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Abstract

Object recognition is a central problem in computer vision
research. Most object recognition systems have taken one of
two approaches, using either global or local features exclu-
sively. This may be in part due to the difficulty of combining
a single global feature vector with a set of local features in
a suitable manner.

In this paper, we show that combining local and global
features is beneficial in an application where rough seg-
mentations of objects are available. We present a method
for classification with local features using non-parametric
density estimation. Subsequently, we present two methods
for combining local and global features. The first uses a
“stacking” ensemble technique, and the second uses a hi-
erarchical classification system. Results show the superior
performance of these combined methods over the compo-
nent classifiers, with a reduction of over 20% in the error
rate on a challenging marine science application.

1 Introduction

Most object recognition systems tend to use either global
image features, which describe an image as a whole, or lo-
cal features, which represent image patches. Global fea-
tures have the ability to generalize an entire object with a
single vector. Consequently, their use in standard classifi-
cation techniques is straightforward. Local features, on the
other hand, are computed at multiple points in the image
and are consequently more robust to occlusion and clutter.
However, they may require specialized classification algo-
rithms to handle cases in which there are a variable number
of feature vectors per image.

�
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One contribution of this paper is a novel method for ob-
ject recognition with local features. We propose to model
classes of images as a probability distribution over local
features. The probability density functions are estimated
non-parametrically, and are then used to build a maximum
likelihood classifier. We will refer to this classifier as Non-
Parametric Density (NPD). This method is shown to per-
form better than several other local feature classifiers. It
also has the advantage of being able to output a posterior
distribution over labels, rather than a single class label.

Despite the robustness advantages of local features,
global features are still useful in applications where a rough
segmentation of the object of interest is available. Auto-
matic detectors exist for several broad classes of objects,
such as faces [22] or signs [20]. For such applications
global features provide information that is useful for class
discrimination.

Due to the fundamental difference in how local and
global features are computed, we expect that the two rep-
resentations would provide different kinds of information.
Most local features represent texture in an image patch. For
example, SIFT features use histograms of gradient orienta-
tions [11]. Global features include contour representations,
shape descriptors, and texture features. Global texture fea-
tures and local features provide different information about
the image because the support over which texture is com-
puted varies. We expect classifiers that use global features
will commit errors that differ from those of classifiers based
on local features. This is supported by the confusion matri-
ces in Tables 1 and 2, which will be discussed further below.

We present two techniques to exploit this partial inde-
pendence of error to improve classification accuracy. The
first method uses stacking [16] to combine the output of
separate classifiers for local and global features. The ap-
proach uses the fact that the NPD classifier described above
outputs posterior distributions over class labels. The sec-
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(a) Euphausiid (b)
Siphonophore

(c) Ctenophore

Figure 1: A few example images from the VPR data set.

ond method forms a two-tier hierarchy of classifiers, where
the first stage uses a global feature classifier and the second
stage uses a local feature classifier. We group the classes
that are confused in the global feature space and rely on the
local classifier to sort the resulting superclass. Both tech-
niques significantly improved classification accuracy over
any single component classifier.

The primary application of these techniques is to marine
science data collected by a tool called the Video Plankton
Recorder (VPR) [2]. The Video Plankton Recorder captures
images of multicellular organisms that have organs and ap-
pendages with distinct visual appearances (Figure 1). The
data set consists of 1826 gray-scale images that belong to
one of 14 classes, which have been identified by experts.
The data set is challenging from a classification viewpoint
for several reasons. Organisms are photographed from ar-
bitrary three-dimensional views. The size of the organisms
relative to the field of view of the camera results in many
images in which an organism is only partially visible. The
highest accuracy that we were able to achieve with tech-
niques that use either local or global features alone is ap-
proximately 54%, while combining the two types of fea-
tures increased it to 65.5%. For comparison, Davis et al. [3]
report 60-70% accuracy on a similar dataset also acquired
by VPR, but only containing 7 classes. It is consequently a
challenging and attractive data source for testing our meth-
ods.

2 Classification with Global Features

Many object recognition systems use global features that
describe an entire image. Most shape and texture descrip-
tors fall into this category. Such features are attractive be-
cause they produce very compact representations of im-
ages, where each image corresponds to a point in a high-
dimensional feature space. As a result, any standard classi-
fier can be used.

