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Figure 8: A211 Sequence, Frame 1. The points

marked by crosses and circles are the initial model

and new points respectively.

Figure 9: A211 Sequence, Frame 10.

5 Conclusions

The techniques presented in this section are pre-

liminary e�orts for model extension and re�nement

of point data. The experimental results show that

knowledge of a few points can greatly increase the

accuracy of 3D recovery when compared to the per-

formance of traditional algorithms from motion and

stereo analysis. However, the accuracy of the model

extension process depends on the initial accuracy of

the model points. To make the system less sensitive

to the initial accuracy of the model points, one pos-

sible solution would be to couple methods of motion

analysis with those of pose recovery.

If the initial model points have a large amount

of noise, then the poses determined for any batch of

frames will be highly correlated. In this case, the

3D location estimates of new points will be corre-

lated both across all points and also all frames. To

fully account for this correlation, covariance matri-

ces equal to the size of number of points times num-

ber of frames will have to be inverted. In our case, it

is assumed that the initial points do not have signif-

icant noise and hence the cross-correlations can be

ignored. But for larger amounts of noise, it may not

be possible to ignore these e�ects. These cross-terms

are exactly what Oliensis and Thomas [13] incorpo-

rate in their motion analysis paper.

Finally, the terms model extension and re�ne-

ment are slightly abused in this paper. Model ex-

tension and re�nement are not limited to just locat-

ing new points in the scene. Ultimately, it is desired

to build 3D surface and volume-metric models and

integrate the new 3D measurements with the exist-

ing higher order models; this has been left for future

work.

Appendix

Some facts from linear system estimation theory are

reviewed. An unknown parameter vector ~x with \p"

elements is related to a set of \n" noisy observations

~y by the following equation:

A~x = ~y + ~� (19)

where ~� is zero-mean Gaussian noise with covariance

matrix V. Assume, that this set of equations is an

over-constrained system. Then the Best Linear Un-

biased Estimate (BLUE) of the unknown vector ~x is



Figure 8) lying on shallow structures recovered by

this algorithm were used as the initial model points.

The 3D model locations were constructed by extend-

ing the image projection rays in the �rst image's

coordinate frame of the seven points to the depth

computed by Sawhney's algorithm. Thus, the model

coordinate frame is the same as the �rst image's co-

ordinate frame.

Table 3: Absolute and Percentage 3D loca-

tion errors for points in A211 sequence (see

Fig. 8.)

INPUT OUTPUT

Pt.
Depth Abs. % Abs. %

No.
Err. Err. Err. Err.

ft. ft. ft.

Initial Points

1
13.4 0.24 1.80 % 0.24 1.78 %

2
14.6 0.19 1.31 % 0.20 1.34 %

3
19.0 0.74 3.88 % 0.66 3.46 %

4
19.0 0.16 0.86 % 0.11 0.60 %

5
20.4 0.13 0.62 % 0.17 0.86 %

6
20.4 0.39 1.90 % 0.32 1.60 %

7
20.4 0.49 2.38 % 0.46 2.25 %

New Points

8
13.4 - - 0.11 0.79 %

9
13.4 - - 0.00 0.01 %

10
14.6 - - 0.53 3.65 %

11
19.0 - - 0.73 3.86 %

12
19.0 - - 0.54 2.82 %

13
19.0 - - 0.11 0.59 %

14
19.0 - - 0.07 0.34 %

15
20.4 - - 0.23 1.13 %

16
20.4 - - 0.27 1.32 %

17
20.4 - - 0.12 0.57 %

18
20.4 - - 0.34 1.65 %

19
20.4 - - 0.62 3.02 %

20
20.4 - - 0.59 2.92 %

The model extension and re�nement algorithm

was run in a sequential mode. Table 3 shows the re-

sult of locating the 13 new points (circled and num-

bered from 8 to 20 in the Figure 8) and re�ning

the seven initial model points. The ground truth

available for the experiment was only the depths (as

opposed to 3D location) of the points in the �rst im-

age's coordinate frame. Thus the results shown in

Table 3 compare the measured depth value (ground

truth) with the recovered depth value. Column 2

in the table shows the measured depth of the point

in the �rst image coordinate frame. Columns 3

and 4 show the input error and percentage error

in depth (before model re�nement and extension)

respectively. Thus, for the new points (Nos. 8 to

20) these two columns are blank, since no prior es-

timate is assumed for them. Columns 5 and 6 show

the input error and percentage error in depth (after

model re�nement and extension) respectively. The

percentage error in depth is computed with respect

to the depth in the �rst image's coordinate frame.

