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Abstract - This paper describes a robust method for
recovering an optimal DEM and its variance from
multiple, randomly orientated views of a surface. The
method generates a set of DEM tiles in a common
coordinate system from multiple overlapping images, and
then employs the concept of self-consistency to detect and
remove errors from the tiles.  The clean tiles are averaged
together to form a low noise composite DEM.  The method
is tested on real and photo realistic simulated data.
Results show that the method is capable of producing a
virtually error free composite DEM.
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1 Introduction

We have all noticed that viewing a scene from a moving
car enhances our perception of the 3D structure of the
surrounding environment.  From a photogrammetric point
of view, the induced motion parallax allows our vision
system to form a robust 3D model of our surroundings.
This paper is concerned with the process of fusing
repeated samples of motion parallax captured by a moving
camera to recover the 3D structure of a scene.  In
particular, we describe a DEM tiling approach that
produces an accurate 3D representation by fusing a
sequence of DEMs made from repeated samples of the
motion parallax.

The method generates a sequence of partially
overlapping DEM tiles, which are averaged together to
reduce noise and form a continuous model of the
underlying terrain.  For this method to be successful, a
normally distributed, unbiased process must characterize
the error distribution of the elevation data in individual
tiles.

Unfortunately, computed DEMs often are
contaminated by large errors (blunders) that result from
errors during the image matching process.  These errors
produce spikes in the disparity and elevation maps.

Although averaging reduces their magnitude, the spikes
are not eliminated from the data.  As a result, combining
multiple DEMs has the undesirable effect of increasing the
frequency of error spikes.  Thus, identifying and removing
large errors from the individual DEM tiles is key to fusing
a collection of DEM tiles.

We will use the principle of self-consistency
developed by Leclerc, Luong and Fua [10] to identify
unreliable points in a distribution.  The main focus of their
work was to obtain a quality measure for correspondence
algorithms without relying on ground truth.  Their
algorithm obtained a probability distribution by counting
the number of corresponding image points for each object
point that is consistent with the viewing geometry within a
specified error limit.  In a closely related application
[4][9], they extend their work to detect changes in terrain
by applying the concept of self-consistency to elevations.
We extend the idea of this work to detect unreliable
elements in a DEM generated from stereoscopic image
pairs.

For the work described in this paper, DEM tiles
are generated in a three-step process [6][7] using the
UMass Terrest system [12].  First, pairs of overlapping
images are resampled such that scan lines are coincident
with epipolar lines.  This simplifies the problem by
ensuring that corresponding pixels lie on the same scan
line [13].  Next, the image matching procedure is invoked
to produce a disparity map DAB, which defines a one-to-
one mapping between the reference image A and the target
image B such that the pixel (i,j) in A and the pixel
(i+DAB(i,j), j) in B are projections of the same surface
element.  In the final step, the disparity map and the
orientation information are combined to form a DEM
Z(x,y), which is a dense array of elevation estimates in a
world coordinate system.

The Terrest image matching procedure employs a
nonlinear, hierarchical algorithm to generate disparity
maps [8][12][14].  A useful characteristic of the algorithm
is that when the reference and target images are reversed,
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the resulting errors are partially uncorrelated.  In other
words, the disparity map DAB is not completely
determined by DBA.  We will show that this property can
be exploited to successfully identify and remove blunders
in a DEM.

2 Self-consistency

At the heart the method is an expectation that reversing the
reference and target images will lead to similar (or self-
consistent) results when the image matching algorithm
finds correct correspondence, and dissimilar results when
the image matching algorithm fails.  The measure of
similarity/consistency will be the signed difference
between the two disparity maps or two DEMs (derived
from the disparity maps).

Two self-consistency methods will be explored:
(1) object space self-consistency in which the analysis
takes place after the disparity maps and orientation
information have been converted to an array of elevations
in object space, and (2) image space self-consistency in
which comparisons are made between disparity maps.  The
majority of the work presented here will focus on object
space self-consistency applications.

