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Abstract

The ability to efficiently and robustly recover accurate 3D
terrain models from sets of stereoscopic images is
important to many civilian and military applications.  Our
long-term goal is to develop an automatic, multi-image
3D reconstruction algorithm that can be applied to these
domains.  To develop an effective and practical terrain
modeling system, methods must be found for detecting
unreliable elevations in digital elevation maps (DEMs),
and for fusing several DEMs from multiple sources into
an accurate and reliable result.

This paper focuses on two key factors for generating
robust 3D terrain models, (1) the ability to detect
unreliable elevations estimates, and (2) to fuse the
reliable elevations into a single optimal terrain model.
The techniques discussed in this paper are based on the
concept of using self-consistency to identify potentially
unreliable points.  We apply the self-consistency
methodology to both the two-image and multi-image
scenarios.  We demonstrate that the recently developed
concept of self-consistency can be effectively employed to
determine the reliability of values in a DEM.  Estimates
with a reliability below an error threshold can be
excluded from further processing.  We test the
effectiveness of the methodology, as well as the
relationship between error rate and scene geometry by
processing both real and photo-realistic simulations..
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1  Introduction

There is a substantial body of research in two-image
stereo reconstruction [3][8], and a smaller but growing
body of work on multi-view stereo[1][4].  These methods
have been loosely divided into two categories, feature
matching and texture matching.  Independent of these
classifications 3D reconstruction algorithms can be
divided into image space methods[2][8] in which the
matching occurs without regard to the physical
characteristics of the surface; and object-space matching
in which the images must be consistent with the geometry
and physical properties of the surface[1][4].  Each of
these techniques share a common goal of identifying
elements (features [5][6][11], patterns [8][12]) across two
or more views of a scene.  Unfortunately, there are a
variety of mechanisms that will cause any of these
techniques to fail locally – a flawed imaging mechanism
(e.g., dropouts, dust, thermal noise), poorly modeled
optical properties (e.g., using a Lambertian reflectance
model for asphalt or water), occlusions (across varying
image viewpoints), and/or problematic texture patterns
(e.g., repetitive patterns, linear features that align with
epipolar lines).

Because it is impossible to take into account all of the
problems, a robust 3D reconstruction system should
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contain a mechanism for identifying and removing
blunders.  The techniques discussed in this paper are
based on the concept of using self-consistency measures,
first introduced by Leclerc, Luong and Fua [10],  to
identify unreliable points in a distribution.  The main
focus of their work was to obtain a quality measure for
correspondence algorithms without relying on any ground
truth.  Their algorithm obtained a probability distribution
by counting the number of corresponding image points for
each object point that is consistent with the viewing
geometry within a specified error limit.  In a closely
related application [9], they extend their work to detect
changes in terrain by applying the concept of self-
consistency to elevations.  We extend the idea of this
work to detect unreliable elements in a digital elevation
map (DEM) generated from stereoscopic image pairs, and
to fuse multiple DEMs.  In our case, multiple pairs of
images of the same site are processed using a hierarchical
texture matching system.

In our application domain of environmental
monitoring, aerial images are used to produce highly
accurate DEM which are used to produce geo-referenced
maps of biomass, ground cover classes, etc.  Our input
data are sequences of overlapping digitized aerial
photographs (or more recently, high-quality digital video).
Our 3D terrain modeling system produces a single,
accurate geo-referenced DEM from multiple images
(typically 3-12).  We are utilizing an automatic stereo
reconstruction algorithm that employs a hierarchical,
texture matching scheme to generate DEMs from pairs of
images that must be fused to form a large mosaic.  The
fusion process serves several purposes, including
improving the accuracy by averaging redundant elevation
estimates, detecting and removing outliers, and estimating
the geospatial uncertainty.  The key to a reliable fusion
process is the use of self-consistency measures to identify
and remove unreliable elevation estimates.

Of prime interest to us is the automatic detection of
matching errors related to variables of the scene
geometry.  In particular we are interested in
reconstructing the shape of the terrain from images which
may have been taken from widely varying viewpoints.  As
the separation between the camera positions increases,
elevation estimates become more precise [8].  At the same
time, widely separated viewpoints result in a substantial
perspective distortion between images, and increases the
likelihood of encountering occlusions, which increase the
chances of generating false matches.  Even when viewing
a surface from nadir, local variations in surface slope may
result in highly distorted surface elements.  In addition,
aerial survey lenses often have a wide field-of-view [13]
(typically 90°), which will increase the perspective
distortion near the image edges.  This tradeoff between
increased accuracy versus increased error rate must be
taken into account when designing a terrain modeling
system.

