color-based SVM

classifier is an important focus of attention mechanism.

In the following we briefly describe the two stages of

the recognition system; for further details the readers may

consult [19].



3.1. Color-Based SVM Classifier

Humans are remarkably good at adapting to many color

variations caused by natural illumination effects such as re-

flections, refractions, specularity, and shadowing. In princi-

ple, color can serve as a highly discriminative feature. How-

ever, the reliability of color information is limited due to

its instability under uncontrolled outdoor settings. Accord-

ingly, our sign recognizer relies on color only for a quick,

coarse classification.

A query image is represented by two 1-dimensional his-

tograms of hue and saturation from the hue-saturation-value

color space [21]. The value component is ignored because

illumination can vary considerably. The contribution of a

pixel to the hue histogram is weighted by the amount of

white light its color contains, i.e., its saturation. Further-

more, to account for the instability of hue when there is

insufficient color, only pixels with saturations above a pre-

defined threshold contribute to the hue histogram.

An SVM classifier [14] based on these color features

restricts the subsequent search to a few signs with similar

colors. The SVM is an approximate implementation of the

Structural Risk Minimization induction principle in which

a generalization error is minimally bounded and a margin is

maximized. Since the SVM is formulated for binary clas-

sification, multi-class categorization is handled by a one-

against-all voting scheme.

3.2. Matching Corners and Shape Contexts

In addition to color, shape is another discriminative fea-

ture in the general sign domain. Since it is neither possible

nor practical to explicitly model the extremely large set of

arbitrary shapes comprising signs, we employ a statistical

shape descriptor. A sign is represented by a set of local

corners whose geometric relations convey global shape in-

formation.

Geometrically speaking, a corner is the intersection of

lines. We detect corners on the output of the Canny edge op-

erator, a grayscale image whose brightness represents edge

strength [22]. This edge map is thresholded to eliminate

pixels with low edge strength. Since every edge should be

of considerable length, neighboring pixels along an edge’s

orientation must also be marked as edges, otherwise it is

disregarded as a non-edge pixel. This double thresholding

of the edge map effectively reduces noise intensified by an

edge detector.

Adopting the definition of Chabat, Yang, and Hansell

[5], corners are points with strong gradient intensity and no

single dominant gradient orientation. Non-maximum sup-

pression is performed on a resulting cornerness map, and

only those corners with sufficient arm supports (i.e., at least

two associated edges) are accepted.

Every corner has a shape context defined by the distri-

bution of the positions of all other corners relative to it-

self [1]. We measure the similarity between two images

by computing correspondences between the corners across

both images. We use the normalized cross-correlation be-

tween the shape contexts of two corners to measure the dis-

tance between them. Specifically, these distances are used

by the Hungarian algorithm [4] to find the optimal corre-

spondences between the two sets of corners.

This second stage of our recognition system begins with

the detection of corners and the construction of their shape

contexts. A query is compared to the relevant database im-

ages, as determined in the first stage. The relevant signs are

ranked by their similarity to the query, and the top-ranked

match is the output.

3.3. Data Collection and Experimental Setup

Frontal images of signs were taken around downtown

Amherst, MA. Natural lighting effects were captured by

taking one picture of each sign from approximately the

same location at five different times throughout the day.

Each image is hand-segmented and rotated in the plane from

-90◦ to +90◦ at 10◦ intervals.

Figure 5. Image features for two signs: (Top)

Detected corners overlaid on the signs; (Mid-

dle) Hue histogram: from blue to cyan col-

ors along the x-axis; (Bottom) Saturation his-

togram: from low to high values along the

x-axis.



Figure 6. An example of ranking results by the

matcher. The image in the upper left corner

is the query, the remaining 19 images are the

matches in rank order: rank 1-4 on the first

row, 5-9 on the second, 10-14 on the third,

and rank 15, 19, 23, 27, and 31 on the fourth

row. The length of the bar on the bottom of

each sign represents the matching cost.

The database consists of 35 sign classes for a total of

3,325 sign images (available online [20]). We group the

sign classes by color similarity into 8 superclasses, 3 of

which contain a single sign class and the other 5 contain

2, 2, 7, 10, and 11 individual sign classes, respectively.

Color histograms (see Figure 5) are used as feature vec-

tors for an SVM classifier [6] with a Gaussian radial basis

kernel. The classifier performance is evaluated based on a

5-fold cross validation analysis.