2.1 Object Space Self-Consistency

We begin by denote the DEM recovered from the disparity
maps DAB(i,j) and DBA(i,j) by ZAB(x,y) and ZBA(x,y),
where (x,y) are the coordinates of the DEM nodes in a
common world coordinate system. Without loss of
generality, ZAB may be written as the sum of the actual
surface shape Ẑ  and an error term �AB.  Thus, for any
overlapping image pair (A,B) the two recovered surface
models are

ZAB = Ẑ + �AB

ZBA = Ẑ + �BA

Taking the difference of the two DEMs gives an
expression that is independent of the surface shape Ẑ

ZAB - ZBA = �AB - �BA (1)

The left-hand side of Equation 1, which is very similar to
self-consistency described in [10], depends only on images
A and B.  The right hand side is the difference between the
geospatial errors associated with the DEM generation
process.  Taking the standard deviation of both sides of
Equation 1,

�(ZAB - ZBA) = �(�AB - �BA) (2)

gives a relationship between the distribution of the
observed object-space self-consistency difference and the
distribution of the elevation errors.  Assuming the �AB and
�BA have identical distributions, Equation (2) can be
rewritten as

�(ZAB - ZBA) = C�(�), (3)

where the constant C is a measure of the degree of
correlation between the two random variables �AB and
�BA.   Equation 3 represents a simple relationship between
the standard deviation of the elevation errors �(�) and the
self-consistency distribution �(ZAB - ZBA), which can be
inferred directly from the computed elevation data.

Implicit in the formulation of Equation 3 is the
assumption that the elevation estimates ZAB and ZBA are
samples of a normally distributed random variable.  In
reality, however, ZAB and ZBA are samples of two
distinct populations.  The first population is attributed to
cases where the image matching algorithm returns two sets
of corresponding pixels that project to a point in space
near the same surface element, i.e., ZAB(x,y) � ZBA(x,y),
which implies that ZAB(x,y) - ZBA(x,y) is sampled from a
normally distributed, zero mean process.  In the second
case, the matching algorithm fails and
ZAB(x,y) - ZBA(x,y) is sampled from a much broader
distribution.  We use this natural separation of scale to
detect false correspondences.

Assuming that the matching algorithm returns
more true correspondences than false ones, the elevation
errors may be modeled by a mixture of a large number of
samples from a normally distributed, zero mean random
variable and a smaller number of samples from a
uniformly distributed population of outliers.  This model
predicts that the outliers will have a disproportionate
influence on the tails of the distribution. To minimize the
influence of the tails when computing the moments of the
distribution, the histogram of data (ZAB - ZBA) is fit to a
model that included a Gaussian distribution plus a
constant,
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� ,  (4)

where hi are the histogram entries from (ZAB - ZBA) , (z0,
s) are the mean and standard deviation of the distribution,
hmin is the asymptotic value of the tails and hmax is the
value at the peak of the distribution. The parameters (z0, s,
hmin, hmax) are found by fitting the model expressed in
Equation 4 to the histogram of (ZAB - ZBA).
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The value of the false correspondence threshold
is set to a multiple of the width of the central peak of the
distribution.  Thus, a pair of elevation estimates ZAB(x,y)
and ZBA(x,y) are considered reliable if the absolute value
of the self-consistency difference falls below the
threshold, e.g., if �ZAB(x,y) - ZBA(x,y)� < n�s, (where n
is a user defined parameter), otherwise both are considered
unreliable.

If there are N overlapping images of a surface
region, each from a unique viewpoint, then there are a
total of N(N-1) ordered  image pairs, e.g., three views
(A,B,C) would result in 6 pairs (A,B), (B,A), (A,C), (C,A),
(B,C), (C,B).  Thus, there are a maximum of N(N-1)
samples at every node in the DEM.  Once all of the
elevation estimates are labeled reliable or unreliable, the
optimal DEM and its variance are simply set to the
mean � �yxZ ,  and variance of the reliable elevations.

3 Results

The self-consistency fusion algorithm was tested on two
data sets:  (1) A set of four overlapping high altitude
images taken over a desert environment, and (2) a set of
photo-realistic simulated images generated from a know
DEM and ortho-image.

