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1 Introduction

1.1 Motivation

The building reconstruction strategies that have

been used in the UMass Ascender system are rea-

sonably e�ective, but are tuned to extract only one

generic building class with single-level, 
at roofs

bounded by rectilinear polygonal shapes. Exten-

sions to the system must be considered in order to

handle other common building types. Examples are

multi-level 
at roofs (or single-level 
at roofs con-

taining signi�cant substructures such as large air

conditioner units), peaked-roof buildings, juxtapo-

sitions of 
at and peaked roofs, curved-roof build-

ings such as Quonset huts or hangars, as well as

buildings with more complex roof structures con-

taining gables, slanted dormers or spires.

To achieve the desired goal of a more general

and 
exible building extraction system in the

ARPA/ORD RADIUS program, a signi�cant re-

search e�ort is underway at UMass to explore alter-

native detection and reconstruction strategies that

combine a wider set of algorithms for generating

and fusing 2D and 3D information. The types of

strategies being considered involve generation and

grouping of a larger variety of primitive geometric

elements (e.g. lines, surfaces, parametrized mod-

els) stored as symbolic tokens, as well as tech-

niques for fusing geometric token data with high-

resolution digital elevation map (DEM) data. In

addition to the 2D line, corner and closed poly-

gons currently extracted by the system, new tech-

niques have been developed to extract 3D lines, cor-

ners and surfaces. By verifying geometric consis-

tencies between 2D and 3D tokens associated with
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building components, larger and more complex 3D

structures can be organized using context-sensitive,

knowledge-based strategies.

There are alternative ways for organizing the 3D

reconstruction mechanisms into a processing tax-

onomy. From one perspective the algorithms divide

into bottom-up (i.e. data-directed) and top-down

(i.e. knowledge-directed) approaches.

Many of the bottom-up grouping strategies are ob-

vious, since they are directly derived from the con-

sistency constraints that are embodied in the nat-

ural geometric relationships between the relevant

tokens. For example, 2D (or 3D) lines whose end-

points are spatially proximate can be grouped into

2D (or 3D) corners. In a more complicated process

of grouping geometric tokens of di�erent types, 3D

line tokens that bound a planar roof surface could

be consistently grouped if the planar surface bound-

aries are approximately consistent with their cor-

responding 3D lines. In this case the information

would be fused under some spatial optimization cri-

terion. There are many other ways that primitive

geometric elements can be brought together to form

more complex geometric structures.

In contrast, the RADIUS application domain in-

volves 3D site reconstruction of objects and scene

contexts for which a great deal of cultural knowl-

edge is available, implying the use of a set of top-

down strategies. An image analyst may know the

general classes of buildings that are likely to appear

in a geographical area, and therefore the associated

geometric constraints that would be present can be

predicted. Thus, the general models of peaked-roof

and 
at-roof buildings would involve a di�erent set

of geometric tokens and constraints on the spatial

relationships between them. When the information

in an image is somewhat degraded, the di�culty



in extracting the relevant geometric details can be

compensated for by employing semantic knowledge

of context in the form of parametric models. For

example, in many images the center ridge-line of a

peaked roof can be quite di�cult to extract; how-

ever, if a parametric model of a peaked-roof building

is employed, the grouping and fusion of the geomet-

ric primitives that are extractable may be able to

su�ciently constrain the problem. Consequently, a

top-down taxonomy would involve parametric mod-

els of the various building classes expected.

In order to construct di�erent building strategies,

sequences of bottom-up grouping routines must be

composed to extract the necessary 2D and 3D fea-

tures, followed by application of the appropriate

spatial constraints between tokens of the same and

di�erent types [6]. These strategies might be sup-

plemented with a context- sensitive set of features

that would allow the appropriate model to be in-

voked.

The reader must understand that the work pre-

sented here is still early in development and, unlike

the UMass Ascender system [4], these proceedings,

(which has been tested under varying conditions),

has not yet matured into a well-tested operational

system. Furthermore, it should be pointed out that

the reconstruction strategies discussed here are at

varying stages of development. What follows is a

discussion of a general paradigm for 3D grouping

and information fusion for the RADIUS applica-

tion domain, accompanied by a set of case studies

with fairly interesting results on a variety of di�er-

ent problems and scene domains. These initial re-

sults and approaches are being used to further the

development of a more general automated system.

