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In practice we may minimize other error functions to do pose re�nement. Based on the

above analysis we hypothesize that an incorrect estimate of the focal length would only signi�cantly

a�ect the T

z

component of the pose parameters for other pose re�nement methods as well. That

is, methods where the pose is not estimated by solving the system of equations de�ned by (66) but

by some other system of equations. This hypothesis has been supported by experiments using both

synthetic and real data and the pose re�nement algorithms described in Section 3. Results of some

of these experiments are shown in Table 8.

Table 8: Rotation and translation as computed by the pose re�nement algorithm for

the same sets of images with di�erent focal lengths.

FOCAL
TRANSLATION ROTATION

LENGTH
ANGLE AXIS

SCALE
T

x

T

y

T

z

deg. A

x

A

y

A

z

SYNTHETIC DATA

1.000
4.004 -3.994 60.011 120.015 -0.577 0.577 0.577

0.928
4.013 -4.002 58.048 120.016 -0.577 0.577 0.578

HALLWAY IMAGE

1.000
4.055 -3.942 39.926 119.808 -0.576 0.574 0.582

0.928
4.023 -3.962 37.382 119.344 -0.579 0.574 0.580

1.045
4.072 -3.932 41.509 120.066 -0.575 0.574 0.583

BOX IMAGE

1.000
-8.256 74.647 620.313 132.833 -0.178 0.952 -0.250

1.100
-8.344 74.801 684.354 132.627 -0.177 0.952 -0.249

The experiments were performed using the synthetic, hallway and box image data sets

described earlier. In each case, the pose re�nement algorithm was applied using both the correct

focal length and incorrect estimates of the focal length. The incorrect estimates of the focal length

were obtained by multiplying the correct focal length by a scale. Thus, in Table 8, entries in rows

with focal length scale 1.0 correspond to experiments with the correct focal length and entries with

rows corresponding to scale not equal to 1.0 correspond to experiments with incorrect focal lengths.

Both the translation and rotation results of the pose are shown in Table 8. The rotation is shown

by its angle-axis representation. The axis vector is a unit vector. As can be seen from Table 8, the

only large change in any of the pose parameters for any of the experiments is in the T

z

component

of the translation.

Although poses can be obtained whose projection �ts the original image data fairly well

in the case of incorrect estimates of the image center, this is not the case for incorrect estimates

of focal length. Changing the focal length causes the projection of 3D points to be dilated or

contracted by a constant amount while changing the T

z

component of the translation causes the

image projections to dilate or contract based on their depth from the camera. As we have seen,

however, the minimum of the pose error functions, given incorrect estimates of focal length, leads

only to a signi�cant change in T

z

. This property of poor �ts makes it comparatively easier to

calibrate imaging systems for focal length as compared to calibrations for the image center.
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Figure 24: Hallway image with in-

put 2D-image lines.

Figure 25: Box image.

The rotation operator can be represented as a (3x3) matrix:

R =

2

6

4

s

1

s

2

s

3

3

7

5

(64)

where s

i

; i = 1; 2; 3 are the vectors corresponding to the rows of the rotation matrix R

c

. Substi-

tuting (64) into (63), equation (63) can be rewritten as:

x

y

=

(s

1

�X

w

+ T

cx

)

(s

2

�X

w

+ T

cy

)

(65)

This is a linear equation in the pose parameters s

1

; s

2

; T

cx

and T

cy

which can be rewritten as:

x(s

2

�X

w

+ T

cy

)� y(s

1

�X

w

+ T

cx

) = 0 (66)

One such equation is obtained for each world/ image point correspondence. Given 5 or more

point correspondences, we can therefore solve the system of equations and get estimates of the

parameters s

1

; s

2

; T

cx

and T

cy

. The rotation parameters s

1

; s

2

, however, have quadratic constraints

and therefore the system of equations must be solved by non-linear techniques. Tsai [26] uses the

same system of equations in his camera calibration algorithm. Since the rotation matrix is an

orthonormal matrix, estimates of its �rst two rows s

1

and s

2

can be used to obtain the third row

s

3

, using the symmetric and other orthonormal properties of the matrix. The only pose re�nement

parameter not determined by the system of equations is therefore the translation along the optical

axis T

z

.

Our goal in this section is to examine the e�ect of incorrect estimates of the focal length

on the output of a pose re�nement algorithm. Equations (65) and (66) do not depend on the focal

length and consequently an incorrect estimate of the focal length would not a�ect the solution

of these equations. Therefore, an incorrect estimate of focal length should a�ect only the T

z

parameter of the pose; all other parameters should not change since their estimation does not

depend on knowledge of the focal length.
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di�erent center o�sets is given in Table 7 under the heading \HALLWAY IMAGE". The �nal

location (in feet) in world coordinates (for scenes and images as shown in the �gure above) changes

only by a few tenths of an inch.

Table 7: Location of camera in world coordinates as computed by the pose re�nement

algorithm for two sets of real image data with di�erent center o�sets.

Center
Center

LOCATION in WORLD

O�set X
O�set Y L

x

L

y

L

z

HALLWAY IMAGE

pixels
pixels feet feet feet

Measured Location
40.00 4.00 3.57

0
0 39.98 4.09 3.57

10
10 40.00 4.09 3.58

20
20 40.02 4.09 3.58

BOX IMAGE

pixels
pixels mm mm mm

0
0 418.23 260.52 381.37

10
0 417.94 260.49 381.72

10
10 417.27 260.56 380.85

20
20 416.68 260.71 380.51

The second image is from the UMASS BOX sequence. The image is shown in Figure 25. The

box is about 600 mm distant from the camera. The �fteen points marked by crosses in Figure 25

were provided as input to the pose re�nement algorithm. Three new image data sets were created

by adding center o�sets of (10,0), (10,10) and (20,20) respectively. The results of locating the

camera for these di�erent data sets are shown in Table 7 under the heading \BOX IMAGE". As

can be seen from the table, the location of the camera changes by only 1 or 2 mm for di�erent

center o�sets. Although results from only two images are presented here, the above behavior has

been observed for numerous other images.

5.3 Inaccurate Estimates of the Focal Length

The focal length of the lens supplied by lens manufacturers is generally quite accurate. However,

when the lens is focused on points close to the camera (i.e. when the camera is not focused at

in�nity) the e�ective focal length of the system must be established by a calibration procedure

[26]. In this section, the e�ects of incorrect estimates of the focal length on the output of the pose

re�nement process are examined.

The image projection (x; y) of a world point X

w

given an estimate of translation T

c

and

rotation R

c

is:

x = f

(R

c

(X

w

) + T

c

)

x

(R

c

(X

w

) + T

c

)

z

(61)

y = f

(R

c

(X

w

) + T

c

)

y

(R

c

(X

w

) + T

c

)

z

(62)

Dividing these two equations, we obtain:

x

y

=

(R

c

(X

w

) + T

c

)

x

(R

c

(X

w

) + T

c

)

y

(63)
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Comparing equation (56) with equation (50) we see that:

R

o1

= �

R

R

c1

and T

o1

= �

R

(T

c1

) (57)

The above equations reect how the orientation R

o1

and location of the world origin in camera

coordinates T

o1

are altered with incorrect knowledge of the center. The location of the camera

origin in world coordinates T

w

is given by the following equation:

T

wc1

= �R

T

c1

(T

c1

) for camera frame C1: (58)

T

wo1

= �R

T

o1

(T

o1

) for camera frame O1: (59)

Using equations (57) and the above equation for T

wo1

we get:

T

wo1

= �R

T

c1

�

T

R

�

R

(T

c1

) = �R

T

1

(T

c1

) = T

wc1

(60)

Therefore an error in estimating the image center signi�cantly a�ects the location of the camera in

world coordinates only if the second order terms in the motion displacement equations (51,52) are

large. For small �eld of view imaging systems, the location of the camera is not a�ected since the

second order terms are negligibly small.

The orientation of the robot, on the other hand, is a�ected; the amount depends on the

values of (�C

x

; �C

y

). For instance, for a camera with �eld of view 24 degrees and a 512 x 512

image, a 30 pixel o�set in the camera center in either x or y coordinate would cause a rotation

error of 1.427 degrees about the corresponding axis (using equations (54,54)). Whether changes in

orientation of this order are signi�cant or not depends on the application.

Finally, in the case of frontal planes, the depth value \Z" is the same for all points. Therefore

in the motion displacement equations (51,52) both the translation components T

x

; T

y

and rotation

terms 


x

; 


y

can account for the constant displacement. In this case, the model of change in pose

as given in equation (55) may not be correct. However, the reader is reminded that frontal planes

are typically a degenerate case for pose. Even if we have a correct estimate of center, since \Z" is

constant, there could be an incorrect pose related to the correct pose by a transformation composed

of translation components T

x

; T

y

and rotation components 


x

; 


y

. The image transformations

caused by rotation (


x

; 


y

) can be canceled by the transformation due to translation (T

x

; T

y

) in

equations (51,52) leading to approximately zero values of � and � and therefore more than one

pose can explain the same input data. The same observation has been made for the structure from

motion problem by other researchers [22]. The above model will also break down for large �eld of

view imaging systems (e.g. beyond 45 degrees �eld of view), when the second order e�ects cannot

be ignored.

5.2 Experimental Results

In Section 3, we described algorithms for pose estimation given correspondences for 3D model and

2D image points and lines. We show results from our pose algorithms for two image sets with

di�erent errors in the location of the image center. The images (512 x 484 pixels) were acquired

using a SONY B/W camera (model AVC-D1) interfaced to a Gould frame grabber. The �eld of

view of the imaging system is approximately 24.0 degrees. For each set of image data, a new data

set was created by adding a constant pixel o�set to the x and y coordinates of the image data of

the original set.

The �rst image (Figure 24) is of a hallway. The large door in the image is 40 feet distant

from the camera. Figure 24 shows the �rst set of input image lines to the pose algorithm. Twomore

sets of input data were created by adding center o�sets of (10,10) and (20,20) pixels respectively

to the assumed center. The results for location of the camera in world coordinates for the three
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In this equation, the rotation R

c1

and translation T

c1

relate a 3D point X

c1

in the �rst camera

coordinate frame \C1" to its coordinates X

w

in the world coordinate frame \W". Points in the

camera coordinate frame \O1" are related to points in the world coordinate frame \W" by equation:

X

o1

= R

o1

(X

w

) + T

o1

(50)

We would like to �nd the relationship between the two camera coordinate frames \C1" and

\O1". As noted earlier the only di�erence between the image data associated with the two frames is

a constant shift of all the pixels. Let these be �C

x

and �C

y

in the X and Y image frame directions,

respectively; these shifts correspond to the o�set of the image center for the second image data

set relative to the �rst image. The displacement of image points between two frames due to rigid

motion is given by the following equation:

� =

x

1

y


x

f

� (f +

xx

1

f

)


y

+ y


z

+

(fT

x

� xT

z

)

Z

(51)

� = (f +

yy

1

f

)


x

�

y

1

x


y

f

� x


z

+

(fT

y

� yT

z

)

Z

(52)

where

�; � are the image displacements in the x; y axis respectively.

(


x

;


y

;


z

) are the small angle approximations to rotation about the X; Y and Z axis

respectively.

(T

x

; T

y

; T

z

) is the translation along the (X; Y;Z) axis respectively.

Z is the depth of the point in the �rst coordinate frame.

f is the focal length of the camera in pixels.

(x; y) is the location of the point in the �rst image frame (\C1") and (x

1

; y

1

) is the location

of the point in the second image frame (\O1").

Between the two frames \C1" and \O1", � = �C

x

and � = �C

y

i.e. both are constant for

all points in the image. What transformation can account for this constant shift ? If we assume

the �eld of view of the camera is small, then second order terms such as xx

1

; x

1

y etc. can be

neglected. If the scene being imaged is not a frontal plane, i.e. \Z" is not constant for all points

then the only transformations that can cause a constant change for a general set of points are the

rotations 


x

and 


y

about the X and Y axis; everything else (i:e: 


z

; T

x

; T

y

and T

z

) will be zero.

The following two equations express this relationship:

� = �C

x

= �f


y

(53)

� = �C

y

= f


x

(54)

Let the rotation operator �

R

represent the overall rotation composed of the rotations




x

and 


y

about the X and Y axis. The two coordinate frames \C1" and \O1" are therefore

hypothesized to be related by a rotation �

R

:

X

o1

= �

R

(X

c1

) (55)

Combining equation (55) with equation (49) we get:

X

o1

= �

R

R

c1

(X

w

) + �

R

(T

c1

) (56)
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5 Sensitivity analysis of pose estimation

The standard model adopted for imaging 3D scenes by CCD and other cameras is perspective

projection. A ray from the camera focal point to a 3D point intersects the image plane at the

image location of the 3D point under perspective projection. The optical axis is de�ned as the

perpendicular line from the focal point to the imaging plane and the image center is de�ned as the

point where the optical axis pierces the image plane. Two important camera parameters which

often need to be calibrated are the focal length and the image center. In this section, we study

the e�ect of errors in estimates of the image center and focal length on pose determination. The

pose determination algorithms used in the experiments are described in Section 3. The conclusions

drawn, however, are independent of the particular algorithm used.