When the SVM classifier labels a query as a super-

class containing a single sign class, the recognition is com-

plete. Other queries falling into multi-class superclasses are

passed to the matching process, which finds the sign class

that is the best match to the query.

The five original (non-rotated) images are considered our

prototype, or representative, sign images in a conjectured

superclass. With corners detected (see Figure 5) and shape

contexts constructed, we perform a pairwise comparison be-

tween a query and every prototype. The similarity score

provides a rank-order, and the top ranked prototype is se-

lected as the matching sign.

3.4. Results

We first conduct an experiment on 24 sign classes se-

lected from our database. The SVM puts every query into

the correct superclass, and the matching process recognizes

the sign in all but 2 of 1,900 queries. In both of these mis-

classified cases the correct match occurs at the second rank.
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Figure 7. The average match costs by rank:

(Top) Correctly classified queries; (Bottom)

Misclassified queries.

Another experiment involves our full data set of 35 sign

classes. In this case, the SVM classifier has a 97.14% accu-

racy and 97.83% for the matcher. This result demonstrates

how additional complexity in the data weakens the perfor-

mance of the recognizer. At the same time, it raises a ques-

tion involving an error propagation from one level of the hi-

erarchy to the next; a recovery of errors made by the coarse

SVM classification before entering the matching stage.

In the following, we examine the cases where the super-

classification by the SVM is correct. The match score of

a query’s true class is well-separated from those of other

signs when it is ranked first. Figure 6 illustrates one such

example where the matcher successfully ranks every proto-

type of the correct class first. Even though the true class of a

query and the second ranked candidate class are both street-

name signs whose contexts are very similar, the matcher

gives them very different match costs. This behavior is typ-

ical of the ranking, as illustrated in Figure 7. When a match

is correct, there is a noticeable jump between the 4th and the



Figure 8. Four sample results of the integrated system. The top row is an image scene; green (solid)

boxes mark detected sign regions and red (dashed) are false positives. The second row is a set of

connected, detected patch components that are passed to the recognition system. The third row

shows sign classes successfully recognized.

5th rank match scores, which is not apparent when matches

are incorrect. This sharp increase of the match scores indi-

cates the change from the true class of the queries (ranked

1 to 4) to the incorrect ones. Instead of five for each sign

class, there are only four prototypes included in the ranking

since the prototype used to synthesize the query is excluded

from match consideration.

4. End-to-End System

Here we report preliminary work on an integration of

the detection and recognition components. Queries to the

recognizer are connected image patches given by the auto-

matic sign detection. Four examples of the detection and

subsequent recognition are shown in Figure 8. There are

both occlusions and background effects in the detected sign

regions. Additionally, the sign in the third column has

some projective distortion, and the fourth is relatively small

in size. These examples show how the detection and the

recognition components have robustly located the signs and

matched their correct classes.

Although many signs in a number of different scenes are

successfully detected and recognized, several challenges are

still faced. For instance, the detected sign regions, which

become queries to the recognizer, contain some image back-

ground and have occlusions. Additionally, natural illumina-

tion effects and projective distortions complicate the recog-

Figure 9. A scene where a detected region

covers two signs.

nition. Furthermore, juxtaposed signs in a query image may

be passed to the recognizer as one region, as shown in Fig-

ure 9. An intermediate step would be required to separate

these before being passed to the recognition stage.

5. Summary and Conclusions

We have proposed algorithms for detecting and rec-

ognizing general signs in everyday scenes. The individ-

ual components were tested successfully on experimental

databases. Preliminary experiments on an integrated sys-

tem give promising results and pose interesting challenges

for further exploration.



We are able to detect signs containing text in non-

standard fonts, foreign characters, and even those contain-

ing little or no text at all. A hierarchical recognition pro-

cess reduces computation time by focusing the search for a

match and provides flexibility by allowing different features

at each level. Recognition on the testbed is accurate and ro-

bust to illumination effects and in-plane rotations. We are

currently examining possibilities for recovering from errors

made by the SVM.

VIDI is a work in progress. Besides an extension of our

data set to a larger collection of scenes and sign classes, our

immediate goal is to continue integrating the detection and

recognition components and add the voice synthesis mod-

ule. Finally, optimization is to be completed for practical

use of the VIDI system as a wearable traveling aid for the

visually impaired. We are also exploring the use of wireless

telephony for transmitting images from the portable device

to a server that would perform the recognition and voice

synthesis, returning the result to the user over the same con-

nection.
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