On the other hand global features are sensitive to clutter
and occlusion. As a result it is either assumed that an image

Figure 2: Global Feature Classifiers

only contains a single object, or that a good segmentation
of the object from the background is available. In our case,
an image often does contain a single object, but sometimes
several organisms or particles are present.

We have found that a simple global bimodal segmenta-
tion is usually effective for separating the plankton from the
background, which tends to be significantly darker than the
object. We use expectation maximization (EM) to fit a mix-
ture of two Gaussians to the histogram of gray values for a
given image [4]. The Bayesian decision boundary defines
the cut point between foreground and background. After
that, morphological hole filling [18] is used to capture the
stray dark pixels inside the object.

From the segmentation of each image we have computed
three simple shape descriptors: area, perimeter, and com-
pactness (perimeter squared over area). We have also used
two kinds of global texture features: local binary patterns
(LBP), which are gray-scale and rotation invariant texture
operators [13], and shape index which is computed using
the isophote and the flowline curvatures of the intensity sur-
face [14]. These features comprise an effective subset of the
features explored for plankton categorization in [1]. Clas-
sification results for several commonly used classifiers are
shown in Figure 2.

3 Classification with Local Features

A different paradigm is to use local features, which are de-
scriptors of local image neighborhoods computed at multi-
ple interest points. In this section, we describe typical ways
in which local features are used. One of the key issues in
dealing with local features is that there may be differing
numbers of feature points in each image, making comparing
images more complicated. We present the Hausdorff Aver-
age, a standard technique for comparing point sets of dif-
ferent sizes, and apply it to comparing images represented
with local features. Subsequently we offer a probabilistic
method, which evaluates the average log likelihood of fea-
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ture points under a non-parametric density estimate for the
class, to evaluate the likelihood of the class for a particu-
lar image. Our proposed method outperforms the Hausdorff
Average method and is an important component of our com-
bined local-plus-global method.

Typically, interest points are detected at multiple scales
and are expected to be repeatable across different views of
an object. The interest points are also expected to capture
the essence of the object’s appearance. The feature descrip-
tor describes the image patch around an interest point.

The usual paradigm of using local features is to match
them across images, which requires a distance metric for
comparing feature descriptors. This distance metric is used
to devise a heuristic procedure for determining when a pair
of features is considered a match, e. g. by using a distance
threshold. The matching procedure may also utilize other
constraints, such as the geometric relationships among the
interest points, if the object is known to be rigid.

One advantage of using local features is that they may be
used to recognize the object despite significant clutter and
occlusion. They also do not require a segmentation of the
object from the background, unlike many texture features,
or representations of the object’s boundary (shape features).

In this paper we have used the SIFT (Scale Invariant Fea-
ture Transform) features proposed by Lowe [11], which use
local maxima of the difference-of-Gaussians function as in-
terest points and histograms of gradient orientations com-
puted around the points as the descriptors.

3.1 Feature Matching

Usually, local features from a pair of images are matched to
produce a list of reliable point correspondences. The cor-
respondences can then be used to perform image classifica-
tion. In previous work by Lowe [11], image matching was
performed by counting the number of vectors in the test-
ing image that ”matched” to vectors in the training image.
Two vectors match if their Euclidean distance falls below
a threshold. We decided to use the number of matches be-
tween two images as our similarity measure.

Let � �������	�
be the number of matches obtained by

matching features from image
�

to features from image�
. Note that in general � ���
���	��� � ���������

, because
the distance threshold procedure allows many-to-one fea-
ture matches. We can then define similarity between two
images as � ��������� � � � ���
������� � ���������������

. Now we
can easily build a k-nearest-neighbor (KNN) classifier. This
approach has performed very well on a sign recognition
task [12] in which the goal was to identify specific objects
stored in a database.

The disadvantage of using the number of matches as a
similarity measure is that image matching fails to general-
ize for the entire class consisting of highly variable organ-

isms. This is problematic in this application due to the high
in-class variability. The accuracy achieved by this method
on our domain was only 25% using 1 nearest neighbor. Us-
ing more neighbors decreased the accuracy by 1-2%. To
mitigate this problem, we adopted a image distance more
suitable to this task, the Hausdorff Average.

3.2 Hausdorff Average

The one-sided Hausdorff distance [9] between two sets of
points in a space is defined as

� ���
���	� ����� �!#"%$ �'&)(* "%+-,), .0/213,), � (1)

where
�

and
�

are the two sets of points, and ,4,65�,4, is a norm
for points in the sets.