2 The Geometric Elements

Before describing speci�c strategies for 3D grouping

and data fusion, the set of 2D and 3D primitive ele-

ments to be grouped/fused are described. Nearly all

are geometric elements such as points, lines, curves

and planes that are stored and manipulated as sym-

bolic tokens. An exception is the digital elevation

map (DEM) data, which is stored in an image-based

format. The brief list of geometric elements given

below is meant to illustrate the range of data being

used { more detailed descriptions of the feature ex-

traction algorithms appear in Section 2.1, or in the

referenced papers.

� 2D Elements: line segments, corners, polygons

� 2.5D Elements: line segments, corners, polygons,

planes

� 3D Elements: DEM data, lines, curves,

corners, surfaces

2.1 2D Geometric Elements

Straight line segments are extracted using the Boldt

algorithm [2]. This algorithm hierarchically groups

edgels into progressively longer line segments based

on proximity and collinearity constraints.

Corner features are created by grouping the 2D line

segments according to proximity and an expected

angle, �. The expected angle can be computed from

an assumption of corner orthogonality in the world

and the camera position for any particular view of

the site. Each corner has a u; v position within the

image as well as two \leg" vectors that help direct

the search for higher level features.

Using these low level extracted image features,

higher level 2D features are computed as possible

groupings that are perceptually consistent. Mid-

level collated features are sequences of corners and

lines that are grouped together to form chains. For

a chain to be formed, corners must have legs that

are approximately oriented towards one another.

Corners cannot be grouped unless there is either

a straight line segment between them, or a local-

ized, top-down analysis veri�es the existence of a

supporting edge in the image data.

High-level 2D polygon hypotheses are formed from

closed chains. If a chain cannot be closed because

a small number of low-level features are missing, a

top-down feature hypothesis is made and the im-

age is searched for the missing feature. Because a

highly constrained region of the image is searched

using top-down knowledge, a more context-speci�c

feature detector can be used to �nd the missing fea-

ture where one was expected. This technique is es-

pecially valuable for detecting features in regions of

poor contrast or in regions contaminated with clut-

ter.

Because single collated features can be part of sev-

eral, possibly con
icting closed polygons, the �nal

set of polygons must be searched for as the best in-

dependent set of closed chains. This is done using

certainty measures that are maintained throughout



the entire grouping process. As each feature is ex-

tracted it is assigned a certainty; the �nal 2D group-

ing choice is then found as the independent set of

closed chains that maximizes the global certainty.

2.2 2.5D Geometric Elements

Features in the 3D scene that are horizontal (per-

pendicular to gravity) can be represented by the

corresponding 2D image element plus an associated

scene height z

0

. We call features represented in

this way `2.5D" geometric elements. It is trivial to

convert this representation into a true 3D feature

by backprojecting the feature out onto the plane

Z = z

0

to compute the 3D position of the horizon-

tal image feature.

A set of 2.5D features can be derived directly from

2D features by augmenting each with a height value

computed via multi-image matching. The height

estimate for each feature is formed by histogram-

ming the set of elevations implied by potential

corresponding features within epipolar-constrained

search regions across multiple images, the disparity

of each potential match voting for a possible height

in the scene. After the histogram is created, the

Z-value associated with the highest peak in the his-

togram is associated with the original image feature.

If multiple peaks of approximately equal magnitude

are present, then multiple Z-values, and thus multi-

ple 2.5D features, can be hypothesized for the same

2D image feature.

For example, we currently compute 2.5D lines from

the set of 2D Boldt line segments using this strategy.

The endpoints of an image line segment are back-

projected into three planes at heights Z = z

i

; i =

f1; 2; 3g, where z

1

and z

3

are estimated heights that

bound the unknown height z

2

. This produces 3

known horizontal 3D line segments L

1

,L

2

and L

3

.

Forward projecting these line segments into another

image yields three known image line segments l

1

, l

2

and l

3

, with the endpoints of l

1

and l

3

bounding a

quadrilateral search area in which a corresponding

image line must lie. For any candidate line segment

match lying within this image area and having ap-

proximately the right orientation, a simple linear

equation can be solved for the scene height z

0

asso-

ciated with any candidate line match in the quadri-

lateral search area. The line height histogram tallies

z

0

votes for multiple matches over multiple images

and a histogram peak yields the �nal line height.

2.3 3D Geometric Elements

True 3D line segments can be computed using

a multi-image matching process related to the

method for computing 2.5D lines. 3D line segments

provide information about non-horizontal structure

and can be used in grouping structures that do not

lie in a single plane. For example, a true 3D line seg-

ment might represent the sloping edge of a gabled

roof. These line line segments can be grouped ac-

cording to proximity into 3D corner features. Each

3D corner has a true orientation in the world given

by the orientation of the 3D lines from which it was

created.

