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Abstract

This paper mathematically analyzes and proposes new solutions for the problem of estimat-
ing the camera 3D location and orientation (Pose Determination) from a matched set of 3D model
and 2D image landmark features. Least-squares techniques for line tokens, which minimize both
rotation and translation simultaneously, are developed and shown to be far superior to the earlier
techniques which solved for rotation first and then translation. However, least-squares techniques
fail catastrophically when outliers (or gross errors) are present in the match data. Outliers arise
frequently due to incorrect correspondences or gross errors in the 3D model. Robust techniques for
pose determination are developed to handle data contaminated by fewer than 50.0 % outliers.

Finally, the sensitivity of pose determination to incorrect estimates of camera parameters
is analyzed. It is shown that for small field of view systems, offsets in the image center do not
significantly affect the location of the camera in a world coordinate system. Errors in the focal
length significantly affect only the component of translation along the optical axis in the pose
computation.



SYMBOLS used ...

6 : delta
A : Delta
p : tho

Y27 ¢ Sigma with subscripts and superscripts

A : Lambda

0 : theta

¥ : Psi

Q : Omega

w : omega

a : alpha

[ : beta

@ : Putting vectors above characters
a : Putting hats above characters
A; : Characters with subscripts
A’ : Characters with superscripts

Ao B : circ operator between two characters

A - B : center dot operator between two characters



1 Introduction

This paper mathematically analyzes and proposes new solutions for the problem of estimating
camera location and orientation (Pose Determination) from a set of recognized landmarks appearing
in the image. Given correspondences between 3D lines (or points) and 2D lines (or points) found in
the image, the goal is to find the rotation and translation matrices which map the world coordinate
system to the camera coordinate system. Algorithms are developed for handling both 3D line and
3D point landmarks. In this paper, only the line algorithms are presented; for the point algorithms,
see [15]. The paper presents a sequence of least-squares techniques to solve the pose determination
problem, each performing better than the previous one. The least-squares techniques minimize
non-linear functions, are iterative in nature and require an initial estimate. However, experiments
show that there is rapid convergence even with significant errors in the initial estimates. For those
cases in which an initial estimate of rotation and translation is not available, techniques based on
sampling the rotation space to provide initial estimates are developed. A mathematical analysis of
an uncertainty measure is developed, which relates the variance in the output parameters to the
noise present in the input parameters. For the experiments and analysis reported in this paper, it
is assumed that there is no noise in the 3D model data and the only input noise is in the image
data. In Kumar’s thesis [15], pose determination techniques for handling errors in the 3D model
are presented.

Least-squares techniques are known to be sensitive to gross errors or outliers in the data;
techniques based on robust statistics to handle outliers are therefore developed. We investigate
two different statistical techniques for the “robust” estimation of pose with data having outliers.
The first set of techniques, called M-Estimation techniques, minimize non-convex functions of the
individual residual errors. The effect of large errors is bounded by saturating the minimization
function. Experimentally, the M-estimate methods seem to be susceptible to initial estimates and
are not able to handle a large number of outliers (a maximum of approximately 20%). However,
there are efficient computational methods for minimizing the associated error functions.

The second set of algorithms developed are capable of performing correctly in situations
where the number of outliers is less than 50% of the number of data points. Also, they are not
as sensitive as the M-Estimate techniques to initial estimates. These estimate the LMS (Least
Median of Squares) of the residual error across all landmarks. The LMS pose computed is used to
detect and remove outliers, and then a least-squares fit on the remaining data is used to obtain the
rotation and translation matrix estimates. These algorithms are computationally much slower than
those based on M-Estimation techniques. Using random subset selection methods, the average time
complexity of the LMS-based algorithms is substantially reduced with a minimal loss in robustness.

The camera model assumed is perspective projection. Intrinsic camera parameters, such
as focal length, field of view, center of the image, size of image etc. are assumed to have been
estimated by a camera calibration procedure [5, 16, 26]. The sensitivity of the pose parameters
to errors in the intrinsic camera parameters such as focal length and image center is analyzed. In
particular, for “small” field of view imaging systems, incorrect knowledge of the camera center (or
“principal point”) fortunately does not significantly affect the determination of the location of the
robot camera in the world coordinate system. However, the orientation of the robot is affected. The
amount of error in the orientation is linearly related to the error in the estimate of the center. It
is also shown that incorrect estimates of the focal length only significantly affects the z-component
(i.e. the component parallel to the optical axis) of the translation in camera coordinates.

The remainder of the paper is organized as follows: Section 2 discusses the geometry of
perspective projection and the rotation and translation constraints. Section 3 presents the least-
squares non linear technique and solution methods for situations when there is no good initial
estimate. Section 4 presents robust pose techniques which can deal with outliers. Extensive exper-



imental results using the developed pose algorithms are reported at the ends of Sections 3 and 4.
The sensitivity analysis of pose estimation is presented in Section 5.

2 Rotation and Translation Constraints

In this section, the basic constraints for pose determination are developed. Given correspondences
between 3D lines (or points) and 2D lines (or points) found in the image, the goal in pose deter-
mination is to find the rotation and translation matrices which map the world coordinate system
to the camera coordinate system. The constraints developed in this paper relate the rotation and
translation parameters to the 3D model line (or point) coordinates and the corresponding 2D im-
age line (or point) coordinates. These constraints are used in Section 3 to develop the objective
functions, which are minimized to find the optimum pose parameters given noisy input data.

2.1 Pose Constraint for Points

Pointsin 3D space are represented by 3D vectors p. Lines in 3D are represented by two end-points py
and py. The unit vector corresponding to the direction d of the 3D line is determined by subtracting
the two end-point vectors. The rigid body transformation from the world coordinate system to the
camera coordinate system can be represented as a rotation (R) followed by a translation (7). The
point p'in world coordinates gets mapped to the point p,. in camera coordinates. The mapping is
given by: _

ﬁc = R(ﬁ) +7T (1)

Figure 1 shows the camera and world coordinate systems with X, Y,, and Z,, representing the
axes of the world coordinate system. O is the optical center of the lens and also the origin of the
camera coordinate system OX_.Y.Z.. OZ, is the optical axis of the camera. In equation (1) the
translation vector T represents the location of the origin of the world coordinate system in camera
coordinates. Equation (1) can be rewritten to map points in the camera coordinate system to the
world coordinate system:

—

P = R'(p) - RU(T) = RT(F)+ 1o (2)

In this equation, RT is the transpose of the rotation operator!® in equation (1). “ [',” represents the

location of the origin of the camera coordinate system in world coordinates.

The 3D line “AB” in Figure 1 projects to the image line “ab”. Image points I,J are
represented by 2D vectors. A 3D point p. projects to an image pixel I by the following equations:

Pex Pey
I, =s I, =s,— 3
‘ xpCZ Y prZ ( )

where s, and s, are the scale factors along the “X” and “Y” directions respectively.

Using equations (1) and (3) the constraint equations for the pose parameters given point
correspondences are:

L= o FPE T ;- BT, )
(Ri+T). R OR

1Since, the rotation operator is expressed as an orthonormal matrix, its transpose is the same as its inverse.
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Figure 1: Perspective projection of image lines.

2.2 Pose Constraint for Lines.

In the case of line correspondences, it is assumed that model and image line end-point correspon-
dences cannot be established. Constraint equations for the pose parameters can be developed in
two ways. In the first case (“Infinite Image Line”) a model line segment is aligned with an infinitely
extended image line, whereas in the second case (“Infinite Model Line”) an image line segment is
aligned with an infinitely extended model line.

2.2.1 The “Infinite Image Line” Case

In the “Infinite Image Line” case an image line is represented by its (p, #) parameters. Any image
point (I, I,) on the i’th line must satisfy the following equation:

I, cos0+ I,sinf = p (5)

Substituting I, and I, from equation (3) into equation (5), the equation of the projection plane
formed by the image line and the optical center is obtained :

(8¢ €08 0)pey + (Sy SINO)pey — ppes
Pez

=0 (6)

In Figure 1, the projection plane formed by the image line “ab” is given by the plane “Oab”
and the 3D line “AB” must lie in this plane. The normal N to the projection plane is given by:

N = (85 cos8,s,sin8, —p)T (7)
Using equations (1) and (7), equation (6) can be rewritten as follows:

N-(R(p) + T)

—— =0 (8)
(R(P)+ 1)

This equation is the basic constraint for the “Infinite Image Line” case. The projected
model end-point must lie on the infinitely extended image line. The perpendicular distance of a 3D
point p on the projection plane is given by (N (R(p)+ f)) Note, N is the unit vector of N. Setting
the expression for perpendicular distance equal to zero, a simpler 3D constraint is formulated:

N (R +T)=0 (9)



The 3D constraint represents the fact that any point on the 3D line in camera coordinates ideally
must lie in the projection plane. The vector formed from the origin (optical center) to this point
must be perpendicular to the normal of the projection plane.

These constraint equations (8 and 9) relate both rotation and translation pose parameters to
the 3D model and 2D image coordinates. A separate constraint involving just rotation is obtained,
if we subtract equation (9) for two points p; and p3 lying on a line [18]:

N'R(ﬁl—ﬁz):N'R(@ZO
N-R(d)=0 (10)

The above equation is obtained by subtracting the left hand side of equation (9) for two 3D points
lying on a line. Note, the direction vector d = (p1 — p2)- The constraint reflects the fact that
the 3D line must lie in the projection plane formed by its corresponding image line. Rigid body
transformation can be represented as a rotation followed by a translation. Since translation does
not change the direction of the line, the direction of the 3D line after rotation in equation (10)
must be perpendicular to the normal of the projection plane of the image line.

From the constraints represented in equations (9) and (10), two algorithms have been de-
veloped to solve for rotation and translation. In the first algorithm (“R_then_T”) the constraint in
equation (10) is used to solve for rotation. Then the rotation result returned from this step is used
in conjunction with equation (9) to solve for translation.

In the second algorithm (“R_and_T”), only equation (9) is used and both rotation and
translation are solved for simultaneously. For each line, the two end points must satisfy equation
(9). The tables in Section 3.7 will show that “R_and_T” performs much better than “R_then_T”.
Finally, a third algorithm (“R_and_-T.img”) is developed which uses the image-based constraint
equation (8) instead of the 3D-based constraint equation (9) to solve for rotation and translation
simultaneously.

2.2.2 The “Infinite Model Line” Case

In the “Infinite Model Line” case, an image line segment is aligned with the infinite extension of
a projected model line. The (p,#) parameters in the line equation (5) are now used to represent
the infinite extension of the projected model line. The image line end-points (I_{ and I;) must lie
on this projected model line and satisfy equation (5). We now develop the algebra for relating the
projected model line to the 3D model end-points. Since, we wish to develop the constraint and
correspoding error function to be image plane errors, the following algebra is a little tedious.

Expressions can be derived relating cos(#),sin(#) and p in equation (5) to the model line
end-points (p1,p2), and the pose (R, T) J1 and Jy are the image projections of the 3D model line
end-points (p; and py). The expressions for (cos(6),sin(8) and p) for the image line between (.J;
and J;) are:

_ (J2y — le)
OO = e = Ja) ¥ (g = Tig)?) (1)
sinf = (le _ JZI) (12)

V((J1z = J22)? + (Joy — J1y)?)
_ (Jizd2y — J2zJ1y)
P U= 2P + (g — T (19

The projections of the 3D model line end-points into the image plane points (J_i and J_;) are

given by equations (4). Substituting these expressions for points (J_i, J_;) into the equations for



(cos(8),sin(f) and p), the following is obtained:

1 - = _, =
cosf = sx]\/[(R(pz —Tyw) X R(P1 —Ty))z (14)
. 1 - = - =
sinf = —(R(py — Tw) X R(p1 — Tw))y (15)
sy M
1 o = N =
p = —H(R(pg - Tw) X R(pl - Tw))z (16)

where the vector A and scalar M are defined as follows:

E = R(ﬁ2 - fw) X R(ﬁl - fw) (17)
M = \ﬂ(f—:)Q + (f—Z)Q) (18)

The line equation (5) can be rewritten as the dot-product of two vectors:

(Iz,1y,1) - (cos,sinf,—p) = 0.0 (19)

We now define vector B corresponding to the projection ray from the focal point to an
image point [ as:
- I, I, .t
B = (_7_71) (20)
Sz Sy
Using the above definition and substituting equation (14), (15) and (16) into the line equation (19)
the “Infinite Model Line” constraint equation becomes:

1 me o
M(RTB (P2 —Tw) X (Pr —Tw) =0 (21)

For each image line end-point, the constraint equation (21) is developed. It represents the
constraint that the image line end-points I, I, must lie on the projection of the 3D model line.
From this constraint, another least-squares algorithm (“R_and_T_mod”) is developed in Section 3
for computing the pose parameters given line correspondences. In Section 3.7, it is shown that
algorithm (“R_and_T _mod”) performs more robustly than algorithm (“R_and_T_img”) when there
is significant line fragmentation in the image data.