The image center is often assumed to lie at the center of the image frame. This default

center has been reported to be o� by as much as 30 pixels for some standard camera and frame

grabber combinations [16]. Calibration techniques using either lasers or high precision calibration

plates have been used to locate the center to within a few pixels [5, 16, 26]. Is this precise calibration

necessary? The analysis presented here shows that it depends on three factors:

1. The particular 3D output or inference one is interested in.

2. The level of accuracy desired in the results.

3. The amount of noise in the input data.

The goal in pose determination is to �nd the rotation and translation matrices which map

the world coordinate system to the camera coordinate system. Given the rotation (or orientation)

and translation, the location of the camera with respect to the world coordinate system can be

computed. We will show that for small �eld of view imaging systems, an error in the estimation

of the camera center does not a�ect the location of the camera signi�cantly. The rotation or

orientation is a�ected, however, and the amount of error in the orientation is linearly related to the

error in the estimate of the center.

Finally, in the last subsection of this section, the e�ect of incorrect estimation of the focal

length on the pose determination problem is studied. We show that incorrect estimates of the focal

length only signi�cantly a�ects the z-component (i.e. parallel to the optical axis) of the transla-

tion. The x and y components of the translation and the rotation are not a�ected signi�cantly.

However, the location of the camera in world coordinates will be a�ected since the z-component

of the translation changes. Again, experimental results on real data are presented to support the

theoretical claims.

5.1 Errors in the Pose Determination Problem from Center O�sets

The question asked is this: given two input data sets to the pose re�nement problem (the �rst with

the correct image center and the second with an o�set image center), how are the two resulting

poses related? The only di�erence between the two data sets is a constant o�set of all the image

pixels in one data set by the amount the center estimate is o�set. Associated with each of the input

data sets is a camera coordinate frame. The result of the pose re�nement process is to determine the

rigid body transformation between the world coordinate frame and the camera coordinate frame.

Let \W" represent the world coordinate frame, \C1" the camera coordinate frame with the correct

center and \O1" the camera coordinate frame with the o�set center; then

X

c1

= R

c1

(X

w

) + T

c1

(49)
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on outdoor frame 3 (Table 5). The algorithm is extremely sensitive to initial estimates for outdoor

frame 3 (see Fig 20). For algorithm \Tuk wts" to converge to the right answer, the initial estimate

must be within 1 foot of the correct translation. However, if one of the outlier telephone lines is

removed from the data set, the algorithm will converge to the correct answer from initial estimates

up to 10 feet or so away. Finally, if two of the telephone outlier lines are removed convergence to

the correct answer is obtained from initial estimates upto 20 feet away. This problem of an accurate

initial estimate is due to the presence of multiple local minima in the objective function minimized

by the \Tuk Wts" algorithm. A possible solution would be to use a global minimization technique

for minimizing the M-Estimate error functions with some prior estimate of scale [3]. The algorithm

\Med R and T", on the other hand, is not a�ected by these initial estimates and produces the

same answer as shown in the tables for all of them.

4.5 Discussion

The output of the pose re�nement process depends on the quality of the input provided to it. The

best data sets have many \good" lines in all directions and lines running both near and far from

the camera. In contrast indoor frame 7 and outdoor frame 3 are impoverished data sets where

most of the input lines are at approximately the same distance from the camera and one or two

lines are much closer to the camera. As a result these close lines have a signi�cantly larger e�ect in

determining the �nal pose estimation and have \high leverage" in the �nal estimation. Note that

the \high leverage" data lines can be detected by examining the diagonal values in the hat matrix

when there are no outliers.

A consensus based algorithm tries to �nd the best pose which explains a signi�cant pro-

portion of the set of lines. Given that the observations for the non-outlier data are noisy, it is

conceivable that the pose returned by the consensus algorithm explains a signi�cant set of obser-

vations with \low leverage" quite well and makes a non-outlier observation with \high leverage"

an outlier. This is what happened in the indoor frame 8 and outdoor frame 3 case, where some

of the lines with \high leverage" become outliers. A consequence (and an inherent danger) of the

incorrect removal of the \high leverage" lines as outliers from an impoverished data set is that

the output covariance matrix of the computed pose parameters will be much higher than what is

optimally obtainable for that data set. The consensus-based algorithms will work best when there

are no observations with \high leverage" and the data set is well rounded with a su�cient number

of input data lines in all directions both close and far to the camera.

To conclude, we quote from Li [17] \No one robust regression technique has proved superior

to all others in all situations, partly because of the challenge of handling many forms of inuential

observations". We have observed this especially with the performance of the median and other

similar consensus-based algorithms using many di�erent error functions. For instance, in another

consensus algorithm we experimented with, instead of minimizing the median, the optimization

criterion was to �nd that pose which �ts the maximum number of lines under a certain error

value. The results of this algorithm were of a similar nature to the median based algorithm. There

appears to be no one algorithm which works best for all data sets. The robust statistical algorithms

presented in this paper, given data with outliers, can locate the robot in the indoor scenes in a

range of 0.4 feet (on the average) for the high prior covariance cases and within 0.3 feet (on the

average) for the low prior covariance cases. This was su�cient for most of our robot navigation

tasks.
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4.4.1 Indoor Frame 8

Figure 16 shows the input set of lines for indoor frame 8. This data set of 19 lines has 8 outliers,

i.e. approximately 40% of the data is contaminated. Only the 11 lines on or close to the left wall

are correct. Both the least-squares algorithms \R and T img" and \R and T mod" fail (for all

variance settings) on this data set. Their �nal pose estimates are more than 5 feet o� from the

correct location. Figure 17 shows the projection of the model using the pose estimated by algorithm

\R and T mod" (run with the low initial variance setting) and as can see from the �gure, it is quite

skewed.

From Tables 5 and 6, the error in locating the robot for this frame by the robust algorithms

\Med R and T img" and \Med R and T mod" (run with high initial covariance) is about 0.38 feet

in the y-axis and 0.32 feet in the z-axis (or vertical direction). Figure 18 shows the projection of

the model using the pose estimated by \Med R and T mod" when run with high initial covariance.

In that �gure, it can be noticed that the line in depth in the top left corner of the image is slightly

skewed. All other lines are fairly well aligned. This line has been detected as an outlier. Note that

in Table 6, 9 lines have been labeled as outliers. Of the 11 lines in the data set for indoor frame 8,

only 2 are lines in depth. The rest of the lines are coplanar and are clustered near the door. The

best pose returned by the median is a consensus of only half the number of lines. As a result, one

of the lines in depth remains out of the best consensus set and becomes an outlier.

In contrast, when algorithm \Med R and T mod" is run using subsets of size 6 or 8 with

a low prior covariance setting, the height of the robot is pinned and the �nal estimate of location

returned by the algorithm is within 0.05 feet and only the 8 outlier lines have been detected as

outliers. Note, the low covariance setting corresponds to standard deviations of 3 feet for location

along x and y directions, 0.1 feet for z direction and 1 radian for all rotation angles. Figure 19

shows the projection of the model using the pose estimated by \Med R and T mod" when run with

low initial covariance. In this case, all lines, including the top left line in depth, are well aligned.

Finally, the \Tuk wts" algorithm performed very well on this data set, locating the robot

to within 0.04 feet. The projection of the model for indoor frame 8 using the pose estimated by

the \Tuk wts" algorithm is almost identical to the projection shown in Figure 19.

4.4.2 Outdoor Frame 3

The outdoor frame 3 data set (shown in Figure 20) is another case where the least-squares algorithms

fails completely. The outlier here is due to the telephone pole being mismatched to the street

light. Thus, 3 of the 15 input lines are clear outliers. The location of the robot returned by the

least-squares algorithm is o� by about 40 feet for the high initial covariance case (see Tables 5

and 6). Figure 21 shows the projection of the 3D model using the pose estimated by algorithm

\R and T mod" for the high covariance case.

The estimates of the robot pose returned by the two median algorithms are much better

than the least-squares algorithms, but are still o� by about 2.5 feet along the walkway direction

for the both high and low initial covariance cases. The best pose returned by the median also

classi�es the two lines of the street lamp on the right side of the image as outliers (see Fig. 22).

This is because in this image there are two sets of data lines that have signi�cant \leverage" on

the resultant pose: the walkway line (as mentioned earlier, lines in depth are important for these

scenes) and the street lamp (which is the only non-outlier data in the right side of the image).

Since both these sets of lines are slightly incorrect, the median chooses a pose which best explains

the walkway line together with the rest of the data (which is mostly 300 feet away).

In contrast to its performance for indoor frame 8, the \Tuk wts" algorithm failed completely
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Figure 20: Outdoor frame 3 with in-

put image lines.

Figure 21: Projection of model for

outdoor frame 3 using �nal

estimate of Algorithm

\R and T mod" with high prior

covariance matrix.

Figure 22: Projection of model for

outdoor frame 3 using �nal

estimate of Algorithm

\Med R and T mod" with high

prior covariance matrix.

Figure 23: Projection of model for

outdoor frame 3 using �nal

estimate of Algorithm \Tuk wts".
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Figure 16: Indoor frame 8 with in-

put image lines.

Figure 17: Projection of model for

indoor frame 8 using �nal

estimate of Algorithm

\R and T mod" with high prior

covariance matrix.

Figure 18: Projection of model for

indoor frame 8 using �nal

estimate of Algorithm

\Med R and T mod" with high

prior covariance matrix.

Figure 19: Projection of model for

indoor frame 8 using �nal

estimate of Algorithm \Tuk wts".

Note that the projection of model

using �nal estimate of

\Med R and T mod" with low prior

covariance is almost identical.
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Table 5: Estimated Errors of Translation in world coordinates for algorithms

\R and T img", \MED R and T img" and \Tuk Wts"; High Covariance Case. Prior

Standard Deviation (�) of the initial robot pose estimate is 94.86 feet and 1 radian for each axis of

location and orientation, respectively.

Fr.
No. \R and T img"

\Med R and T img" \Tuk Wts"

TRANS. ERR.
TRANS. ERR.

Out-
TRANS. ERR.

No.
Ln. �T

x

�T

y

�T

z

�T

x

�T

y

�T

z

Liers �T

x

�T

y

�T

z

feet feet feet feet feet feet Fnd. feet feet feet

INDOOR FRAMES

1
24 0.35 0.26 0.00 0.08 0.01 0.01 7 0.11 0.01 0.02

2
26 0.87 0.48 0.08 0.19 0.02 0.02 11 0.47 0.32 0.06

3
24 0.63 0.09 0.02 0.01 0.42 0.35 10 0.13 0.01 0.01

4
15 0.57 0.03 0.23 0.55 0.22 0.10 7 0.64 0.25 0.29

5
16 0.43 0.23 0.03 0.27 0.01 0.07 5 0.27 0.01 0.10

6
16 0.74 0.37 0.47 0.65 0.18 0.23 4 0.59 0.26 0.30

7
46 0.38 0.25 0.41 0.11 0.21 0.35 17 0.06 0.02 0.07

8
19 5.67 0.27 0.56 0.05 0.38 0.32 9 0.04 0.00 0.01

OUTDOOR FRAMES

1
17 10.42 2.76 2.38 0.95 0.36 1.22 7 1.16 0.36 0.14

3
15 40.91 13.56 10.19 2.39 0.21 0.12 5 36.72 13.41 13.46

Table 6: Estimated Errors of Translation in world coordinates for algorithms

\R and T mod", \MED R and T mod"; High Covariance Case. Prior Standard Devi-

ation (�) of the initial robot pose estimate is 94.86 feet and 1 radian for each axis of location and

orientation, respectively.

Fr.
No. \R and T mod"

\Med R and T mod"

TRANS. ERR.
TRANS. ERR.

Out-

No.
Ln. �T

x

�T

y

�T

z

�T

x

�T

y

�T

z

Liers

feet feet feet feet feet feet Fnd.

INDOOR FRAMES

1
24 0.26 0.20 0.03 0.02 0.47 0.44 6

2
26 0.75 0.47 0.05 0.20 0.03 0.02 9

3
24 0.14 0.12 0.02 0.04 0.04 0.01 3

4
15 0.50 0.04 0.10 0.02 0.08 0.00 4

5
16 0.34 0.34 0.12 0.15 0.01 0.07 3

6
16 0.77 0.59 0.11 0.85 0.49 0.33 4

7
46 0.31 0.20 0.61 0.14 0.01 0.03 17

8
19 5.47 0.30 0.78 0.05 0.38 0.32 9

OUTDOOR FRAMES

1
17 10.41 2.82 2.28 1.00 0.38 1.27 7

3
15 41.23 13.90 7.91 2.53 0.19 0.10 5
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4.4 Robust methods: Results

In this section we present and analyze the results of running the three algorithms \Tuk Wts",

\Med R and T img" and \Med R and T mod" on real image data. The results are presented

for both the indoor hallway images (Figure 16) and the outdoor sidewalk images (Figure 20).