Curves and surfaces are represented parametrically

and can either be extracted from or �t to the site

data. The 3D position and orientation for arbitrary

curves and surfaces can be computed by extract-

ing the feature in a single image and matching over

several views. On the other hand, a parametric sur-

face can be �t to existing geometric elements (see

Section 4).

The UMass terrain reconstruction system [10] pro-

duces a digital elevation map (DEM) consisting

of a dense array of 3D elevation estimates and

registered orthographic image (ortho-image) from

two overlapping images that may have been taken

from oblique and widely spaced viewpoints, pro-

vided that: (1) The approximate viewing geometry

is known, (2) surfaces are textured, and (3) most

objects have approximately the same base-to-height

ratios (e.g., mountains, hills and boulders have ap-

proximately the same base-to-heigh ratios). Large,

low contrast surfaces, occluded boundaries, and tall

objects with a small base (e.g., 
ag poles) will pro-

duce artifacts in the �nal DEM and ortho-image.

3 Context-Sensitive Grouping

Strategies

3.1 Introduction

The extraction of complex structures from images,

such as 3D buildings, is a complex process which

must take into account variations in the image ap-

pearance of the object(s) (e.g. shadows and re-


ections), variations in generic classes of objects,

and variations arising from changes in viewpoint.

Given these inherent di�culties, building extrac-

tion cannot be a purely bottom up task but must



be approached as an image interpretation prob-

lem in which a-priori knowledge and general geo-

metric constraints can be brought to bear. Un-

der this paradigm, generality is achieved by com-

bining large numbers of competent special purpose

algorithms under appropriate contextual, geomet-

ric, spatial, and temporal constraints derived from

a-priori knowledge [6].

This section outlines several grouping/fusion strate-

gies for 3D building detection and reconstruction.

These strategies should be viewed as preliminary

steps towards the development of special purpose

strategies that are intended to provide the next level

of abstraction beyond those described in Section 2.

In most cases we present a brief description of a gen-

eral strategy followed by a speci�c instantiation of

that strategy which was used to generate the results

in the case studies presented in Section 4.

Some of these strategies have a bottom-up 
avor

and are meant to be applied to fairly large sets

of primitive elements in the absence of strong con-

textual constraints. For example, the �rst strat-

egy described below extends the current Ascender

2D polygon grouping strategy to include 3D con-

straints. It is designed to be applied to relatively

large sets of 2D, 2.5D, or 3D lines to search for con-

sistent polygonal hypotheses. Bottom-up strategies

may face the problem of a combinatoric explosion

of grouping possibilities as the size of the data set

increases.

Top-down strategies, on the other hand, control the

combinatoric problem by reducing the size of the

input set of elements by applying appropriate con-

straints. The downside of this approach is that

some mechanism must be provided for determin-

ing when and where the strategy can be applied.

For example, some of strategies described below are

concerned with �tting parameterized models of sev-

eral classes of roof structures to digital elevation

data. The context sensitive triggering mechanism

for these strategies is typically the hypothesis that

some form of building is present, which de�nes spa-

tial limits in the elevation data. Images cues (such

as roof shadows) may also limit the class of param-

eterized models that must be tried.

It is interesting to note that the 2D polygonal

extraction algorithm is itself a relatively complex

grouping strategy when viewed from the inside. Ex-

ternally it can be viewed as simply producing a set

of 2D polygon hypotheses as input data to other

processes. Using this perspective, the grouping

strategies o�ered in the next section can be viewed

as preliminary experiments supporting the design

of algorithms for extracting more complex and ab-

stract geometric structures, which in turn become

the input data for yet another layer of strategies,

leading toward systems which can handle a larger

variety of generic object classes and objects of in-

creased complexity within generic classes.

3.2 Example Grouping Strategies

Variations on the following example grouping

strategies are used in Section 4 to interpret and fuse

information in the general context of extracting 3D

building models from both optical data and digital

elevation maps.

3D feature grouping under 3D spatial and geomet-

ric constraints. The various types of feature tokens

can be assembled into more complex and coherent

structures by applying available constraints. 3D

lines and surfaces, as well as combinations of these

tokens, can be organized under optimizing strate-

gies for information fusion. A straightforward ex-

ample that has been implemented is 2.5D polygon

line grouping into 3D rooftop polygons. This is a di-

rect extension to the graph-based perceptual orga-

nization algorithm used in Ascender for organizing

2D lines and corners into closed 2D polygons [9].