3.1 Real images

The object space self-consistency DEM fusion method
was tested on a set of four 9 inch ��9 inch aerial images of
a desert terrain near 29 Palms, California.  The image
scale was 1:10,000 and the four-way overlap covered a
region of approximately 2k � 2k pixels.  One of the
overlap regions is shown in Figure 1.

From the four images (A,B,C,D) a total of twelve
DEMs (ZAB, ZBA, …, ZCD, ZDC)  and six self-consistency
difference arrays (ZAB,- ZBA, …, ZCD - ZDC)  were
generated.  The histogram made from all twelve arrays is
shown in Figure 2.  A reliability threshold of 2� was
selected, which corresponded to �0.4m.

Figure 3 shows the fused DEM, a map of the
number of reliable elevation estimates, and a rendered
view of the ortho-image draped over the fused DEM.
About 98% of the fused DEM elements had 10 or more
reliable values, 215 out of the 4 million had 3 or less
reliable estimates, and only 157 had no reliable elevations
estimates.

In addition, there were no apparent blunders or
spikes in the fused DEM, and the rendered surface
appeared realistic.  The examination procedure consisted
of checking the relationship between objects such as rocks
and ditches to their shadows, and checking to see if
streams (or in this case dry stream beds) flow downhill.

3.2 Photo realistic simulation analysis

The methods described in this paper produce a dense array
of elevation estimates, which typically involves millions
of samples.  Consequently, a comprehensive evaluation of
the self-consistency method requires an equally dense
array of ground truth.  A few manually gathered ground
control points will not provide a sufficient number of
samples to test the validity of the method.  When
available, LIDAR may provide large, dense arrays of
ground truth.  However, LIDAR data have several
disadvantages, including (1) vertical errors that are similar
to the self-consistency errors; (2) it is difficult to register
LIDAR and image data; (3) LIDAR data are expensive to
collect.

To provide a detailed analysis of the self-
consistency fusion technique, we created a pseudo ground
truth data set.  The process begins with an existing DEM
and ortho-images.  A photo realistic ray-tracing program is

Figure 1.  One of the four 2k � 2k overlap regions.

Figure 2.  The histogram of the self-consistency
difference arrays and the fitted model.
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used to synthesize images of the surface from arbitrary
viewpoints.  Next, the synthetic images are used to
regenerate the DEM.   The regenerated DEM can then be
compared on a point-by-point basis to the pseudo ground
truth. Clearly, pseudo ground truth and synthetic images
are not a completely satisfactory substitute for real data.
Nevertheless, the method does provide the means for
generating otherwise unobtainable ground truth samples.

For this study, a small region in the center of the
fused DEM covering an area of 157.5m � 368.4m was

selected for the pseudo ground truth.  Photo realistic
synthetic images were then generated at incidence angles
that ranged from -30	 to +30	 at 15	 intervals.  An
example of an image chip from one of the real images and
a synthetic image chip of the same terrain is shown in
Figure 4.  From these images, five stereo pairs with base-
to-height ratios (b/h) that ranged from 0.277 to 1.23 were
analyzed.  The results are summarized in Table 1.  The
results were generally consistent with previous analyses of
the Terrest algorithm [12].  The standard deviation of the
self-consistency difference decreased with increasing b/h.

Figure 3.  (Top Left) The fused DEM generated from four overlapping views of the terrain shown in Figure 1. The
ground sampling distance is approximately 35cm, the average elevation variation is 17cm, and the elevation range
varies from a low 762.7m to a maximum of 885.7m.  (Top Right) A map showing the number of reliable elevation
over the DEM.  (Bottom) A rendered view of the ortho-image draped over the fused DEM.