2.3 Minimum Number of Lines/ Points.

Both rotation and translation in the 3D world can be represented by three parameters each. Each
line or point data provides two constraint equations (4). Thus, a minimum of three lines or points
are needed. However, in many cases, with three lines or points, there is no unique solution. If the
three lines are parallel in 3D space or lie on the same projection plane, then an infinite number
of solutions can be found. If the three lines meet at a common point in 3D space, then there are
two solutions for rotation (the Necker cube phenomena) and an infinite number of solutions for
translation. In general, there are eight possible solutions for the 3 point or line case, four of which
correspond to the 3D points lying in front of the camera and four corresponding to the 3D points
lying behind the camera [4, 7, 9].



3 Least Square techniques

3.1 Previous Work and Our Approach

The problem of “pose determination” has been referred to by various other names including “ex-
terior orientation”,“determination of camera location and orientation”, “pose refinement”, “per-
spective inversion” and “model alignment”. There have been many papers on pose determination,
but most assume only point data is available; only a few have presented techniques for line data
(see [15] for an extensive review). No closed form solution has yet been found for the general
pose problem with an arbitrary set of lines/ points in an arbitrary configuration. Most techniques
minimize non-linear error functions, are iterative in nature and require an initial estimate.

Iterative techniques for point data based on linearization of a non-linear error function are
presented in the photogrammetry literature [28]. Wu et.al. [30] use extended Kalman filtering to
solve for the pose and motion of an object given point correspondences from a matching algorithm.
They track the pose of the object over a sequence of frames and define their state vector to consist
of both the position and motion of the object. Their dynamic model assumes that the velocity of
the object remains constant. Mitchie et.al. [23] use constraints based on conservation of distance
under rigid body transformation to solve for the length of the “legs” of an arbitrary set of points.
Once the points have been located in the 3D camera coordinate system, the pose can be computed
by employing a simpler absolute orientation (3D-3D pose) algorithm. This technique is employed
by them to solve the related problem of relative orientation between two camera coordinate systems
(structure from motion) given correspondences between points in the two image frames. However,
their method involves minimizing a non-linear error function with as many variables as the number
of points. In contrast, the techniques presented here solve directly for the six pose parameters and
the dimension of the error function does not increase with the number of lines/ points.

Some researchers [2, 27] have examined the use of image lines as an alternative to point
data; the idea is that lines provide a more stable image feature to match. It is assumed that line
end-points cannot be reliably extracted and hence end-point correspondences cannot be established.
This has led here to the formulation of two sorts of constraint equations for pose determination:
the “Infinite Image Line” case and the “Infinite Model Line” case. In the “Infinite Image Line”
case, a model line segment is aligned with an infinitely extended image line, whereas in the “Infinite
Model Line” case extracted image line segments are aligned with infinitely extended model lines.
Beveridge et.al. [2] report that, in the case of a 2D-2D pose problem, if extracted image lines
have significant line breaks, then the “Infinite Model Line” algorithms perform much better than
the “Infinite Image Line” algorithms. We develop a series of algorithms “R_then_T”, “R_and_T”
and “R_and_T_img” based on the Infinite Image Line constraint, each performing better than the
previous algorithm. Finally, we show that our algorithm “R_and_T_mod” based on the “Infinite
Model Line” constraint performs best of all.

Liu, Huang and Faugeras present a solution to the “camera location determination” problem
which works for both point and line data [18]. Their constraint is based on the “Infinite Image
Line” case and on the observation that three-dimensional lines in the camera coordinate system
must lie on the projection plane formed by the corresponding image line and the optical center.
Using this fact, constraints for rotation can be separated from those of translation. Equations (9)
and (10) express these constraints. They first solve for the rotation and then use the rotation result
to solve for the translation. Two methods are suggested to solve for the rotation constraint. In
the first method, rotation is represented as an orthonormal matrix and a smallest eigenvalue based
solution technique is presented. However, the six orthonormality constraints for an orthonormal
matrix are not enforced. It is not clear how they would find the nearest orthonormal matrix to the
matrix their algorithm returns, and whether that would be a solution to the original problem. The
second method represents rotation by Euler angles and is a non-linear iterative solution obtained



by linearizing the problem about the current estimate of the output parameters. The translation
constraint is solved for by a linear least-squares method. Liu, Huang and Faugeras extend their
technique to point data by drawing virtual lines between pairs of points [18]. They use the same
rotational constraint; however, the translation constraint is different from that for lines.

The algorithm “R_then_T” developed here is similar to the line based algorithm developed
by Liu et.al. [18]. However, a different non-linear technique based on the Gauss-Newton method is
used for the minimization process. We believe that the application of this technique gives us much
better convergence properties than Liu’s solution using Euler angles.

One of the results of this paper is that decomposition of the solution into the two stages, of
first solving for rotation and then for translation, does not use the set of constraints effectively. This
same observation was made by other researchers working on the structure from motion problem [22].
The rotation and translation constraints (refer to equations (9, 10)), when used separately, are very
weak constraints. When solving for them separately, small errors in the rotation stage are amplified
into large errors in the translation stage. This is particularly true with the large distances of the
landmarks from the camera in our application. Much better noise immunity is obtained if both
rotation and translation are solved for simultaneously. That is the approach adopted here. Another
algorithm (“R_and_T”) was developed to solve for the rotation and translation simultaneously.
Section 3.7 presents results that show algorithm “R_and_T” performs much better than “R_then_T”.

Lowe [19] presents iterative techniques for both point and line data. He reparameterizes the
rigid body transformation parameters to compute rotation and a translation vector D (Page 120 of
his book). The original translation vector 7" (as defined in equation (1)) can only be meaningfully
recovered from this vector D when all the landmarks have the same depth. Therefore the solution
presented in his book is not applicable to the problem of camera location determination as formu-
lated here, where the typical scenes that we consider have landmarks spread over a large range in
depth. For line data, the solution presented in his book is based on the “Infinite Image Line” case
(similar to our “R_and_T_img” algorithm). However, in his recently published papers [20, 21], the
rigid body transformation parameters adopted are similar to ours and the error functions minimized
are based on the “Infinite Model Line” case (similar to the “R_and_T_mod” algorithm). His papers,
however, do not discuss the relative merits of the “Infinite Model Line” based error functions versus
the “Infinite Image Line” based error functions. He also does not extend his techniques to be robust
with respect to outliers. Instead he integrates the pose estimation step with the matching step and
uses a best-first search technique to find the best match and pose [21].

Worrall et.al. [29] present a least-squares technique for line data which minimizes an error
measure derived from the “Infinite Image Line” constraint equation (9). They compare results with
one of Lowe’s solutions and report similar performance. However, they represent rotations as Euler
angles and use a different non-linear technique from that presented here. They also do not handle
outliers or provide a mathematical analysis of the errors.

3.2 Camera Calibration

It is important to draw the distinction here between techniques for “camera calibration” [5, 16,
26], also called “interior orientation”, versus the techniques for “camera location determination”.
Camera calibration techniques solve for intrinsic camera parameters (such as focal length, image
center, lens distortion) along with the pose parameters (rotation and translation). The techniques
for camera calibration require very precise image measurements and are less tolerant to noise. Pose
determination techniques are less susceptible to image noise but one needs to know the intrinsic
camera parameters. In Section 5, the effect of errors in the intrinsic camera parameters on the pose
determination problem is studied.



Ganapathy [8] presents a linear closed form solution for point data. In addition to solving
for the rotation and translation parameters, he also solves for the center of the image and scaling
along the “x” and “y” directions in the image. Our implementation of his technique shows that
it is extremely susceptible to noise, probably due to the use of a linear least-squares minimization
where it is assumed that all the parameters are independent when they are not. Faugeras et.al. [5]
developed a technique to solve a similar system of equations with appropriate constraints and report
better results. Tsai et.al. [26, 16] have also developed state of the art camera calibration techniques.
They assume that the lens distortion is mostly radial and solve for the lens distortion parameters
and the pose parameters using a radial alignment constraint equation. The image center and the
relative scale along the image “x” and “y” axes are solved for separately using a variety of special
methods [16]. For their technique to work image points must be located to within 0.1 pixel accuracy.

3.3 Objective Functions for line data

Ideally, if there was no noise, the minimal set of constraint equations (4) or (8,21) for three sets
of point or line correspondences respectively could be used to solve for the unknown pose param-
eters. The correct pose parameters would then cause perfect alignment between the projected
model landmarks and the image measurements. However, in practice, measurements are noisy and
perfect alignment cannot be realized. Therefore an objective function is minimized to find the pose
parameters. The objective function is typically some function of the alignment error between the
transformed model landmarks and image measurements. All the objective functions constructed
here are non-linear in nature. Therefore a crucial factor in the choice of the objective function is the
ability to construct suitable minimization algorithms for it. Suitability of minimization techniques
is gauged by the following parameters: (1) speed of minimization, (2) convergence from a suitably
large distribution of initial estimates, (3) numerical stability of the algorithm with respect to noise,
finite length calculations etc..

In this section, a set of different objective functions for line and point data are presented.
The objective functions are a sum of squares of a function of the alignment error between each 3D
model feature and its corresponding image measurement. To optimally estimate the pose (rotation
and translation) parameters, the error for each landmark feature must be appropriately weighted
based on the assumptions of noise in the measurement process. In the least-squares algorithms
presented in this section, it is assumed that the image measurements are corrupted with zero-mean
independent gaussian noise. It is also assumed in this section that the input noise in the 3D model
is not significant. Thus the error terms corresponding to each image line or point measurement are
weighted by the inverse of the squared standard deviation of the measurement noise.

The first set of objective functions developed is based on the line constraint equations (9)

and (10):

iwz(ﬁz . R((jz))z (22)

EFrp =
B = iwvai-(R(@)ﬁ))? (23)

If there was no noise, the normal of the projection planes formed using the image lines would be
perpendicular to the direction of the rotated model lines and thus the cosine of the angle between
them would be zero. FEp is the sum of squares of these cosines. F; is the weighted sum-of-the-
squares of the perpendicular distances from the end-points of the 3D lines to their corresponding
projection planes. For each line two 3D end-points are used and therefore each line contributes
twice to the objective function Fy. In these equations, w; is the weight applied to the error for
each line for optimal estimation.



In the “R_then_T” algorithm for line data, the rotation objective function E g is minimized
to solve for rotation “R”. The estimated rotation is used to minimize the objective function F4
to determine the translation “7”. In contrast, the “R_and_T” algorithm minimizes only “F,”
to determine rotation “R” and translation “7” simultaneously. Objective function Ej is a 3D
alignment error between model line end-points and the infinitely extended image line. However,
the only significant noise is assumed to be in the image measurements. Thus to optimally weight
the error terms in Fy, the weight terms w; must be computed by reverse projecting the standard
deviation value of the image noise onto the 3D projective plane. A similar “optimal” objective
function can be obtained more simply by minimizing the sum of squares of the residual error
function defined in the image plane:

Z w; ( R(pz) + T)) (24)
i=1 ) + T)Z

This error function is based on the constraint equation (8). The resulting algorithm which minimizes
FE5 is called “R_and_T_img”. The objective function F5 is the sum of squares of the perpendicular
distance between projected model end-points to the infinitely extended image line. Note in Fq the
normal vector N is not a unit vector. It is defined by equation (7). Figure (2) shows this alignment
error for one line pair. The weights in equation (24) are the inverse values of the standard deviations
of the image noise in the direction perpendicular to the line. Fj is also a rational function and
therefore it is more difficult to optimize. To minimize F 4, at each iteration in our nomn-linear
technique, the denominator term (R(p;)+T)? for each point is held constant. In the next iteration,
the denominator is updated with the new “R” and “T”. Therefore, we are able to employ the same
algorithm as used for Fy. This seems to work for all the cases the algorithm has been run on. The
same technique is applied for other error functions which have a denominator term.

In contrast to Ey and Ej, which are based on the “Infinite Immage Line” constraints given in
equations (9) and (8) respectively, an objective function (£3) is constructed based on the “Infinite
Model Line” constraint equation (21):

Br= 30 S(RTCEL 0) (7a— ) x (= 7o) (25

i=1;5=1 SI Yy

where T, and RT are the translation and rotation in the world coordinate system (2). M is defined
in equation (18) in Section 2. E3 is the sum-of-the-squares of the perpendicular distances of the
end-points of the image lines to the projected model line. Figure (3) shows the alignment error
for one line pair. It is minimized by a method similar to the techniques used for £ and Fs; the
algorithm which minimizes F3 is called“R_and_T _mod”.

In Section 3.7, it is shown that algorithm (“R_and_T_mod”) performs more robustly than
algorithm (“R_and_T_img”) when there is significant line fragmentation in the image data. This
is because of the difficulty in optimally weighting the error terms in the objective function FE4
minimized by algorithm (“R_and_T_img”). This problem can be more easily understood by first
considering the effect of noise on the measurement of image lines.