The indoor and outdoor images are similar to the ones used in Section 3.7 for the least-squares

experiments. In some cases, the data used for experiments in Section 3.7 was arti�cially altered

to create outliers. In other cases, the data is directly an output of the the 2D matching system

developed by Beveridge et. al. [2]. The camera parameters and the indoor and outdoor models used

for the experiments are exactly the same as those described in Section 3.7. Tables 5{6 shows the

results of the three algorithms on eight indoor hallway images and three outdoor walkway images.

The \Med R and T img" and \Med R and T mod" algorithms were run on both the indoor

and outdoor data sets with the same set of parameters. In each case, 500 random sample sets of

size 6 were generated. The scale of the gaussian noise was assumed to be 2 pixels for all lines. Using

the best median pose, any line whose alignment error was more than 4 pixels was declared to be an

outlier and it was given zero weight for the �nal least-squares �t. Note, instead of choosing the scale

of gaussian noise apriori, we could have computed it from the residual errors of the inliers computed

by the LMS algorithm. For the experiments reported in this paper, similar results were obtained

in both situations. In each case, the prior covariance matrix was a diagonal matrix. In Tables 5

and 6, the prior covariance matrix speci�ed for the least-squares and median based algorithms had

high diagonal values corresponding to standard deviations of 94.86 feet for translation terms and

1 radian or 57.3 degrees for the rotation terms. It was ensured for all experiments that the initial

estimates used were within a standard deviation of the correct estimate. Finally, the \Tuk wts"

algorithm was always run with the threshold \a" in equation (40) set to 2.0.

The results of the least-squares algorithms \R and T img" and \R and T mod" on the same

data sets are also presented in the tables. The performance of the least-squares algorithms gives

a measure of the severity of the outliers in each of the data sets. Generally, the more gross an

outlier is with respect to the non-corrupt data the easier it is detect and remove. This is actually

more true for the median algorithms. Severe outliers can a�ect the \Tuk Wts" algorithm because

of its low break down point. However, the robust algorithms must perform comparably or better

than the least-squares algorithms both when the least squares algorithms completely fail and when

they do reasonably well. The results presented in the Tables 5{6 document both these cases. The

�rst case is the �rst 7 frames of the indoor hallway images. From any of the four tables, it can

be observed that the least-squares algorithms performed reasonably well for the �rst seven indoor

frames. The outliers in these cases have not very signi�cantly a�ected the performance of the least-

squares algorithms and the robust algorithms perform only slightly better. The average error in

locating the robot for the �rst seven indoor frames by the least-squares algorithms \R and T img"

and \R and T mod" when run with high initial covariance matrices is 0.676 feet and 0.585 feet

respectively. The high covariance setting corresponds to standard deviations of 94.86 feet for

location along x, y directions and z directions and 1 radian for all rotation angles. The average

values are calculated from data in Tables 5 and 6. Note, that \R and T mod" performs slightly

better than \R and T img". The robust algorithms perform better than both the least squares

algorithms. From the data shown in the Tables 5 and 6, the average error in locating the robot for

the seven indoor frames by algorithms \Med R and T img", \Tuk wts" and \Med R and T mod"

(run with high initial covariance matrices) is 0.405 feet, 0.387 feet and 0.363 feet respectively. Note

again, \Med R and T mod" performs slightly better then \Med R and T img".

In contrast to the �rst seven indoor frames, the least-squares algorithms totally fail in

locating the robot for indoor frame 8 and outdoor frames 1 and 3. The results for indoor frame 8

and outdoor frame 3 are discussed in more detail in the next two sub-sections.
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least squares algorithms developed in Section 3 on subsets of the data elements. The pose which

gives the minimum median error across all data elements is chosen as the optimal median pose.

The goal is to �nd at least one subset which has no outliers in it; this should give the minimum

median error. The \pose determination problem" needs a minimum of 3 input lines. Thus subsets

of line data elements used to generate the candidate poses must be of size m (m � 3). Typically,

poses are generated from all subsets of size m of the data elements. Experimentally, we have found

the choice of \m" is important. The larger the size of the subsets, the greater the probability of

them having an outlier. However, choosing \m" = 3, the minimum as suggested by Rousseeuw

[25], often leads to local minima. Typically good results are obtained with m = 6 or higher. This

is because the poses estimated by using just 3 line data sets have large variances and some of the

non-outlier lines can get labeled as outliers.

To speed up the computation, instead of using all subsets, only a random set of all size

m subsets is used. If � is the fraction of contaminated data and we choose \k" di�erent random

subsets of size \m", then the probability \P" that all \k" di�erent subsets will contain at least one

or more outliers is:

P = (1� (1� �)

m

)

k

(48)

The probability that at least one random subset has no outliers is given by (1 - P). This is the

probability that the correct answer will be found by the median algorithm. For example, if we want

the correct answer with 99% probability and expect no more than 30% outliers when using subsets

of size 3 (m = 3), then only 37 out of the 1140 subsets (for a set of 20 lines) need to be randomly

chosen. In practice, however, we �nd that a much larger set needs to be chosen. Finally, some

subsets will lead to degenerate solutions because all lines are parallel, etc. This can be detected

before any further processing of the subset is done. A simple method to detect degenerate subsets

in the case of three lines is to threshold on the determinant of the matrix whose rows are the unit

direction vectors of the 3D lines.

Using the best median pose, data points whose residual error is greater than a certain

threshold are weeded out as potential outliers. The threshold may be either �xed a-priori or

determined based on the computed scale (standard deviation) of the non-outlier gaussian noise. In

many of our experiments, it is assumed that the scale of the line �tting process to edge data is 2

pixels. Equation (38) developed in the previous section may also be used to compute the scale.

Finally, the weighted least squares algorithm (\R and T img") or (\R and T mod") are run on the

remaining lines. This last step greatly improves the \relative e�ciency" of the robust algorithm.

The algorithms \Med R and T img" and \Med R and T mod" are summarized as follows:

Step 1: Select \k" random subsets of size \m" from the input data.

Step 2: For each subset, determine the pose by using \R and T img" or \R and T mod". Esti-

mate the residual error for all \n" lines given this pose and �nd the median square error.

Step 3: Select the pose which gives the minimum median error E

m1

or E

m2

and compute the scale

\s" (if not known apriori) using equation (38).

Step 4: Filter out lines as outliers whose squared residual error for that pose is greater than

(a � s)

2

; a is an algorithm parameter and is set equal to 2.0 for all experiments discussed in

Section 4.4.

Step 5: Minimize the error function given in equation (24) or equation (25) on the remaining lines

using the least square algorithm \R and T img" or algorithm \R and T mod" and return the

estimated translation and rotation as the �nal output.
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4.3 Least Median of Squares (LMS) Technique

In this section another set of robust techniques for the pose determination problem are developed.

These techniques were developed by Rousseeuw et. al. [25] for the linear regression problem. They

are based on minimizing the median of the square of the error function over all data elements:

Minimize Median

i

e

2

i

(43)

Earlier, it was noted that in least square systems the large error values of the outlier data elements

causes a skew of the �nal �t. If the data elements are ranked in ascending order according to error

values, the median corresponds to the error of the middle data element. Minimizing the median,

therefore ignores the errors of the larger ranked half of the data elements. Thus, this method

automatically can perform robustly in situations where less than 50 % of the data elements are

outliers; it has a breakdown point of

1

2

.

This procedure can be modi�ed to incorporate a-priori knowledge of the level of contamina-

tion of the data set with outliers. If for example, in a particular application, it is guaranteed that

no more than 30 % of the points are outliers, then the 70 % ranked error could be minimized rather

than the median. In absence of any such guarantees, the median is the best choice to minimize.

This corresponds to �nding that pose which �ts (with minimum error) at least half of the data

elements. In other words, the �nal estimated pose is the best consensus �t over all subsets of size

equal to half the number of the data elements.

To develop robust pose algorithms, any of the pose alignment error functions developed

in Section 3 can be substituted for e

i

in equation (43). In this section, two such robust al-

gorithms \Med R and T img" and \Med R and T mod' are developed, based on the alignment

errors used in the least square algorithms \R and T img" and \R and T mod", respectively. In

\Med R and T img" the following objective function \E

m1

" is minimized:

E

m1

=Median
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(44)

E

m1

is a modi�cation of the objective function E

2

given in equation (24) in Section 3.3. The right

hand side corresponds to the median of the total alignment error for each line. The total alignment

error is based on the \In�nite Image Line" constraint and is the sum of squares of the perpendicular

distances from the projected model end-points to the in�nitely extended image line.

The \Med R and T mod" algorithm is based on the \In�nite Model Line" constraint and

the following objective function \E

m2

" is minimized:
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E

m2

is a modi�cation of the objective function E

3

given in equation (25) of Section 3.3; M

i

is

de�ned in Section 2.2. Again, the right hand side corresponds to the median of the total alignment

error for each line. In this case, however, the total alignment error is based on the \In�nite Model

Line" constraint and is the sum of squares of the perpendicular distances from the image line

end-points to the in�nitely extended projected model line.

Since the median is not a di�erentiable function, E

m1

and E

m2

must be minimized by

combinatorial methods. In the method adopted here, candidate poses are generated by using the
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The 	 function is also sketched in Figure 15. Note, that for small values of \u" around u = 0:0 it

is almost linear and then it slowly tapers o� to zero on both ends.

Equation (39) can be written in the standard weighted form as:

w

i

=

	(

e

i

s

)

e

i

s

(41)

X

i

w

i

e

i

�e

i

��

j

= 0:0 (42)

If the weights w

i

in the above equation (42) are held constant and the residual error e

i

is a linear

function of the unknown set of parameters, then a linear system of equations in the unknown

parameters �

j

is obtained. The modi�ed weights algorithm solves the equations (42) iteratively. At

each iteration the weights w

i

are held constant and equal to the values computed using the previous

iteration's estimates of the unknown parameters �

j

and the linear system of equations is solved to

get new estimates. The iterative procedure is repeated until the parameter values converge to a

�nal value. Huber [13] proves that the above iterative procedure leads to a minimum (possibly

a local minimum) of the objective function as given in equation (36) for linear e

i

residual error

functions. Note, although e

i

may be linear, �(e

i

) is not a quadratic function.

In this iterative procedure, if the error of a data element is greater than \a" for a current

estimate, then by the weighting function de�ned in equation (41) its weight will be zero and therefore

it will not contribute to the new estimation. Data elements with small errors will have almost unit

weight while data elements with slightly larger errors (but less than \a") will contribute partially

(between 0 and 1) to the �nal �t. This partial contribution of these data elements greatly improves

the relative e�ciency of the �nal estimation. This can be intuitively understood by recalling that

the noise model assumes that most of the data is contaminated by gaussian noise and only some of

the data elements are outliers. The important issue is the criteria for deciding when a data element

should be classi�ed as an outlier (i.e., the number of standard deviations to be used as an outlier

threshold). The relative e�ciency is improved by using all data elements which are not outliers for

the �nal �t. The above procedure does not automatically cut-o� all data elements beyond a certain

threshold; instead it gives increasingly small weight to data elements with larger errors until a �nal

weight of zero is given for data elements whose error is larger than \a" standard deviations.

We now turn to the problem of applying this technique to the minimization of the pose error

functions, which are non-linear. In Section 3.4, an iterative method was developed to minimize the

sum of squares of the error function. This method entailed linearizing the error function about the

current estimate and then solving for the small increments in translation (�T ) and rotation (�!).

Equations 29 and 30 shown in Section 3.4 are the linear system of equations solved at each iteration

of the \R and T" algorithm described there. An equivalent set of equations can be developed for

algorithms \R and T img" and \R and T mod". The error for each data element is weighted by

w

i

. To incorporate the robust techniques described above into the minimization procedure for

\R and T" (and by extension for \R and T img" and \R and T mod") described in Section 3.4,

the only change required is to replace the weights in equations 29 and 30 by the weighting function

given in equation (41). This procedure leads to rapid convergence and a robust estimate, as will

be seen in the experiments described in section 4.4. For most of our experiments, convergence is

reached in about 10 iterations.

The \Tuk wts" algorithms developed here solves the system of equations (29) and (30)

corresponding to algorithm \R and T img" at each iteration and composes the results with the

previous estimates of rotation and translation. The weights are calculated using equation (41).

The steps used in the algorithm are identical to the steps used in algorithm \R and T img". At

each iteration there is also an estimation of scale using equation (38). Finally, although not done

here, the \R and T mod" algorithm can also be similarly modi�ed to a robust M-Estimate version.
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Figure 15: Tukey's biweight redescending function and its derivative.

Inherent in these M-Estimation techniques is a simultaneous computation of a scale s. The

scale corresponds to the standard deviation of the residual errors. If a good estimate of the standard

deviation of the errors of non-outlier data can be made, then data points whose error lies beyond

a certain number of standard deviations from the center (that is, in the \tails" of the distribution)

can be classi�ed as outliers. The estimate of scale therefore itself must be robust and not a�ected

by outliers. M-Estimation techniques vary both on their choice of the � function and the method

used to compute scale. In the algorithm presented below, scale s is computed by the following

equation:

s =

median

i

j e

i

j

0:6745

(38)

where 0.6745 is one half of the interquantile range of the Gaussian Normal distribution N(0,1).