An additional set of consistency checks are intro-

duced into the feature grouping mechanisms to test

that compatible lines and corners that are about to

be grouped occur at roughly the same elevation in

the scene. Individual line heights are combined and

propagated into grouped corner, chain, and �nal

polygon features. The results are closed 2D poly-

gons with an associated height value, which is eas-

ily converted into a 
at 3D roof polygon using the

known camera pose information.

Constrained �tting of parametric models. 3D para-

metricmodels are �t to a subset of discretely sample

elevation data. Spatial constraints, derived from

object hypotheses, are used as focus of attention

mechanisms to bound the subset of data to be �t

and robust procedures are used to determine the

�t. To date, the spatial constraints consist of the

2D polygonal rooftop hypotheses derived from vis-

ible imagery. These are then mapped onto a digi-

tal elevation map created by a stereo algorithm or



IFSAR data. Three types of rooftop models have

been built: planar, peaked, and curved (fourth or-

der). Since the DEM data are noisy, least median

squares robust techniques are used for surface �t-

ting.

Underconstrained �tting of parametric models. This

is a more general version of the previous algorithm

in which the subset of the elevation data to be

�t is not circumscribed by the object hypothesis.

The additional complication in this case is to deter-

mine the missing spatial constraints as �tting pro-

ceeds. One approach that has been implemented

is designed to �t planar roof models to DEM data

starting with an area bounded by a partial rooftop

boundary hypothesis, for example, a planar sur-

face �t to the area completely contained within a

U-shaped hypothesis. The planar �t is extended

in the direction of the missing roof edge until the

residual error of the planar �t exceeds a threshold

value. Other areas of the DEM can be focussed on

for �tting planar surfaces by selecting the region be-

tween two parallel, overlapping line segments, or the

convex triangular area contained between the two

line segments forming an L-junction. The resulting

plane can extended via planar region growing.

Constructing composite volumetric structures using

knowledge. 3D structures are often constructed in

pieces, for example the multiple parametric models

making up a roof composite. The larger composite

volume must then be inferred using heuristic strate-

gies based on general knowledge of the structure.

An example of this has been carried out to direct

heuristic merging of proximate simple planar roof

buildings into complex, multi-level roof structures.

Simple 
at-roofed models are �rst clustered into lo-

cally adjacent groups, and the roof heights within

each group are sorted in decreasing order. Starting

from the volumetric block associated with the high-

est roof polygon and working downward, individual

building blocks are extended to and merged with

adjacent higher structures. The result, after extru-

sion to the terrain data, is a complex volumetric

building model.

Finding unmodeled structures of surface-volume

structures. Once surface �ts and reconstruction al-

gorithms have been used to generate 3D building

models, unmodelled 3D structures occasionally re-

main on the roof. (For example, air conditioning

units, roof access structures, etc.)

These may appear at the limits of resolution of the

reconstruction algorithms, and reliable and accu-

rate reconstruction of the �ne, detailed structures

may not be possible using the original algorithms.

However, once a surface has been �t, these struc-

tures often appear as spatially coherent groups of

outlier points. A strategy for recovering the �ne

structure based on this observation is described in

section 4 (as part of case study 1.)

3.3 Model Selection

A �nal building model may be a composition of

bottom-up and top-down reconstruction strategies

as well as many di�erent geometric element types.

Knowledge about building properties, or a pri-

ori constraints within the building model, should

be used to trigger the most appropriate top-down

strategies and the choice of appropriate geometric

elements for the reconstruction. The wrong choice

of reconstruction strategy, or attempt to �t an inap-

propriate geometric surface, will lead to an incorrect

reconstruction or rejection of the building because

of large residual error.

Figure 1: Rooftop shape of certain buildings is clearly

contained in shadow information.

Currently, building models can be constructed from

three di�erent surface elements: planar surfaces,

curved surfaces, and peaked roofs. Local image con-

text determines the choice of surface element for

each building model. For example, the existence of

a centerline within a 2D polygon leads to �tting a

peaked roof element. Shadows are also a powerful

image feature that can be used to justify the selec-

tion of di�erent rooftop elements. Figure 1 shows

several buildings from an aerial view. Although a

ridge-line is not clear in the peaked roof buildings at

the bottom of the image, the shape of the shadows

clearly separates them from the buildings at the top

of the image that have curved surfaces and require

a di�erent reconstruction strategy.



