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ABSTRACT
We propose a classification technique for face expression
recognition using AdaBoost that learns by selecting the rel-
evant global and local appearance features with the most
discriminating information. Selectivity reduces the dimen-
sionality of the feature space that in turn results in signifi-
cant speed up during online classification. We compare our
method with another leading margin-based classifier, the
Support Vector Machines (SVM) and identify the advan-
tages of using AdaBoost over SVM in this context. We use
histograms of Gabor and Gaussian derivative responses as
the appearance features. We apply our approach to the face
expression recognition problem where local appearances
play an important role. Finally, we show that though SVM
performs equally well, AdaBoost feature selection provides
a final hypothesis model that can easily be visualized and
interpreted, which is lacking in the high dimensional sup-
port vectors of the SVM.
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1 Introduction

Current classification techniques define image similarities
at varying levels of detail. Those that use only global fea-
tures such as color [1] and texture histograms [2] tend to
be expensive in both memory and computation because of
the dimensionality of the feature even though such features
can lend more flexibility and information to the classifica-
tion tasks. Applying Principal Component Analysis (PCA)
can reduce the dimensionality without sacrificing perfor-
mance [3]. Even then one cannot avoid a high dimensional
feature space altogether since the principal components in
PCA are still linear combinations of the original features.
Tieu and Viola [4] present a boosting approach to select a
small number of features from a very large set allowing fast
and effective online classification. Their method applies
hand-crafted primitive kernels recursively on subsampled
images resulting in a causal structure that is used to dis-
criminate image classes. These selective features, however,
are only meaningful in the feature spaces and it is difficult
to intuitively interpret the structure of the selected features.

Personal experiences and psychophysical studies in
saccadic eye movements [5] indicate that local appearances
play crucial roles in learning good classification. More of-
ten than not, people can recognize objects because they
seek particular regions where discriminating information
is located. For example, to classify a car based on make
or model, the focus of attention is on small regions at the
front/back of the car where the name/symbol is printed.
The observation of the shapes of head/rear lights is also sig-
nificant. On the same note, certain other regions like wind-
shields or tires do not carry that much information. Model-
ing from this finding, a classification mechanism should be
able to discard most of the irrelevant image regions without
sacrificing performance.

Techniques that depend only on local regions [6, 7]
capitalize on this insight by attempting to segment an image
into blobs and focus only on the similarities between blobs
using colors or textures. Minut et al. [5] uses eye-saccade
data to generate sequential observations that are then used
to learn a Hidden Markov Model (HMM) for each face in
the database. The observed locations turn out to be more
important than the observation sequence, though the latter
fits nicely into a HMM framework. Jaimes et al. [8, 9] pro-
pose a strong correlation between eye-movements and dif-
ferent semantic categories of images and use this hypothe-
sis to build automatic content-based classifiers.

Following this motivation to look for locally discrim-
inative appearances, we propose to identify from a high di-
mensional feature space only those dimensions that carry
the most information. In this paper, we present an approach
using AdaBoost to select features as part of the training
phase itself thereby making the feature extraction process
in the testing phase very efficient. Our approach differs
from previous work in that the reduced set of features con-
tains both locally and globally informative features. Our
system automatically singles out the discriminative features
and consequently the discriminative image regions with-
out relying on a priori domain knowledge. Finally, by a
novel combination of feature extraction and feature selec-
tion classification techniques, we show that an overlay of
these region selections over an original image enables us
to visualize actual image regions that carry relevant infor-
mation that is crucial for the classification task. Thus, the
proposed technique not only significantly reduces the prob-
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lem complexity and speeds up the online process, but also
provides a meaningful interpretation of image regions to
the classification process.

In the following section, we define a composite fea-
ture that is a concatenation of global and local appearance
features extracted from uniformly partitioned regions of an
image. The appearance features are derived from either Ga-
bor wavelets or Gaussian derivative filters applied to each
partition. We present experimental results about the per-
formance of our approach on the problem of recognizing
facial expressions like smile, scream etc. This problem is
particularly suited for our approach because local regions
of the image are sufficient to determine an expression cat-
egory. Finally, we compare the results of this approach to
classification using a standard technique such as the SVM
and point out the essential differences.