This equation relates the scale (standard deviation) of a gaussian distribution to the median of

the absolute values of a sampled set of data points. It is based on the fact that the median of

the absolute values of random numbers sampled from the Gaussian Normal distribution N(0,1) is

estimated to be approximately 0.6745.

Huber [13] suggests two methods for minimizing the error functions in equation (37). The

two methods are the modi�ed residual method and the modi�ed weights method [13, 10]. In our

experiments better performance was obtained using the modi�ed weights method; consequently

only this version will be presented here.

The modi�ed weights method is an iterative reweighting least squares (IRLS) algorithm. Let

�

j

represent the set of unknown parameters (rotation and translation in our case) to be estimated.

Di�erentiating the error expression in equation (36) with respect to each parameter �

j

we get the

set of equations:

X

i

	(

e

i

s

)

�e

i

��

j

= 0:0 (39)

where 	 is the derivative of the � function with respect to u. The 	 function used in the \Tuk wts"

algorithm is obtained by di�erentiating Tukey's � function as given in equation (37):

	(u) =

(

u(1�

u

2

a

2

)

2

if j u j � a

0:0 otherwise

(40)
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Another robust technique suggested by Rousseeuw and Leroy [25] is based on the mini-

mization of the median of the squares of the residual errors (LMS: Least Median of Squares). This

method has a breakdown point of 0.5 and consequently is able to handle data sets which contain

less than 50 % outliers. However, since the median is not a di�erentiable function, it has to be

minimized by a combinatorial method and is comparatively very slow compared to the M-Estimate

techniques. To minimize the median square error, a brute-force technique is employed that com-

putes the median square error using all \p" size data subsets, where \p" is the number of unknown

parameters. Rousseeuw and Leroy [25] believe that only techniques of this brute force nature will

be able to achieve a high breakdown point. They suggest that by sacri�cing 100% probability

of correctness, a large gain in computational speed can be obtained by considering only a small

random set of the minimal subsets (this point is discussed further in Section 4.4). Using the best

median pose, data points whose residual error is greater than a certain threshold are weeded out

as potential outliers. The threshold may be either �xed a-priori or determined based on the com-

puted scale (standard deviation) of the non-outlier gaussian noise. Finally a reduced weighted least

squares (RLS) or a one step M-Estimate is done, using the median estimate as the initial guess.

This greatly improves the relative e�ciency of the median-based estimate.

In Section 4.3, two algorithms based on the Least Median Squares technique are devel-

oped. The �rst (\Med R and T img") minimizes the median of the square of the alignment error

given by the \In�nite Image Line" constraint discussed in Section 2 (see equation 8). The second

(\Med R and T mod") minimizes the median of the square of the alignment error given by the

\In�nite Model Line" constraint (see equation 21). In both cases the random sampling techniques

suggested by Rousseeuw and Leroy [25] to achieve higher computational speed are implemented

and �nally a weighted reduced least squares is done to improve the e�ciency.

4.2 M-Estimation Techniques: The \Tuk wts" Algorithm

M-Estimation techniques, developed by Huber [13] and other statisticians, minimize the sum of a

function �(e

i

=s) where e

i

is the error function for the i'th data vector and s is a scaling factor:

Minimize

n

X

i

�(e

i

=s) (36)

The function � is designed to be a continuous, symmetric function with minimum value at u = 0

[13, 31]. Also �(u) must be monotonically increasing from u = 0 to1 and from u = 0 to �1.

The � function proposed by Tukey [24] is:

�(u) =

(

u

2

=2� u

4

=2a

2

+ u

6

=6a

4

if j u j � a

a

2

=6 otherwise

(37)

Figure 15 shows Tukey's function and its derivative plotted with \a" set to 2.0. In this function,

�(u) approximately varies as the square of \u" for small values and then tapers o� to a constant

maximum value of \a

2

=6". Thus the e�ect for any outlier data element cannot be arbitrarily large.

A rationale for this function is that for small error values, \u" corresponds to gaussian noise and

thus for optimum relative e�ciency their square value must be minimized. However, as the error

grows, the data element is probably an outlier and therefore its inuence must be bounded. Blake

and Zisserman [3] use a variation of Tukey's function in solving the problem of �tting piece-wise

smooth surfaces to range data. They provide another rationale for the above function: the constant

maximum value is assumed to be the cost of assigning a data element to be an outlier. Thus non-

outlier data elements are minimized as the sum of squares of their error values and there is a cost

of assigning a data element to be an outlier. The �nal estimation is a trade-o� between minimizing

the number of outliers and the �tting error for the non-outlier data points.
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gaussian assumption is violated and the least squares result is skewed in order to make the data

approximate a gaussian. Because of the skewing of the result, trying to detect outliers by comparing

the residual errors of each line with a threshold will not work. Throwing away one line at a time

and doing least squares on the remaining subset also does not work when more than one outlier is

present.

Statisticians have suggested many di�erent \robust" techniques [13, 17, 24, 25, 31] to handle

outliers and these techniques are currently gaining popularity in computer vision [1, 7, 10, 14]. A

measure used to analyze these \robust" algorithms is the breakdown point : the smallest fraction

of outliers present in the input data which may cause the output estimate to be arbitrarily wrong.

Algorithms based on minimizing L1, L2 or Lp error measures have breakdown points of 1/n where

\n" is the number of data items. Another measure of robust statistical procedures is their \relative

e�ciency" [14, 25]. It is de�ned in Kim et. al. [14] as the \ratio between the lowest achievable

variance for the estimated parameters (the Cramer-Rao bound) and the actual variance provided

by the given method", so that the best possible value is 1. Kim et. al. also note that \the least

mean square estimator in the presence of gaussian noise has an asymptotic (large sample) e�ciency

of 1 while the median's e�ciency is only 0.637" [14, 24]. As we shall see, there is a trade-o� between

algorithms with high breakdown points versus those with high e�ciency. Finally most research in

robust statistics appears to have been done for linear problems. When applying these techniques to

non-linear problems, another important consideration is the initial estimate. Non-linear problems

are often solved iteratively using an initial estimate. How close must this initial estimate be for the

robust technique to work?

4.1 Previous Work: Outliers

There are two major sets of statistical techniques for handling outliers. The �rst attempts to detect

outliers before forming a robust estimate. The goal is to �nd \leverage points" i.e. data points

which are on the outskirts of the data cluster. These points, if wrong, can have the largest inuence

on the �nal estimate. Standard outlier detection techniques are based on the diagonal entries of

the \Hat" matrix, Mahalanobis distance etc. ; these generally work for only certain kind of outliers

and often cannot handle more than one outlier.

The second set of robust statistical techniques detects outliers and computes robust esti-

mates simultaneously. Most of these techniques attempt to de�ne objective functions whose global

minimum would not be signi�cantly a�ected by outliers. The techniques analyzed in the next

sub-section are of this kind. Standard among these are M-estimates (Maximum likelihood type

estimates), L-estimates (linear combinations of order statistics) and R-estimates (estimates based

on rank transformations). Functions minimized by M-Estimate techniques attempt to bound the

maximum possible error value (e.g. the biweight \redescending" function suggested by Tukey, see

Figure 15) or bound its rate of change (e.g. Huber's Minimax function). Most of these M-Estimate

techniques have been shown to have breakdown points of 1/(p+1) or lower [17, 25] where \p" is the

number of unknowns (p = 6 for the pose re�nement problem). They have high e�ciencies however,

typically more than 0.9. Huber [13] suggests iterative algorithms to minimize these error functions

and these algorithms are relatively fast to compute. However, it is important to have good initial

estimates because of the number of local minima.

Haralick and Joo [10] adapt these M-Estimate techniques for the pose problem using point

data. They use the \redescending" function suggested by Tukey [24] and the \minimax" function

suggested by Huber [13], respectively. These techniques are also adapted here for the pose problem

using line correspondences. Better results were obtained using Tukey's function as compared to

Huber's. An algorithm \Tuk wts" based on using Tukey's error function and the \In�nite Image

Line" constraint for pose is presented in the Section 4.2.
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Figure 9: Outdoor frame 4 with

input image lines.

Figure 10: Indoor frame 3 with

input image lines.

Figure 11: Projection of model

(Outdoor frame 4) using �nal

estimate of algorithm

\R and T img".

Figure 12: Projection of model

for Indoor frame 3 using �nal

estimate of algorithm

\R and T img".

Figure 13: Projection of model

(Outdoor frame 4) using �nal

estimate of algorithm

\R and T mod".

Figure 14: Projection of model

for Indoor frame 3 using �nal

estimate of algorithm

\R and T mod".
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Table 4: Estimated Errors of Translation in world coordinates for algorithm

\R and T img" and \R and T mod". Real Data results for Outdoor and Indoor frames

without outliers.

\R and T img" \R and T mod"

Frame
Num.

TRANSLATION ERROR TRANSLATION ERROR

No.
Lines �T

x

�T

y

�T

z

�T

x

�T

y

�T

z

feet feet feet feet feet feet

Outdoor Frames

1
17 0.47 0.02 0.54 0.42 0.05 0.54

2
15 0.41 0.56 0.59 0.37 0.86 0.85

3
12 2.03 0.48 0.41 2.34 0.58 0.50

4
7 0.64 1.02 0.88 0.77 1.16 0.90

5
13 1.30 0.87 0.61 1.32 0.87 0.61

6
13 1.72 1.23 0.79 1.41 1.43 0.88

Indoor Frames

1
22 0.24 0.04 0.04 0.24 0.05 0.01

2
22 0.10 0.17 0.02 0.12 0.08 0.01

3
12 1.58 4.87 4.25 0.11 0.11 0.03

4
10 2.95 1.06 0.79 0.10 0.03 0.01

line was selected for the input set given to the pose algorithms. The input 2D lines and the �nal

estimated projection of the 3D model lines by the algorithms \R and T img" and \R and T mod"

for indoor frame 3 are shown in Figures 10, 12 and 14 respectively.

Algorithm \R and T mod" is able to locate the camera within 0.3 feet for all four frames.

In contrast, algorithm \R and T img" performs poorly for the last two frames. This is due to

the severe and noisy fragmentation of the image lines in the last two frames. The �nal estimate

of algorithm \R and T img" for indoor frame 3 is wrong by more than 4 feet (see Table 4). In

Figure 12, it can be seen that the projected model lines (especially, the baseboard lines on the

left hand side) for indoor frame 3 are not at all aligned with the input image. The line extraction

algorithm has recovered only a small and noisy fragment of the lower left baseboard line (see

Figure 10). This input line is an outlier for algorithm \R and T img" and causes the �nal projection

to be skewed. Note that if the lower left baseboard line is removed from this data set, the algorithm

\R and T img" locates the robot within an inch of the correct location.

From the above experiment for indoor frame 3, two facts are demonstrated. The �rst,

of course, is that algorithm \R and T mod" is more robust than algorithm \R and T img". The

second fact is that even a single outlier can cause a least-squares algorithm to fail catastrophically.

Thus, we must develop algorithms which are robust with respect to outliers; this is the subject of

the next section.

4 Robust Methods

This section develops and analyzes pose determination techniques which are robust with respect

to outliers or gross errors in the data. In the pose problem, outliers occur either dur to incorrect

the image to world correspondences or if parts of the 3D model are incorrect. Traditionally, least

square techniques have been used for regression analysis or model �tting. In Section 3, least squares

techniques were presented to solve the pose problem. Least squares is optimum and reliable when

the underlying noise in the data is gaussian. However, when outliers are present in the data, the
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Table 3: Standard deviation of Translation and Rotation error in world coordinates for

algorithms \R and T img" and \R and T mod" with high prior covariance estimates

for translation. The statistics for each experiment is taken over 1000 samples of gaussian noise.

NOISE ROTATION ERROR TRANSLATION ERROR

No.
length perp. �!

x

�!

y

�!

z

�T

x

�T

y

�T

z

Lines
% pixels deg. deg. deg. feet feet feet

Algorithm \R and T img"

Prior Estimate
57.30 57.30 57.30 94.86 94.86 94.86

10
1.0 1.0 2.77 0.46 2.48 0.25 0.82 0.70

10
5.0 1.0 2.79 0.47 2.50 0.25 0.83 0.70

10
10.0 1.0 2.83 0.48 2.53 0.26 0.84 0.71

10
20.0 1.0 3.03 0.54 2.71 0.27 0.89 0.77

10
30.0 1.0 6.68 1.35 5.27 0.96 1.72 1.49

10
40.0 1.0 10.33 2.32 8.45 2.00 2.44 2.12

Algorithm \R and T mod"

Prior Estimate
57.30 57.30 57.30 94.86 94.86 94.86

10
1.0 1.0 2.69 0.46 2.40 0.25 0.79 0.68

10
5.0 1.0 2.69 0.46 2.40 0.25 0.79 0.68

10
10.0 1.0 2.70 0.46 2.40 0.25 0.80 0.68

10
20.0 1.0 2.79 0.48 2.48 0.27 0.82 0.70

10
30.0 1.0 2.92 0.48 2.59 0.28 0.86 0.73

10
40.0 1.0 3.06 0.45 2.69 0.27 0.90 0.76

number of lines the 2D line matcher was able to correctly match. The 2D matcher does not return

the original image lines, rather it returns the location of the matched 2D lines as predicted by the

�nal 2D-2D pose. One consequence of this is that the input lines used in our experiment for the

outdoor sequence are not broken and fragmented like the original extracted image lines may be.

