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Abstract

Image understanding (IU) techniques for auto-

matic site reconstruction have demonstrated suc-

cess within restricted domains and for small num-

bers of model classes. However, these techniques

often fail when applied out of context and do not

\scale-up" into a more general solution. Under the

APGD program, we are constructing a knowledge-

based site reconstruction system that automatically

selects the correct algorithm according to the cur-

rent context, applies it to a focused subset of the

data, and constrains the interpretation of the result

through the explicit use of knowledge.

1 Introduction

The extraction and reconstruction of building mod-

els from aerial images has become an important area

of research in recent years. Signi�cant progress has

been made and several systems perform reasonably

well within their appropriate domains [Collins'95,

Herman'94, Lin et al.'94, Chellapa et al.'94]. For

example, recent testing of the Ascender I system

has shown it capable of automatically extracting

a large percentage of the buildings within a sub-

region of the Fort Hood dataset [Collins, et al'96].

Although these results are signi�cant, the system

was designed to perform well under particular con-

texts and is only capable of detecting the single class

of buildings whose rooftops are 
at rectilinear poly-

gons.

The modest successes attained by Ascender I and

similar systems can, we believe, be traced to their

narrow scope and application to highly constrained

data. The class of 
at roofed rectilinear buildings is
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very clearly de�ned by a set of geometric and spatial

properties which are useful for recognition if the in-

cidence of distracting classes is small (that is, when

the data is suitably constrained). This idea of a (set

of) local expert(s) for recognizing instances of an

object class played a prominent role in early work on

the Schema system [Draper'89], as well as other sys-

tems in the aerial image domain [Chellapa et al.'94,

Huertas and Nevatia'80, Gi�ord and McKeown'94,

Jaynes'96a, Matsuyama'85]. Under this model, ro-

bustness is achieved by providing multiple recon-

struction/recognition strategies which are applica-

ble under well de�ned conditions and generality is

achieved by increasing the number of object classes

to describe a larger fraction of the world.

Work has begun on Ascender II, a geometric site

modelling system based on this general framework.

The design of Ascender II is founded on three basic

principles: 1) Speci�c image understanding strate-

gies are clearly successful under particular contexts

for a particular class of objects but may break

down when applied in contexts that exceed the

design constraints. 2) Domain knowledge, knowl-

edge acquired from partial processing of the data,

and knowledge about available image understand-

ing strategies are all valuable in constraining the

reconstruction problem. 3) A successful system will

contain many speci�c strategies but will selectively

apply them in the correct context, with the correct

set of parameters, and will fuse the results of indi-

vidual strategies into a complete reconstruction.

2 Ascender II

The Ascender II system explicitly represents both

knowledge and context to support a purposeful re-

construction of the site using geometric and spatial

reasoning and intelligent control of sophisticated

IU algorithms. The system is divided into a vi-



sual subsystem and a knowledge base. The visual

subsystem resides within the Radius Common De-

velopment Environment (RCDE) [Mundy et al.'92]

and contains a library of IU algorithms, a ge-

ometric database that contains available data

(images, line segments, functional classi�cations,

etc.), as well as models that may have been ac-

quired through processing. The knowledge base is

based on belief networks and is constructed using

HUGIN [Andersen'89], a system for designing be-

lief networks and in
uence diagrams. The knowl-

edge base consists of reasoning mechanisms, a con-

trol system, and the belief network that represents

the current set of knowledge about the site. The

two systems communicate through Unix socket IP

mechanisms. Figure 1 shows an overview of the sys-

tem.

Reasoning takes place over regions of discourse that

represent a subset of the available data. Regions of

discourse may be image regions, a particular build-

ing model, or other sets of data that may have been

produced by the system.

Processing of the data proceeds in a straightforward

way. First, the knowledge base is consulted and an

appropriate IU algorithm and subset of the current

region are selected. For example, a search for line

evidence along the center of a building region may

be invoked to gather evidence for the presence of a

peaked roof building. The choice of algorithm and

subset of the data is sent as a request to the visual

subsystem for processing. The IU algorithm is ap-

plied to the data and the database is updated with

the result (for example, a set of line features may be

produced). The visual subsystem then converts the

result into a single value that represents the belief

that the requested evidence was present. This be-

lief is passed to the knowledge base where it is used

to update the belief network. The next appropriate

action is then selected based on the control policy.

2.1 Knowledge Base

The knowledge base is capable of representing the

current context, speci�c site knowledge (either en-

gineered or acquired as part of processing), and

general domain knowledge relevant to site mod-

elling. Knowledge is stored in a Schema Net-

work. The representation is a combination of two

important ideas drawn from the �eld of Arti�cial

Intelligence; Schemas [Draper'89] and Belief Net-

works [Jensen'96]. The network encodes informa-

            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 1: Ascender II system overview. Control deci-

sions are based on the current knowledge about the site.