This problem will be mitigated when multiple images
are processed from different viewpoints.  If a surface
patch is highly distorted or obscured in one view, it may
be clearly visible in another.  Thus, as the number of
views increase it is more likely that a correct match can
be found for any particular surface patch, and it becomes
imperative to detect unreliable elevation estimates,
particularly when processing images taken at oblique
viewing angles or when fusing multiple DEMs.

The methodology described in this paper for
detecting errors in DEMs by self-consistency can be
applied to both the two-image and multi-image scenarios.
When only two images are available, two DEMs can be
generated  by reversing the roles of the reference and
target images in the matching process.  We will
demonstrate that self-consistency measures can be
effective employed to determination of the reliability of
values in a DEM, which can then be excluded from
further analysis.  We will test the effectiveness of the
methodology as well as the relationship between error rate
and scene geometry by processing multiple overlapping
views of a real terrain, as well as synthetic images of a
realistic, 3D terrain model.

2  Photo-realistic simulation

Any comprehensive analysis and evaluation of a
dense array of elevations estimates generated from images
requires a dense array of ground truth.  The typical use of
a few ground control points spread out over an entire
scene is simply not sufficient to compute meaningful
statistics.  Unfortunately, even with a technologically
advanced system measurement system, such as an
airborne scanning laser range mapping system or IFSAR
(interferrometric synthetic radar), a high-resolution dense
array of elevation spread out over several square
kilometers would require an enormous effort.

To facilitate the analysis of the techniques described
in this paper, we develop a method of generating pseudo
ground truth through photo-realistic synthetic images.
The process begins with a digital elevation map (DEM)
and an ortho-image, which may come from an
independent source (e.g., DFED or USGS digital ortho-
quads), or which may have been generated from aerial
images using a 3D reconstruction algorithm.  We begin by
treating the DEM and ortho-image as if they were precise,
error-free representations of the terrain.  Next, a ray
tracing program is used to generate photo-realistic,
synthetic images of the terrain from any viewpoint.  The
synthetic views then serve the function of real images.

Clearly pseudo ground truth and synthetic images are
not a completely satisfactory substitute for real data.
Nevertheless, the method does provide means for
generating otherwise unobtainable ground truth samples,
and furthermore, it generates expected types of  errors due
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to perspective distortion, and occlusion that will occur in
real data.  The images used to generate the pseudo ground
truth were extracted from six 9 inch × 9 inch aerial
images of a desert area near 29 Palms California1.  Four
of the images were taken so that a section of the terrain
was visible in each image.   This set of four overlapping
images (one of which is shown in Figure 1) is the basis of
the data presented in this paper.

The pseudo ground truth were generated from two of
the four overlapping images.  The choice of which two
images to use was arbitrary.  This DEM will undoubtedly
contain some anomalies (deviations from the actual
physical world).  Because these anomalies become part of
the pseudo ground truth and are correctly manifested in
the synthetic images, they will not affect the quality of
our experiments.  The pseudo ground truth covered an
area of 157.5m × 368.4m, with a ground sampling
distance of approximately 0.35m.

To test the validity of the simulation procedure, we
synthesized the images that were not used to generate the
pseudo ground truth DEM, and then compared the
synthesized images to the real ones.  In other words,
starting with four overlapping images, labeled A, B, C, D,
we generated a DEM from images A and B (denoted by
ZAB).  We then synthesized two images labeled C′ and D′
which had the same camera parameters as images C and
D.  A simple analysis of visual inspection, as well image
differencing showed a remarkable similarity between the
real and synthesized images.  This has reasonably
convinced us that the DEMs generated from the photo-
realistic simulated data will be valuable in test the self-
consistency algorithms.  Figure 1 show one of the four
original images, a small 400 × 400 pixel region of the
original image, and the corresponding region of the
synthetic image.