Figure 9 shows the input 2D lines as returned by the line matcher for frame 4 of the outdoor image

sequence. These were used as input to our algorithm along with the 3D model.

The error in the estimated location by algorithms \R and T img" and \R and T mod" is

given in Table 4. In the table, the translation direction \x" is the horizontal direction oriented

with the long side of the hallway (for indoor images) or the walkway (for outdoor images), the \y"

direction is the horizontal direction perpendicular to the long sides of the hallway or walkway, and

the \z" direction is aligned with the direction of gravity. Ground truth for rotation was not available

so the algorithms were compared only with respect to location estimation. A qualitative estimation

of the orientation accuracy can be obtained by seeing how well the projected model aligns with the

original image data (e.g. as in Figures 13 and 14). In most cases, for the outdoor frames the robot

is located to within one or two feet. The measurement errors in Table 4 are approximate to 0.5

feet. The precise location of the camera is not known. It is better to judge the performance of the

algorithm by looking at the projections of the 3D landmarks on the image after the pose has been

estimated. Figures 11 and 13 are the projection of the 3D model lines using the poses estimated

by the algorithm \R and T img" and \R and T mod" for outdoor frame 4 respectively. As can be

seen, in all cases there is fairly good alignment between the 3D model and the original image. The

two algorithms perform comparably for this sequence. This is probably due to the fact that the

output of the 2D matcher returns whole lines and there is no fragmentation of the 2D image lines.

The results of the two algorithms \R and T img" and \R and T mod" on four indoor hall-

way frames are also given in Table 4. The camera location for these frames ranged from 32 feet

to 23 feet from the door. The results in Table 4 are with no outliers in the input data. The line

correspondences for the four frames were obtained from a motion line tracking system [27]. In this

case, the input lines used are the extracted image lines. As a result, some of the input lines are

fragmented. If more than one image line was matched to a model line, then the longest matched
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Table 2: Average Absolute Error of Translation and Rotation in camera coordinates for

algorithm \R then T" The average for each experiment is taken over 100 samples of uniform

noise.

NOISE
ROTATION ERROR TRANSLATION ERROR

No.
� � �!

x

�!

y

�!

z

�T

x

�T

y

�T

z

Lines
deg. pixels deg. deg. deg. feet feet feet

Correct
0.00 0.00 0.00 0.00 0.00 0.00

5
1.0 1.0 1.08 5.06 0.62 11.44 13.96 51.16

5
5.0 5.0 3.19 14.65 1.62 32.69 39.85 149.40

14
1.0 1.0 0.29 0.29 0.18 0.35 2.37 0.23

14
5.0 5.0 1.50 1.56 0.91 1.92 12.44 1.27

30
1.0 1.0 0.09 0.10 0.13 0.40 1.01 0.36

30
5.0 5.0 0.45 0.50 0.66 2.09 5.05 1.82

3.7.2 Synthetic Data Results for \R and T mod" and \R and T img"

In this subsection, synthetic data results for algorithms \R and T mod" and \R and T img" are

discussed. The results for the experiments are presented in Table 3. The 3D line model used for

these experiments is same as that built for the indoor hallway images (see Figure 10). The camera

was assumed to be 40 feet from the door in Figure 10. The �eld of view and other intrinsic camera

speci�cations are the same as those used for the the synthetic data experiments discussed in the

previous section. Given an input pose, the 3D model of 10 lines is projected to create a set of 2D

data lines. The end-points of the 2D lines are then corrupted by 2D gaussian noise. The gaussian

noise has two components; the �rst is perpendicular to the 2D line and the second is along the

length of the line. Noise for each end-point was assumed to be independent. For all the experiments

reported in Table 3 the standard deviation of the component of the noise perpendicular to the line

was 1 pixel. The standard deviation of the component of the noise along the length of the line is

speci�ed as percentage of the length of the line. This is reported in column 2 in Table 3. For each

noise speci�cation, 1000 noisy sample sets are created and the two algorithms run on each of the

noisy 2D data sets. First-order and second-order statistics are collected for each set of 1000 runs.

From the �rst order statistics (i.e. estimation of the mean) it is observed that the �nal estimates

are unbiased. The second-order statistics are the experimentally derived covariance matrices of the

output pose parameters. The square root of the diagonal values (or standard deviations) of each

of the pose parameters for each noise speci�cation and each algorithm are reported in Table 3.

From Table 3, it can be seen that the two algorithms perform comparably as long the

component of noise along the length of the line is small. But when the standard deviation of

the noise along the length of the line becomes 20 % or more of the length, then the results for

algorithm \R and T mod" sharply improve over algorithm \R and T img". This con�rms what

was predicted earlier in the discussion: algorithm (\R and T mod") performs more robustly than

algorithm (\R and T img") when there is signi�cant line fragmentation in the image data.

3.7.3 Real Data Results for \R and T mod" and \R and T img"

In this subsection, results for algorithms \R and T mod" and \R and T img" over two real data

outdoor and indoor sequences are presented. The �rst sequence consists of 6 outdoor frames. The

�rst and fourth frames are shown in Figures 4 and 9 respectively. For the outdoor sequence, the

camera was moved in an approximate forward motion 25 feet along the walkway. Each subsequent

frame was taken after a movement of 5 feet down the walkway. The 2D images lines were taken

from the output of a 2D line matching system [2]. For each frame, column 2 in Table 4 gives the
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The results presented in the tables are the average absolute error of the computed rotation

and translation over 100 data samples, for each set of lines and each noise speci�cation. The results

for the \R and T" and \R then T" algorithms are shown in Table 1 and Table 2, respectively.

Rotation and translation errors in these tables for synthetic data are speci�ed with respect to

the camera coordinate system (Figure 1). The rotation errors are speci�ed in terms of the error

in degrees of the axis-angle 3D rotation vector. �T

x

corresponds to error in translation in the

direction along the rows in the image plane (in camera coordinates, see Figure 4). �T

y

corresponds

to error in translation in the vertical direction in camera coordinates. �T

z

corresponds to error in

translation along the direction of the optical axis in camera coordinates.

The �rst set of 5 lines consisted of the 4 corner edges of the building visible in Figure 4 and

one window line in that same building. The second set of 14 lines consisted of the 4 corner edges

of the building, as above, 6 lampposts and telephone pole lines, three more lines on the building

and one side walk line. The third set of 30 lines consisted of the above set of 14 lines plus a set of

16 virtual lines that were drawn between 6 real vertices in the scene.

A comparison of the results shows that the performance of the \R and T" algorithm (Ta-

ble 1) is much better than the \R then T" algorithm (Table 2). With zero noise speci�ed, both

algorithms gave the correct result. For each set of lines and each speci�cation of noise, \R and T"

performs much better than \R then T". The results for \R then T" are particularly bad for the

5 line case. This can be explained by the observation that, in the 5 line case, 3 of the lines form

a trihedral junction. As noted before, trihedral junctions can give rise to an in�nite number of

translations. Thus, the translation result is determined from this in�nite set solely by the two

remaining lines, both of which are vertical and not too far from each other. With noise, therefore,

we would expect large errors in translation. This problem is compounded even further when the

rotation stage is separated from the translation stage as is the case in algorithm \R then T".

Table 1: Average Absolute Error of Translation and Rotation in camera coordinates for

algorithm \R and T". The average for each experiment is taken over 100 samples of uniform

noise.

NOISE
ROTATION ERROR TRANSLATION ERROR

No.
� � �!

x

�!

y

�!

z

�T

x

�T

y

�T

z

Lines
deg. pixels deg. deg. deg. feet feet feet

Correct
0.00 0.00 0.00 0.00 0.00 0.00

5
1.0 1.0 0.24 0.15 0.04 0.21 2.03 1.16

5
5.0 5.0 1.20 0.79 0.19 1.08 10.14 6.20

5
1.0 5.0 0.24 0.16 0.04 0.21 2.04 1.18

5
5.0 1.0 1.19 0.78 0.19 1.08 10.14 6.20

14
1.0 1.0 0.07 0.06 0.08 0.03 0.77 0.02

14
5.0 5.0 0.34 0.30 0.39 0.17 3.80 0.12

30
1.0 1.0 0.03 0.05 0.06 0.06 0.48 0.06

30
5.0 5.0 0.16 0.24 0.31 0.32 2.39 0.32

In the results for both algorithms, the error decreases appreciably as the number of lines

increases. In the \R and T" case (Table 1) results are shown for experiments with the 5 line data

set for two extra cases of noise. Examination of the results for these two cases in Table 1 shows an

appreciably larger error when the noise in � is 5

o

. However, when the noise in � is 5 pixels and the

noise in � is 1

o

, the errors are much smaller; in general noise in � for lines is much more harmful

than noise in �. Finally, in all experiments, the error in �T

y

was often found to be larger than the

errors in �T

x

and �T

z

. This is due to the fact that in the data sets for these experiments, the

majority of the 3D lines are vertical.
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Let the initial estimate be denoted by the (6 x 1) vector

~

Q
and the associated prior covariance

matrix by the (6 x 6) matrix �

Q

. In the iterative system developed earlier, a linear system of

equations (31) is solved at each iteration to determine the pose increments

~

�T
for translation and

rotation

~

�!
. To incorporate the additional information available in the covariance matrix, this

linear system of equations is modi�ed in the following way:

(A+�

�1

Q

)

"

~

�T

~

�!

#

=

~

f
� �

�1

Q

(

~

�
�

~

Q
) (35)

In the above equation,

~

�
is the current pose estimate. Note that A is a (6 x 6) matrix while

~

f
and

~

�

are (6 x 1) vectors. Therefore, when prior estimates and covariance matrices are available equation

(35) instead of equation (31) is solved at each iteration. The output covariance matrix of the pose

parameters is given by (A+�

�1

Q

)

�1

evaluated at the �nal pose estimate.

3.7 Least Squares Results Using Line Data

The development of the algorithms presented in this paper are part of a larger e�ort to enable the

UMASS robot \Harvey" to navigate the sidewalks and interior hallways of a part of the UMASS

campus [6]. Consequently, results using line data are presented for both indoor hallway images and

outdoor sidewalk images. Figures 9 and 10 are examples of outdoor and indoor images respectively.

The indoor model was built by measuring distances with a tape measure and is accurate

to approximately 0.1 feet [6]. The outdoor 3D model was built over two passes. In the �rst pass,

blueprints of the campus, drawn to a scale of 40 feet to an inch, were used. Errors of up to 10 feet

were found in the resulting 3D model; errors of this magnitude are unacceptable for our navigation

goals. An error of 1 foot in the location of a 3D landmark, 50 feet away from the camera, can

cause its projection to be displaced by 24 pixels in the image. In the second pass, landmarks

were surveyed using theodolites. We believe most of our 3D model is now accurate to within 0.3

feet. Some landmarks, such as poles and posts, are di�cult to position accurately, because of their

cylindrical shape and their lack of any distinguishing points.

The images were acquired using a Sony B/W model AVC-D1 camera mounted on the robot

vehicle. Linked to a Gould frame grabber, 512 by 484 pixel images are obtained, with a �eld of

view of 24:0

o

by 23:0

o

. Calibration was not done for the image center; it was assumed to be at the

frame center.

3.7.1 Synthetic Data Results for \R and T" and \R then T"

The synthetic data experiments were conducted for both \R and T" and \R then T" using the

outdoor 3D model. The landmarks used for the outdoor scene experiments were the 3D lines forming

the visible corner of the building, window lines, lampposts, telephone poles and one sidewalk line

(see Figure 4). The camera was placed approximately 300 feet distant from the building. The two

algorithms were run with three di�erent sets of data lines, each set being perturbed by at least two

di�erent amounts of noise. Zero mean uniform noise was added to the � and � of each image line

(refer to equation (5)). In Tables 1 and 2 the noise for each simulation is speci�ed in the � and �

columns. One pixel noise in � means that to the correct � of each line, we added a ��, which was

a random number anywhere in the range [-1,+1]. Similarly, one degree of noise in � means that

to the correct � of each line, we added a ��, which was a random number anywhere in the range

[-1,+1]. Simulations were performed for a maximum of 1

o

or 5

o

noise in �, and a maximum of 1

pixel or 5 pixel noise in �.
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to converge. The Levenberg-Marquardt method attempts to combine the best of both methods

by moving along directions close to the gradient only if moving in the direction computed by the

second-order method causes divergence.