In general, under this formulation
� ���
���	�7�� � ���'�����

.
To address this, the bi-directional Hausdorff distance is de-
fined as

8� ���
���	� �9��� � � � �������	�:� � ������������;
(2)

The Hausdorff distance is often used for object detec-
tion, where an image is represented by a set of edge points.
In our case, we use the Hausdorff distance to compare sets
of points in a high-dimensional feature space, rather than
in the image plane. Specifically, we use a variation of the
Hausdorff distance, known as the Hausdorff Average, de-
fined as

� . ��������� �=< !#"%$ �'&)( * "%+?> .�/@1 >
, � ,

�
(3)

where , � , is the cardinality of
�

, and .BADC �
. The Haus-

dorff Average has been shown to be the most stable varia-
tion of the Hausdorff distance under image distortions [17].
Intuitively, the distance between two images is made greater
whenever a local feature in one image is not close to any of
the local features in the other image, and vice versa.

The Hausdorff average allows us to compare two im-
ages represented by the corresponding sets of local features,
which also can be used to build a k-nearest-neighbor classi-
fier. On our data set the accuracy of a KNN classifier using
5 nearest neighbors was 45.66%.

3.3 Maximum Likelihood Classifier

While the accuracy of the Hausdorff-based classifier is en-
couraging compared to the feature matching technique de-
scribed in Section 3.1, we believe that classes of images
can be better represented by estimating a probability distri-
bution over local features present in those images. Once the
distributions for each class of images are estimated, we can
build a maximum-likelihood classifier.
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Since we have little a priori knowledge about structure
in our data, we will use non-parametric density estimation.
We start by gathering local features from training images
of a particular class into a single set. Then for every local
feature, a Gaussian kernel is placed in the feature space with
its mean at the feature. The probability density function
(PDF) of the class is then defined as the normalized sum
of all the kernels. In theory, it is possible to estimate the
distribution over local features for each individual image.
However, a union of the features from all training images of
a class gives us a much larger number of samples, resulting
in a better density estimate.

We set the covariance of the kernels using Parzen Win-
dows [6]. The approach keeps the kernels isotropic, and the
standard deviations of all kernels the same. Thus, there is
only one parameter � , which is set such that the mean log
likelihood of every point is maximized using a leave-one-
out scheme.

After the PDFs of all classes are estimated, we can build
a maximum-likelihood classifier. Let

� ��� ��� � ��� � ;4;);)� ���
	
be the set of image classes. Let � ���� � �  � � ;4;);4� �� 	 be a
query image, and  A C � be one of its constituent local
features. First, we compute the likelihood of the query given
each class:

������� � � , � A � ����
��
��� �

������� �  � , � A ��� (4)

where
� �  � , � A � is given by the PDF of

� A . Summing the
log likelihoods for each class corresponds to an assumption
that the local features found in each image are generated
independently. We can then output the most likely class
label for � .

Furthermore, the posterior probabilities for each class� � � A�, � �
can be easily computed by normalizing the like-

lihoods:

� � � A�, � � � � � � , � A �<
�
��� � � � � , � � �

;
(5)

We assume uniform priors, because one of our objectives is
to estimate relative proportions of the populations of differ-
ent plankton species.

One of the difficulties of using non-parametric density
estimation is that in higher dimensions one needs a very
large number of sample points. In the case of local features,
this problem is somewhat alleviated by the fact that there
are many more local features than there are images. Fur-
thermore, in our implementation we first reduce the dimen-
sionality of the SIFT features from 128 to 16 using Principal
Components Analysis.

This classification technique differs significantly from
most methods that use local features in that it does not
explicitly compute feature correspondences. For example,

Figure 3: Local Features Classifiers

Helmer and Lowe [8] propose a probabilistic object recog-
nition method that models an object as a collection of parts,
and looks for most likely matches between model parts and
image features. The NPD approach, on the other hand rep-
resents a class of objects as a probability distribution over
the feature space, and computes the likelihood of an image
feature, without expicitly assigning it to a particular model
part.

Comparative results are shown for the three techniques
for local feature classification described here in Figure 3.

4 Combination Methods

The key contribution of this paper is combining the differ-
ent information provided by local and global features. We
explore two methods for achieving this. The first is the clas-
sical method of stacking and the second is using a classi-
fication hierarchy. Both significantly improve results over
methods that use either global or local features alone.