The average input error in depths of the seven

model points was 0.4 feet (1.85 % error). At the end

of the ten frames, the average error of the 7 initial

points was 0.37 feet (1.76 %). The thirteen new

points were located to an average accuracy of 0.4

feet (1.63 %). Thus, in this experiment there was

only slight improvement for the model re�nement

process. The model extension process was however

fairly accurate in locating new points. If the initial

model given to the model extension process is noise

free, then the average error in recovering the thirteen

new points is 0.2 feet (0.94 %).

The robust recovery of the location of new 3D

points depends on the camera motion. Optimal an-

gles for triangulation are achieved when there is sig-

ni�cant translation parallel to the image plane. In

the A211 sequence, the translation of the camera is

mostly along the optical axis. Thus, the FOE (focus

of expansion) lies on the image plane. Points close to

the FOE have hardly any disparity and their depths

cannot be reliably estimated. For this reason, the

best results obtained by us were for the BOX se-

quence.



Table 2: Absolute and Percentage 3D loca-

tion errors for points in PUMA sequence (see

Fig. 5.)

Point
Depth Absolute Percentage

Num.
Error Error

feet feet

1
24.59 0.616 2.50 %

2
26.02 0.355 1.36 %

3
28.32 0.373 1.32 %

4
22.06 0.440 1.99 %

5
30.20 0.217 0.72 %

6
28.62 0.281 0.98 %

7
31.56 0.472 1.50 %

8
32.61 0.038 0.12 %

9
14.33 0.125 0.87 %

10
15.34 0.279 1.82 %

11
14.46 0.019 0.13 %

12
13.50 0.081 0.60 %

13
21.75 0.054 0.25 %

14
18.81 0.022 0.12 %

15
21.73 0.036 0.17 %

16
20.28 0.104 0.51 %

17
21.26 0.402 1.89 %

18
20.28 0.731 3.60 %

19
21.55 0.234 1.09 %

20
20.42 0.594 2.91 %

of 2 frames to generate 3D locations. The y-axis in

Figure 7 is the average error in locating the 20 new

points and the x-axis is the frame number. Again,

the average error is reduced from about 1.5 feet after

the �rst pair of frames to about 0.3 feet at the end

of 30 frames.

The point numbers in Table 2 correspond to the

numbered circled points in Figure 5. The depth of

each point from the �rst camera coordinate frame

is also shown

5

. The average error for the twenty

points was 0.27 feet. The maximum error was 0.731

feet and the minimum error was 0.019 feet. The av-

erage percentage error was 1.22 %. The reader must

note that this average is just over a set of 20 points.

There are points in the sequence for which the er-

ror is much larger than 1.2 %. Points 1-4 in Table

5

Since the plane of motion was roughly parallel to the im-

age plane, these depths are approximatley constant for the

entire sequence.

2 have large errors because they were not localized

accurately. The line-�nding algorithm was not able

to correctly �nd the borders of the lights. Points 18

and 20 have large errors because they are close to

the point where the rotation axis pierces the image

plane. These points therefore do not have large dis-

parities. Points 17 and 19, which are a little further

away, have correspondingly smaller errors. Finally,

as noted above the imaging system has not been cal-

ibrated. Since we used a higher �eld of view lens for

this experiment (40 deg. as compared to 24 deg. for

the BOX sequence), the 3D results are more sensi-

tive to errors in locating the image center.

4.3 A211 sequence

The A211 sequence was generated by taking images

from a camera mounted on a mobile robot. The

robot was translated roughly along the optical axis

of the camera and 10 image frames were taken after

every 0.38 feet each. Thus the total translation of

the camera was 3.42 feet. Fig. 8 and Fig. 9 show the

�rst and tenth frame in the image sequence respec-

tively. Objects in the scene ranged from 8 feet to 20

feet away in the �rst image frame.

The initial model in this experiment was built

using Sawhney and Hanson's [14] algorithm for seg-

menting and locating shallow structures

6

. The im-

age motion of shallow structures can be described by

an a�ne transform. Based on the a�ne-trackability

of an object, Sawhney [14] is able to segment out

di�erent shallow structures in the scene. A Kalman

Filter is used to estimate the depths of \shal-

low structures" over a sequence of multiple image

frames. Their algorithm, however, cannot handle

non-shallow structures.

Seven points (the points marked by crosses in

6

Shallow structures are those whose extent in depth is

small compared to their average depth from the camera.
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Figure 5: Puma Sequence, Frame 14. The

points marked by crosses and circles are the initial

model and new points respectively.

Figure 6: Puma Sequence, Frame 25.
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Figure 2: Box Sequence, Frame 1. The points

marked by crosses and circles are the initial model

and new points respectively.