In the non-linear technique described above for the pose problem, the gradient direction at

any iteration is given by the (6 x 1) vector

~

f
de�ned in equation (31). If the A matrix in equation

(31) is diagonal then the incremental move calculated is in the direction of the gradient. Thus, if

the new estimate at the end of an iteration increases the total error, then the diagonal terms of A

are multiplied by a constant factor (10 in our experiments). This biases the new increment to be

towards the gradient direction. This procedure is repeated until the error function decreases after

the addition of the increments to the current estimate. Experiments have proven that the method

is e�ective in forcing convergence. However, in most of the data sets we have experimented with,

divergent behavior of the second-order method was not observed.

3.5 Initial Estimates of Rotation and Translation

For some applications, initial estimates for rotation and translation may not be available. In that

case, the rotation space can be sampled and each of the samples used as an initial estimate for

the rotation estimation part of \R then T". The rotation and translation estimates made by the

algorithm \R then T" are then used as initial estimates for \R and T". We have successfully tried

this procedure with 12 uniform samples of the rotation space based on the rotation group of a

tetrahedron.

The algorithm for pose determination, when no initial estimate is available, is the following:

Step 1: Pick a rotation estimate from a uniform sampling of the rotation space.

Step 2: Run Algorithm \R then T" to get estimates for both \R" and \

~

T
".

Step 3: Use the estimates from Step 2 as initial estimates to \R and T".

Step 4: Repeat Steps 1-3 until all rotation samples have been considered.

Step 5: Return the estimate which gives the smallest alignment error in Step 3 as the �nal

estimate.

It is possible to speed up the computation by running algorithm \R then T" in step 2 for

all initial rotation samples. The best estimate is then used as the initial estimate for a single run of

\R and T". In practice, this has been found to be good enough most of the time. Finally, in Step

3, the algorithms \R and T img" or \R and T mod" can replace \R and T".

3.6 Prior Estimates

In many applications a prior estimate for the pose parameters is available; in many cases a prior

covariance (or uncertainty) matrix of the pose parameters is also available. For instance, when

tracking independently moving objects their location and orientation can be predicted by incorpo-

rating a motion model such as constant velocity or constant acceleration. Similarly in the mobile

robot navigation domain, the location of the robot can be predicted by dead-reckoning from its

previous location. The strength of belief in such predictions of the robot pose are captured by the

prior covariance matrix. In this section, the iterative methods developed earlier to estimate pose

are extended to handle the information represented by the prior estimate and its covariance matrix.

The basic tool used is akin to Extended Kalman Filtering [15].
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Figure 4: Image Lines for Outdoor

Frame 1 used for convergence ex-

periment.

Figure 5: Projection of model us-

ing initial estimate for conver-

gence experiment.

Figure 6: Projection of model us-

ing estimate after �rst iteration

for convergence experiment.

Figure 7: Projection of model us-

ing estimate after second itera-

tion for convergence experiment.

Figure 8: Projection of model using estimate after third and �nal iteration for conver-

gence experiment.
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The covariance matrix �

P

of the estimated pose parameters is related to the coe�cient

matrix A (de�ned in equation 32):

�

P

= A

�1

(34)

The above formula for the covariance matrix is only valid if the residual error terms of the objective

function are optimally weighted. The covariance matrix is computed using the �nal pose parameters

estimated at the last iteration. The matrix A is known as the information matrix. It becomes

singular when there are an in�nite number of solutions e.g. a data set of less than three lines, all

lines are parallel, all lines meet at a point etc.. For these cases, incremental adjustments to the

current pose estimate cannot be computed.

3.4.1 Performance of the Non-linear Algorithm

The non-linear algorithm described above requires the user to specify an initial estimate for trans-

lation and rotation. How close the initial estimate must be to the �nal values, in order to ensure

convergence, depends on the particular data set. The algorithm seems to converge for initial es-

timates which di�er considerably from the correct solution. Generally, the rotation estimate is

more important than the translation estimate. For some data sets, convergence seems to be almost

independent of the starting point; for others the initial rotation estimate must be within 40 degrees

for all the three Euler angles representing the rotation.

Another important question asked about non-linear iterative algorithms is speed of conver-

gence. In our experiments, for \good" data sets of about 10 or more lines, the algorithm typically

converges in 3 or 4 iterations for initial estimates that may be more than 40 degrees o� in rotation

and 100 feet o� in translation. For instance, Figure 4 shows an initial set of input image lines used

for an experiment to demonstrate the convergence properties of the above minimization technique.

Figure 4 is the �rst frame of a set of outdoor images on which the pose algorithms were tested.

Figure 5 is the projection of the model using the initial estimate of the pose parameters. The initial

estimate is o� by more than 100 feet in translation along the walkway direction, 20 feet under the

walkway in the vertical direction and about 15 degrees o� from the axis for rotation. Figure 6

shows the projection of the model using the estimate of the pose parameters obtained after the

�rst iteration. The pose is now within 10 feet of the correct answer. Figure 7 shows the projection

of the model using the estimate of the pose parameters after the second iteration; the pose is now

almost correct. The algorithm converges in the third iteration and the projection using the �nal

estimate is shown in Figure 8. Note that in Figure 8 additional model lines have been projected to

show the accuracy of the �nal projection.

Finally, for certain near singular data sets, it is possible that the technique can diverge

rather than converge. Iterative minimization techniques can be looked upon as moving in a multi-

dimensional space, searching for the bottom of the nearest valley. Ideally, at each iteration or

move, the function value would decrease until the valley bottom is reached. The Gauss-Newton

minimization method adopted here is a second-order technique. Second-order methods have the

property of extremely fast convergence under normal conditions. Unlike �rst-order (or gradient

based) methods, they are not guaranteed to descend in every iteration.

For the near singular cases where the technique might diverge, a simple solution exists

to guarantee convergence. This solution is motivated by the Levenberg-Marquardt method for

minimizing non-linear functions and its application to this minimization technique for pose was

�rst noted by Lowe [21]. The Levenberg-Marquardt method combines �rst- and second-order

methods. At any current iteration, the increment is �rst calculated by second-order methods. If

the new estimate causes the objective function to increase, then the increment is re-estimated by

adding a component of the gradient to the old estimate of the increment. Note that moving along

the gradient guarantees descent and hence convergence. But gradient-descent algorithms are slow
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Let

~
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= ~p

0

i

�

~

N

i

. Using the chain rule of triple scalar product for vectors, di�erentiating

the objective function with respect to

~

�T
and

~

�!
respectively, and setting the results equal to 0,

the following two equations are obtained after some manipulation:
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Together, these two vector equations constitute 6 linear scalar equations in the 6 unknown compo-

nents of

~

�T
and

~

�!
. They can be rewritten in the more compact matrix form:

A

"

~

�T

~

�!

#

=

~

f
(31)

In the above equation, A is a 6 x 6 matrix and

~

f
is a 6 x 1 vector. A and

~

f
are de�ned in the

following manner:

A =

"

C F

F

T

D

#

(32)
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(33)

where C =

P
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Solving the above set of 6 linear equations gives a way of �nding small changes in rotation

and translation that reduce the overall objective function. The algorithm can therefore be expressed

in the following four steps.

Step 1 Given an initial estimate for rotation \R" and translation \

~

T
" and a list of correspondences

between 3D modeled lines and their image measurements.

Step 2 Compute the coe�cients of the matrices in equation (31). Solve the linear system for

~

�T

and

~

�!
.

Step 3 Compose

~

�!
with the current estimate R of rotation to get the new estimate. Add

~

�T
to

~

T
to get the next estimate for translation.

Step 4 Stop if the algorithm has converged or has exceeded a maximum number of iterations, else

go back to Step 2.

The current rotation estimate \R" is represented as a quaternion. At each iteration, the

rotation increment

~

�!
is transformed into a quaternion and composed with the current estimate

to form the new rotation estimate [12]. The iteration procedure is terminated when either a maxi-

mum number of iterations is exceeded or when the di�erence in the result between two successive

iterations is less than a pre-speci�ed minimum. The computational complexity of the algorithm is

O(kn) where there are \n" points or lines and \k" iterations are needed to converge to the optimal

solution.
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in the image etc.. Thus it is di�cult to develop a general model for the noise in locating line

end-points along the length of the line.

In algorithm \R and T img" the error in aligning model line segments with in�nitely ex-

tended image lines is optimized (objective function E

2

). In order to derive the optimal weights for

the error terms, the alignment error for each line must be approximated by a function of the mea-

surement noise. If the model line segments and the corresponding measured image line segments

are of similar length, then the perpendicular noise component in locating image line end-points

reasonably approximates the alignment error. However, if the model line segments are much larger

or smaller than the measured image line segments the alignment error can only be \well" approx-

imated by a function of both components of the noise in locating image line end-points. This, as

we noted earlier, is very di�cult to do. In contrast, in algorithm \R and T mod", the objective

function E

3

to be optimized is the error in aligning image line segments with in�nitely extended

model lines. The alignment error considered in this case depends only on the perpendicular noise

component in locating the image line end-points. Thus, to optimally weight the error terms in

E

3

it is not necessary to know (or erroneously model) the measurement noise along the length of

the image lines. In the experiments reported in Section 3.7, for both algorithms \R and T img"

and \R and T mod", the weights used in the respective objective functions are based only on the

perpendicular noise components.

E

1

, E

2

, E

3

and E

R

are all minimized by modifying the same basic non-linear technique.

Therefore, only the technique for minimizing E

1

is presented in the next section. For algorithm

\R then T", since rotation has already been estimated, E

1

is minimized by a straight-forward linear

least squares algorithm.

3.4 Non-linear Technique for \R and T"

To minimize \E

1

", we adapt an iterative technique formulated by Horn [12] to solve the problem of

relative orientation. An initial estimate is required for both \R" and \

~

T
". The technique linearizes

the error terms about the current estimate for \R" and \

~

T
". At each iteration, the linearized error

function is minimized to determine adjustment vectors for the rotation and translation terms. The

iterative adjustments are made to the rotation and translation terms until the objective function

\E

1

" converges to a minimum. Note that the algorithm, like all such descent algorithms, does not

guarantee a global minimum.

Assume we have a current estimate \R" for rotation. The coordinates ~p

0

i

of a rotated 3D

point is given by ~p

0

i

= R(~p

i

). An incremental rotation vector �! is added to the rotation estimate

\R"; the direction of this incremental vector is parallel to the axis of rotation, while its magnitude

is the angle of rotation.

This incremental rotation takes ~p

0

i

to ~p

00

i

:

~p

00

i

= ~p

0

i

+ �! � ~p

0

i

(26)

This follows from Rodrigue's formula [12] for the rotation of a vector r to r

0

by angle \�" about

the three dimensional axis vector \!":

r

0

= r(cos�) + sin�(w � r) + (1� cos�)(! � r)! (27)

where � = k�!k and ! = �!=k�!k

Let

~

�T
represent a small translation added to the current translation estimate T. Thus,

the linearized energy function about the current estimate \R" and \

~

T
" becomes:

E =

2n

X

i=1

w

i

(

~

N

i

� (~p

0

i

+

~

�!
� ~p

0

i

+ T +

~

�T
))

2

(28)
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Figure 2: Error function based on the \In�nite Image Line" constraint.
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Figure 3: Error function based on the \In�nite Model Line" constraint.
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In the \R then T" algorithm for line data, the rotation objective function E

R

is minimized

to solve for rotation \R". The estimated rotation is used to minimize the objective function E

1

to determine the translation \

~

T
". In contrast, the \R and T" algorithm minimizes only \E

1

"

to determine rotation \R" and translation \

~

T
" simultaneously. Objective function E

1

is a 3D

alignment error between model line end-points and the in�nitely extended image line. However,

the only signi�cant noise is assumed to be in the image measurements. Thus to optimally weight

the error terms in E

1

, the weight terms w

i

must be computed by reverse projecting the standard

deviation value of the image noise onto the 3D projective plane. A similar \optimal" objective

function can be obtained more simply by minimizing the sum of squares of the residual error

function de�ned in the image plane:

E

2

=

2n

X

i=1

w

i

 

~

N

i

� (R(~p

i

) +

~

T
)

(R(~p

i

) + T )

z

!

2

(24)

This error function is based on the constraint equation (8). The resulting algorithmwhich minimizes

E

2

is called \R and T img". The objective function E

2

is the sum of squares of the perpendicular

distance between projected model end-points to the in�nitely extended image line. Note in E

2

the

normal vector

~

N
is not a unit vector. It is de�ned by equation (7). Figure (2) shows this alignment

error for one line pair. The weights in equation (24) are the inverse values of the standard deviations

of the image noise in the direction perpendicular to the line. E

2

is also a rational function and

therefore it is more di�cult to optimize. To minimize E

2

, at each iteration in our non-linear

technique, the denominator term (R(~p

i

)+T )

2

z

for each point is held constant. In the next iteration,

the denominator is updated with the new \R" and \

~

T
". Therefore, we are able to employ the same

algorithm as used for E

1

. This seems to work for all the cases the algorithm has been run on. The

same technique is applied for other error functions which have a denominator term.