Vision algorithms, stored in the RCDE, gather evidence

about the site and produce a site model. Ascender I

provides one set of IU strategies relevant to site recon-

struction.

tion about how and when algorithms can be applied

in the current context and explicitly represents the

causal dependencies found in a particular domain.

Nodes within the network represent discrete vari-

ables that are associated with the domain. For

example, the node Building-Roof-Shape may

have the discrete states fflat, peaked, curved,

compositeg. At each node, an evidence policy con-

tains information about how evidence for a peaked

roof building may be acquired. Contextual rules,

part of the node's evidence policy, assist in the se-

lection of the correct algorithm, data, and parame-

ters, for the given context.

Edges within the network represent a conditional

dependence between a parent and child node. As-

sociated with each node is a conditional probabil-



ity table that contains a probability for each state

of the node given the values of the parents. The

Belief for a parent node, then, can be computed

from the values of the children using causal in
u-

ence [Russel'95]. As evidence is added to the net-

work (through the execution of an evidence policy),

the e�ect is propagated throughout the network and

a new set of belief values are computed.

2.1.1 Action Selection

The problem of action selection within the

schematic network is a signi�cant one. Currently we

take a greedy approach. In order to gather evidence

about a node n, the corresponding evidence policy

is invoked. If the evidence policy at n is empty

(there are no IU algorithms directly applicable to

computing belief(n)) or there are no available algo-

rithms for the current context, then the children of

n are visited. The node whose belief value contains

the highest uncertainty is selected and either its ev-

idence policy is invoked or its children are visited.

Once evidence has been computed, the belief val-

ues are propagated back through the network and a

new action is selected. This implies that there must

be at least one evidence policy available at each of

the leaf nodes within the network.

Certainty for node n is de�ned as di�erence of the

maximum belief and the belief value if all states at

n are equally likely.

max(Belief(n)�

1

(Num states)

n

)

2.2 Visual Subsystem

The visual subsystem is comprised of two parts;

a function library that stores the set of IU algo-

rithms available to the system, and a geometric

database that contains available data in the form

of imagery, partial models, and other collateral in-

formation about the site (such as classi�cation of

functional areas).

The library of Ascender II algorithms must address

aspects of the site reconstruction problem. For ex-

ample, �nding regions that may contain buildings,

classifying building rooftop shapes, and determin-

ing the position of other cultural features, are all

important tasks for the Ascender II system. Many

of the IU algorithms may be very \lightweight" and

are expected to perform only in a constrained top-

down manner. This is due to the fact that the IU al-

gorithms are responsible for gathering evidence for

a particular hypothesis put forward by the knowl-

edge base. For example, an algorithm that detects

the presence of local maximum in a region of the el-

evation data can be viewed as a car detector when

invoked on a parking lot area. The same algorithm

may detect the presence of a rooftop structure when

applied to a known building area.

Algorithms may also be very sophisticated, such as

the reconstruction of 
at roof buildings from multi-

ple views (the role of the Ascender I system). Be-

low, several of the more complex algorithms are

brie
y described in order to demonstrate the type

of algorithms made available to the system.

2D Polygon Detection [Jaynes'94]: Search optical

image for polygons that represent high con�dence

rooftop boundaries. Lines and corners are extracted

from the image and grouped into perceptually com-

patible chains. A search of all possible groupings re-

turns the maximal independent set of closed chains.

2.5D Feature Grouping: Match image features

across multiple images to compute heights and

group based on height/shape constraints. For ex-

ample, compute line heights through a multi-image

matching scheme. Group the line segments into sets

of two parallel lines at the same height with a third,

higher parallel line into regions that may indicate

the presence of a peaked roof building.



Local Shadow Analysis [Lin et al.'94]: The known

sun angle and building model constrains the search

for a corresponding shadow in the image. The shape

of the shadow can be analyzed to infer the shape of

the building rooftop that cast it.

Automatic Model Indexing [Jaynes'97]: Match a

region of an elevation image with a surface primitive

database. This is accomplished through a construc-

tion of the extended Gaussian image for the image

region and correlating the surface orientation his-

togram with the database.

Fitting Parametric Surfaces to DEMs [Jaynes'96b]:

Fit a model to a region within the elevation data.

The model parameters should have already been de-

termined through another processes (model index-

ing, for example).

As research into Ascender II continues, more IU al-

gorithms will be added to the system. However, in

order for the Ascender II framework to be useful,

the cost of adding a new algorithm to the system

must not be prohibitive, something that proved to

be a problem in earlier knowledge-based vision sys-

tems [Draper'89]. Only two components are neces-

sary to convert an IU algorithm into an evidence

policy that are usable by the system. First, the

context in which the algorithm is intended to be

run must be de�ned. Currently, the de�nition of

allowable contexts is straightforward and only dis-

allows algorithms to be run in invalid contexts (on

the wrong type of data, for example). This is sim-

ilar to the Context Sets introduced in the Condor

system [Strat'93] and rule packets within the HUB.