The noise in the measurement of image lines can be decomposed into two components:
noise in measuring the location of the image line end-points perpendicular to the line and noise
in measuring the location of the image line end-points along the length of the line. We model the
noise in locating the image line end-points perpendicular to the length of the line as a gaussian
random variable. However, it seems intuitively not plausible that fragmentation of image lines is
reasonably modeled as a gaussian process. In fact, the noise in locating line end-points along the
length of the line seems significantly dependent upon factors such as the particular line extraction
algorithm used, the image contrast across the line length, intensity structures neighboring the line
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Figure 2: Error function based on the “Infinite Image Line” constraint.
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Figure 3: Error function based on the “Infinite Model Line” constraint.
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in the image etc.. Thus it is difficult to develop a general model for the noise in locating line
end-points along the length of the line.

In algorithm “R_and_T_img” the error in aligning model line segments with infinitely ex-
tended image lines is optimized (objective function E;). In order to derive the optimal weights for
the error terms, the alignment error for each line must be approximated by a function of the mea-
surement noise. If the model line segments and the corresponding measured image line segments
are of similar length, then the perpendicular noise component in locating image line end-points
reasonably approximates the alignment error. However, if the model line segments are much larger
or smaller than the measured image line segments the alignment error can only be “well” approx-
imated by a function of both components of the noise in locating image line end-points. This, as
we noted earlier, is very difficult to do. In contrast, in algorithm “R_and_T _mod”, the objective
function E3 to be optimized is the error in aligning image line segments with infinitely extended
model lines. The alignment error considered in this case depends only on the perpendicular noise
component in locating the image line end-points. Thus, to optimally weight the error terms in
Es5 it is not necessary to know (or erroneously model) the measurement noise along the length of
the image lines. In the experiments reported in Section 3.7, for both algorithms “R_and_T_img”
and “R_and_T_mod”, the weights used in the respective objective functions are based only on the
perpendicular noise components.

FEy, Fy, E5 and EpR are all minimized by modifying the same basic non-linear technique.
Therefore, only the technique for minimizing F; is presented in the next section. For algorithm
“R_then_T”, since rotation has already been estimated, F/; is minimized by a straight-forward linear
least squares algorithm.

3.4 Non-linear Technique for “R_and_T”

To minimize “E;”, we adapt an iterative technique formulated by Horn [12] to solve the problem of
relative orientation. An initial estimate is required for both “R” and “7”. The technique linearizes
the error terms about the current estimate for “R” and “7”. At each iteration, the linearized error
function is minimized to determine adjustment vectors for the rotation and translation terms. The
iterative adjustments are made to the rotation and translation terms until the objective function
“E1” converges to a minimum. Note that the algorithm, like all such descent algorithms, does not
guarantee a global minimum.

Assume we have a current estimate “R” for rotation. The coordinates §7; of a rotated 3D
point is given by i, = R(j;). An incremental rotation vector éw is added to the rotation estimate
“R”; the direction of this incremental vector is parallel to the axis of rotation, while its magnitude
is the angle of rotation.

it

This incremental rotation takes 5, to j;":

"

P =P+ 6w x p; (26)

This follows from Rodrigue’s formula [12] for the rotation of a vector r to 7’ by angle “6” about

the three dimensional axis vector “w”:

' = r(cos) + sinb(w X 1)+ (1 — cosf)(w - r)w (27)
where 0 = ||6w]|| and w = dw/||éw]|

Let A7 represent a small translation added to the current translation estimate T. Thus,
the linearized energy function about the current estimate “R” and “7” becomes:

2n
E =Y wiN;- (5 + 60 x i + T + AT))? (28)
=1
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Let b; = ]72-' X N. Using the chain rule of triple scalar product for vectors, differentiating

the objective function with respect to AT and éw respectively, and setting the results equal to 0,
the following two equations are obtained after some manipulation:

2n 2n

S wi(Ni - AT + 6w - b)) N; = = > wi(N; - (5 + T))N; (29)
2n . . o L. 2n . , . .

S wi(Ny - AT + éw - b)b; = = > wi( N - (57 + T))bs (30)

Together, these two vector equations constitute 6 linear scalar equations in the 6 unknown compo-
nents of AT and éw. They can be rewritten in the more compact matrix form:

A[A?]:f (31)

6w

In the above equation, A is a 6 x 6 matrix and f_’is a 6 x 1 vector. A and f_’ are defined in the
following manner:

¢ F
. -

|

where C' = Y2, w; ;NI D =2 wibb?  F =% wN;bF

-y
Il
Q) Ol

T
] (33)

while ¢ = 2 wi(N; - (7] + T))N;  and  d = 2 wi( Ny - (57 + T))bi.

Solving the above set of 6 linear equations gives a way of finding small changes in rotation
and translation that reduce the overall objective function. The algorithm can therefore be expressed
in the following four steps.

Step 1 Given an initial estimate for rotation “R” and translation “7” and a list of correspondences
between 3D modeled lines and their image measurements.

Step 2 Compute the coefficients of the matrices in equation (31). Solve the linear system for AT
and éw.

Step 3 Compose w with the current estimate R of rotation to get the new estimate. Add AT to
T to get the next estimate for translation.

Step 4 Stop if the algorithm has converged or has exceeded a maximum number of iterations, else
go back to Step 2.

The current rotation estimate “R” is represented as a quaternion. At each iteration, the
rotation increment éw is transformed into a quaternion and composed with the current estimate
to form the new rotation estimate [12]. The iteration procedure is terminated when either a maxi-
mum number of iterations is exceeded or when the difference in the result between two successive
iterations is less than a pre-specified minimum. The computational complexity of the algorithm is
O(kn) where there are “n” points or lines and “k” iterations are needed to converge to the optimal
solution.
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The covariance matrix Ap of the estimated pose parameters is related to the coefficient
matrix A (defined in equation 32):
Ap=A~1 (34)

The above formula for the covariance matrix is only valid if the residual error terms of the objective
function are optimally weighted. The covariance matrix is computed using the final pose parameters
estimated at the last iteration. The matrix A is known as the information matrix. It becomes
singular when there are an infinite number of solutions e.g. a data set of less than three lines, all
lines are parallel, all lines meet at a point etc.. For these cases, incremental adjustments to the
current pose estimate cannot be computed.

3.4.1 Performance of the Non-linear Algorithm

The non-linear algorithm described above requires the user to specify an initial estimate for trans-
lation and rotation. How close the initial estimate must be to the final values, in order to ensure
convergence, depends on the particular data set. The algorithm seems to converge for initial es-
timates which differ considerably from the correct solution. Generally, the rotation estimate is
more important than the translation estimate. For some data sets, convergence seems to be almost
independent of the starting point; for others the initial rotation estimate must be within 40 degrees
for all the three Euler angles representing the rotation.

Another important question asked about non-linear iterative algorithms is speed of conver-
gence. In our experiments, for “good” data sets of about 10 or more lines, the algorithm typically
converges in 3 or 4 iterations for initial estimates that may be more than 40 degrees off in rotation
and 100 feet off in translation. For instance, Figure 4 shows an initial set of input image lines used
for an experiment to demonstrate the convergence properties of the above minimization technique.
Figure 4 is the first frame of a set of outdoor images on which the pose algorithms were tested.
Figure 5 is the projection of the model using the initial estimate of the pose parameters. The initial
estimate is off by more than 100 feet in translation along the walkway direction, 20 feet under the
walkway in the vertical direction and about 15 degrees off from the axis for rotation. Figure 6
shows the projection of the model using the estimate of the pose parameters obtained after the
first iteration. The pose is now within 10 feet of the correct answer. Figure 7 shows the projection
of the model using the estimate of the pose parameters after the second iteration; the pose is now
almost correct. The algorithm converges in the third iteration and the projection using the final
estimate is shown in Figure 8. Note that in Figure 8 additional model lines have been projected to
show the accuracy of the final projection.

Finally, for certain near singular data sets, it is possible that the technique can diverge
rather than converge. Iterative minimization techniques can be looked upon as moving in a multi-
dimensional space, searching for the bottom of the nearest valley. Ideally, at each iteration or
move, the function value would decrease until the valley bottom is reached. The Gauss-Newton
minimization method adopted here is a second-order technique. Second-order methods have the
property of extremely fast convergence under normal conditions. Unlike first-order (or gradient
based) methods, they are not guaranteed to descend in every iteration.

For the near singular cases where the technique might diverge, a simple solution exists
to guarantee convergence. This solution is motivated by the Levenberg-Marquardt method for
minimizing non-linear functions and its application to this minimization technique for pose was
first noted by Lowe [21]. The Levenberg-Marquardt method combines first- and second-order
methods. At any current iteration, the increment is first calculated by second-order methods. If
the new estimate causes the objective function to increase, then the increment is re-estimated by
adding a component of the gradient to the old estimate of the increment. Note that moving along
the gradient guarantees descent and hence convergence. But gradient-descent algorithms are slow
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Figure 4: Image Lines for Outdoor Figure 5: Projection of model us-
Frame 1 used for convergence ex- ing initial estimate for conver-
periment. gence experiment.

Figure 6: Projection of model us- Figure 7: Projection of model us-
ing estimate after first iteration ing estimate after second itera-
for convergence experiment. tion for convergence experiment.

Figure 8: Projection of model using estimate after third and final iteration for conver-
gence experiment.
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to converge. The Levenberg-Marquardt method attempts to combine the best of both methods
by moving along directions close to the gradient only if moving in the direction computed by the
second-order method causes divergence.

In the non-linear technique described above for the pose problem, the gradient direction at
any iteration is given by the (6 x 1) vector f defined in equation (31). If the A matrix in equation
(31) is diagonal then the incremental move calculated is in the direction of the gradient. Thus, if
the new estimate at the end of an iteration increases the total error, then the diagonal terms of A
are multiplied by a constant factor (10 in our experiments). This biases the new increment to be
towards the gradient direction. This procedure is repeated until the error function decreases after
the addition of the increments to the current estimate. Experiments have proven that the method
is effective in forcing convergence. However, in most of the data sets we have experimented with,
divergent behavior of the second-order method was not observed.

3.5 Initial Estimates of Rotation and Translation

For some applications, initial estimates for rotation and translation may not be available. In that
case, the rotation space can be sampled and each of the samples used as an initial estimate for
the rotation estimation part of “R_then_T”. The rotation and translation estimates made by the
algorithm “R_then_T” are then used as initial estimates for “R_and_T”. We have successfully tried
this procedure with 12 uniform samples of the rotation space based on the rotation group of a
tetrahedron.

The algorithm for pose determination, when no initial estimate is available, is the following;:

Step 1: Pick a rotation estimate from a uniform sampling of the rotation space.
Step 2: Run Algorithm “R_then_T” to get estimates for both “R” and “77.
Step 3: Use the estimates from Step 2 as initial estimates to “R_and_T7.

Step 4: Repeat Steps 1-3 until all rotation samples have been considered.

Step 5: Return the estimate which gives the smallest alignment error in Step 3 as the final
estimate.

It is possible to speed up the computation by running algorithm “R_then_T” in step 2 for
all initial rotation samples. The best estimate is then used as the initial estimate for a single run of
“R_and_T”. In practice, this has been found to be good enough most of the time. Finally, in Step
3, the algorithms “R_and _T_img” or “R_and_T_mod” can replace “R_and_T”.

3.6 Prior Estimates

In many applications a prior estimate for the pose parameters is available; in many cases a prior
covariance (or uncertainty) matrix of the pose parameters is also available. For instance, when
tracking independently moving objects their location and orientation can be predicted by incorpo-
rating a motion model such as constant velocity or constant acceleration. Similarly in the mobile
robot navigation domain, the location of the robot can be predicted by dead-reckoning from its
previous location. The strength of belief in such predictions of the robot pose are captured by the
prior covariance matrix. In this section, the iterative methods developed earlier to estimate pose
are extended to handle the information represented by the prior estimate and its covariance matrix.
The basic tool used is akin to Extended Kalman Filtering [15].
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Let the initial estimate be denoted by the (6 x 1) vector § and the associated prior covariance
matrix by the (6 x 6) matrix Ag. In the iterative system developed earlier, a linear system of
equations (31) is solved at each iteration to determine the pose increments AT for translation and
rotation éw. To incorporate the additional information available in the covariance matrix, this
linear system of equations is modified in the following way:

= f-123'(0-Q) (35)

bw

(A+A5h [ AT ]

In the above equation, g is the current pose estimate. Note that A is a (6 x 6) matrix while fa,nd ]
are (6 x 1) vectors. Therefore, when prior estimates and covariance matrices are available equation
(35) instead of equation (31) is solved at each iteration. The output covariance matrix of the pose
parameters is given by (A + Aél)_l evaluated at the final pose estimate.