2 Features

2.1 Multi-scale Gaussian derivative features

Let Ix be the first order partial derivative with respect to x
of image I . Iy is defined similarly and Ixx, Ixy, Iyy denote
the second derivatives. These derivatives are more stable
when computed by filtering the image with the correspond-
ing normalized Gaussian derivative than by the regular fi-
nite differences method [2]. A 2D Gaussian function with
zero mean and standard deviation σ, is defined as

g1(x, y, σ) =
1

2πσ2
· e−

x2+y2

2σ2 (1)

The parameter σ is also referred to as a scale of the
Gaussian function. Local intensity surface orientation and
curvature features can be defined as functions of the partial
derivatives:

orientation, O = atan2(Iy, Ix)

isophote curvature, N = A[2IxIyIxy − I2
xIyy − I2

yIxx]

flowline curvature, T = A[Ixy(I
2
x−I

2
y ) + IxIy(Iyy−Ixx)]

shape index, C = 0.5 −
1

π
· tan−1 N + T

N − T

A = (I2
x + I2

y )
− 3

2 (2)

The orientation and the shape index computed at ev-
ery pixel are discretized and histograms representing dis-
tributions of these features are constructed. These features
are good in modeling dominant local gradients as well as
curvatures [10]. Let the feature vector be represented as

φσ = [Cbσ;O
b
σ]1×2b (3)

where σ is the scale factor, b is the number of histogram
bins, C and O, respectively, are the shape index and the
orientation histograms. Additionally, instead of concatena-
tion, either C or O could be used as stand alone features.
An example of this feature is shown in Figure 1.

2.2 Gabor wavelet features

The Gabor wavelet filter [11] is defined as

g2(x, y, σ, u0, v0) = g1(x, y, σ) · ej·(u0+v0) (4)

where (u0, v0) is the center frequency of the filter. Let the
Gabor filter response at scale σ and location (x, y) on an
image be represented by ψσ(x, y). These filter responses
are discretized into b intervals that define the b bins of the
histogram. Let bkmin and bkmax, respectively, be the lower
and upper limits of the kth bin. Then a value at each bin k,
represented by φkσ , is equal to

φkσ =
∑

∀x,y,bk
min

≤ψσ(x,y)<bk
max

ψσ(x, y) (5)

The feature vector φσ at scale σ is then defined as

φσ = [φ1
σ, φ

2
σ, ..., φ

b
σ]1×b (6)

An example of this feature, φσ , is shown in Figure 1.
This feature is different from a regular histogram because it
accumulates into each bin the actual filter responses instead
of the pixel counts. In a regular histogram of the responses,
the bins whose range are near zero will tend to dominate
the histogram when significant areas of the image are tex-
tureless. Clearly, this is not desirable and therefore these
responses need to be weighted less. This happens naturally
in our suggested approach by accumulating actual filter re-
sponses. Further, it is desirable to pay more attention to
the filter responses with extreme values as they indicate a
better (or worse) alignment between local image structures
and the filter patterns.

2.3 The Composite features

Both the Gaussian functions and the Gabor wavelets can be
viewed as bandpass filters whose bandwidths depend on σ,
their scale parameter. Consequently, multiple scale filtering
is essential in order to extract a wide range of frequencies.

Local features extracted from different image regions
may be noticeably different. This distinction is lost if only
a global histogram is constructed. We preserve both global
and local features by partitioning an image into P×Q dis-
tinct blocks. The number of partitions is determined by the
scale at which the features are extracted. Specifically, at
the coarsest scale with relatively high σ, a 1×1 partition is
sufficient because the coarse filter, having a large footprint,
looks for global structures. At finer scales, having smaller
filtering footprints, more partitions are needed.

The composite feature vector at a scale σ whose cor-
responding partition is P×Q is

φσ = [φσ,1, φσ,2, ..., φσ,P ·Q] (7)

where φσ,p is the appearance feature vector at scale σ ex-
tracted from the pth subimage of the partition P×Q. The
concatenation over M scales gives the final composite fea-
ture vector:

Φ = [φσ1
;φσ2

...;φσM
] (8)
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3 Classifiers

We describe two margin-based classification paradigms
used in our experiments: the feature selective AdaBoost
classifier and the SVM-based classification approach.