In contrast to E

1

and E

2

, which are based on the \In�nite Image Line" constraints given in

equations (9) and (8) respectively, an objective function (E

3

) is constructed based on the \In�nite

Model Line" constraint equation (21):
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where

~

T

w

and R

T

are the translation and rotation in the world coordinate system (2). M is de�ned

in equation (18) in Section 2. E

3

is the sum-of-the-squares of the perpendicular distances of the

end-points of the image lines to the projected model line. Figure (3) shows the alignment error

for one line pair. It is minimized by a method similar to the techniques used for E

1

and E

2

; the

algorithm which minimizes E

3

is called\R and T mod".

In Section 3.7, it is shown that algorithm (\R and T mod") performs more robustly than

algorithm (\R and T img") when there is signi�cant line fragmentation in the image data. This

is because of the di�culty in optimally weighting the error terms in the objective function E

2

minimized by algorithm (\R and T img"). This problem can be more easily understood by �rst

considering the e�ect of noise on the measurement of image lines.

The noise in the measurement of image lines can be decomposed into two components:

noise in measuring the location of the image line end-points perpendicular to the line and noise

in measuring the location of the image line end-points along the length of the line. We model the

noise in locating the image line end-points perpendicular to the length of the line as a gaussian

random variable. However, it seems intuitively not plausible that fragmentation of image lines is

reasonably modeled as a gaussian process. In fact, the noise in locating line end-points along the

length of the line seems signi�cantly dependent upon factors such as the particular line extraction

algorithm used, the image contrast across the line length, intensity structures neighboring the line

9



Ganapathy [8] presents a linear closed form solution for point data. In addition to solving

for the rotation and translation parameters, he also solves for the center of the image and scaling

along the \x" and \y" directions in the image. Our implementation of his technique shows that

it is extremely susceptible to noise, probably due to the use of a linear least-squares minimization

where it is assumed that all the parameters are independent when they are not. Faugeras et.al. [5]

developed a technique to solve a similar system of equations with appropriate constraints and report

better results. Tsai et.al. [26, 16] have also developed state of the art camera calibration techniques.

They assume that the lens distortion is mostly radial and solve for the lens distortion parameters

and the pose parameters using a radial alignment constraint equation. The image center and the

relative scale along the image \x" and \y" axes are solved for separately using a variety of special

methods [16]. For their technique to work image points must be located to within 0.1 pixel accuracy.

3.3 Objective Functions for line data

Ideally, if there was no noise, the minimal set of constraint equations (4) or (8,21) for three sets

of point or line correspondences respectively could be used to solve for the unknown pose param-

eters. The correct pose parameters would then cause perfect alignment between the projected

model landmarks and the image measurements. However, in practice, measurements are noisy and

perfect alignment cannot be realized. Therefore an objective function is minimized to �nd the pose

parameters. The objective function is typically some function of the alignment error between the

transformed model landmarks and image measurements. All the objective functions constructed

here are non-linear in nature. Therefore a crucial factor in the choice of the objective function is the

ability to construct suitable minimization algorithms for it. Suitability of minimization techniques

is gauged by the following parameters: (1) speed of minimization, (2) convergence from a suitably

large distribution of initial estimates, (3) numerical stability of the algorithm with respect to noise,

�nite length calculations etc..

In this section, a set of di�erent objective functions for line and point data are presented.

The objective functions are a sum of squares of a function of the alignment error between each 3D

model feature and its corresponding image measurement. To optimally estimate the pose (rotation

and translation) parameters, the error for each landmark feature must be appropriately weighted

based on the assumptions of noise in the measurement process. In the least-squares algorithms

presented in this section, it is assumed that the image measurements are corrupted with zero-mean

independent gaussian noise. It is also assumed in this section that the input noise in the 3D model

is not signi�cant. Thus the error terms corresponding to each image line or point measurement are

weighted by the inverse of the squared standard deviation of the measurement noise.

The �rst set of objective functions developed is based on the line constraint equations (9)

and (10):
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If there was no noise, the normal of the projection planes formed using the image lines would be

perpendicular to the direction of the rotated model lines and thus the cosine of the angle between

them would be zero. E

R

is the sum of squares of these cosines. E

1

is the weighted sum-of-the-

squares of the perpendicular distances from the end-points of the 3D lines to their corresponding

projection planes. For each line two 3D end-points are used and therefore each line contributes

twice to the objective function E

1

. In these equations, w

i

is the weight applied to the error for

each line for optimal estimation.
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by linearizing the problem about the current estimate of the output parameters. The translation

constraint is solved for by a linear least-squares method. Liu, Huang and Faugeras extend their

technique to point data by drawing virtual lines between pairs of points [18]. They use the same

rotational constraint; however, the translation constraint is di�erent from that for lines.

The algorithm \R then T" developed here is similar to the line based algorithm developed

by Liu et.al. [18]. However, a di�erent non-linear technique based on the Gauss-Newton method is

used for the minimization process. We believe that the application of this technique gives us much

better convergence properties than Liu's solution using Euler angles.

One of the results of this paper is that decomposition of the solution into the two stages, of

�rst solving for rotation and then for translation, does not use the set of constraints e�ectively. This

same observation was made by other researchers working on the structure frommotion problem [22].

The rotation and translation constraints (refer to equations (9, 10)), when used separately, are very

weak constraints. When solving for them separately, small errors in the rotation stage are ampli�ed

into large errors in the translation stage. This is particularly true with the large distances of the

landmarks from the camera in our application. Much better noise immunity is obtained if both

rotation and translation are solved for simultaneously. That is the approach adopted here. Another

algorithm (\R and T") was developed to solve for the rotation and translation simultaneously.

Section 3.7 presents results that show algorithm \R and T" performs much better than \R then T".

Lowe [19] presents iterative techniques for both point and line data. He reparameterizes the

rigid body transformation parameters to compute rotation and a translation vectorD (Page 120 of

his book). The original translation vector T (as de�ned in equation (1)) can only be meaningfully

recovered from this vector D when all the landmarks have the same depth. Therefore the solution

presented in his book is not applicable to the problem of camera location determination as formu-

lated here, where the typical scenes that we consider have landmarks spread over a large range in

depth. For line data, the solution presented in his book is based on the \In�nite Image Line" case

(similar to our \R and T img" algorithm). However, in his recently published papers [20, 21], the

rigid body transformation parameters adopted are similar to ours and the error functions minimized

are based on the \In�nite Model Line" case (similar to the \R and T mod" algorithm). His papers,

however, do not discuss the relative merits of the \In�nite Model Line" based error functions versus

the \In�nite Image Line" based error functions. He also does not extend his techniques to be robust

with respect to outliers. Instead he integrates the pose estimation step with the matching step and

uses a best-�rst search technique to �nd the best match and pose [21].

Worrall et.al. [29] present a least-squares technique for line data which minimizes an error

measure derived from the \In�nite Image Line" constraint equation (9). They compare results with

one of Lowe's solutions and report similar performance. However, they represent rotations as Euler

angles and use a di�erent non-linear technique from that presented here. They also do not handle

outliers or provide a mathematical analysis of the errors.

3.2 Camera Calibration

It is important to draw the distinction here between techniques for \camera calibration" [5, 16,

26], also called \interior orientation", versus the techniques for \camera location determination".

Camera calibration techniques solve for intrinsic camera parameters (such as focal length, image

center, lens distortion) along with the pose parameters (rotation and translation). The techniques

for camera calibration require very precise image measurements and are less tolerant to noise. Pose

determination techniques are less susceptible to image noise but one needs to know the intrinsic

camera parameters. In Section 5, the e�ect of errors in the intrinsic camera parameters on the pose

determination problem is studied.
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3 Least Square techniques

3.1 Previous Work and Our Approach

The problem of \pose determination" has been referred to by various other names including \ex-

terior orientation",\determination of camera location and orientation", \pose re�nement", \per-

spective inversion" and \model alignment". There have been many papers on pose determination,

but most assume only point data is available; only a few have presented techniques for line data

(see [15] for an extensive review). No closed form solution has yet been found for the general

pose problem with an arbitrary set of lines/ points in an arbitrary con�guration. Most techniques

minimize non-linear error functions, are iterative in nature and require an initial estimate.

Iterative techniques for point data based on linearization of a non-linear error function are

presented in the photogrammetry literature [28]. Wu et.al. [30] use extended Kalman �ltering to

solve for the pose and motion of an object given point correspondences from a matching algorithm.

They track the pose of the object over a sequence of frames and de�ne their state vector to consist

of both the position and motion of the object. Their dynamic model assumes that the velocity of

the object remains constant. Mitchie et.al. [23] use constraints based on conservation of distance

under rigid body transformation to solve for the length of the \legs" of an arbitrary set of points.

Once the points have been located in the 3D camera coordinate system, the pose can be computed

by employing a simpler absolute orientation (3D-3D pose) algorithm. This technique is employed

by them to solve the related problem of relative orientation between two camera coordinate systems

(structure from motion) given correspondences between points in the two image frames. However,

their method involves minimizing a non-linear error function with as many variables as the number

of points. In contrast, the techniques presented here solve directly for the six pose parameters and

the dimension of the error function does not increase with the number of lines/ points.

Some researchers [2, 27] have examined the use of image lines as an alternative to point

data; the idea is that lines provide a more stable image feature to match. It is assumed that line

end-points cannot be reliably extracted and hence end-point correspondences cannot be established.

This has led here to the formulation of two sorts of constraint equations for pose determination:

the \In�nite Image Line" case and the \In�nite Model Line" case. In the \In�nite Image Line"

case, a model line segment is aligned with an in�nitely extended image line, whereas in the \In�nite

Model Line" case extracted image line segments are aligned with in�nitely extended model lines.

Beveridge et.al. [2] report that, in the case of a 2D-2D pose problem, if extracted image lines

have signi�cant line breaks, then the \In�nite Model Line" algorithms perform much better than

the \In�nite Image Line" algorithms. We develop a series of algorithms \R then T", \R and T"

and \R and T img" based on the In�nite Image Line constraint, each performing better than the

previous algorithm. Finally, we show that our algorithm \R and T mod" based on the \In�nite

Model Line" constraint performs best of all.

Liu, Huang and Faugeras present a solution to the \camera location determination" problem

which works for both point and line data [18]. Their constraint is based on the \In�nite Image

Line" case and on the observation that three-dimensional lines in the camera coordinate system

must lie on the projection plane formed by the corresponding image line and the optical center.

Using this fact, constraints for rotation can be separated from those of translation. Equations (9)

and (10) express these constraints. They �rst solve for the rotation and then use the rotation result

to solve for the translation. Two methods are suggested to solve for the rotation constraint. In

the �rst method, rotation is represented as an orthonormal matrix and a smallest eigenvalue based

solution technique is presented. However, the six orthonormality constraints for an orthonormal

matrix are not enforced. It is not clear how they would �nd the nearest orthonormal matrix to the

matrix their algorithm returns, and whether that would be a solution to the original problem. The

second method represents rotation by Euler angles and is a non-linear iterative solution obtained

6
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(R(~p

2

�

~

T

w

)� R(~p

1

�

~

T

w

))

x

(14)

sin � =

1

s

y

M

(R(~p

2

�

~

T

w

)�R(~p

1

�

~

T

w

))

y

(15)

� = �

1

M

(R(~p

2

�

~

T

w

)� R(~p

1

�

~

T

w

))

z

(16)

where the vector

~

A
and scalar M are de�ned as follows:

~

A
= R(~p

2

�

~

T

w

)�R(~p

1

�

~

T

w

) (17)

M =

q

((

A

x

s

x

)

2

+ (

A

y

s

y

)

2

) (18)

The line equation (5) can be rewritten as the dot-product of two vectors:

(I

x

; I

y

; 1) � (cos �; sin �;��) = 0:0 (19)

We now de�ne vector

~

B
corresponding to the projection ray from the focal point to an

image point

~

I
as:

~

B
= (

I

x

s

x

;

I

y

s

y

; 1)

T

(20)

Using the above de�nition and substituting equation (14), (15) and (16) into the line equation (19)

the \In�nite Model Line" constraint equation becomes:

1

M

(R

T

~

B
� (~p

2

�

~

T

w

)� (~p

1

�

~

T

w

) = 0 (21)

For each image line end-point, the constraint equation (21) is developed. It represents the

constraint that the image line end-points

~

I

1

;

~

I

2

must lie on the projection of the 3D model line.

From this constraint, another least-squares algorithm (\R and T mod") is developed in Section 3

for computing the pose parameters given line correspondences. In Section 3.7, it is shown that

algorithm (\R and T mod") performs more robustly than algorithm (\R and T img") when there

is signi�cant line fragmentation in the image data.