3.7 Least Squares Results Using Line Data

The development of the algorithms presented in this paper are part of a larger effort to enable the
UMASS robot “Harvey” to navigate the sidewalks and interior hallways of a part of the UMASS
campus [6]. Consequently, results using line data are presented for both indoor hallway images and
outdoor sidewalk images. Figures 9 and 10 are examples of outdoor and indoor images respectively.

The indoor model was built by measuring distances with a tape measure and is accurate
to approximately 0.1 feet [6]. The outdoor 3D model was built over two passes. In the first pass,
blueprints of the campus, drawn to a scale of 40 feet to an inch, were used. Errors of up to 10 feet
were found in the resulting 3D model; errors of this magnitude are unacceptable for our navigation
goals. An error of 1 foot in the location of a 3D landmark, 50 feet away from the camera, can
cause its projection to be displaced by 24 pixels in the image. In the second pass, landmarks
were surveyed using theodolites. We believe most of our 3D model is now accurate to within 0.3
feet. Some landmarks, such as poles and posts, are difficult to position accurately, because of their
cylindrical shape and their lack of any distinguishing points.

The images were acquired using a Sony B/W model AVC-D1 camera mounted on the robot
vehicle. Linked to a Gould frame grabber, 512 by 484 pixel images are obtained, with a field of
view of 24.0° by 23.0°. Calibration was not done for the image center; it was assumed to be at the
frame center.

3.7.1 Synthetic Data Results for “R_and_T” and “R_then_T?”

The synthetic data experiments were conducted for both “R_and_T” and “R_then_T” using the
outdoor 3D model. The landmarks used for the outdoor scene experiments were the 3D lines forming
the visible corner of the building, window lines, lampposts, telephone poles and one sidewalk line
(see Figure 4). The camera was placed approximately 300 feet distant from the building. The two
algorithms were run with three different sets of data lines, each set being perturbed by at least two
different amounts of noise. Zero mean uniform noise was added to the p and 6 of each image line
(refer to equation (5)). In Tables 1 and 2 the noise for each simulation is specified in the p and 6
columns. One pixel noise in p means that to the correct p of each line, we added a Ap, which was
a random number anywhere in the range [-1,+1]. Similarly, one degree of noise in # means that
to the correct 8 of each line, we added a Af, which was a random number anywhere in the range
[-1,41]. Simulations were performed for a maximum of 1° or 5° noise in #, and a maximum of 1
pixel or 5 pixel noise in p.
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The results presented in the tables are the average absolute error of the computed rotation
and translation over 100 data samples, for each set of lines and each noise specification. The results
for the “R_and_T” and “R_then_T” algorithms are shown in Table 1 and Table 2, respectively.
Rotation and translation errors in these tables for synthetic data are specified with respect to
the camera coordinate system (Figure 1). The rotation errors are specified in terms of the error
in degrees of the axis-angle 3D rotation vector. AT, corresponds to error in translation in the
direction along the rows in the image plane (in camera coordinates, see Figure 4). AT’ corresponds
to error in translation in the vertical direction in camera coordinates. AT, corresponds to error in
translation along the direction of the optical axis in camera coordinates.

The first set of 5 lines consisted of the 4 corner edges of the building visible in Figure 4 and
one window line in that same building. The second set of 14 lines consisted of the 4 corner edges
of the building, as above, 6 lampposts and telephone pole lines, three more lines on the building
and one side walk line. The third set of 30 lines consisted of the above set of 14 lines plus a set of
16 virtual lines that were drawn between 6 real vertices in the scene.

A comparison of the results shows that the performance of the “R_and_T” algorithm (Ta-
ble 1) is much better than the “R_then_T” algorithm (Table 2). With zero noise specified, both
algorithms gave the correct result. For each set of lines and each specification of noise, “R_and 17
performs much better than “R_then_T”. The results for “R_then_T” are particularly bad for the
5 line case. This can be explained by the observation that, in the 5 line case, 3 of the lines form
a trihedral junction. As noted before, trihedral junctions can give rise to an infinite number of
translations. Thus, the translation result is determined from this infinite set solely by the two
remaining lines, both of which are vertical and not too far from each other. With noise, therefore,
we would expect large errors in translation. This problem is compounded even further when the
rotation stage is separated from the translation stage as is the case in algorithm “R_then_T”.

Table 1: Average Absolute Error of Translation and Rotation in camera coordinates for
algorithm “R_and_T”. The average for each experiment is taken over 100 samples of uniform
noise.

NOISE ROTATION ERROR | TRANSLATION ERROR

No. 0 p | bwe | bwy dw. | AT, | ATy AT,
Lines | deg. | pixels | deg. | deg. deg. | feet feet feet
Correct 0.00 | 0.00 0.00 | 0.00 0.00 0.00

5 1.0 1.0 | 0.24 | 0.15 0.04 | 0.21 2.03 1.16

5 5.0 5.0 | 1.20 | 0.79 0.19 | 1.08 | 10.14 6.20

5 1.0 5.0 | 0.24 | 0.16 0.04 | 0.21 2.04 1.18

5 5.0 1.0 | 1.19 | 0.78 0.19 | 1.08 | 10.14 6.20
14 1.0 1.0 | 0.07 | 0.06 0.08 | 0.03 0.77 0.02
14 5.0 5.0 | 0.34 | 0.30 0.39 | 0.17 3.80 0.12
30 1.0 1.0 | 0.03 | 0.05 0.06 | 0.06 0.48 0.06
30 5.0 5.0 | 0.16 | 0.24 0.31 | 0.32 2.39 0.32

In the results for both algorithms, the error decreases appreciably as the number of lines
increases. In the “R_and_T” case (Table 1) results are shown for experiments with the 5 line data
set for two extra cases of noise. Examination of the results for these two cases in Table 1 shows an
appreciably larger error when the noise in 6 is 5°. However, when the noise in p is 5 pixels and the
noise in 8 is 19, the errors are much smaller; in general noise in # for lines is much more harmful
than noise in p. Finally, in all experiments, the error in AT, was often found to be larger than the
errors in AT, and AT,. This is due to the fact that in the data sets for these experiments, the
majority of the 3D lines are vertical.
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Table 2: Average Absolute Error of Translation and Rotation in camera coordinates for
algorithm “R_then_T” The average for each experiment is taken over 100 samples of uniform
noise.

NOISE ROTATION ERROR | TRANSLATION ERROR

No. 0 p| bws dwy dwe | ATy | ATy AT,
Lines | deg. | pixels | deg. deg. deg. feet feet feet
Correct 0.00 0.00 0.00 0.00 0.00 0.00

5 1.0 1.0 | 1.08 5.06 0.62 | 11.44 | 13.96 51.16

5 5.0 5.0 | 3.19 | 14.65 1.62 | 32.69 | 39.85 149.40

14 1.0 1.0 | 0.29 0.29 0.18 0.35 2.37 0.23

14 5.0 5.0 | 1.50 1.56 0.91 1.92 | 12.44 1.27

30 1.0 1.0 | 0.09 0.10 0.13 0.40 1.01 0.36
30 5.0 5.0 | 0.45 0.50 0.66 2.09 5.05 1.82

3.7.2 Synthetic Data Results for “R_and_T_mod” and “R_and_T_img”

In this subsection, synthetic data results for algorithms “R_and_T_mod” and “R_and_T_.img” are
discussed. The results for the experiments are presented in Table 3. The 3D line model used for
these experiments is same as that built for the indoor hallway images (see Figure 10). The camera
was assumed to be 40 feet from the door in Figure 10. The field of view and other intrinsic camera
specifications are the same as those used for the the synthetic data experiments discussed in the
previous section. Given an input pose, the 3D model of 10 lines is projected to create a set of 2D
data lines. The end-points of the 2D lines are then corrupted by 2D gaussian noise. The gaussian
noise has two components; the first is perpendicular to the 2D line and the second is along the
length of the line. Noise for each end-point was assumed to be independent. For all the experiments
reported in Table 3 the standard deviation of the component of the noise perpendicular to the line
was 1 pixel. The standard deviation of the component of the noise along the length of the line is
specified as percentage of the length of the line. This is reported in column 2 in Table 3. For each
noise specification, 1000 noisy sample sets are created and the two algorithms run on each of the
noisy 2D data sets. First-order and second-order statistics are collected for each set of 1000 runs.
From the first order statistics (i.e. estimation of the mean) it is observed that the final estimates
are unbiased. The second-order statistics are the experimentally derived covariance matrices of the
output pose parameters. The square root of the diagonal values (or standard deviations) of each
of the pose parameters for each noise specification and each algorithm are reported in Table 3.

From Table 3, it can be seen that the two algorithms perform comparably as long the
component of noise along the length of the line is small. But when the standard deviation of
the noise along the length of the line becomes 20 % or more of the length, then the results for
algorithm “R_and_T_mod” sharply improve over algorithm “R_and_T_img”. This confirms what
was predicted earlier in the discussion: algorithm (“R_and_T_mod”) performs more robustly than
algorithm (“R_and_T_img”) when there is significant line fragmentation in the image data.

3.7.3 Real Data Results for “R_and_T_mod” and “R_and_T _img”

In this subsection, results for algorithms “R_and_T_mod” and “R_and_T_img” over two real data
outdoor and indoor sequences are presented. The first sequence consists of 6 outdoor frames. The
first and fourth frames are shown in Figures 4 and 9 respectively. For the outdoor sequence, the
camera was moved in an approximate forward motion 25 feet along the walkway. Each subsequent
frame was taken after a movement of 5 feet down the walkway. The 2D images lines were taken
from the output of a 2D line matching system [2]. For each frame, column 2 in Table 4 gives the

18



Table 3: Standard deviation of Translation and Rotation error in world coordinates for
algorithms “R_and_T_img” and “R_and_T_mod” with high prior covariance estimates
for translation. The statistics for each experiment is taken over 1000 samples of gaussian noise.

NOISE ROTATION ERROR TRANSLATION ERROR

No. length | perp. Swq Swy Sw, AT, AT, AT,

Lines % pixels deg. deg. deg. feet feet feet
Algorithm “R_and_T_.img”

Prior Estimate 57.30 57.30 57.30 94.86 94.86 94.86

10 1.0 1.0 2.77 0.46 2.48 0.25 0.82 0.70

10 5.0 1.0 2.79 0.47 2.50 0.25 0.83 0.70

10 10.0 1.0 2.83 0.48 2.53 0.26 0.84 0.71

10 20.0 1.0 3.03 0.54 2.71 0.27 0.89 0.77

10 30.0 1.0 6.68 1.35 5.27 0.96 1.72 1.49

10 40.0 1.0 10.33 2.32 8.45 2.00 2.44 2.12
Algorithm “R_and_T_mod”

Prior Estimate 57.30 57.30 57.30 94.86 94.86 94.86

10 1.0 1.0 2.69 0.46 2.40 0.25 0.79 0.68

10 5.0 1.0 2.69 0.46 2.40 0.25 0.79 0.68

10 10.0 1.0 2.70 0.46 2.40 0.25 0.80 0.68

10 20.0 1.0 2.79 0.48 2.48 0.27 0.82 0.70

10 30.0 1.0 2.92 0.48 2.59 0.28 0.86 0.73

10 40.0 1.0 3.06 0.45 2.69 0.27 0.90 0.76

number of lines the 2D line matcher was able to correctly match. The 2D matcher does not return
the original image lines, rather it returns the location of the matched 2D lines as predicted by the
final 2D-2D pose. One consequence of this is that the input lines used in our experiment for the
outdoor sequence are not broken and fragmented like the original extracted image lines may be.
Figure 9 shows the input 2D lines as returned by the line matcher for frame 4 of the outdoor image
sequence. These were used as input to our algorithm along with the 3D model.

The error in the estimated location by algorithms “R_and_T_img” and “R_and_T_mod” is
given in Table 4. In the table, the translation direction “x” is the horizontal direction oriented
with the long side of the hallway (for indoor images) or the walkway (for outdoor images), the “y”
direction is the horizontal direction perpendicular to the long sides of the hallway or walkway, and
the “z” direction is aligned with the direction of gravity. Ground truth for rotation was not available
so the algorithms were compared only with respect to location estimation. A qualitative estimation
of the orientation accuracy can be obtained by seeing how well the projected model aligns with the
original image data (e.g. as in Figures 13 and 14). In most cases, for the outdoor frames the robot
is located to within one or two feet. The measurement errors in Table 4 are approximate to 0.5
feet. The precise location of the camera is not known. It is better to judge the performance of the
algorithm by looking at the projections of the 3D landmarks on the image after the pose has been
estimated. Figures 11 and 13 are the projection of the 3D model lines using the poses estimated
by the algorithm “R_and_T_img” and “R_and_T_mod” for outdoor frame 4 respectively. As can be
seen, in all cases there is fairly good alignment between the 3D model and the original image. The
two algorithms perform comparably for this sequence. This is probably due to the fact that the
output of the 2D matcher returns whole lines and there is no fragmentation of the 2D image lines.