Table 1. Pseudo ground truth results for five synthetic image pairs with varying base-to-height (b/h) ratios and
incidence angels (
A, 
B). The dependent variable are the standard deviation of the self-consistency difference �(ZAB-
ZBA), the percent of reliable elevation estimates (using a 2� threshold), and the standard deviation of the pseudo ground
truth error �( ZZ �

ˆ ), where Ẑ  is the pseudo ground truth DEM and Z  are the average reliable elevations.  All angles
are in degrees and all standard deviations are in meters.

      b/h 
A     
B    �(ZAB-ZBA)       % Reliable        
(2� cutoff)        

     �( ZZ �
ˆ )

     0.277    0	   15	 0.451            91.90                   0.214
     0.293  15	  30	 0.486            92.50                   0.266
     0.575  15	 -15	 0.312            91.36                   0.131
     0.868 -15	  30	 0.204            89.40                   0.152
     1.230  30	 -30	 0.168            84.24                   0.156
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In addition, the percentage of reliable elevation estimates
also decreased with increasing b/h.  This later result
probably was caused by an increase in occluded surfaces
resulting from steeper incidence angle. The slight increase
in pseudo ground truth error �( ZZ �

ˆ ) was likely cause by
contamination from unreliable elevation estimates, which
could be corrected by choosing a lower threshold.

4 Image space self-consistency

As discussed in Section 2, the self-consistency principle
can be applied in object space and image space [2][11].
The primary advantage of an image space representation is
that the disparity map naturally aligns with the reference
image.  In contrast, in object space the ortho-image is
registered to the DEM, and elevation errors will cause
distortions in the ortho-image.  Consequently, an image
space representation is especially useful when trying to

establish the 3D location of straight lines, such as building
edges.

Application of the self-consistency principle in
image space requires resampling DAB into the reference
frame of image B, or DBA into the reference frame of
image A.   Since the disparity map DBA is defined such that
the pixel pair (i+DBA(i,j),j) in image A and (i,j) in image B
are projections of the same surface element, the disparity
in image B for the pixel (i + DBA(i,j), j) in image A is
-DBA(i,j).  This relationship implies a simple algorithm for
changing the reference image from B to A.  For every line
in image A ( j = 0,1,2,… ) generate an array of irregularly
spaced independent values X = i + DBA(i,j), i = 0,1,2,…
and a corresponding array of dependent values
Y = -DBA(i,j), i = 0,1,2,….  Then, interpolate Y at equal
steps along X.  The result is a line in the resampled
disparity map ABD̂ , which contains the same information
as DBA, but in the reference frame of image A.  Self-
consistency analysis can now be applied to DAB and ABD̂ .

An example of image space self-consistency
analysis is shown in Figures 5-7.  Figure 5 shows one of
two 1000 � 1000 pixel sub-images (labeled 1 and 2)
extracted from a pair of much larger Ikonos images of
Hickam Air Force Base in Hawaii. The disparity maps D12

and D21 along with 12D̂ are shown in Figure 6.  Finally,
Figure 7 shows the average reliable disparity map
(D12 + 12D̂ )/2 for all cases where �D12 - 12D̂ � < 1.5 pixels,
and the correlation match scores were above 0.98.  An
object detection analysis showed that all but one building
and a smoke stack were found.

Figure 4.  A 400 � 400 pixel image chip (top) and
a synthetic view of the same region (bottom).

Figure 5.  A 1000 � 1000 sub-image extracted from
a larger Ikonos image of Hickam Air Force Base.
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5 Conclusions

The goals of self-consistency processing are to (1) detect
and remove errors in disparity maps or DEM tiles that
result from failures during the image matching process,
and (2) to combine the individual tiles to form a large area,
low noise model.   The self-consistency principle is based
on the expectation that reversing the reference and target
images will lead to similar (or self-consistent) results
when the image matching algorithm finds correct
correspondence, and dissimilar results when the image
matching algorithm fails.  The measure of
similarity/consistency is the signed difference between
two disparity maps or DEMs (derived from the disparity
maps) generated by reversing the reference and target
images.  A reliability threshold, based on the width of the
central peak of the distribution of the self-consistence
difference measures (DAB-DBA) or (ZAB-ZBA) for all
image pairs (A, B), is used to separate reliable and
unreliable disparity or elevation estimates.   An element in
a disparity map or DEM is considered reliable if and only
if the corresponding self-consistency measure falls below
the reliability threshold.