Figure 3: Box Sequence, Frame 8.
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directions, the results plotted in Fig. 4 for model

re�nement appear to be superior to those of model

extension.

Table 1: Computed average output 3D loca-

tion errors for model extension process with

noisy input model points for the Box Se-

quence of 8 frames. Input Noise to model is

synthetic uniform noise.

Range
Average

Average Output Noise

Input
Input Initial New

Noise
Noise Points Points

mm
mm mm mm

0
0.00 0.00 1.38

1
1.02 1.01 1.69

2
1.95 1.52 1.92

3
3.06 2.00 2.23

5
4.49 3.00 3.78

7
6.96 3.32 3.84

10
10.25 4.16 6.31

20
17.29 10.32 16.23

In this experiment, the high accuracy with which

3D parameters of the new points were computed

is due primarily to the fact that the motion over

the sequence is approximately parallel to the image

plane. Such motion is best for accurate triangula-

tion. Moreover, due to the rotation about an o�-

centered axis, image features remain in the image

plane for the entire sequence and large image dis-

parities are obtained.

In the �rst experiment (�rst row of Table 1) de-

scribed above for the box sequence, the image center

was assumed to be at the frame center. In another

experiment, the image center was assumed to be dis-

placed by 15 pixels along each axis from the frame

center. The experiment was repeated and the 3D

locations of the points obtained; comparing these

locations to the previously computed locations, we

found that the new estimates of the 3D points dif-

fered from the previously computed estimates by an

average distance of 0.261 mm. This supports the

earlier claim [11] that incorrect estimates of the cen-

ter do not a�ect the 3D estimation of points signi�-

cantly for small �eld of view systems (24 degrees for

this sequence).

4.2 Puma Sequence

The second sequence was generated by �xing a cam-

era to a PUMA arm and rotating the arm by 4 de-

grees between consecutive positions of the camera.

The �eld of view of the imaging system was 40 de-

grees. Fig. 5 and Fig. 6 show the 14'th and 25'th

frames of the PUMA sequence respectively. The

plane of rotation of the camera is approximately par-

allel to the image plane. The axis (o�-centered) of

rotation intersects the image plane somewhere be-

tween points 8 and 18 in Figure 5. The radius of

rotation is approximately 2 feet. Thirty frames were

taken over a total angular displacement of 116 de-

grees. The maximum displacement of the camera

in these thirty frames is approximately 2 feet along

the world y-axis (vertical direction) and 1 feet along

the world x-axis (parallel to the x-axis of the image

in Figure 5). This corresponds to the longest base-

line over these 30 frames. The location of 32 points

(marked in Figure 5) in a world coordinate system

was measured to an accuracy of approximately 0.2

feet along each axis. The depth of the points (in the

�rst frame's coordinate system) used in our experi-

ment varied from 13 feet to 33 feet. Most of the 32

points were tracked over the entire set of 30 frames.

The twelve points marked by crosses in Figure 5

were used to do pose estimation [10] for each frame.

For this experiment, no noise was added to the ini-

tial twelve model points. Table 2 shows the errors

in computing the 3D locations of the remaining 20

points (marked by numbered circles in Figure 5).

The results shown in Table 2 are the output of the

algorithm when run in a batch mode using all 30

frames. Figure 7 is a graph of the same experiment

when run in a sequential mode using a batch size



the camera was about 650 mm distant from the top

front corner of the box. The location of 30 points

(marked in Fig.2 by circles and crosses) in a world

coordinate system was measured to an accuracy of

approximately 1 mm along each axis. The depth of

the points (in the �rst frame's coordinate system)

used in our experiment varied from 575 mm to 700

mm. The thirty points were tracked over the set of

8 frames.

The �fteen points marked by crosses in Figure 2

were used as the initial model to do pose estima-

tion [10] for each frame. Various experiments were

performed with di�erent amounts of synthetic uni-

form noise added to the measured 3D locations of

the cross points. Using the computed poses, 3D es-

timates of the remaining 15 points (marked by circles

in Figure 2) were computed. In addition, the initial

model of 15 (cross marked) points was re�ned. The

algorithm described in Section 3 was run in a batch

mode over all 8 frames to perform these experiments.

The results of these experiments are reported in Ta-

ble 1. The �rst column of Table 1 gives the range of

noise added to the initial model points. Thus a 10

mm entry in the �rst column means uniform noise in

the range of +/- 10 mm was added to each of the 3D

coordinates of the model points. The average error

4

of the 15 initial model points for each experiment

(prior to any re�nement) is given in the second col-

umn of Table 1. The third column in the table shows

the results of the model re�nement process; it gives

the average output error of the 15 (now re�ned) ini-

tial model points. The fourth column in the table

shows the results of the model extension process; it

gives the average output error of the 15 new (circle)

points.