The results of the two algorithms “R_and_T_img” and “R_and_T_mod” on four indoor hall-
way frames are also given in Table 4. The camera location for these frames ranged from 32 feet
to 23 feet from the door. The results in Table 4 are with no outliers in the input data. The line
correspondences for the four frames were obtained from a motion line tracking system [27]. In this
case, the input lines used are the extracted image lines. As a result, some of the input lines are
fragmented. If more than one image line was matched to a model line, then the longest matched
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Table 4: Estimated Errors of Translation in world coordinates for algorithm
“R_and_T_img” and “R_and_T_mod”. Real Data results for Outdoor and Indoor frames
without outliers.

“R_and_Timg” “R_and_T_mod”
Frame | Num. || TRANSLATION ERROR | TRANSLATION ERROR
No. Lines AT, AT, AT, AT, AT, AT,
feet feet feet feet feet feet
Outdoor Frames
1 17 0.47 0.02 0.54 0.42 0.05 0.54
2 15 0.41 0.56 0.59 0.37 0.86 0.85
3 12 2.03 0.48 0.41 2.34 0.58 0.50
4 7 0.64 1.02 0.88 0.77 1.16 0.90
5 13 1.30 0.87 0.61 1.32 0.87 0.61
6 13 1.72 1.23 0.79 141 1.43 0.88
Indoor Frames
1 22 0.24 0.04 0.04 0.24 0.05 0.01
2 22 0.10 0.17 0.02 0.12 0.08 0.01
3 12 1.58 4.87 4.25 0.11 0.11 0.03
4 10 2.95 1.06 0.79 0.10 0.03 0.01

line was selected for the input set given to the pose algorithms. The input 2D lines and the final
estimated projection of the 3D model lines by the algorithms “R_and_T_img” and “R_and_T _mod”
for indoor frame 3 are shown in Figures 10, 12 and 14 respectively.

Algorithm “R_and_T_mod” is able to locate the camera within 0.3 feet for all four frames.
In contrast, algorithm “R_and_T_img” performs poorly for the last two frames. This is due to
the severe and noisy fragmentation of the image lines in the last two frames. The final estimate
of algorithm “R_and_T_img” for indoor frame 3 is wrong by more than 4 feet (see Table 4). In
Figure 12, it can be seen that the projected model lines (especially, the baseboard lines on the
left hand side) for indoor frame 3 are not at all aligned with the input image. The line extraction
algorithm has recovered only a small and noisy fragment of the lower left baseboard line (see
Figure 10). This input line is an outlier for algorithm “R_and_T_img” and causes the final projection
to be skewed. Note that if the lower left baseboard line is removed from this data set, the algorithm
“R_and_T_.img” locates the robot within an inch of the correct location.

From the above experiment for indoor frame 3, two facts are demonstrated. The first,
of course, is that algorithm “R_and_T_mod” is more robust than algorithm “R_and_T_img”. The
second fact is that even a single outlier can cause a least-squares algorithm to fail catastrophically.
Thus, we must develop algorithms which are robust with respect to outliers; this is the subject of
the next section.

4 Robust Methods

This section develops and analyzes pose determination techniques which are robust with respect
to outliers or gross errors in the data. In the pose problem, outliers occur either dur to incorrect
the image to world correspondences or if parts of the 3D model are incorrect. Traditionally, least
square techniques have been used for regression analysis or model fitting. In Section 3, least squares
techniques were presented to solve the pose problem. Least squares is optimum and reliable when
the underlying noise in the data is gaussian. However, when outliers are present in the data, the
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Figure 9: Outdoor frame 4 with Figure 10: Indoor frame 3 with
input image lines. input image lines.

Figure 11: Projection of model Figure 12: Projection of model
(Outdoor frame 4) using final for Indoor frame 3 using final
estimate of algorithm estimate of algorithm
“R_and_T_img”. “R_and_T_img”.

Figure 13: Projection of model Figure 14: Projection of model
(Outdoor frame 4) using final for Indoor frame 3 using final
estimate of algorithm estimate of algorithm
“R_and_T_mod”. “R_and_T_mod”.
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gaussian assumption is violated and the least squares result is skewed in order to make the data
approximate a gaussian. Because of the skewing of the result, trying to detect outliers by comparing
the residual errors of each line with a threshold will not work. Throwing away one line at a time
and doing least squares on the remaining subset also does not work when more than one outlier is
present.

Statisticians have suggested many different “robust” techniques [13, 17, 24, 25, 31] to handle
outliers and these techniques are currently gaining popularity in computer vision [1, 7, 10, 14]. A
measure used to analyze these “robust” algorithms is the breakdown point : the smallest fraction
of outliers present in the input data which may cause the output estimate to be arbitrarily wrong.
Algorithms based on minimizing L1, L2 or Lp error measures have breakdown points of 1/n where
“n” is the number of data items. Another measure of robust statistical procedures is their “relative
efficiency” [14, 25]. It is defined in Kim et. al. [14] as the “ratio between the lowest achievable
variance for the estimated parameters (the Cramer-Rao bound) and the actual variance provided
by the given method”, so that the best possible value is 1. Kim et. al. also note that “the least
mean square estimator in the presence of gaussian noise has an asymptotic (large sample) efficiency
of 1 while the median’s efficiency is only 0.637” [14, 24]. As we shall see, there is a trade-off between
algorithms with high breakdown points versus those with high efficiency. Finally most research in
robust statistics appears to have been done for linear problems. When applying these techniques to
non-linear problems, another important consideration is the initial estimate. Non-linear problems
are often solved iteratively using an initial estimate. How close must this initial estimate be for the
robust technique to work?

4.1 Previous Work: Outliers

There are two major sets of statistical techniques for handling outliers. The first attempts to detect
outliers before forming a robust estimate. The goal is to find “leverage points” i.e. data points
which are on the outskirts of the data cluster. These points, if wrong, can have the largest influence
on the final estimate. Standard outlier detection techniques are based on the diagonal entries of
the “Hat” matrix, Mahalanobis distance etc. ; these generally work for only certain kind of outliers
and often cannot handle more than one outlier.

The second set of robust statistical techniques detects outliers and computes robust esti-
mates simultaneously. Most of these techniques attempt to define objective functions whose global
minimum would not be significantly affected by outliers. The techniques analyzed in the next
sub-section are of this kind. Standard among these are M-estimates (Maximum likelihood type
estimates), L-estimates (linear combinations of order statistics) and R-estimates (estimates based
on rank transformations). Functions minimized by M-Estimate techniques attempt to bound the
maximum possible error value (e.g. the biweight “redescending” function suggested by Tukey, see
Figure 15) or bound its rate of change (e.g. Huber’s Minimax function). Most of these M-Estimate
techniques have been shown to have breakdown points of 1/(p+1) or lower [17, 25] where “p” is the
number of unknowns (p = 6 for the pose refinement problem). They have high efficiencies however,
typically more than 0.9. Huber [13] suggests iterative algorithms to minimize these error functions
and these algorithms are relatively fast to compute. However, it is important to have good initial
estimates because of the number of local minima.

Haralick and Joo [10] adapt these M-Estimate techniques for the pose problem using point
data. They use the “redescending” function suggested by Tukey [24] and the “minimax” function
suggested by Huber [13], respectively. These techniques are also adapted here for the pose problem
using line correspondences. Better results were obtained using Tukey’s function as compared to
Huber’s. An algorithm “Tuk_wts” based on using Tukey’s error function and the “Infinite Image
Line” constraint for pose is presented in the Section 4.2.
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Another robust technique suggested by Rousseeuw and Leroy [25] is based on the mini-
mization of the median of the squares of the residual errors (LMS: Least Median of Squares). This
method has a breakdown point of 0.5 and consequently is able to handle data sets which contain
less than 50 % outliers. However, since the median is not a differentiable function, it has to be
minimized by a combinatorial method and is comparatively very slow compared to the M-Estimate
techniques. To minimize the median square error, a brute-force technique is employed that com-
putes the median square error using all “p” size data subsets, where “p” is the number of unknown
parameters. Rousseeuw and Leroy [25] believe that only techniques of this brute force nature will
be able to achieve a high breakdown point. They suggest that by sacrificing 100% probability
of correctness, a large gain in computational speed can be obtained by considering only a small
random set of the minimal subsets (this point is discussed further in Section 4.4). Using the best
median pose, data points whose residual error is greater than a certain threshold are weeded out
as potential outliers. The threshold may be either fixed a-priori or determined based on the com-
puted scale (standard deviation) of the non-outlier gaussian noise. Finally a reduced weighted least
squares (RLS) or a one step M-Estimate is done, using the median estimate as the initial guess.
This greatly improves the relative efficiency of the median-based estimate.

In Section 4.3, two algorithms based on the Least Median Squares technique are devel-
oped. The first (“Med_R_and_T_img”) minimizes the median of the square of the alignment error
given by the “Infinite Image Line” constraint discussed in Section 2 (see equation 8). The second
(“Med R_and_T_mod”) minimizes the median of the square of the alignment error given by the
“Infinite Model Line” constraint (see equation 21). In both cases the random sampling techniques
suggested by Rousseeuw and Leroy [25] to achieve higher computational speed are implemented
and finally a weighted reduced least squares is done to improve the efficiency.

4.2 M-Estimation Techniques: The “Tuk wts” Algorithm

M-Estimation techniques, developed by Huber [13] and other statisticians, minimize the sum of a
function p(e;/s) where e; is the error function for the i’th data vector and s is a scaling factor:

Minimize E p(ei/s) (36)

The function p is designed to be a continuous, symmetric function with minimum value at v = 0
[13, 31]. Also p(u) must be monotonically increasing from v = 0 to co and from v = 0 to — cc.

The p function proposed by Tukey [24] is:

(u) = { u?/2 — ut/2a® + ub/6a* if |u|< a (37)
pRE)= a?/6 otherwise

Figure 15 shows Tukey’s function and its derivative plotted with “a” set to 2.0. In this function,
p(u) approximately varies as the square of “u” for small values and then tapers off to a constant
maximum value of “a?/6”. Thus the effect for any outlier data element cannot be arbitrarily large.
A rationale for this function is that for small error values, “u” corresponds to gaussian noise and
thus for optimum relative efficiency their square value must be minimized. However, as the error
grows, the data element is probably an outlier and therefore its influence must be bounded. Blake
and Zisserman [3] use a variation of Tukey’s function in solving the problem of fitting piece-wise
smooth surfaces to range data. They provide another rationale for the above function: the constant
maximum value is assumed to be the cost of assigning a data element to be an outlier. Thus non-
outlier data elements are minimized as the sum of squares of their error values and there is a cost
of assigning a data element to be an outlier. The final estimation is a trade-off between minimizing

the number of outliers and the fitting error for the non-outlier data points.
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Figure 15: Tukey’s biweight redescending function and its derivative.

Inherent in these M-Estimation techniques is a simultaneous computation of a scale s. The
scale corresponds to the standard deviation of the residual errors. If a good estimate of the standard
deviation of the errors of non-outlier data can be made, then data points whose error lies beyond
a certain number of standard deviations from the center (that is, in the “tails” of the distribution)
can be classified as outliers. The estimate of scale therefore itself must be robust and not affected
by outliers. M-Estimation techniques vary both on their choice of the p function and the method
used to compute scale. In the algorithm presented below, scale s is computed by the following
equation:

_ median; | e; |
0.6745

where 0.6745 is one half of the interquantile range of the Gaussian Normal distribution N(0,1).
This equation relates the scale (standard deviation) of a gaussian distribution to the median of
the absolute values of a sampled set of data points. It is based on the fact that the median of
the absolute values of random numbers sampled from the Gaussian Normal distribution N(0,1) is
estimated to be approximately 0.6745.

(38)

Huber [13] suggests two methods for minimizing the error functions in equation (37). The
two methods are the modified residual method and the modified weights method [13, 10]. In our
experiments better performance was obtained using the modified weights method; consequently
only this version will be presented here.

The modified weights method is an iterative reweighting least squares (IRLS) algorithm. Let
6, represent the set of unknown parameters (rotation and translation in our case) to be estimated.
Differentiating the error expression in equation (36) with respect to each parameter §; we get the
set of equations:
e;. Oe;
Y(—=)—=0.0 39
S (39)
K3
where W is the derivative of the p function with respect to u. The ¥ function used in the “Tuk_wts”
algorithm is obtained by differentiating Tukey’s p function as given in equation (37):

0.0 otherwise

M:{ u(l- %) if|u] < a (40)
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The ¥ function is also sketched in Figure 15. Note, that for small values of “u” around u = 0.0 it
is almost linear and then it slowly tapers off to zero on both ends.