3  Self-consistency

At the heart of our method is an expectation of
consistency between DEMs when the computation is
accurate.  In addition, we rely on the observation that for
many 3D reconstruction algorithms [7] two DEMs can be
generated for a single image pair.  We consider the class
of image matching algorithms that generate a dense array
of disparities DAB(i,j) such that the pixels (i,j) in image A
and the pixels (i+DAB(i,j), j) in image B are projections of
the same surface elements.  In this notation image A is the
reference image and image B is the target image.  By
reversing the roles of images A and B we can generate a
second disparity map DBA(i,j) such that the pixels (i,j) in
image B and the pixels (i+DBA(i,j), j) in image A are
projections of the same surface elements.  Because of the

                                                
1 This data set was make available by the Army
Topographic Engineering Laboratory

Figure 1.  One of the original images (top); a
small 400 x 400 pixel region taken from the
original image (middle); the same region taken
from the photo-realistic synthetic image
(bottom).
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nonlinear and adaptive manner in which disparity maps
are usually computed, it is generally the case that DAB and
DBA do not produce the same set of elevations.

Our analysis is based on testing the consistency of a
pair of DEMs generated from a pair of overlapping
images.  By comparing reference-target duality in DEMs,
inconsistency becomes a means of detecting errors.   We
denote the elevations recovered from images A and B by
ZAB, where the first subscript is the label of the reference
image and the second subscript is the label of the target
image.  Without loss of generality, ZAB may be written as
the sum of the actual surface Z* and a geospatial error
term δAB.  Thus, for any two overlapping images A and B,
the two recovered surface models are

ZAB = Z* + δAB

ZBA = Z* + δBA

Taking the difference of the two computed elevation
maps gives an expression that is independent of the
surface structure.

ZAB - ZBA = δAB - δBA (1)

The left hand side of  Equation 1, which is very similar to
self-consistency described in [10], depends only on
images A and B.  The right hand side is the difference
between the geospatial errors, which requires ground truth
to evaluate.  Currently, we are developing a
comprehensive model that expresses the conditional
probability density function (PDF) of the geospatial errors
to self-consistency distribution.  As a first step, we will
examine methods based on statistics derived from the
distribution self-consistency.

We begin by assuming that the distribution of
geospatial error measures δAB and δBA are comprised of
two distinct populations:

1. Errors associated with correct correspondences,
which we refer to as inliers.  These errors result from
small uncertainties in camera orientation, digitization,
numerical roundoff, etc.  Inliers are modeled by a
zero-mean, normally distributed random process with
a standard deviation (s.d.) in object space that
corresponds to approximately one pixel registration
error in image space.

2. Outliers which arise from false matches.  These
errors have a very broad distribution which may span
hundreds of pixels in image space with
correspondingly large errors in object space.

A simple test for separating the two populations can
be devised by taking the s.d. of both sides of Equation 1,

σ(ZAB - ZBA) = σ(δAB - δBA) (2)

This formula may be applied locally (e.g., within an n × m
window), globally, or conditionally (e.g., as a function of
incidence angle).  Assuming that the distribution of δAB

and δBA are identical, Equation (2) can be rewritten as

σ(ZAB - ZBA) = Aσ(δ) (3)

where A is a function, that depends on several factors,
including the local slope of the terrain, the scene
geometry and the processing scheme.  In the simplest
case, when  δAB and δBA are samples from an uncorrelated,
normally distributed random processes, the function A
reduces to a constant equal to √2, and Equation 3 can be
rewritten as

( ) ( )2BAAB σσ =− ZZ

Although this simple case cannot be applied to most
situations, it is important to observe that large values of
the geospatial set-consistency are likely to be associated
with corresponding large geospatial errors, which in turn
are associated with false matches.  In other words, we
expect that the distribution of the object space self-
consistency measure will mimic the geospatial error
distribution.

A method of determining the s.d. of a population
containing a mixture of inliers and outliers was developed
that reduces the influence of outliers.  This was necessary
because the inlier population is expected to have a zero
mean and a s.d. that is fraction of a meter, whereas the
outlier population is expected to have values on the order
of several meters.  A few outliers, therefore, will
drastically affect the computation of the s.d. of the entire
population.  To minimize the influence of the tails of the
distribution, which we expect to be dominated by outliers,
standard deviations were computed by fitting the
histogram to a Gaussian plus a constant of the form

where zi are the histogram values, and the peak value
(hmax), the floor (h0 ), the mean (z0), and standard
deviation (σ) are parameters of the fit.  If the population
was normally distributed, there would be no need to
compute σ using Equation 4.  Instead σ could be found by
evaluating the standard computational formula

( )∑ −
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With outliers present in the population, the curve fitting
technique reduces the influence of non-Gaussian
distributions in the tails.