2.3 Minimum Number of Lines/ Points.

Both rotation and translation in the 3D world can be represented by three parameters each. Each

line or point data provides two constraint equations (4). Thus, a minimum of three lines or points

are needed. However, in many cases, with three lines or points, there is no unique solution. If the

three lines are parallel in 3D space or lie on the same projection plane, then an in�nite number

of solutions can be found. If the three lines meet at a common point in 3D space, then there are

two solutions for rotation (the Necker cube phenomena) and an in�nite number of solutions for

translation. In general, there are eight possible solutions for the 3 point or line case, four of which

correspond to the 3D points lying in front of the camera and four corresponding to the 3D points

lying behind the camera [4, 7, 9].
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The 3D constraint represents the fact that any point on the 3D line in camera coordinates ideally

must lie in the projection plane. The vector formed from the origin (optical center) to this point

must be perpendicular to the normal of the projection plane.

These constraint equations (8 and 9) relate both rotation and translation pose parameters to

the 3D model and 2D image coordinates. A separate constraint involving just rotation is obtained,

if we subtract equation (9) for two points ~p

1

and ~p

2

lying on a line [18]:

^

N
�R(~p

1

� ~p

2

) =

^

N
�R(

~

d
) = 0

^

N
�R(

^

d
) = 0 (10)

The above equation is obtained by subtracting the left hand side of equation (9) for two 3D points

lying on a line. Note, the direction vector

~

d
= (~p

1

� ~p

2

). The constraint reects the fact that

the 3D line must lie in the projection plane formed by its corresponding image line. Rigid body

transformation can be represented as a rotation followed by a translation. Since translation does

not change the direction of the line, the direction of the 3D line after rotation in equation (10)

must be perpendicular to the normal of the projection plane of the image line.

From the constraints represented in equations (9) and (10), two algorithms have been de-

veloped to solve for rotation and translation. In the �rst algorithm (\R then T") the constraint in

equation (10) is used to solve for rotation. Then the rotation result returned from this step is used

in conjunction with equation (9) to solve for translation.

In the second algorithm (\R and T"), only equation (9) is used and both rotation and

translation are solved for simultaneously. For each line, the two end points must satisfy equation

(9). The tables in Section 3.7 will show that \R and T" performs much better than \R then T".

Finally, a third algorithm (\R and T img") is developed which uses the image-based constraint

equation (8) instead of the 3D-based constraint equation (9) to solve for rotation and translation

simultaneously.

2.2.2 The \In�nite Model Line" Case

In the \In�nite Model Line" case, an image line segment is aligned with the in�nite extension of

a projected model line. The (�; �) parameters in the line equation (5) are now used to represent

the in�nite extension of the projected model line. The image line end-points (

~

I

1

and

~

I

2

) must lie

on this projected model line and satisfy equation (5). We now develop the algebra for relating the

projected model line to the 3D model end-points. Since, we wish to develop the constraint and

correspoding error function to be image plane errors, the following algebra is a little tedious.

Expressions can be derived relating cos(�); sin(�) and � in equation (5) to the model line

end-points (p

1

; p

2

), and the pose (R;

~

T
). J

1

and J

2

are the image projections of the 3D model line

end-points (p

1

and p

2

). The expressions for (cos(�); sin(�) and �) for the image line between (

~

J

1

and

~

J

2

) are:

cos � =

(J

2y

� J

1y

)

p

((J

1x

� J

2x

)

2

+ (J

2y

� J

1y

)

2

)

(11)

sin � =

(J

1x

� J

2x

)

p

((J

1x

� J

2x

)

2

+ (J

2y

� J

1y

)

2

)

(12)

� =

(J

1x

J

2y

� J

2x

J

1y

)

p

((J

1x

� J

2x

)

2

+ (J

2y

� J

1y

)

2

)

(13)

The projections of the 3D model line end-points into the image plane points (

~

J

1

and

~

J

2

) are

given by equations (4). Substituting these expressions for points (

~

J

1

;

~

J

2

) into the equations for
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Figure 1: Perspective projection of image lines.

2.2 Pose Constraint for Lines.

In the case of line correspondences, it is assumed that model and image line end-point correspon-

dences cannot be established. Constraint equations for the pose parameters can be developed in

two ways. In the �rst case (\In�nite Image Line") a model line segment is aligned with an in�nitely

extended image line, whereas in the second case (\In�nite Model Line") an image line segment is

aligned with an in�nitely extended model line.

2.2.1 The \In�nite Image Line" Case

In the \In�nite Image Line" case an image line is represented by its (�; �) parameters. Any image

point (I

x

; I

y

) on the i'th line must satisfy the following equation:

I

x

cos � + I

y

sin � = � (5)

Substituting I

x

and I

y

from equation (3) into equation (5), the equation of the projection plane

formed by the image line and the optical center is obtained :

(s

x

cos �)p

cx

+ (s

y

sin �)p

cy

� �p

cz

p

cz

= 0 (6)

In Figure 1 , the projection plane formed by the image line \ab" is given by the plane \Oab"

and the 3D line \AB" must lie in this plane. The normal

~

N
to the projection plane is given by:

~

N
= (s

x

cos �; s

y

sin �;��)

T

(7)

Using equations (1) and (7), equation (6) can be rewritten as follows:

~

N
� (R(~p) +

~

T
)

(R(~p) +

~

T
)

z

= 0 (8)

This equation is the basic constraint for the \In�nite Image Line" case. The projected

model end-point must lie on the in�nitely extended image line. The perpendicular distance of a 3D

point ~p on the projection plane is given by (

^

N
�(R(~p)+

~

T
)). Note,

^

N
is the unit vector of

~

N
. Setting

the expression for perpendicular distance equal to zero, a simpler 3D constraint is formulated:

^

N
� (R(~p) +

~

T
) = 0 (9)
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imental results using the developed pose algorithms are reported at the ends of Sections 3 and 4.

The sensitivity analysis of pose estimation is presented in Section 5.

2 Rotation and Translation Constraints

In this section, the basic constraints for pose determination are developed. Given correspondences

between 3D lines (or points) and 2D lines (or points) found in the image, the goal in pose deter-

mination is to �nd the rotation and translation matrices which map the world coordinate system

to the camera coordinate system. The constraints developed in this paper relate the rotation and

translation parameters to the 3D model line (or point) coordinates and the corresponding 2D im-

age line (or point) coordinates. These constraints are used in Section 3 to develop the objective

functions, which are minimized to �nd the optimum pose parameters given noisy input data.

2.1 Pose Constraint for Points

Points in 3D space are represented by 3D vectors ~p. Lines in 3D are represented by two end-points ~p

1

and ~p

2

. The unit vector corresponding to the direction

^

d
of the 3D line is determined by subtracting

the two end-point vectors. The rigid body transformation from the world coordinate system to the

camera coordinate system can be represented as a rotation (R) followed by a translation (

~

T
). The

point ~p in world coordinates gets mapped to the point ~p

c

in camera coordinates. The mapping is

given by:

~p

c

= R(~p) +

~

T
(1)

Figure 1 shows the camera and world coordinate systems with X

w

, Y

w

and Z

w

representing the

axes of the world coordinate system. O is the optical center of the lens and also the origin of the

camera coordinate system OX

c

Y

c

Z

c

. OZ

c

is the optical axis of the camera. In equation (1) the

translation vector

~

T
represents the location of the origin of the world coordinate system in camera

coordinates. Equation (1) can be rewritten to map points in the camera coordinate system to the

world coordinate system:

~p = R

T

(~p

c

)�R

T

(

~

T
) = R

T

(~p

c

) +

~

T

w

(2)

In this equation, R

T

is the transpose of the rotation operator

1

in equation (1). \

~

T

w

" represents the

location of the origin of the camera coordinate system in world coordinates.

The 3D line \AB" in Figure 1 projects to the image line \ab". Image points

~

I
;

~

J
are

represented by 2D vectors. A 3D point ~p

c

projects to an image pixel

~

I
by the following equations:

I

x

= s

x

p

cx

p

cz

I

y

= s

y

p

cy

p

cz

(3)

where s

x

and s

y

are the scale factors along the \X" and \Y" directions respectively.

Using equations (1) and (3) the constraint equations for the pose parameters given point

correspondences are:

I

x

= s

x

(R~p+

~

T
)

x

(R~p+

~

T
)

z

I

y

= s

y

(R~p+

~

T
)

y

(R~p+

~

T
)

z

(4)

1

Since, the rotation operator is expressed as an orthonormal matrix, its transpose is the same as its inverse.
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1 Introduction

This paper mathematically analyzes and proposes new solutions for the problem of estimating

camera location and orientation (Pose Determination) from a set of recognized landmarks appearing

in the image. Given correspondences between 3D lines (or points) and 2D lines (or points) found in

the image, the goal is to �nd the rotation and translation matrices which map the world coordinate

system to the camera coordinate system. Algorithms are developed for handling both 3D line and

3D point landmarks. In this paper, only the line algorithms are presented; for the point algorithms,

see [15]. The paper presents a sequence of least-squares techniques to solve the pose determination

problem, each performing better than the previous one. The least-squares techniques minimize

non-linear functions, are iterative in nature and require an initial estimate. However, experiments

show that there is rapid convergence even with signi�cant errors in the initial estimates. For those

cases in which an initial estimate of rotation and translation is not available, techniques based on

sampling the rotation space to provide initial estimates are developed. A mathematical analysis of

an uncertainty measure is developed, which relates the variance in the output parameters to the

noise present in the input parameters. For the experiments and analysis reported in this paper, it

is assumed that there is no noise in the 3D model data and the only input noise is in the image

data. In Kumar's thesis [15], pose determination techniques for handling errors in the 3D model

are presented.

Least-squares techniques are known to be sensitive to gross errors or outliers in the data;

techniques based on robust statistics to handle outliers are therefore developed. We investigate

two di�erent statistical techniques for the \robust" estimation of pose with data having outliers.

The �rst set of techniques, called M-Estimation techniques, minimize non-convex functions of the

individual residual errors. The e�ect of large errors is bounded by saturating the minimization

function. Experimentally, the M-estimate methods seem to be susceptible to initial estimates and

are not able to handle a large number of outliers (a maximum of approximately 20%). However,

there are e�cient computational methods for minimizing the associated error functions.

The second set of algorithms developed are capable of performing correctly in situations

where the number of outliers is less than 50% of the number of data points. Also, they are not

as sensitive as the M-Estimate techniques to initial estimates. These estimate the LMS (Least

Median of Squares) of the residual error across all landmarks. The LMS pose computed is used to

detect and remove outliers, and then a least-squares �t on the remaining data is used to obtain the

rotation and translation matrix estimates. These algorithms are computationally much slower than

those based on M-Estimation techniques. Using random subset selection methods, the average time

complexity of the LMS-based algorithms is substantially reduced with a minimal loss in robustness.

The camera model assumed is perspective projection. Intrinsic camera parameters, such

as focal length, �eld of view, center of the image, size of image etc. are assumed to have been

estimated by a camera calibration procedure [5, 16, 26]. The sensitivity of the pose parameters

to errors in the intrinsic camera parameters such as focal length and image center is analyzed. In

particular, for \small" �eld of view imaging systems, incorrect knowledge of the camera center (or

\principal point") fortunately does not signi�cantly a�ect the determination of the location of the

robot camera in the world coordinate system. However, the orientation of the robot is a�ected. The

amount of error in the orientation is linearly related to the error in the estimate of the center. It

is also shown that incorrect estimates of the focal length only signi�cantly a�ects the z-component

(i.e. the component parallel to the optical axis) of the translation in camera coordinates.

The remainder of the paper is organized as follows: Section 2 discusses the geometry of

perspective projection and the rotation and translation constraints. Section 3 presents the least-

squares non linear technique and solution methods for situations when there is no good initial

estimate. Section 4 presents robust pose techniques which can deal with outliers. Extensive exper-
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SYMBOLS used ...

� � : delta

� � : Delta

� � : rho

� �

2n

i=1

: Sigma with subscripts and superscripts

� � : Lambda

� � : theta

� 	 : Psi

� 
 : Omega

� ! : omega

� � : alpha

� � : beta

� ~a : Putting vectors above characters

� â : Putting hats above characters

� A

i

: Characters with subscripts

� A

i

: Characters with superscripts

� A �B : circ operator between two characters

� A �B : center dot operator between two characters
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Abstract

This paper mathematically analyzes and proposes new solutions for the problem of estimat-

ing the camera 3D location and orientation (Pose Determination) from a matched set of 3D model

and 2D image landmark features. Least-squares techniques for line tokens, which minimize both

rotation and translation simultaneously, are developed and shown to be far superior to the earlier

techniques which solved for rotation �rst and then translation. However, least-squares techniques

fail catastrophically when outliers (or gross errors) are present in the match data. Outliers arise

frequently due to incorrect correspondences or gross errors in the 3D model. Robust techniques for

pose determination are developed to handle data contaminated by fewer than 50.0 % outliers.

Finally, the sensitivity of pose determination to incorrect estimates of camera parameters

is analyzed. It is shown that for small �eld of view systems, o�sets in the image center do not

signi�cantly a�ect the location of the camera in a world coordinate system. Errors in the focal

length signi�cantly a�ect only the component of translation along the optical axis in the pose

computation.
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