As can be seen from the �rst row in Table 1, the

4

The average error is the root mean square (RMS) value

of the 3D location error of all points.

average error for model extension when there is no

noise in the initial model is 1.38 mm. The maximum

error was 2.6 mm and the minimum error was 0.44

mm. The average percentage error was 0.25 %. The

percentage error is calculated by dividing the abso-

lute 3D error by the depth of the point from the

origin of the camera in the �rst image's coordinate

frame. As the noise in the initial model increases,

the errors in model extension and re�nement also

increases. However, except for the �rst two cases in

Table 1, the average output error for both model ex-

tension and re�nement were signi�cantly lower than

the average input error of the initial model points.

The model extension and re�nement algorithm

was also run in a sequential mode, where new 3D

locations were computed after every new pair of

frames and the results were fused with previous es-

timates. Figure 4 shows the results of such an ex-

periment. For this experiment, the range of input

noise was 5mm and the average error of the initial

model points was 4.49 mm (corresponding to the

�fth row in Table 1). The average output error in

location of both the initial model points and the new

(circle) 3D points is plotted for every image frame

in the sequence. As can be noticed in the �gure,

the 3D error in both the initial model points and

the unknown points monotonically decreases across

all frames. The average error of the new points is

reduced from 6.5 mm after the �rst pair of frames

to about 3.7 mm at the end. The average error of

the initial points is reduced from 4.49 mm to about

2.8 mm. The model extension and re�nement pro-

cess is more accurate in reducing the 3D location

error in the transverse (image x and y) directions

as compared to initial errors in the depth (z) direc-

tion. Thus the �nal errors in locating the 3D points

are mostly in the depth direction. Since, the ini-

tial model was corrupted with uniform noise in all
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This same method is used for model re�nement.

Initial model points have associated with them their

input covariance matrices. When the model is

tracked over a new batch of frames, 3D measure-

ments can also be made for the model points by

the above pseudo-intersection procedure. These new

measurements are fused with the old estimate using

the above equation.

3.1 Model Extension and Re�nement

Algorithm

The algorithm for model extension and re�nement

using a current batch size of \n" (n � 2) frames

can be summarized as follows:

Step 1 Given a partial 3D model and an image, es-

tablish correspondences between model points

and image points using a matching technique

such as in [4].

Step 2 Track image points over the batch of \n"

frames using an optic-ow based token track-

ing algorithm [15].

Step 3 Using the corre-

spondences established above between model

points and image points, compute the pose for

each image frame using the method described

in Section 2.

Step 4 Estimate the 3D location of both new points

and initial model points in world coordinates

using the two-step approach developed in Sec-

tion 3 and the feature correspondences estab-

lished in Step 2 for the current batch of \n"

frames.

Step 5 Fuse initial estimates of both the new points

and the model points with any previous esti-

mates using equations (17,18).

4 Experimental Results

The model extension and re�nement algorithm has

been applied to three image sequences. Figures 2, 5

and 8 show example images from the BOX, PUMA

and A211 sequences respectively. In the A211 se-

quence, the relative camera motion is mostly trans-

lational whereas in the BOX and PUMA sequences

there are signi�cant rotation and translation com-

ponents. In all experiments the image center was

assumed to be at the center of the image frame and

the e�ective focal length was calculated from the

manufacturers speci�cation sheets. Since we have

shown in [11] that errors in the image center do not

signi�cantly a�ect the location of new points in a

world coordinate system, calibration for the image

center has not been done. The image sequences were

captured with a SONY B/W AVC{D1 camera, with

an e�ective FOV of approximately 23 degrees and

40 degrees along both x and y axis for the BOX and

PUMA sequences respectively. The images in the

A211 sequence had an approximate FOV of 29.27

degrees along the x-axis and 22.86 degrees along the

y-axis. The images in all sequences were digitized to

256{by{242 pixels.

4.1 Box Sequence

The �rst sequence (referred to as the BOX sequence)

was generated by rotating the box (in Fig. 2) about

its central vertical axis, while the camera was kept

stationary. Consecutive images in the sequence were

taken after a rotation of approximately 3.6 degrees.

Fig. 2 and Fig. 3 show the �rst frame and eighth

frame of the sequence respectively. In the �rst frame,



frame. The pose estimation for this frame is given by
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Therefore the 3D error function E (used in the �rst

step) is the sum of squares of the perpendicular dis-

tances from the pseudo-intersection point ~p to the

image projection rays. Di�erentiating E with re-

spect to the unknown variable ~p leads to a set of

linear equations, which are then solved to give the

initial estimate for ~p.