The outlier threshold for the analysis presented in this
paper was set to 2σ.  It must be understood that whatever
method is used to determine a threshold, the resultant
reliability cannot be considered exact.  Some of the values
marked as reliable may not be, and vice versa, for two
reasons:

• In general, the self-consistency distribution is not
isomorphic with the geospatial error distribution.  As
pointed out above, a more comprehensive
formulation is need to precisely predict the statistics
of the geospatial errors from the self-consistency
distribution (planned future work).

• It is possible, although very rare, that a false match
will produce the same results when the reference and
target images are reversed.  In fact, we were not able
to find any errors of this type in our data.

Although we do not offer an objective method for
setting the outlier threshold, one can easily determine if
the threshold is set too low or too high by checking the
number of rejected points.  Furthermore, we observed that
the fusion results are fairly insensitive to the outlier
threshold, and we were able to achieved similar results
with σ set to values between 2 and 4.  We chose a
conservative threshold (i.e., a low value) to ensure that the
DEM computed for the real data had as few unreliable
elevations contributed to the fused DEM as possible.  The
2σ cutoff threshold was selected because it resulted in a
complete recovery for the real data, although some DEM
elements in the simulated data set did not have any
reliable points (note: these points could be filled in by
interpolating the fused DEM).

To test the procedures we compared the s.d. of the
self-consistency (ZAB  - ZBA), the percent of detected
inliers, the s.d. of the geospatial errors (ZAB - Z*),
(ZBA - Z*), and (½⋅(ZAB+ZBA) - Z*) as a function of various
off-nadir view angles θ for cameras A and B.  The s.d. of
the geospatial errors were computed by evaluating the
standard computational formula for all elevation estimates
less than the 2σ threshold.

  The results are summarized in Table 1, and a plot of
the histogram and the fitted distribution curve for b/h =
0.277 are shown in Figure 2.  For the data summarized in
Table 1, hmax was at least two order of magnitude greater
than the outlier floor h0, and the total extent of the
histogram tails was approximately ±60m, which was
much greater than width of the fitted distribution σ. The
real data were all taken with the camera looking
approximately straight down. For the simulated data,
however, we were able to place the cameras in any

position.  This allowed us to study the affects of viewing
geometry on the performance of the algorithm.

Inspection of Table 1 shows that the trend is for the
standard deviation of the geospatial errors to decrease
with increasing base-to-height ratio (b/h) and for the
number of outliers to increase with increasing b/h.  As
mentioned in Section 1, this is the expected trend based
on standard stereo geometry [7].   The last column shows
the standard deviation of the geospatial error measured
relative to the average of the two retrieved DEMs.

4  Fusing multiple DEMs

The method of using self-consistency measures to
detect unreliable elevation estimates can applied to the
problem of fusing multiple generated from several
overlapping images.  The basic principle is to identify
outliers (unreliable elevations estimates) and then
compute a weighted average of all reliable points.  We
employed the following two-pass algorithm:

• Given a set of n images where n is greater than 2,
compute the set of order dependent DEMs and self-
consistency distributions.  For the four overlapping
images discussed above (labeled A,B,C,D), 12 DEMs
(ZAB, ZBA, ZAC, ZCA, …, ZCD, ZDC) and six self-
consistency distributions (ZAB-ZBA), (ZAC-ZCA), …,
(ZCD-ZDC) can be computed.

• For each DEM pair compute an outlier threshold by
(i) fit the formula in Equation 4 to the histogram of
the self-consistency distribution, (ii) set the threshold
to a predetermined multiple of the s.d. of the fitted
function, and (iii) assign summation weights (planned
future work).

• Mark as unreliable all elements in the DEM with a
self-consistency measure greater than the threshold.
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             Self-Consistency [m]

8000

6000

4000

2000

      0

C
ou

nt
s

Histogram
Fitted Curve

Figure 2.  Self-consistency distribution for image pair 3
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• For each element in the DEM grid, compute the
average of reliable elevation estimatesZ.

• An optional step would be to compute an interpolated
value for all elements without any reliable elevations.
This option was not in the examples presented in this
paper.

• Re-apply the threshold test to the difference between
the fused DEMZ and the unreliable elements.  If any
of the differences are less than the outlier threshold,
re-label the point as reliable. This step is necessary
because some of the unreliable matches occur in DAB

and not DBA (or visa versa).