Figure 6.  D12 is the disparity maps generated with image 1 as the reference and image 2 as the
target; D21 is the disparity map generated with image 2 as the reference and image 1 as the target;
and 12D̂ is D21 resampled into the reference frame of image 1.

Figure 7.  The Average reliable disparity map.
Unreliable disparity values masked out with a black
background color.
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The concept of self-consistency was successfully applied
to the task of forming a composite DEM from a collection
of smaller DEM tiles for real and synthetic data.  Based on
the synthetic data, the technique was able to produce a
virtually error free composite DEM.  In addition, visual
analysis of real high-altitude aerial and satellite data
showed that the system is capable of consistently detecting
and removing the effects of image matching failures.

Acknowledgements
This research has been supported by the Army Research
Office under grant number DAAD19-99-1-0016, the
National Science Foundation under grants EIA-9726401,
EIA-9726401 (KOSEF) and EIA-0105272 (SGER), and
the Korean Agency for Defense Development (ADD),
Seoul, South Korea

References

[1] Agouris, Peggy, T. Schenk, Automated
Aerotriangulation Using Multiple Image Multipoint
Matching, Photogrammetric Engineering and Remote
Sensing, Vol. LXII, No. 6, June 1996, pp. 703-710.

[2] Ayache, N., and B. Faverjon, "Efficient Registration
of Stereo Images by Matching Graph Description of
Edge Segments," Int'l J. Computer Vision, pp. 107-
131, 1987.

[3] Aschwanden, P. and W. Guggenbuehl, "Experimental
Results From a Comparative Study on Correlation-
Type Registration Algorithms," Robust Computer
Vision, Foerstner and Ruwiedel, eds., pp. 268-289,
Wichmann, 1993.

[4] Fua, P. and Y.G. Leclerc, "Taking Advantage of
Image-Based and Geometry-Based Constraints to
Recover 3-D Surfaces," Computer Vision and Image
Understanding, vol. 64, no. 1, pp. 111-127, 1996.

[5] Grimson, W.E.L., "Computational Experiments With
a Feature Based Stereo Algorithm," IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 7, no.
1, pp. 17-34, January, 1985.

[6] Hoff, W., and N. Ahuja, "Surface From Stereo:
Integrating Feature Matching, Disparity Estimation
and Contour Detection," IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 11, pp. 121-136, 1989.

[7] Horn, Berthold K. P., Robot Vision, MIT Press,
Cambridge, MA.., 1986.

[8] Kanade, T. and M. Okutomi, "A Stereo Matching
Algorithm With an Adaptive Window: Theory and
Experiment," IEEE Trans. Pattern Analysis and

Machine Intelligence,  vol. 16, no. 9, pp. 920-932,
Sept. 1994.

[9] Leclerc, Y.G., Q.T. Luong, and P. Fua, "A
Framework for Detecting Changes in Terrain," IEEE
Trans. Pattern Analysis and Machine Intelligence, vol.
20, no. 11, pp. 1143-1160, November 1998.

[10]Leclerc, Y,G., Q.T. Luong, et al., "Self-consistency: A
novel approach to characterizing the accuracy and
reliability of point correspondence algorithms,"
DARPA Image Understanding Workshop, Monterey,
CA, Morgan Kauffman, 1998.

[11]Medioni, G. and R. Nevatia, "Segment-Based Stereo
Matching," Computer Vision, Graphics, and Image
Processing, vol. 31, pp. 2-18, 1985.

[12]Schultz, H., “Terrain Reconstruction from Widely
Separated Images”, Proc. SPIE, Volume 2486, pp.
113-123, Orlando, FL, April, 1995.

[13]Slama, Chester C. (Editor), Manual of
Photogrammetry, 4ed., American Society of
Photogrammetry, Falls Church, VA., 1980.

[14]Witkin, A., D. Terzopoulos, and M. Kass, "Signal
Matching Through Scale Space," Int'l  J. Computer
Vision, pp. 133-144, 1987.