In the second step, the pose constraint equa-

tions (2, 3) are used to formulate image-based error

equations for the X and Y projections of the model

points.
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In this case the 3D model point ~p is the unknown

variable. The denominator p

cz

in the equations (13

and 14) corresponds to the depth of the point and

is a function of the unknown variable ~p. There-

fore for each frame over which the point is tracked,

2

Due to noise both in image measurements and pose

estimates.

two non-linear constraint equations (13 and 14) are

obtained

3

. An iterative procedure is employed to

solve the system of non-linear equations. At each it-

eration, the denominator p

cz

is held constant using

the previous estimate of ~p and the resulting linear

system of equations is solved using equation (20) (see

Appendix). The iterative procedure is repeated until

there is convergence. In practice, we have found one

iteration is su�cient for robust results. The input

covariance matrix V required for in equation (20) is

obtained from the expressions derived above for the

noise terms �

X

; �

Y

. The output covariance of the

3D point estimate is given by equation (21) in the

Appendix.

In the batch method, information from all frames

is used simultaneously to estimate the 3D locations

of tracked image points. However, it may be desired

to sequentially update the location of new points af-

ter every pair (or a larger set) of frames. In the

sequential or quasi-batch mode, equations (13 and

14) are again used to estimate the 3D location of

image points tracked over the current set of frames.

However, these new estimates must be fused with

the previous estimates to obtain the current optimal

estimate. Associated with each estimate is a covari-

ance matrix representing the uncertainty in the esti-

mate. These covariance matrices are used to fuse the

two estimates and provide a new uncertainty matrix

using the standard Kalman Filtering equations.

Let the estimate of the point's 3D location and its

covariance at frame \t

1

" be ~p(t

1

) and �

p

(t

1

) respec-

tively. A new 3D location measurement

~

Q
with un-

certainty (covariance matrix �

Q

) is computed from

a batch of \n" image frames. The fused location es-

timate ~p(t

n

) and updated covariance matrix �

p

(t

n

)

3

A minimum of two frames is needed to solve the system

of equations.



assumed to be corrupted by zero-mean independent

gaussian noise. Therefore in the \2m" system of lin-

ear equations, the noise in the two equations for ev-

ery point is correlated. Thus the covariance matrix

\V" corresponding to the noise in the linear system

of equations (19) in the Appendix is a band matrix

in which the non-zero entries are (2 x 2) matrices

about the diagonal. The output covariance matrix

for the pose rotation and translation parameters is

given by equation (21) evaluated at the �nal pose

estimate.

Using the formula for the best linear unbiased

estimate described in equation(20) in the Appendix,

the formula for the pose increment at any iteration

is derived. If the model noise was zero and the

noise in the image measurements were assumed to

be same for all points, then the input covariance

matrix would be an identity matrix scaled by the

standard deviation of image noise.

3 Induced Stereo

In this section, we present techniques for comput-

ing 3D estimates of new points in the world coordi-

nate system from their tracked image locations over

a multi-frame sequence. The mathematics for both

extending the model and re�ning the initial modeled

points is presented. Computed with the estimate of

each new model point is an estimate of the covari-

ance of its error. These covariances are functions of

the input image measurement covariances and the

initial 3D model point covariances.

Image features (both new features and modeled

image features appearing in the images) are tracked

over a sequence of frames using the computed optic

ow between pairs of successive frames [15]. Typi-

cally corners (de�ned by the intersection of two im-

age lines) are tracked although any image feature

which can be reliably tracked may be used. The ini-

tial matching of image features to the partial model

for the �rst frame may be done by a matching pro-

cess such as in [4]. Combining the results of the

initial matching and the feature tracking, correspon-

dences between image features and the partial model

for each frame are established. Using these corre-

spondences, pose estimation is done for each frame

using the method presented in the previous section.

The image projection ray for an image point in

a particular frame is de�ned as the ray originating

from that frame's optic center and passing through

the image point. Given the pose estimates for each

frame, the vectors corresponding to these projec-

tion rays in the world coordinate system can be ob-

tained. The 3D estimate of the point is the pseudo-

intersection of all the image projection rays for a

tracked image point. In order to combine 3D mea-

surements from a sequence of frames, a stable co-

ordinate frame should be used; a nice property of

the system described here is that the pose estima-

tion process provides the world coordinate frame as

this stable coordinate frame. Independent measure-

ments can be made relating the coordinate system of

each frame in the sequence to the world coordinate

frame.