In a two-class classification problem, let a set of n
data points in an N dimensional feature space be

(Φ1, y1), (Φ2, y2), ..., (Φn, yn),Φi ∈ <N , yi ∈ {±1}
(9)

A pair (Φi, yi) is called a positive instance if yi=1, and a
negative instance, otherwise. A classifier seeks a decision
function, or a hypothesis, H: <N→{±1} that minimizes
some loss function.

3.1 AdaBoost

Recall that each image i ∈ {1, 2, ..., n} is represented by
Φi, a concatenation of global and local appearance fea-
tures φσ,p,i extracted at different scales from different sub-
regions. From this composite feature, AdaBoost [12] learns
the classification by selecting only those individual features
that can best discriminate among classes. We achieve this
by designing our weak learner as suggested by Howe [13].

Training on an individual appearance feature φσ,p, a
decision boundary hyperplane κ is a bisection between the
weighted mean vectors of the positive and negative sample
sets.

κ =

∑
∀i∈Φp D(i) · φσ,p,i

||
∑

∀i∈Φp D(i) · φσ,p,i||
+

∑
∀i∈Φn D(i) · φσ,p,i

||
∑

∀i∈Φn D(i) · φσ,p,i||
(10)

where Φp = {j|yj = 1} and Φn= {j|yj =−1}, and each
sample is weighted by the distribution D.

The positive half-space of κ usually contains a ma-
jority of the positive instances. Therefore, if a sample be-
longs to this half-space, it is classified as positive, and neg-
ative otherwise. The decision is flipped when a minority
of the positive instances fall into the positive half-space.
Symbolically, this weak hypothesis is a function h ≡ hσ,p:
φσ,p→{±1} whose empirical error is

ε =
∑

∀i
D(i) · hσ,p(φσ,p,i) · yi (11)

At each step, every appearance feature parametrized
by its scale and its partition, together, form a family of hy-
potheses h ≡ {hσ,p}. AdaBoost then chooses a hypoth-
esis that carries minimum error. Effectively, this means
that each AdaBoost iteration picks the hypothesis, and in
turn the individual feature vector, that contains the most
discriminating information allowing a correction of clas-
sification errors resulted from previous steps. The feature
selective AdaBoost [12] is outlined below.

• Given a training set containing positive and negative
samples, where each sample i is (Φi, yi); Φi is the
composite feature vector of sample i, and yi ∈ {±1} is
the corresponding class label. Initialize sample distri-
butionD0 by weighting every training sample equally.

• For T iterations do

– Train a hypothesis for each feature φσ,p.

– Choose the hypothesis h?t with minimum classi-
fication error εt on the weighted samples.

– Compute αt = 1
2 ln( 1−εt

εt
) which weights h?t

by its classification performance.

– Update and normalize the weighted distribution:
Dt+1(i) ∝ Dt(i) · e

−αtyih
?
t (φ?

t ).

• The final hypothesisH(φ) = sign(
∑T

t=1 αth
?
t (φ

?
t ))

is a linear combination of T hypotheses that are func-
tions of selected features.

3.2 Support Vector Machines

Unlike traditional classification techniques that aim at min-
imizing the Empirical Risk, SVM approaches the classifi-
cation problem as an approximate implementation of the
Structural Risk Minimization (SRM) induction principle,
which is a reduction form of an Expected Risk minimiza-
tion problem [14, 15]. To this end, a generalization error
of a model is minimally bounded and a decision surface is
placed in such a way that the margin, which is the distance
from a separating hyperplane to the closest positive or neg-
ative sample, between different classes is maximized.

SVM approximates the solution to the minimization
problem of SRM through a Quadratic Programming opti-
mization. As a result, a subset of training samples is cho-
sen as support vectors that determine the decision boundary
hyperplane of the classifier.

Though in principle the hyperplanes can only learn
linearly separable datasets, in practice, nonlinearity is
achieved by applying an SVM kernel that maps an input
vector onto a higher dimensional feature space implicitly.

In this paper, we use SVM [16] with the radial basis
function kernel as a black box classifier over the labeled
set of composite feature vectors. Doing so yields support
vectors in the composite feature space.

3.3 Multi-class classifiers

Both AdaBoost and SVM, as explained above, are suitable
only for binary classification. However, they can be easily
extended to a multi-class problem by utilizing Error Cor-
recting Output Codes (ECOC) [17].