4.1 Stacking

Ensemble methods are learning algorithms that have been
shown to improve performance by combining the outputs of
multiple component classifiers. Ensemble methods for clas-
sification have been shown to have better accuracy than the
component classifiers if the component classifiers are accu-
rate and diverse [5]. An accurate classifier is one that out-
performs random guessing, and diverse classifiers are those
that commit independent errors. One of the main areas of
ensemble research is how to induce independence between
the component classifiers. Inducing independence can be
achieved by manipulating the training set, manipulating the
input features, or injecting randomness in the learning algo-
rithm.

As opposed to techniques in which a fixed ensemble
strategy is used, meta-learning techniques employ a meta-
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classifier that generalizes over the space of outputs from
base level classifiers. In stacking [16] the outputs of con-
stituent classifiers are concatenated and used as an input
feature vector for a meta-classifier. Stacking is perhaps the
most intuitive technique for meta-learning, but has found
surprisingly low adoption in the vision community.

We discuss here two main variations of stacking. In the
first, the input to the meta-classifier is a concatenation of
class labels produced by each of the component classifiers.
In the second variation, each component classifier outputs a
posterior distribution over class labels, rather than a single
label. Distributions from the component classifiers are con-
catenated and used as input to the meta-classifier. Stacking
with probability distributions, in essence, trains on an esti-
mate of classification confidence from the base level classi-
fier. Any classifier can be used at the base level if we only
require a single category label, but stacking with probabil-
ity distributions restricts us to classifiers that output distri-
butions over class labels. The choice of meta-classifier is
not restricted in any way. In our experiments with stacking
we have used SVM as the meta-classifier.

Our local feature classifier produces posterior distribu-
tions over labels as described in Section 3.3. We have ex-
perimented with two variations of base level classifiers for
global features. In the first, we used non-parametric den-
sity estimation to build several maximum-likelihood classi-
fiers using different global features. Using stacking to com-
bine only the global features, we achieved an accuracy of
50.32%. Because SVM had a higher accuracy for global
features, our second technique uses SVM classifiers at the
base level. The meta-classifier takes a vector consisting of
ones in the elements corresponding to the base-level clas-
sification, and zero elsewhere. Classification accuracy for
these experiments is summarized in Figures 4(a) and 4(b).

4.2 Classification Hierarchy

Given that local and global features provide different kinds
of information about an image, it is possible that a pair of
classes not separable in global feature space will be distin-
guished by local features. In this section, we propose a 2-
tier hierarchical classification system that uses global and
local features in succession.

At the top level, classes that are not separable by global
features are merged into super-classes. The global feature
classifier is then trained on these super-classes. A local fea-
ture classifier is then trained to distinguish between the orig-
inal classes contained in each superclass. When a query im-
age is classified as belonging to a super-class, it is passed
to the local feature classifier, which in turn determines to
which of the classes the image belongs. The reasoning be-
hind this is that at the top level the images are categorized
into broader, more separable, groups, and at the bottom

Table 1: Confusion matrix for SVM with global features
1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 21 5 3 1 1 2 0 1 2 96 0 0 0 1
2 4 33 0 0 6 3 0 1 3 30 0 5 1 0
3 3 2 22 0 0 0 11 1 1 54 3 0 1 2
4 3 2 0 10 8 1 0 0 1 2 0 7 0 0
5 1 4 0 2 94 2 0 0 0 5 0 10 13 0
6 1 2 1 0 11 4 1 0 0 39 1 1 7 0
7 0 3 11 0 0 1 29 0 3 70 21 0 1 3
8 3 3 2 0 0 0 0 83 2 1 1 1 0 1
9 5 0 1 2 2 0 3 0 89 24 3 1 0 3
10 12 11 10 0 1 2 21 3 6 339 16 0 4 8
11 0 0 3 0 0 0 16 1 2 18 67 0 0 1
12 1 13 1 5 11 0 1 6 3 5 0 155 1 0
13 3 0 0 0 19 5 0 0 0 23 0 1 30 0
14 4 2 2 0 0 0 2 1 17 33 5 1 1 10