Points are located by the pseudo-intersection

process in two steps. In the �rst step, a 3D error

function is minimized to �nd an initial estimate of

the point's location. This step, however, does not

yield the optimal estimate since the various error

terms are not weighted by the input covariances.

In the second step, an image-based error function

is optimized in which the error terms are inversely

weighted by a combination of the input covariances

of the pose estimate and the image measurements.

Let r

i

be the unit vector corresponding to the

image projection ray for an image point in the i'th
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Figure 1: Model Extension and Re�nement.

rotation. This incremental rotation takes ~p

0

i

to ~p

00

i

:

~p

00

i

= ~p

0

i

+ �! � ~p

0

i

(7)

Let the measurement error in pixels of image

point locations be given by (�X;�Y ) and the er-

ror in the 3D model points be given by

~

�p

i

. Using

equation (7) and after some manipulation, the lin-

earized constraint equations (2,3) are given by:

1

p

czi

(

~

C

xi

�

~

�T
+

~

�!
�

~

b

xi

) = �

1

p

czi

~

C

xi

� ~p

ci

+ �

x

(8)

1

p

czi

(

~

C

yi

�

~

�T
+

~

�!
�

~

b

yi

) = �

1

p

czi

~

C

yi

� ~p

ci

+ �

y

(9)

where

~

b

xi

= R~p

i

�

~

C

xi

and

~

b

yi

= R~p

i

�

~

C

yi

.

The noise terms in the two equations, �

x

and �

y

are

functions of both model noise

~

�p

i

and image noise

�X;�Y :

�

x

= �X +

1

p

czi

~

C

xi

� (R(

~

�p

i

)) (10)

�

y

= �Y +

1

p

czi

~

C

yi

� (R(

~

�p

i

)) (11)

Therefore for the i'th point, two such equations

(8 and 9) can be written and for a set of \m" points,

a total of \2m" equations is obtained. This system

of \2m" equations is similar to the linear system

of equations (19) described in the Appendix. This

linear system of equations relate the pose increments

�! (rotation) and �T (translation) to the computed

measurement errors using the current pose estimate.

At each iteration in the minimization process, the

linear system of equations is solved to �nd the best

increment vector. This increment is added to the

current pose estimate and the process repeated until

there is convergence.

In the above system of equations, (�

x

; �

y

) rep-

resents the measurement noise. If the correct esti-

mate of pose were known, �

x

and �

y

would be equal

to the sum of the measurement error of the image

point location and the projection of the error in the

model point along the image x-axis and y-axis re-

spectively. The measurement of the image point lo-

cation is assumed to be corrupted with zero-mean

independent gaussian noise. In our case, for lack of

any other knowledge, it is assumed that the noise in

the measurements is independent across all points

and is also the same. The 3D model points are also



prior knowledge of a partial model greatly extends

the robustness of the structure estimates.

The errors in the initial partial model are as-

sumed to be either gross errors or gaussian noise. If

gross errors are present in the 3D model, these would

be detected as outliers by the robust pose recovery

techniques developed in our earlier paper [10] and

would not be used for the �nal step of least-squares

�tting to the remaining non-outlier data. Note that

outliers can also arise due to incorrect correspon-

dences. However, if a modeled landmark appears

as an outlier over a large number of frames, then it

probably is due to a gross error in the 3D model and

it could eventually be removed from the 3D model

database. Thus for the remainder of this paper, the

noise in the input 3D model is assumed to be gaus-

sian. Section 2 extends the least-squares algorithms

for pose determination (presented in [10]) to han-

dle gaussian noise both in the 3D model and image

measurements. Section 3 presents the mathematics

for locating new points and re�ning old points using

the computed poses and their respective variances.

Finally, Section 4 presents and analyzes results from

real data experiments. Some concluding remarks are

presented in Section 5.

2 Pose Determination

In an earlier paper [10] least-squares techniques for

pose determination were developed. These tech-

niques are optimal with respect to gaussian noise

in the input image measurements. In this section,

the least-squares techniques are extended to handle

gaussian noise in the 3D model. The techniques pre-

sented in this section assume point correspondences

but are easily modi�ed for line correspondences.

The rigid body transformation from the world

coordinate system to the camera coordinate system

can be represented as a rotation (R) followed by a

translation (

~

T
). The point ~p in world coordinates

gets mapped to the point ~p

c

in camera coordinates:

~p

c

= R(~p) +

~

T
(1)

Using equation (1) and assuming perspective

projection, the pose constraint equations for the i'th

point ~p

i

in a set of \m" points can be written in the

following manner:

1

p

czi

~

C

xi

� (R~p

i

+

~

T
) = 0 (2)

1

p

czi

~

C

yi

� (R~p

i

+

~

T
) = 0 (3)

~

C

xi

= (s

x

; 0;�I

xi

) (4)

~

C

yi

= (0; s

y

;�I

yi

) (5)

p

czi

= (R~p

i

+

~

T
)

z

(6)

(I

xi

; I

yi

) is the image projection of the point and

(s

x

; s

y

) is the focal length in pixels along each axis.