This de�nition of context is expected to be too sim-

ple for our needs and eventually the framework will

be extended to allow the de�nition of a performance

pro�le for each algorithm that de�nes the expected

performance of the algorithm under di�erent con-

texts. Secondly, a method for deriving a certainty

value from the output of the algorithm must be de-

�ned. This certainty value is used by the system

to update the knowledge base using Bayesian in-

ference. For example, the detection of L-junctions

within a region of the image must be converted to

a single value that represents the probability that

the L-junctions are present.

2.3 Preliminary Tests

An experiment was conducted on a scene from the

Fort Hood dataset. The test was both a sim-

ple example of the concepts presented here and a

demonstration of the communication mechanisms

that have been constructed as part of the Ascen-

der II system. A small schematic network (only

four nodes) was engineered that attempts to clas-

sify rectangular building boundaries (called build-

ing footprints) according to the three categories,

Single, Multi-level, and Multiple that corre-

spond to the case of a single planar rooftop, several

planes or slopes at di�erent heights, or more than

one building in the region.

The network used for the test is shown in �gure 2.

The network encodes the fact that the classi�cation

of the footprint is dependent upon the presence of

certain junction types along the edges of the region,

and the quality of a single planar surface �t to the

corresponding elevation data. An evidence policy

that de�ned the plane �t algorithm and its reliance

on avalable elevation data was constructed for the

Plan Level node. Similarly, evidence polices for

both L and T junctions were constructed.

Each child node in the network has an associated

conditional probability table that encodes object

speci�c knowledge. The conditional probability val-

ues are engineered for the speci�c problem, and, for

the test here, were constructed based on our ex-

perience with both the evidence policies and the

domain.



Figure 2: The network used to control the classi�cation

of a possible building region into one of the three pos-

sibilities: single building, double building or multilevel

building.

The 2D polygon detector used in Ascender I was

run on a single downlooking view of a subregion of

the Fort Hood dataset. Ten of the polygons were

selected for classi�cation using the Ascender II sys-

tem. In all, four polygons contained single level

rooftops, four contained multi-level buildings, and

two contained more than one building. Image 3

shows a typical polygon for each of the classes.

Figure 3: Three di�erent building footprint cases. Left-

most: Single Rooftop. Center: Multi-level Building.

Rightmost: Two distinct buildings.

The system was run on all ten regions and stopped

when a belief value for one of the states for

footprint class exceeded 65% or the controller

was unable to select an new action. The region is

then classi�ed according to the state of footprint

class with the maximum belief value. The table

below shows the results of the experiment and the

number of vision algorithms executed in order to

classify the region.

Polygon Type # Actions Classi�cation/Belief

Single 1 Single (75%)

Mult-Level 6 Multi-Level (57%)

Multiple 4 Multiple (57%)

Single 4 Single (55%)

Multi-Level 6 Multi-Level (50%)

Multi-Level 2 Single (75%)

Single 2 Single (75%)

Multi-Level 4 Multi-Level (83%)

Single 4 Single (81%)

Multiple 6 Multiple (65%)

3 Future Directions

Ascender II is based on a much more 
exible design

than was Ascender I. Our goal is to demonstrate

that this 
exibility improves system performance

and widens its scope of applicability. To this end,

work is underway on engineering the software ar-

chitecture of Ascender II and on the development

of additional evidence policies for a wider range of

building classes. The general framework being em-

ployed supports any type of data as long as there

are corresponding evidence policies available for in-

terpreting it. Consequently, the system is being ex-

tended to include IFSAR elevation maps (in addi-

tion to elevation maps from traditional stereo tech-

niques) and multi-spectral imagery for improved

ground classi�cations. We expect to use the Fort

Hood image dataset as well as other datasets as they

become available (e.g. Ft. Benning) to demonstrate

the Ascender II system.

There are many issues to be addressed during the

design and implementation of Ascender II. One is-

sue concerns the ganularity of the IU algorithms

employed in the system and how this a�ects sys-

tem performance. For example, should Ascender I

be dismantled into component parts and reassem-

bled in the knowledge network? Previous attempts

to build knowledge-based systems ran into major

knowledge engineering problems. The treatment

of IU algorithms as black-box evidence gathering

mechanisms, regardless of the underlying complex-

ity, may be one way to avoid this. Currently, sim-

ple greedy evidence policy is being used to select the

next action. What other policies are reasonable and

how do the a�ect the system e�ciency? Techniques

that compare the expected utility of applying a par-

ticular evidence policy to its expected cost will be

investigated as one way to answer the question of

e�cient control.
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