Table 2: Confusion matrix for NPD with local features
1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 18 0 0 0 17 0 0 0 0 41 0 56 1 0
2 2 13 0 0 8 0 1 0 1 8 0 50 1 1
3 1 0 47 2 4 0 7 0 7 24 0 7 0 0
4 0 0 0 0 15 1 0 0 0 2 0 16 0 0
5 0 0 0 0 87 0 0 0 0 2 0 39 2 0
6 1 0 1 0 23 6 0 0 0 12 1 20 4 0
7 3 0 10 0 6 0 74 0 4 27 2 10 3 2
8 0 0 0 0 0 0 0 89 0 0 0 8 0 0
9 4 0 0 0 6 1 3 0 57 29 3 24 0 6
10 7 1 5 1 29 2 14 0 3 274 0 79 16 0
11 1 0 1 0 0 0 3 0 1 12 88 1 0 1
12 0 0 0 0 7 0 0 21 0 1 0 173 0 0
13 0 0 0 0 42 0 0 0 0 3 0 28 8 0
14 1 1 1 0 3 0 0 0 8 21 1 28 0 14

level the classifier has to distinguish between fewer classes.
The global feature classifier is used at the top level because
it is faster, resulting in a speedup for the overall system.

For this combination method we used the best perform-
ing classifier for global features (SVM) and for local fea-
tures (NPD). The confusion matrices for the component
classifiers are shown in Tables 1 and 2. The groupings have
been constructed by iteratively merging two classes

�
and�

, such that the percentage of instances of
�

classified as�
is the highest. This process stops, when the percentage

falls below a threshold.
The merging procedure on the VPR data set resulted

in the creation of two super-classes, consisting of 2 and 4
classes, respectively. The accuracy of the SVM classifier
on the resulting 10-class problem increased to 69%, and the
overall accuracy increased to 60%.

5 Application Domain

In this paper we are attempting to classify gray-scale images
of zooplankton acquired by the Video Plankton Recorder
(VPR) [2]. The VPR consists of a single video camera and
synchronized strobe that images the contents of a small vol-
ume of water at a rate of 60 Hz. In this study the camera
imaged 5.1 ml per image, with a field of view of 17.5 mm
wide x 11.7 mm tall x 25 mm deep. Images were transmit-
ted to the surface via fiber-optic cable where time-code from
a GPS system was added and data were archived on S-VHS
videotape. In the lab, the video signal was routed through
a PC-based image processing system (Imaging Technolo-
gies) that digitized each image and located objects meeting
user-defined criteria for size, brightness, and focus. Objects
meeting these criteria (termed regions of interest or ROIs)
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were cropped and written to disk as individual TIFF files. A
subset of images was manually classified into zooplankton
categories that ranged from individual species to broader
groups, depending on how many taxonomic classification
features were present.

One issue with the data produced by the VPR is that the
video frames are interlaced. Since the camera system is
typically towed at over 4 m/s, each video field represents
a complete scene. When ROIs are extracted by the image
processor, each image has only half of its horizontal scan
lines (either odd or even). Therefore the images have to be
interpolated to recover their proper aspect ratio.

The images we used to test our classification techniques
show zooplankton belonging to 13 categories and one phy-
toplankton category (Table 3). Microscopic plants (phyto-
plankton) are often radially-symmetrical, and may appear
similar when viewed from different angles. On the other
hand, the animals in our images are 3D objects, whose ap-
pearance very much depends on their orientation relative
to the camera. Most of the animals also have various ap-
pendages that may be extended or retracted, and posses ar-
ticulated exoskeletons that can twist and bend, resulting in
many degrees of freedom of motion. In other words, they
are capable of a wide range of articulated motion, resulting
in great variety of possible appearances. These facts make
the task of classifying these images very challenging.

6 Results

The results of combining local and global features with
stacking, as described in Section 4.1, are shown in Fig-
ures 4(a) and 4(b). In each figure, the accuracy of the com-
ponent classifiers is displayed followed by the accuracy of
the stacking technique.

In Figure 4(a), two component classifiers were used, in-
creasing the accuracy to 65.5%. The first component is
an SVM classifier trained on global features. We used the
SVM implementation included in the Weka toolkit [21].
The classifier output was converted into a vector with a
value of 1 assigned to the predicted label, and a value of 0
to all the others. The second classifier was NPD with local
features.

In Figure 4(b), 8 NPD component classifiers were used,
increasing the accuracy to 62%. One of them was trained
with local features, while the rest used global features. The
global features (described in Section 2) were compactness,
perimeter, area, three kinds of local binary patterns (LBP),
and shape index. The local binary pattern features used pix-
els sampled at a radius of 1, 2, and 3, and sample sizes of 8,
16, and 24, respectively.