A dichotomy is a two-class classifier that learns from
data labeled with positive (+), negative (-), or (don’t care).
Given any number of classes, we can relabel them with
these three symbols and thus form a dichotomy. Differ-
ent relabellings result in different two-class problems each
of which is learned independently. A multi-class classifier
progresses through every selected dichotomy and chooses
a class that is correctly classified by the maximum number
of selected dichotomies.
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Exhaustive dichotomies represent a set of all possible
ways of dividing and relabeling the dataset with the three
defined symbols. A one-against-all classification scheme
on an n-class classification considers n dichotomies each
relabel one class as (+) and all other classes as (-).

4 Face Expression Recognition

We applied our integrated feature selection and classifica-
tion approach to the problem of identifying expressions
on faces. The features described in Section 2 are consid-
ered appropriate because facial expressions have character-
istic local structures that can be mathematically described
by edge orientations and curvatures (functions of Gaussian
derivatives) or more generally spatial frequencies (Gabor
wavelets). Although we look at a person’s face as a whole,
we focus our attention only on small regions at any instant
in time because expressions are mostly localized to regions
near the eyes and the mouth. A smile is mostly shown by a
person’s mouth, while anger is partly shown by a person’s
eyes. Cheeks and noses contain much less significant in-
formation. Since our approach is well suited to single out
discriminative features both at the global level and multiple
local levels, it is ideal for this problem domain.

4.1 Implementation

We conducted our experiments on the AR face database
[18]. We chose face images of 120 people: 55 women
and 65 men. Each person shows four expressions: neutral,
smile, anger, and scream. There are two images of each
person’s expression that were taken from two different ses-
sions. Thus in all we have a total of 960 facial images with
240 images for each expression. We manually cropped ev-
ery face image to remove the influence of the background.
This is not an absolute necessary for our method if all the
subjects were located at roughly the same region on every
image. An example face with four different expressions is
shown in the first column of Figure 1.

Both the Gaussian and the Gabor features were ex-
tracted at 6 scales, with corresponding partitions of 1×1,
3×3, 3×3, 5×5, 5×5, and 7×7. The first scale corresponds
to the lowest frequency with σ1 = 30 pixels per cycle.
Subsequent frequencies are determined by σi=

σ1√
2
(i−1) for

i = {2, 3, ..., 6}. The choice for the first scale, intention-
ally to be used with a non-partitioned image, is guided by
the mean image size of the cropped faces in the database,
which is to cover roughly two cycles of the defined filter.
On the same basis, higher frequencies determine finer im-
age partitions so that the sizes of subimages are roughly
two cycle wide.

The number of histogram bins chosen is 64. While the
Gaussian derivative responses are uniformly discretized,
the distribution of the Gabor responses is nonlinearly de-
fined where the values ranging from -0.04 to 0.04 are di-
vided equally into 62 intervals making up the middle 62

Figure 1. An example face showing four expressions and corre-
sponding features at the coarsest scale. The first column shows the
expressions. The normalized shape index and the orientation his-
tograms are shown in the second and third column, respectively.
The last column shows the distribution of Gabor filter responses.
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SVM (one against all)
AdaBoost (one against all)
AdaBoost (exhaustive)

Figure 2. Performance on the test data (anger included)

bins, the first covers all values less than -0.04, and those
more than 0.04 fall into the last bin. Examples of the fea-
tures extracted is shown in Figure 1. The composite feature
is very high dimensional. For example, with our configu-
rations, the dimension of the Gaussian composite feature
vector is 15,104.

The number of iterations for AdaBoost is set at 50.
Both SVM and AdaBoost performed multi-class classifi-
cation by employing one-against-all dichotomies. For Ad-
aBoost, we also tested on an exhaustive set of dichotomies.
All statistical results of our experiments are based on a
5-fold cross validation analysis [19] where the classifiers
were trained on 80% of the data and tested on the other
20% in 5 runs, each run retaining different subsets (20% in
each case) of the data as the test set.