Since both the image measurements and the 3D

model locations are assumed to be noisy, it will not

be possible to satisfy the above constraint equations

exactly. Given a current estimate R;

~

T
, the con-

straint equations (2,3) are linearized about the esti-

mate by adding the translation increment

~

�T
and

the rotational increment

~

�!
. The linearized equa-

tions are solved to �nd the optimal translation and

rotation increments. The optimal increments are

then composed with the current estimates and the

whole process repeated until there is convergence.

Assume we have a current estimate \R" for ro-

tation. The coordinates ~p

0

i

of a rotated 3D point is

given by ~p

0

i

= R(~p

i

). An incremental rotation vec-

tor �! is added to the rotation estimate \R"; the

direction of this incremental vector is parallel to the

axis of rotation, while its magnitude is the angle of



ever, is that for estimating the depths of \m" points,

a covariance matrix of size (3m x 3m) must be in-

verted with each new frame.

Sawhney et. al. [14] also use Kalman Filter-

ing to estimate the depths of \shallow structures"

over a monocular sequence of multiple image frames

(shallow structures are those whose extent in depth

is small compared to their average depth from the

camera). The algorithm, however, cannot handle

non-shallow structures. The image motion of shal-

low structures can be described by an a�ne trans-

form. Based on the a�ne trackability of an object,

they are able to segment out di�erent shallow struc-

tures in the scene and hence can potentially handle

multiple moving objects. In an experiment reported

in the results section of this paper, an initial model is

built using the 3D points lying on some of the shal-

low structures recovered by their algorithm. Using

this initial model, the 3D location of other points in

the scene is estimated by the techniques developed in

this paper. Thus with a combination of techniques

presented in this paper and Sawhney et. al.'s [14]

technique for 3D recovery of shallow structures, a

fairly robust general motion technique may be con-

structed.

1.1 Our Approach

The approach adopted here is to �rst begin with a

partial model (possibly noisy) and to then extend

and re�ne it by viewing the object over a sequence

of frames. Both modeled and unmodeled features

of the object are tracked over the image sequence

by using an optic ow based line tracking algorithm

[2, 15]. Correspondences are obtained between the

modeled 3D features and their image projections.

Using the ow of image tokens and the poses of

the object computed from model-image feature cor-

respondences for a sequence of image frames, new

points are located by triangulation (see Figure 1).

The triangulation process is also used to make new

3D measurements of the initial model points. These

measurements are then fused with the previous esti-

mates to re�ne the set of initial model points. The

approach adopted here is basically induced stereo.

Tracking image features over a large sequence ef-

fectively leads to a large baseline for stereo and im-

proves the robustness of the 3D reconstruction. Note

that this approach does not require any models of

inter-frame motion.

The key assumption made is that a partial model

is available at the beginning of the process. Due to

the availability of the partial model, new points are

located in a stable world coordinate system. The

pose computed for each frame is independent of the

other frames, so each frame provides an independent

measure to the whole process

1

. This does not lead

to the cascading problems which most of the sequen-

tial multi-frame \structure from motion" techniques

su�er from because noisy prior estimates in the pre-

vious frame's coordinate system are integrated with

new estimates in the current frame's coordinate sys-

tem.

The estimation of the new 3D points is done us-

ing both batch and quasi-batch or sequential meth-

ods. Triangulation requires at least two frames and

therefore the minimum batch size is two. Results

from batch to batch are integrated by the standard

Kalman Filter covariance based updating equations.

Results are presented for three real data sequences

where new 3D points are located with average er-

rors less than 1.7 % . These results are far supe-

rior to those obtained by the traditional structure

from motion techniques employed in computer vi-

sion. This supports the earlier stated premise that

1

Note that this would not be true if there was signi�cant

noise in the initial partial model.



In applications involving stereo, two cameras sep-

arated by a baseline are used to do the triangulation.

The two cameras are �xed with respect to each other

and therefore the relative orientation is determined

during a prior calibration stage. Thus, the main

problem and focus of stereo research has been to es-

tablish correspondences [12].

In two-framemotion analysis both the correspon-

dences and the relative orientation between the two

camera frames are unknown. Research in motion

analysis has classically been divided into two steps.