Equation (39) can be written in the standard weighted form as:

v(s)

3
s

(41)

N &
s

be;
> wieg—~ = 0. 2
2- wewj 0.0 (42)

If the weights w; in the above equation (42) are held constant and the residual error e; is a linear
function of the unknown set of parameters, then a linear system of equations in the unknown
parameters 6, is obtained. The modified weights algorithm solves the equations (42) iteratively. At
each iteration the weights w; are held constant and equal to the values computed using the previous
iteration’s estimates of the unknown parameters 6; and the linear system of equations is solved to
get new estimates. The iterative procedure is repeated until the parameter values converge to a
final value. Huber [13] proves that the above iterative procedure leads to a minimum (possibly
a local minimum) of the objective function as given in equation (36) for linear e; residual error
functions. Note, although e; may be linear, p(e;) is not a quadratic function.

In this iterative procedure, if the error of a data element is greater than “a” for a current
estimate, then by the weighting function defined in equation (41) its weight will be zero and therefore
it will not contribute to the new estimation. Data elements with small errors will have almost unit
weight while data elements with slightly larger errors (but less than “a”) will contribute partially
(between 0 and 1) to the final fit. This partial contribution of these data elements greatly improves
the relative efficiency of the final estimation. This can be intuitively understood by recalling that
the noise model assumes that most of the data is contaminated by gaussian noise and only some of
the data elements are outliers. The important issue is the criteria for deciding when a data element
should be classified as an outlier (i.e., the number of standard deviations to be used as an outlier
threshold). The relative efficiency is improved by using all data elements which are not outliers for
the final fit. The above procedure does not automatically cut-off all data elements beyond a certain
threshold; instead it gives increasingly small weight to data elements with larger errors until a final
weight of zero is given for data elements whose error is larger than “a” standard deviations.

We now turn to the problem of applying this technique to the minimization of the pose error
functions, which are non-linear. In Section 3.4, an iterative method was developed to minimize the
sum of squares of the error function. This method entailed linearizing the error function about the
current estimate and then solving for the small increments in translation (A7) and rotation (éw).
Equations 29 and 30 shown in Section 3.4 are the linear system of equations solved at each iteration
of the “R_and_T” algorithm described there. An equivalent set of equations can be developed for
algorithms “R_and_T_img” and “R_and_T_mod”. The error for each data element is weighted by
w;. To incorporate the robust techniques described above into the minimization procedure for
“R_and_T” (and by extension for “R_and_T_img” and “R_and_T_mod”) described in Section 3.4,
the only change required is to replace the weights in equations 29 and 30 by the weighting function
given in equation (41). This procedure leads to rapid convergence and a robust estimate, as will
be seen in the experiments described in section 4.4. For most of our experiments, convergence is
reached in about 10 iterations.

The “Tuk_wts” algorithms developed here solves the system of equations (29) and (30)
corresponding to algorithm “R_and_T_img” at each iteration and composes the results with the
previous estimates of rotation and translation. The weights are calculated using equation (41).
The steps used in the algorithm are identical to the steps used in algorithm “R_and_T.img”. At
each iteration there is also an estimation of scale using equation (38). Finally, although not done
here, the “R_and_T mod” algorithm can also be similarly modified to a robust M-Estimate version.
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4.3 Least Median of Squares (LMS) Technique

In this section another set of robust techniques for the pose determination problem are developed.
These techniques were developed by Rousseeuw et. al. [25] for the linear regression problem. They
are based on minimizing the median of the square of the error function over all data elements:

Minimize Median; e? (43)

Earlier, it was noted that in least square systems the large error values of the outlier data elements
causes a skew of the final fit. If the data elements are ranked in ascending order according to error
values, the median corresponds to the error of the middle data element. Minimizing the median,
therefore ignores the errors of the larger ranked half of the data elements. Thus, this method
automatically can perform robustly in situations where less than 50 % of the data elements are
outliers; it has a breakdown point of %

This procedure can be modified to incorporate a-priori knowledge of the level of contamina-
tion of the data set with outliers. If for example, in a particular application, it is guaranteed that
no more than 30 % of the points are outliers, then the 70 % ranked error could be minimized rather
than the median. In absence of any such guarantees, the median is the best choice to minimize.
This corresponds to finding that pose which fits (with minimum error) at least half of the data
elements. In other words, the final estimated pose is the best consensus fit over all subsets of size
equal to half the number of the data elements.

To develop robust pose algorithms, any of the pose alignment error functions developed
in Section 3 can be substituted for e; in equation (43). In this section, two such robust al-
gorithms “Med R_and_T_.img” and “Med_R_and_T_mod’ are developed, based on the alignment
errors used in the least square algorithms “R_and_T_img” and “R_and_T _mod”, respectively. In
“Med_R_and_T_img” the following objective function “F,,;” is minimized:

= Median. NZ(R(ﬁZl)+f) : NZ(R(ﬁ22)+T) 2
fr e (( (R(7a) +7): ) +< (R(72) + 1), )) .

Ep1 is a modification of the objective function Ey given in equation (24) in Section 3.3. The right
hand side corresponds to the median of the total alignment error for each line. The total alignment
error is based on the “Infinite Image Line” constraint and is the sum of squares of the perpendicular
distances from the projected model end-points to the infinitely extended image line.

The “Med_R_and_T_mod” algorithm is based on the “Infinite Model Line” constraint and
the following objective function “F,,3” is minimized:

Ci = (Poi — Tw) X (P1i — Tyy) (45)
5 L; Iy 7
o= (=, =1 4
BJ (Sz ’ Sy ’ ) ( 6)
1.0

Eny = Median; ~= ((RT(Ba)-Ci)* + (RT(Ba) - Ci)?) (47)

M?
E,.2 is a modification of the objective function F3 given in equation (25) of Section 3.3; M, is
defined in Section 2.2. Again, the right hand side corresponds to the median of the total alignment
error for each line. In this case, however, the total alignment error is based on the “Infinite Model
Line” constraint and is the sum of squares of the perpendicular distances from the image line
end-points to the infinitely extended projected model line.

Since the median is not a differentiable function, F,,; and F,,» must be minimized by
combinatorial methods. In the method adopted here, candidate poses are generated by using the
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least squares algorithms developed in Section 3 on subsets of the data elements. The pose which
gives the minimum median error across all data elements is chosen as the optimal median pose.
The goal is to find at least one subset which has no outliers in it; this should give the minimum
median error. The “pose determination problem” needs a minimum of 3 input lines. Thus subsets
of line data elements used to generate the candidate poses must be of size m (m > 3). Typically,
poses are generated from all subsets of size m of the data elements. Experimentally, we have found
the choice of “m” is important. The larger the size of the subsets, the greater the probability of
them having an outlier. However, choosing “m” = 3, the minimum as suggested by Rousseeuw
[25], often leads to local minima. Typically good results are obtained with m = 6 or higher. This
is because the poses estimated by using just 3 line data sets have large variances and some of the
non-outlier lines can get labeled as outliers.

To speed up the computation, instead of using all subsets, only a random set of all size
m subsets is used. If € is the fraction of contaminated data and we choose “k” different random
subsets of size “m”, then the probability “P” that all “k” different subsets will contain at least one
or more outliers is:

P=(1-(1-am)t (48)

The probability that at least one random subset has no outliers is given by (1 - P). This is the
probability that the correct answer will be found by the median algorithm. For example, if we want
the correct answer with 99% probability and expect no more than 30% outliers when using subsets
of size 3 (m = 3), then only 37 out of the 1140 subsets (for a set of 20 lines) need to be randomly
chosen. In practice, however, we find that a much larger set needs to be chosen. Finally, some
subsets will lead to degenerate solutions because all lines are parallel, etc. This can be detected
before any further processing of the subset is done. A simple method to detect degenerate subsets
in the case of three lines is to threshold on the determinant of the matrix whose rows are the unit
direction vectors of the 3D lines.

Using the best median pose, data points whose residual error is greater than a certain
threshold are weeded out as potential outliers. The threshold may be either fixed a-priori or
determined based on the computed scale (standard deviation) of the non-outlier gaussian noise. In
many of our experiments, it is assumed that the scale of the line fitting process to edge data is 2
pixels. Equation (38) developed in the previous section may also be used to compute the scale.
Finally, the weighted least squares algorithm (“R_and_T_img”) or (“R_and_T_mod”) are run on the
remaining lines. This last step greatly improves the “relative efficiency” of the robust algorithm.

The algorithms “Med_R_and_T_img” and “Med_R_and_T_mod” are summarized as follows:

Step 1: Select “k” random subsets of size “m” from the input data.

Step 2: For each subset, determine the pose by using “R_and_T_img” or “R_and_T _mod”. Esti-
mate the residual error for all “n” lines given this pose and find the median square error.

Step 3: Select the pose which gives the minimum median error £,,; or F,,2 and compute the scale
“s” (if not known apriori) using equation (38).

Step 4: Filter out lines as outliers whose squared residual error for that pose is greater than
(¢ X s)%; a is an algorithm parameter and is set equal to 2.0 for all experiments discussed in
Section 4.4.

Step 5: Minimize the error function given in equation (24) or equation (25) on the remaining lines
using the least square algorithm “R_and_T_img” or algorithm “R_and_T_mod” and return the
estimated translation and rotation as the final output.
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4.4 Robust methods: Results

In this section we present and analyze the results of running the three algorithms “Tuk_Wts”,
“Med_R_and_T_img” and “Med_R_and_T_mod” on real image data. The results are presented
for both the indoor hallway images (Figure 16) and the outdoor sidewalk images (Figure 20).
The indoor and outdoor images are similar to the ones used in Section 3.7 for the least-squares
experiments. In some cases, the data used for experiments in Section 3.7 was artificially altered
to create outliers. In other cases, the data is directly an output of the the 2D matching system
developed by Beveridge et. al. [2]. The camera parameters and the indoor and outdoor models used
for the experiments are exactly the same as those described in Section 3.7. Tables 56 shows the
results of the three algorithms on eight indoor hallway images and three outdoor walkway images.

The “Med_R_and_T_img” and “Med_R_and_T _mod” algorithms were run on both the indoor
and outdoor data sets with the same set of parameters. In each case, 500 random sample sets of
size 6 were generated. The scale of the gaussian noise was assumed to be 2 pixels for all lines. Using
the best median pose, any line whose alignment error was more than 4 pixels was declared to be an
outlier and it was given zero weight for the final least-squares fit. Note, instead of choosing the scale
of gaussian noise apriori, we could have computed it from the residual errors of the inliers computed
by the LMS algorithm. For the experiments reported in this paper, similar results were obtained
in both situations. In each case, the prior covariance matrix was a diagonal matrix. In Tables 5
and 6, the prior covariance matrix specified for the least-squares and median based algorithms had
high diagonal values corresponding to standard deviations of 94.86 feet for translation terms and
1 radian or 57.3 degrees for the rotation terms. It was ensured for all experiments that the initial
estimates used were within a standard deviation of the correct estimate. Finally, the “Tuk_wts”
algorithm was always run with the threshold “a” in equation (40) set to 2.0.

The results of the least-squares algorithms “R_and T _img” and “R_and_T_mod” on the same
data sets are also presented in the tables. The performance of the least-squares algorithms gives
a measure of the severity of the outliers in each of the data sets. Generally, the more gross an
outlier is with respect to the non-corrupt data the easier it is detect and remove. This is actually
more true for the median algorithms. Severe outliers can affect the “Tuk_Wts” algorithm because
of its low break down point. However, the robust algorithms must perform comparably or better
than the least-squares algorithms both when the least squares algorithms completely fail and when
they do reasonably well. The results presented in the Tables 5-6 document both these cases. The
first case is the first 7 frames of the indoor hallway images. From any of the four tables, it can
be observed that the least-squares algorithms performed reasonably well for the first seven indoor
frames. The outliers in these cases have not very significantly affected the performance of the least-
squares algorithms and the robust algorithms perform only slightly better. The average error in
locating the robot for the first seven indoor frames by the least-squares algorithms “R_and_T_img”
and “R_and_T_mod” when run with high initial covariance matrices is 0.676 feet and 0.585 feet
respectively. The high covariance setting corresponds to standard deviations of 94.86 feet for
location along x, y directions and z directions and 1 radian for all rotation angles. The average
values are calculated from data in Tables 5 and 6. Note, that “R_and_T_mod” performs slightly
better than “R_and_T_.img”. The robust algorithms perform better than both the least squares
algorithms. From the data shown in the Tables 5 and 6, the average error in locating the robot for
the seven indoor frames by algorithms “Med _R_and_T_img”, “Tuk wts” and “Med_R_and_T_mod”
(run with high initial covariance matrices) is 0.405 feet, 0.387 feet and 0.363 feet respectively. Note
again, “Med_R_and_T_mod” performs slightly better then “Med_R_and_T_img”.