4.2 Results and Analysis

The results from two sets of experiments, the first including
the anger expression and the second excluding it, are shown
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Figure 3. Performance on the test data (anger excluded)
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Figure 4. Two-class classification performance of AdaBoost on
the test data. On the x-axis, denote the neutral, smile, anger, and
scream by N, S, A and Sc, respectively.

in Figures 2 and 3, respectively. In both cases, the best aver-
age performance was obtained using the orientation feature
with AdaBoost classifier; 79.27% and 94.86% respectively.
The reason for the apparently poor performance in the first
set of experiments was that neutral and anger as expressed
by people in the database were not visibly different in most
cases (see Figure 5). This is further substantiated by exam-
ining the performance of two class classifiers, illustrated
in Figure 4. It is clear that the classifier is having a hard
time discriminating between the neutral and anger classes,
although it is performing very well on every other case.

Experimental results show that performances of SVM
and AdaBoost are comparable. They performed almost
equally well with a slight preference toward AdaBoost
when an exhaustive set of dichotomies is employed. On av-
erage, SVM tends to have higher variances. Another draw-
back of SVM is its dependency on parameter settings; the
choices of kernel function and its parameters are crucial.

It is important to note that while AdaBoost feature se-
lection provides a final hypothesis model that can be easily
interpreted, the high dimensional support vectors of SVM
approach do not provide any.

Figure 5. Examples showing the similarity of neutral (top row)
and anger (bottom row) expressions in the database.

Figure 6. Feature selections by AdaBoost. The dichotomies from
top to bottom and left to right are [1 -1 -1], [1 0 -1], [-1 1 -1], [0 1
-1], [1 1 -1], [1 -1 0]. Darker regions represent a low accumulation
of α values and their non-discriminative nature. Brighter regions
represent their highly discriminative nature for their dichotomies.

Figure 6 illustrates image regions where AdaBoost
picked out discriminating features. Each image is a re-
sult on a particular dichotomy represented by a code word,
where -1, +1 indicate negative and positive samples, and 0
is a don’t care label. In a code word, the first number rep-
resents a neutral expression, the second and third represent
smile and scream. The images show accumulated α values
over all iterations. Image regions with higher values con-
tribute more to the final hypothesis. Intuitively, the higher
the value a region carries, the more influence it has on the
final classification decision, and consequently the more rel-
evant information to a classification task it contains.

As reflected in the results, AdaBoost successfully
picked the mouth and the eyes as being most informative
and discarded other regions as being irrelevant. This is true
because a person’s mouth and eyes look different while ex-
pressing neutral, smile, or scream. Clearly, an appearance
of a mouth region contains significant information. Also
in this dataset, people scream with their eyes closed (see
Figure 1) which results in the contribution from the eye re-
gions. Additionally, this result draws similarity to how hu-
mans naturally perceive and recognize facial expressions.
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Figure 7. Convergence of feature selective AdaBoost classifiers
on the six dichotomies defined in Figure 6.

When AdaBoost with feature selection is employed,
the memory requirements and the computational complex-
ity are significantly reduced. During online classification
only those features chosen by AdaBoost are needed instead
of the composite feature as a whole. Specifically, let S
be the total number of appearance features defined and T
be the number of iterations run by AdaBoost, then a com-
pression ratio r of S:T is achieved. To be concrete, in our
experiment, r = 118:50, which is more than double. Keep-
ing in mind that the actual dimension of the feature vector
is S×b where b is the number of histogram bins (64 in our
case), this results in an order of magnitude reduction in di-
mensionality. Furthermore, the value of T can be set much
lower than 50 as the plot in Figure 7 shows that AdaBoost
converges quickly in most cases, i.e. within 25 iterations.
This further doubles the compression ratio.

5 Conclusions and Future Works

We have proposed a classification system capable of cap-
turing both global and local features and at the same time
identifying image regions where distinctive information is
located. We successfully applied this technique to the face
expression recognition problem.

The main benefit gained from this new feature extrac-
tion and image classification approach is the meaningful vi-
sualization of informative image regions and the reduction
of computational complexity without applying any domain
knowledge. The system automatically learns from training
data where to look for discriminating information. The re-
duced feature set then enables fast online classification.

This technique can be applied to a broad range of
recognition and classification applications as long as the
objects to be classified are at similar location, orientation,
and scale in both the training and the testing images. How-
ever, if the system is used in conjunction with appropriate
segmentation and rectification algorithms then these con-
straints can be removed.
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