In both cases posterior distributions for all images in
the VPR data set were produced by the component clas-
sifiers using 10-fold cross-validation. The mean accuracy

Table 3: Taxonomic Categories of the VPR Data Set

Category Name Taxonomic Group # images

Calanus copepod species 132
finmarchicus
Chaetognaths zooplankton phylum 86
Conchoecia ostracod genus 100
Ostracods
Ctenophores zooplankton phylum 34
Euphausiids zooplankton order 131
Hyperiid zooplankton 68
Amphipods suborder
Pteropods zooplankton order 142
Diatom Rods phytoplankton class 97
Larvaceans zooplankton class 133
Small Copepods zooplankton class 433
Unidentified zooplankton order 108
Cladocerans
Siphonophores zooplankton 202

suborder
Euchaeta norvegica copepod species 81
Siphonulae developmental stage 78

of zooplankton
suborder

and the standard error for the NPD classifiers were com-
puted using the results of the folds. The mean accuracy of
the SVM component classifier was computed by running
10-fold cross-validation 10 times with different permuta-
tions of the data. This resulted in much tighter standard
error bounds. The resulting distributions were concatenated
to form meta-features, which were used to train and test a
meta-classifier (SVM) again using 10-fold cross-validation.
The mean accuracy and the standard error were computed
the same way as for the component SVM classifier.

Figure 4(c) shows the results of combining local and
global features using the hierarchy of classifiers (Section
4.2). At the top level of the hierarchy two super-classes
were created, one merging classes 4 (Ctenophores) and 12
(Siphonophores), and the other containing classes 3 (Con-
choecia Ostracods), 7 (Pteropods), 10 (Small Copepods),
and 11 (Unidentified Cladocerans). The number of cate-
gories at the top level has been reduced to 10. An SVM
global feature classifier is trained on these new categories
yielding an accuracy of 69%. When the local feature clas-
sifier is applied to the super-classes, an overall accuracy of
60% is achieved.
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(a) Stacking using a SVM global
feature classifier, and a NPD local
feature classifier.

(b) Stacking using many NPD global
feature classifiers, and a NPD local
feature classifier

(c) Hierarchical classification us-
ing SVM global feature classifier,
and a NPD local feature classifier.

Figure 4: Classification results.

7 Conclusions and Future Work

In this paper, we have presented two methods for com-
bining local and global features. We argue that global
and local features should be used for recognition in ap-
plications where an object detector is available. We have
shown, through experimental results, that combining these
two types of features is reduces error by more than 20%.
Although the local and global feature sets used in this ex-
periment both largely describe texture we have neverthe-
less shown that both provide different kinds of information
about the image. We expect that classification accuracy
would increase further if we were able to add more shape
descriptors or contour features. We have also presented
a novel method for classification using local features that
has outperformed several image matching methods. This
method is able to generalize for the entire class and thus is
capable of partially overcoming the high in-class variability
present in our data set. In future work we plan to extend the
hierarchal classification model and introduce a new combi-
nation method through the use of kernels.

We plan to extend the classification hierarchy approach
to be more flexible with respect to the class groupings. Us-
ing unsupervised clustering and the entropy of each cluster
is a promising technique for revealing the confused classes
in global feature space. By training local feature classifiers
on the classes that belong to clusters with low entropy, we
allow the individual classes to be present in more than one
superclass, which gives the model more flexibility. Since
the clusters formed would be easily separable in global fea-
ture space, we obtain an accurate top level classifier. We
also plan to analyze the effect of a top level global feature
classifier vs a top level local feature classifier.

Several recent papers have suggested approaches to tie
image matching with local features to the support vector
framework [7][10][19]. The support vector framework is a
general method for classification derived from inner prod-
ucts over feature vectors [15]. A key feature of the SVM
framework is that it allows for the replacement of strict in-
ner products in the original feature space with Mercer ker-
nels, functions that are equivalent to inner products between
projections of the original vector into a, usually higher di-
mensional, feature space. Though the data may not be well
separated in the lower dimensional space, their projection
into higher dimensions may be. Positively weighted linear
combinations of Mercer kernels are Mercer kernels them-
selves. We plan to develop a new SVM kernel consisting of
a linear combination of a kernel to match local features and
a kernel applied to a global image descriptor.
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