In contrast to the first seven indoor frames, the least-squares algorithms totally fail in
locating the robot for indoor frame 8 and outdoor frames 1 and 3. The results for indoor frame 8
and outdoor frame 3 are discussed in more detail in the next two sub-sections.
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Table 5: Estimated Errors of Translation in world coordinates for algorithms
“R_and_T_img”, “MED_R_and_T_img” and “Tuk Wts”; High Covariance Case. Prior
Standard Deviation (o) of the initial robot pose estimate is 94.86 feet and 1 radian for each axis of
location and orientation, respectively.

Fr. | No. “R_and_T_img” “Med_R_and_T_img” “Tuk_Wts”
TRANS. ERR. TRANS. ERR. Out- TRANS. ERR.
No. | Ln. AT, AT, AT, || AT, | AT, | AT, | Liers AT, AT, AT,
feet feet feet feet feet | feet | Fnd. feet feet feet
INDOOR FRAMES

| 1 | 24 || 035] 026 ] 0.00] 008 [ o0.01]001] 7 [ 011] 0.01] 0.02]
| 2 | 26 || 087 ] 048] 0.08 ] 019 [ 0.02 ] 0.02 | 11 [ 047 ] 032 ] 0.06 ]
| 3 | 24 || 063 ] 0.09] 002] 001]o042]035] 10 [| 013 ] 0.01 | 0.01]
| 4 | 15 || 057 ] 003 ] 023 055][022]010]| 7 | o064] 025] 0.29]
| 5 ] 16 || 043 ] 023 ] 003 ] 027 [ 0.01]0.07] 5 [ 027] 0.01] 0.10]
| 6 | 16 || 074 ] 037 ] 047 ] 065 [ 018 ] 023 | 4 [ 059] 0.26] 0.30]
| 7 | 46 || 038 ] 025] 041 ] 011 ] 021 ]035] 17 [ 0.06 | 0.02 | 0.07 ]
| 8 | 19 || 567 ] 027 ] 056 ] 0.05[ 038 032] 9 [ 0.04] 0.00] 0.01]
| OUTDOOR FRAMES |
| 1 ] 17 JJ1042 ] 276 | 238 ][ 095[ 036 ] 1.22 | 7 [ 116 ] 036 | 0.14 ]
|

3 | 15 [[40.91 | 1356 [ 10.19 || 2.39 | 0.21 [ 012 | 5 | 36.72 | 13.41 | 13.46 |

Table 6: Estimated Errors of Translation in world coordinates for algorithms
“R_and_T_mod”, “MED_R _and_T_mod”; High Covariance Case. Prior Standard Devi-
ation (o) of the initial robot pose estimate is 94.86 feet and 1 radian for each axis of location and
orientation, respectively.

Fr. | No. “R_and_T _mod” “Med_R_and_T _mod”

TRANS. ERR. TRANS. ERR. Out-

No. | Ln. AT, AT, | AT, || AT, | ATy | AT, | Liers

feet feet | feet feet feet | feet | Fnd.
INDOOR FRAMES

OUTDOOR FRAMES
1 [ 17 [[1041 ] 282 [ 228 [ 1.00 ] 038 | 1.27 [ 7
3 | 15 [[41.23 [ 13.90 [ 7.91 [[ 2.53 | 0.19 | 0.10 |

| 1 | 24 || 026 0.20]0.03 | 0.02 ] 047 [ 044 [ 6 |
| 2 [ 26 || 075 ] 047 ]0.05 ] 020 ] 003 [002] 9 |
| 3 [ 24 || 014 012 ]0.02 [ 0.04 ] 004[001] 3 ]
| 4 | 15 || 050 | 0.04] 010 | 0.02 ] 008][000] 4 |
| 5 [ 16 ] 034 ] 034 ] 012 015]0.01[007] 3 ]
| 6 [ 16 ] 077 ] 059 ] 011 ] 0.85] 049 [033] 4 |
| 7 [ 46 ]] 031 ] 0.20 ] 0.61 ]| 0.14 | 0.01 [ 0.03 [ 17 ]
| 8 | 19 || 547 | 030 ] 078 || 0.05] 038 [032] 9 |
| |
| |
| |
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Figure 17: Projection of model for
indoor frame 8 using final
estimate of Algorithm
“R_and_T_mod” with high prior
covariance matrix.

Figure 16: Indoor frame 8 with in-
put image lines.

Figure 19: Projection of model for

Figure 18: Projection of model for indoor frame 8 using final

indoor frame 8 using final estimate of Algorithm “Tuk wts”.
estimate of Algorithm Note that the projection of model
“Med_R_and_T_mod” with high using final estimate of

prior covariance matrix. “Med_R_and_T mod” with low prior

covariance is almost identical.
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Figure 21: Projection of model for
outdoor frame 3 using final
estimate of Algorithm
“R_and_T_mod” with high prior
covariance matrix.

Figure 20: Outdoor frame 3 with in-
put image lines.

Figure 22: Projection of model for

outdoor frame 3 using final Figure 23: Projection of model for
estimate of Algorithm outdoor frame 3 using final
“Med_R_and_T _mod” with high estimate of Algorithm “Tuk wts”.

prior covariance matrix.
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4.4.1 Indoor Frame 8

Figure 16 shows the input set of lines for indoor frame 8. This data set of 19 lines has 8 outliers,
i.e. approximately 40% of the data is contaminated. Only the 11 lines on or close to the left wall
are correct. Both the least-squares algorithms “R_and_T_img” and “R_and_-T_mod” fail (for all
variance settings) on this data set. Their final pose estimates are more than 5 feet off from the
correct location. Figure 17 shows the projection of the model using the pose estimated by algorithm
“R_and_T_mod” (run with the low initial variance setting) and as can see from the figure, it is quite
skewed.

From Tables 5 and 6, the error in locating the robot for this frame by the robust algorithms
“Med_R_and_T_img” and “Med_R_and_T_mod” (run with high initial covariance) is about 0.38 feet
in the y-axis and 0.32 feet in the z-axis (or vertical direction). Figure 18 shows the projection of
the model using the pose estimated by “Med_R_and_T_mod” when run with high initial covariance.
In that figure, it can be noticed that the line in depth in the top left corner of the image is slightly
skewed. All other lines are fairly well aligned. This line has been detected as an outlier. Note that
in Table 6, 9 lines have been labeled as outliers. Of the 11 lines in the data set for indoor frame 8,
only 2 are lines in depth. The rest of the lines are coplanar and are clustered near the door. The
best pose returned by the median is a consensus of only half the number of lines. As a result, one
of the lines in depth remains out of the best consensus set and becomes an outlier.

In contrast, when algorithm “Med_R_and_T_mod” is run using subsets of size 6 or 8 with
a low prior covariance setting, the height of the robot is pinned and the final estimate of location
returned by the algorithm is within 0.05 feet and only the 8 outlier lines have been detected as
outliers. Note, the low covariance setting corresponds to standard deviations of 3 feet for location
along x and y directions, 0.1 feet for z direction and 1 radian for all rotation angles. Figure 19
shows the projection of the model using the pose estimated by “Med_R_and_T _mod” when run with
low initial covariance. In this case, all lines, including the top left line in depth, are well aligned.

Finally, the “Tuk_wts” algorithm performed very well on this data set, locating the robot
to within 0.04 feet. The projection of the model for indoor frame 8 using the pose estimated by
the “Tuk_wts” algorithm is almost identical to the projection shown in Figure 19.

4.4.2 Outdoor Frame 3

The outdoor frame 3 data set (shown in Figure 20) is another case where the least-squares algorithms
fails completely. The outlier here is due to the telephone pole being mismatched to the street
light. Thus, 3 of the 15 input lines are clear outliers. The location of the robot returned by the
least-squares algorithm is off by about 40 feet for the high initial covariance case (see Tables 5
and 6). Figure 21 shows the projection of the 3D model using the pose estimated by algorithm
“R_and_T_mod” for the high covariance case.

The estimates of the robot pose returned by the two median algorithms are much better
than the least-squares algorithms, but are still off by about 2.5 feet along the walkway direction
for the both high and low initial covariance cases. The best pose returned by the median also
classifies the two lines of the street lamp on the right side of the image as outliers (see Fig. 22).
This is because in this image there are two sets of data lines that have significant “leverage” on
the resultant pose: the walkway line (as mentioned earlier, lines in depth are important for these
scenes) and the street lamp (which is the only non-outlier data in the right side of the image).
Since both these sets of lines are slightly incorrect, the median chooses a pose which best explains
the walkway line together with the rest of the data (which is mostly 300 feet away).

In contrast to its performance for indoor frame 8, the “Tuk_wts” algorithm failed completely
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on outdoor frame 3 (Table 5). The algorithm is extremely sensitive to initial estimates for outdoor
frame 3 (see Fig 20). For algorithm “Tuk_wts” to converge to the right answer, the initial estimate
must be within 1 foot of the correct translation. However, if one of the outlier telephone lines is
removed from the data set, the algorithm will converge to the correct answer from initial estimates
up to 10 feet or so away. Finally, if two of the telephone outlier lines are removed convergence to
the correct answer is obtained from initial estimates upto 20 feet away. This problem of an accurate
initial estimate is due to the presence of multiple local minima in the objective function minimized
by the “Tuk_Wts” algorithm. A possible solution would be to use a global minimization technique
for minimizing the M-Estimate error functions with some prior estimate of scale [3]. The algorithm
“Med_R_and_T”, on the other hand, is not affected by these initial estimates and produces the
same answer as shown in the tables for all of them.

4.5 Discussion

The output of the pose refinement process depends on the quality of the input provided to it. The
best data sets have many “good” lines in all directions and lines running both near and far from
the camera. In contrast indoor frame 7 and outdoor frame 3 are impoverished data sets where
most of the input lines are at approximately the same distance from the camera and one or two
lines are much closer to the camera. As a result these close lines have a significantly larger effect in
determining the final pose estimation and have “high leverage” in the final estimation. Note that
the “high leverage” data lines can be detected by examining the diagonal values in the hat matrix
when there are no outliers.

A consensus based algorithm tries to find the best pose which explains a significant pro-
portion of the set of lines. Given that the observations for the non-outlier data are noisy, it is
conceivable that the pose returned by the consensus algorithm explains a significant set of obser-
vations with “low leverage” quite well and makes a non-outlier observation with “high leverage”
an outlier. This is what happened in the indoor frame 8 and outdoor frame 3 case, where some
of the lines with “high leverage” become outliers. A consequence (and an inherent danger) of the
incorrect removal of the “high leverage” lines as outliers from an impoverished data set is that
the output covariance matrix of the computed pose parameters will be much higher than what is
optimally obtainable for that data set. The consensus-based algorithms will work best when there
are no observations with “high leverage” and the data set is well rounded with a sufficient number
of input data lines in all directions both close and far to the camera.

To conclude, we quote from Li [17] “No one robust regression technique has proved superior
to all others in all situations, partly because of the challenge of handling many forms of influential
observations”. We have observed this especially with the performance of the median and other
similar consensus-based algorithms using many different error functions. For instance, in another
consensus algorithm we experimented with, instead of minimizing the median, the optimization
criterion was to find that pose which fits the maximum number of lines under a certain error
value. The results of this algorithm were of a similar nature to the median based algorithm. There
appears to be no one algorithm which works best for all data sets. The robust statistical algorithms
presented in this paper, given data with outliers, can locate the robot in the indoor scenes in a
range of 0.4 feet (on the average) for the high prior covariance cases and within 0.3 feet (on the
average) for the low prior covariance cases. This was sufficient for most of our robot navigation
tasks.
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5 Sensitivity analysis of pose estimation

The standard model adopted for imaging 3D scenes by CCD and other cameras is perspective
projection. A ray from the camera focal point to a 3D point intersects the image plane at the
image location of the 3D point under perspective projection. The optical axis is defined as the
perpendicular line from the focal point to the imaging plane and the image center is defined as the
point where the optical axis pierces the image plane. Two important camera parameters which
often need to be calibrated are the focal length and the image center. In this section, we study
the effect of errors in estimates of the image center and focal length on pose determination. The
pose determination algorithms used in the experiments are described in Section 3. The conclusions
drawn, however, are independent of the particular algorithm used.

The image center is often assumed to lie at the center of the image frame. This default
center has been reported to be off by as much as 30 pixels for some standard camera and frame
grabber combinations [16]. Calibration techniques using either lasers or high precision calibration
plates have been used to locate the center to within a few pixels [5, 16, 26]. Is this precise calibration
necessary? The analysis presented here shows that it depends on three factors:

1. The particular 3D output or inference one is interested in.
2. The level of accuracy desired in the results.

3. The amount of noise in the input data.

The goal in pose determination is to find the rotation and translation matrices which map
the world coordinate system to the camera coordinate system. Given the rotation (or orientation)
and translation, the location of the camera with respect to the world coordinate system can be
computed. We will show that for small field of view imaging systems, an error in the estimation
of the camera center does not affect the location of the camera significantly. The rotation or
orientation is affected, however, and the amount of error in the orientation is linearly related to the
error in the estimate of the center.