• Update the fused DEM by including the newly
relabeled elevation estimates.

This fusion algorithm was applied to two data sets – the
set of four overlapping images, and the photo-realistic
simulated data (see Figure 1).  For the simulated data we
were able compare the results to an absolute reference.
The results generated from the simulated data are shown
in Figure 3, and the results from processing the real data
are shown in Figure 4. The simulated data covered a
significantly narrower region than the real data.  This
reduction in the size occurred because the image matching
algorithm cannot process data along the boarder of the
image; and the synthesized images are computed only for
regions where a DEM exists.

For the simulated data set, 99.54% of the DEM
elements had at least one reliable point (the missing
elements show up in Figure 3 as small black flakes), and
the overall accuracy, measured by the standard deviation
of the difference between the pseudo ground truth and the
fused DEM (i.e., σ(Z* -Z)) was 0.169m (the ground
sampling distance was 0.35).

Our methodology involves automatic determination
of a reliable set of elevation estimates for each value in
each DEM.  Therefore, there will be a varying number of

contributions to the final elevation at each point in the
2k × 2k fused DEM.  This is graphically displayed by gray
value in Fig. 4, which shows in gray value the number of
elevation estimates used (varying from 0 to a maximum
of 12.  About 98% of the points had 10 or more reliable
values contributing, and only 215 points of the 4 million
had 3 or less values (157 with no estimates).  Most of
these cases were isolated, and median filtering would
achieve reasonable estimates for many of them.

Of course, for the real data we were not able to
compute the accuracy of the retrieval.  However, we did
find that the algorithm found at least one reliable element
in 99.99% of the scene.  In addition, there were no
apparent anomalies in the fused DEM.  That is, the
appearance of the ortho-image seemed consistent with the
terrain everywhere in the scene.  Our qualitative
inspection consisted of checking the relationship between
objects such as rocks and ditches to their shadows, and
checking to see if streams (or in this case dry streambeds)
flow down hill everywhere

5  Conclusions

We successfully applied the notion of self-
consistency to the specific task of improving the
generation of DEMs using dual symmetric stereo
processing on pairs of images from a subset of
overlapping aerial images.  The photo-realistic simulation
results shows an ability to detect almost all outliers by
using a conservative threshold to mark reliable elevation
estimates in dual DEMs from a pair of images.  There is a
significant decrease in the residual errors of the model
compared to individual DEMs generated without regard
to self-consistency.  Experimental results are in good
correlation with theoretical predictions. The strategy for
fusion of the multiple DEMs can be further improved and
this will be investigated in the future.

There is a significant computational overhead
associated with this technique. It can be justified in cases
where a very accurate DEM is important, such as for off-

Table 1.  Self-consistency and geospatial error statistics as a function of the base-to-height ratio (b/h) and the
angle between the optic axis and vertical (θ) for images A and B.  σ(ZAB–ZBA) is the standard deviation of the self-
consistency distribution; % inliers is the percent of all elevations where |ZAB-ZBA| < 2σ(ZAB–ZBA); the last three
columns are the standard deviations of the difference between the pseudo ground truth Z*, and ZAB, ZBA and
average of ZAB and ZBA.  All standard deviations are in meters.

B/h θA   θB σ(ZAB–ZBA) % Inliers
2σ cutoff

σ(Z*–ZAB) σ(Z*–ZBA) ( )ZZ −*σ

0.277 0°  15°    0.451189 91.90   0.332601  0.244706  0.213685
0.293 15°  30°   0.486813 92.50   0.344480  0.330056  0.260698
0.575 15°  -15°   0.311553 91.36   0.163137  0.213822  0.131443
0.868 -15°  30°   0.203503 89.40  0.157535  0.194275  0.152326
1.230 30°  -30°  0.167713 84.24   0.155302  0.188295  0.155993
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road  autonomous driving.  The work presented is the first
step in a more comprehensive attempt to apply the notions
of geospatial uncertainty and  self-consistency in order to
generate near-optimal elevation models. The focus of our
ongoing work will be on extending the technique to
investigating the value of self-consistency measures
among real and across synthetic imagery. This will
require a better model for the propagation of errors and
weighting the contributions from the different sources.

From our experimental results, we conjecture that
most of the benefit of the fusion process derives from a
relatively small subset of the data.  In the future, we will
conduct studies that will give one the ability to select,
from the available images, the optimal/minimal subset
that conforms to a given error tolerance.
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