In the �rst step inter-frame image displacements of

image pixels and/or higher level tokens are com-

puted. The second step, also known as \Structure

fromMotion" or \Relative Orientation", is the inter-

pretation of these displacements (or correspondences

between image tokens) into 3D structure and rela-

tive orientation (rotation and translation) between

frames [1, 9].

However, due to noise in the measurement pro-

cess, results for both stereo and motion analysis from

using just two frames are not very robust [1, 8]. To

improve the robustness of the results, the traditional

stereo and structure from motion techniques have

been extended to deal with multi-frame image se-

quences [3, 5, 13, 14, 16], under the assumption that

temporal integration would lead to more robust re-

sults.

The multi-frame research can be categorized into

two broad classes or strategies. The �rst class as-

sumes that a model of 3D inter-frame motion is

known, rather than assuming independent motion

parameters between consecutive frames. Broida [5]

assumes constant velocity motion and estimates the

3D location of a set of points tracked over a monocu-

lar image sequence. Recently, Chandrasekhar et. al.

[6] have extended Broida's technique to deal with

data sets where the 3D location of a few points is

known. The objective function, which Broida and

Chandrasekhar et. al. minimize has the motion

model parameters and the unknown structure lo-

cation parameters as unknowns. Thus the dimen-

sion of the objective function grows with the number

of unknown points. An even more basic limitation

of this approach lies in the model of motion being

adopted and its suitability to the motion being ob-

served.

The second class of techniques does not assume

any model of motion. The rigid structure of the

world is carried forward by the depth estimates from

frame to frame. These techniques are sequential in

nature and typically use Kalman Filtering to com-

pute the depth estimates[3, 7, 13, 14, 16].

Both, Ayache et. al. [3] and Zhang et. al.

[16] build world models using multi-frame stereo se-

quences. Zhang et. al. [16] track 3D line segments

over a sequence of stereo image frames and use a

Kalman Filter to integrate the results for a �nal 3D

estimate of the 3D line segment. To do the temporal

integration, the absolute orientation between succes-

sive stereo-pair coordinate frames is determined.

Oliensis and Thomas [13] use Horn's relative ori-

entation algorithm [9] to solve for the motion param-

eters between consecutive image frames in a monoc-

ular image sequence. With each image pair, new

measurements are made for depth values of features

and these are integrated with previous estimates in

the Kalman Filter framework. The new observation

Oliensis and Thomas [13] make is that the depth es-

timate of di�erent feature points are correlated since

the same noisy motion parameters are used to com-

pute the depth. Because of this correlation, they

estimate the depth parameters of all points simulta-

neously. This gives them fairly good depth estimates

for camera motions having some T

z

(i.e. translation

along the optical axis) component. The cost, how-
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Abstract

Visual measurements of modelled 3D landmarks pro-

vide strong constraints on the location and orienta-

tion of a mobile robot. To make the landmark-based

robot navigation approach widely applicable, it is

necessary to be able to automatically build the land-

mark models. A substantial amount of e�ort has

been invested by computer vision researchers over

the past ten years on developing robust methods for

computing 3D structure from a sequence of 2D im-

ages. However, robust computation of 3D structure,

with respect to even small amounts of input image

noise, has remained an open problem. The approach

adopted in this paper is one of model extension and

re�nement. A partial model of the environment is

assumed to exist and this model is extended over

a sequence of frames. As will be shown in the ex-

periments, the prior knowledge of the small partial

model greatly enhances the robustness of the 3D

structure computations. The initial 3D model may

have errors and these are also re�ned over the se-

quence of frames.
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1 INTRODUCTION

An important problem in vision is to automatically

build 3D models of objects and scenes. In [10], least-

squares and robust methods were presented for de-

termining the location and orientation of a robot

from visual measurements of modeled 3D landmarks.

However, building the 3D landmark models is a time

consuming and tedious a�air. For the landmark-

based navigation methods to be widely applicable,

automatic methods have to be developed to build

and enhance the 3Dmodels. Ideally, the robot would

continuously build and update its world model as it

explores the environment. This paper presents tech-

niques to determine the 3D location of image fea-

tures from a sequence of 2D image frames taken by

a camera mounted on the robot. It is assumed that

a prior partial model is available. The goal is to have

the robot extend and re�ne this model as it explores

the world.

Extensive research has been done in computer

vision to develop robust algorithms for extracting

3D information from a sequence of 2D images. Of

the many di�erent visual cues for extracting 3D in-

formation, the two most extensively researched are

stereo and motion. The basic principle exploited in

both cues is triangulation (see Figure 1). New points

are located by triangulating the projection rays from

corresponding points in two or more frames.

1