Finally, in the last subsection of this section, the effect of incorrect estimation of the focal
length on the pose determination problem is studied. We show that incorrect estimates of the focal
length only significantly affects the z-component (i.e. parallel to the optical axis) of the transla-
tion. The x and y components of the translation and the rotation are not affected significantly.
However, the location of the camera in world coordinates will be affected since the z-component
of the translation changes. Again, experimental results on real data are presented to support the
theoretical claims.

5.1 Errors in the Pose Determination Problem from Center Offsets

The question asked is this: given two input data sets to the pose refinement problem (the first with
the correct image center and the second with an offset image center), how are the two resulting
poses related? The only difference between the two data sets is a constant offset of all the image
pixels in one data set by the amount the center estimate is offset. Associated with each of the input
data sets is a camera coordinate frame. The result of the pose refinement process is to determine the
rigid body transformation between the world coordinate frame and the camera coordinate frame.
Let “W?” represent the world coordinate frame, “C1” the camera coordinate frame with the correct
center and “O1” the camera coordinate frame with the offset center; then

Xcl = Rcl(Xw) + Tcl (49)
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In this equation, the rotation R, and translation 7.; relate a 3D point X, in the first camera
coordinate frame “C1” to its coordinates X, in the world coordinate frame “W?”. Points in the
camera coordinate frame “O1” are related to points in the world coordinate frame “W” by equation:

Xol = Rol(Xw) + Tol (50)

We would like to find the relationship between the two camera coordinate frames “C1” and
“01”. As noted earlier the only difference between the image data associated with the two frames is
a constant shift of all the pixels. Let these be AC; and AC) in the X and Y image frame directions,
respectively; these shifts correspond to the offset of the image center for the second image data
set relative to the first image. The displacement of image points between two frames due to rigid
motion is given by the following equation:

z1y8dy T

7 —(f+T)Qy+sz+ ~ (51)
0 T, — yT,
ﬁ:(f+%)9x—y1§y—x92+(f yZy ) (52)

where
a, 3 are the image displacements in the z,y axis respectively.

(Q4,9y,Q,) are the small angle approximations to rotation about the X, Y and Z axis
respectively.

(1%,Ty,T,) is the translation along the (X,Y, Z) axis respectively.
Z is the depth of the point in the first coordinate frame.
f is the focal length of the camera in pixels.

(z,y) is the location of the point in the first image frame (“C1”) and (2 1, y1) is the location
of the point in the second image frame (“O17).

Between the two frames “C1” and “O1”, a = AC; and 8 = AC) i.e. both are constant for
all points in the image. What transformation can account for this constant shift ? If we assume
the field of view of the camera is small, then second order terms such as zx1, x1y etc. can be
neglected. If the scene being imaged is not a frontal plane, i.e. “Z” is not constant for all points
then the only transformations that can cause a constant change for a general set of points are the
rotations Q, and €, about the X and Y axis; everything else (z.e. Q,, 1, Ty and T),) will be zero.
The following two equations express this relationship:

a=AC, = —fQ, (53)
B=AC, = fQ (54)

Let the rotation operator AR represent the overall rotation composed of the rotations
Qp and Q, about the X and Y axis. The two coordinate frames “C1” and “O1” are therefore
hypothesized to be related by a rotation Ag:

Xo1 = Ar(Xa) (55)
Combining equation (55) with equation (49) we get:

Xol = ARRCI(XUJ) + AR(TC].) (56)
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Comparing equation (56) with equation (50) we see that:
Rol = ARRCI and Tol = AR(TCI) (57)

The above equations reflect how the orientation K,; and location of the world origin in camera
coordinates T, are altered with incorrect knowledge of the center. The location of the camera
origin in world coordinates T, is given by the following equation:

Twer = —RL (1) for camera frame C1. (58)
Twor = —RL(T,1)  for camera frame O1. (59)

Using equations (57) and the above equation for 7',,,1 we get:
Twol = _RgAgAR(TCI) = _R%‘(TC].) = Twcl (60)

Therefore an error in estimating the image center significantly affects the location of the camera in
world coordinates only if the second order terms in the motion displacement equations (51,52) are
large. For small field of view imaging systems, the location of the camera is not affected since the
second order terms are negligibly small.

The orientation of the robot, on the other hand, is affected; the amount depends on the
values of (AC,, ACy). For instance, for a camera with field of view 24 degrees and a 512 x 512
image, a 30 pixel offset in the camera center in either x or y coordinate would cause a rotation
error of 1.427 degrees about the corresponding axis (using equations (54,54)). Whether changes in
orientation of this order are significant or not depends on the application.

Finally, in the case of frontal planes, the depth value “Z” is the same for all points. Therefore
in the motion displacement equations (51,52) both the translation components 7';, 1, and rotation
terms €., €, can account for the constant displacement. In this case, the model of change in pose
as given in equation (55) may not be correct. However, the reader is reminded that frontal planes
are typically a degenerate case for pose. Even if we have a correct estimate of center, since “Z” is
constant, there could be an incorrect pose related to the correct pose by a transformation composed
of translation components 7', 7, and rotation components €., €,. The image transformations
caused by rotation (Q,, ) can be canceled by the transformation due to translation (7', 7)) in
equations (51,52) leading to approximately zero values of o and § and therefore more than one
pose can explain the same input data. The same observation has been made for the structure from
motion problem by other researchers [22]. The above model will also break down for large field of
view imaging systems (e.g. beyond 45 degrees field of view), when the second order effects cannot
be ignored.

5.2 Experimental Results

In Section 3, we described algorithms for pose estimation given correspondences for 3D model and
2D image points and lines. We show results from our pose algorithms for two image sets with
different errors in the location of the image center. The images (512 x 484 pixels) were acquired
using a SONY B/W camera (model AVC-D1) interfaced to a Gould frame grabber. The field of
view of the imaging system is approximately 24.0 degrees. For each set of image data, a new data
set was created by adding a constant pixel offset to the x and y coordinates of the image data of
the original set.

The first image (Figure 24) is of a hallway. The large door in the image is 40 feet distant
from the camera. Figure 24 shows the first set of input image lines to the pose algorithm. Two more
sets of input data were created by adding center offsets of (10,10) and (20,20) pixels respectively
to the assumed center. The results for location of the camera in world coordinates for the three
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different center offsets is given in Table 7 under the heading “HALLWAY IMAGE”. The final
location (in feet) in world coordinates (for scenes and images as shown in the figure above) changes
only by a few tenths of an inch.

Table 7: Location of camera in world coordinates as computed by the pose refinement
algorithm for two sets of real image data with different center offsets.

Center Center | LOCATION in WORLD
Offset X | Offset Y L, | L, | L,
HALLWAY IMAGE
pixels ‘ pixels feet feet feet

Measured Location | 40.00 4.00 3.57
0 0] 39.98 4.09 3.57
10 10 | 40.00 4.09 3.58
20 20 | 40.02 4.09 3.58
BOX IMAGE
pixels pixels mm mm mm
0 0| 418.23 | 260.52 | 381.37
10 0] 417.94 | 260.49 | 381.72
10 10 | 417.27 | 260.56 | 380.85
20 20 | 416.68 | 260.71 | 380.51

The second image is from the UMASS BOX sequence. The image is shown in Figure 25. The
box is about 600 mm distant from the camera. The fifteen points marked by crosses in Figure 25
were provided as input to the pose refinement algorithm. Three new image data sets were created
by adding center offsets of (10,0), (10,10) and (20,20) respectively. The results of locating the
camera for these different data sets are shown in Table 7 under the heading “BOX IMAGE”. As
can be seen from the table, the location of the camera changes by only 1 or 2 mm for different
center offsets. Although results from only two images are presented here, the above behavior has
been observed for numerous other images.

5.3 Inaccurate Estimates of the Focal Length

The focal length of the lens supplied by lens manufacturers is generally quite accurate. However,
when the lens is focused on points close to the camera (i.e. when the camera is not focused at
infinity) the effective focal length of the system must be established by a calibration procedure
[26]. In this section, the effects of incorrect estimates of the focal length on the output of the pose
refinement process are examined.

The image projection (z,y) of a world point X,, given an estimate of translation 7', and
rotation R, is:

_ (Rc(Xw) + Tc)a:

P R + 1. oy
_ (RBe(Xw) +T0)y

V= RX )+ T, (02

Dividing these two equations, we obtain:

¢ (R(Xu)+ T,
Yy (Re(Xu) + 1)y
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Figure 25: Box image.

Figure 24: Hallway image with in-
put 2D-image lines.

The rotation operator can be represented as a (3x3) matrix:

R = 89 (64)

where s;, ©=1,2,3 are the vectors corresponding to the rows of the rotation matrix R .. Substi-
tuting (64) into (63), equation (63) can be rewritten as:

z (51 . Xw + Tcz)
B N M= 24 65
Yy (52 . Xw + Tcy) ( )

This is a linear equation in the pose parameters sy, sg, 1%, and 1., which can be rewritten as:
z(s2- Xy +Tey) —y(s1- X+ Tez) =0 (66)

One such equation is obtained for each world/ image point correspondence. Given 5 or more
point correspondences, we can therefore solve the system of equations and get estimates of the
parameters s, 89, Tc; and T.,. The rotation parameters sy, sy, however, have quadratic constraints
and therefore the system of equations must be solved by non-linear techniques. Tsai [26] uses the
same system of equations in his camera calibration algorithm. Since the rotation matrix is an
orthonormal matrix, estimates of its first two rows s and sy can be used to obtain the third row
s3, using the symmetric and other orthonormal properties of the matrix. The only pose refinement
parameter not determined by the system of equations is therefore the translation along the optical
axis T,.

Our goal in this section is to examine the effect of incorrect estimates of the focal length
on the output of a pose refinement algorithm. Equations (65) and (66) do not depend on the focal
length and consequently an incorrect estimate of the focal length would not affect the solution
of these equations. Therefore, an incorrect estimate of focal length should affect only the T,
parameter of the pose; all other parameters should not change since their estimation does not
depend on knowledge of the focal length.
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In practice we may minimize other error functions to do pose refinement. Based on the
above analysis we hypothesize that an incorrect estimate of the focal length would only significantly
affect the T, component of the pose parameters for other pose refinement methods as well. That
is, methods where the pose is not estimated by solving the system of equations defined by (66) but
by some other system of equations. This hypothesis has been supported by experiments using both
synthetic and real data and the pose refinement algorithms described in Section 3. Results of some
of these experiments are shown in Table 8.

Table 8: Rotation and translation as computed by the pose refinement algorithm for
the same sets of images with different focal lengths.

FOCAL TRANSLATION ROTATION
LENGTH ANGLE AXIS
SCALE [ T.| 1T,] T, deg. | A, | A, A,

SYNTHETIC DATA
1.000 | 4.004 | -3.994 | 60.011 | 120.015 | -0.577 | 0.577 | 0.577
0.928 | 4.013 | -4.002 | 58.048 | 120.016 | -0.577 | 0.577 | 0.578

HALLWAY IMAGE
1.000 | 4.055 | -3.942 | 39.926 | 119.808 | -0.576 | 0.574 | 0.582
0.928 | 4.023 | -3.962 | 37.382 | 119.344 | -0.579 | 0.574 | 0.580
1.045 | 4.072 | -3.932 | 41.509 | 120.066 | -0.575 | 0.574 | 0.583
BOX IMAGE

1.000 | -8.256 | 74.647 | 620.313 | 132.833 | -0.178 | 0.952 | -0.250
1.100 | -8.344 | 74.801 | 684.354 | 132.627 | -0.177 | 0.952 | -0.249

The experiments were performed using the synthetic, hallway and box image data sets
described earlier. In each case, the pose refinement algorithm was applied using both the correct
focal length and incorrect estimates of the focal length. The incorrect estimates of the focal length
were obtained by multiplying the correct focal length by a scale. Thus, in Table 8, entries in rows
with focal length scale 1.0 correspond to experiments with the correct focal length and entries with
rows corresponding to scale not equal to 1.0 correspond to experiments with incorrect focal lengths.
Both the translation and rotation results of the pose are shown in Table 8. The rotation is shown
by its angle-axis representation. The axis vector is a unit vector. As can be seen from Table 8, the
only large change in any of the pose parameters for any of the experiments is in the T, component
of the translation.

Although poses can be obtained whose projection fits the original image data fairly well
in the case of incorrect estimates of the image center, this is not the case for incorrect estimates
of focal length. Changing the focal length causes the projection of 3D points to be dilated or
contracted by a constant amount while changing the 7, component of the translation causes the
image projections to dilate or contract based on their depth from the camera. As we have seen,
however, the minimum of the pose error functions, given incorrect estimates of focal length, leads
only to a significant change in 7,. This property of poor fits makes it comparatively easier to
calibrate imaging systems for focal length as compared to calibrations for the image center.
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