3.4 Fitting Robust Parametric Surfaces

to a DEM

Extracting surfaces from the 3D array of data in a

digital elevation map (DEM) will be an important

component of a variety of information fusion strate-

gies that are being developed. There are many ways

that a subset of the DEM might be selected, for ex-

ample by a 2D polygon that has been identi�ed as

a building hypothesis. Using this constraint, previ-

ously computed 3D elevation estimates within the

polygons can be �t.

Here we outline the procedure to extract primitive

surface elements that are used to reconstruct the

simple and complex roofs. Since the residuals are

not normally distributed due to a variety of com-

plex factors in the formation of the DEM, outliers

(large deviations from the correct values) must be

assumed to be present. To help design a robust al-

gorithm for �tting surfaces to the types of buildings

that are expected, several di�erent roof models are

employed for processing regions of the DEM. Three

roof models have been implemented so far, a hori-

zontal planar 
at roof model, a multi- level 
at roof

model, and a two-facet peaked roof model.

The elevations data are divided into three cate-

gories: (1) good data { data that are normally dis-

tributed about the appropriate roof model, (2) out-

liers that arise from inaccuracies in the roof model,

(3) outliers that arise from artifacts in the algorithm

that produced the elevations data.

The robust model �tting algorithm has two stages:

In the �rst, the model parameters are estimated

by minimizing a cost function that is not sensi-

tive to outliers (provided that outliers account for

less than half of data). Stage I processing uses

the Downhill Simplex method and a least-median-

squared cost function to estimate the model param-

eters. The residuals computed using this method

have the property that outlier residuals are larger

than good data residuals.

In the second stage, an iterative process is used to

identify residuals and �t the good data to the roof

model using an optimal, least squares estimator. At

each step in the stage II processing, model parame-

ters are computed for all data with a stage I resid-

ual below an adjustable outlier threshold. Starting

with an outlier threshold that accepts all data, the

threshold is gradually lowered until the chi-squared

per degrees-of-freedom stops improving.

Detailed case studies of these techniques are dis-

cussed in the following sections. In Section 4.1 a

multi-level 
at roof building is analyzed, and in Sec-

tion 4.3 a combination of several peaked roof and

single-level 
at roofs buildings are reconstructed.

4 Case Studies

4.1 Lockheed-Martin Multi-Level Flat

Roof

The following case study describes the reconstruc-

tion of a multi-level 
at roof building from 2D roof

polygons, produced by the UMass Ascender system,

and 3D elevation estimates, produced by the UMass

terrain reconstruction system. The building is lo-

cated on the Lockheed-Martin Denver site near the

UGV DEMO B test area. The building contains

several di�erent levels and is a fairly complex shape.

In addition, surface structures clutter the roof tops,

and shadows partly occlude several roof sections.

The monocular building detector was run on the

test image. A total of nine polygons, shown in Fig-

ure 2, were extracted. Note that polygon C was

cuto� at the shadow boundary rather than the ac-

tual rooftop edge, and the three polygons D;F; and

G overlap. These are inherent problems associated

with polygon detection, which are addressed in the

3D knowledge-based building composition.

Next, 3D planes were �t to the elevation data within

each roof polygon. If the best �t error is larger than

a threshold the polygon is rejected. For example,

polygon G was rejected and replaced with polygons

D and F . Alternatively, because the combined best

�t error of polygons D and F is signi�cantly less

than the best �t error of G, a two level model con-

sisting of D and F could be accepted.

The �nal set of planes before and after knowledge-

based volumetric composition are shown in Fig-

ure 3. Notice that the disjoint planes have been

merged into a single building and a separate small

structure on the ground (corresponding to the small

polygon in the upper right corner of Figure 3).

Clearly, the reconstructed building is greatly im-

proved. However, there still remain valid 3D struc-

tures on the rooftop which are not modelled. They

are most likely air conditioning and ventilation

equipment. These structures were identi�ed and



Figure 2: Aerial view of the test site with the detected

2D polygons.

added to the building model using an outlier anal-

ysis procedure.

The structural outlier identi�cation procedure gen-

erates a series of Boolean masks that identify points

on the roof as having qualities consistent with roof

top structures. The �nal selection is then based on

the intersection of these masks. For points identi-

�ed as belonging to a roof top structure, the �tted

model elevations are replaced with the original ele-

vation estimates.

Masks are generated based on four selection crite-

ria: (1) Select a data point if the distance from the

Figure 3: The �t planes before and after knowledge-

based volumetric composition.

data point to the �tted plane is greater than the

outlier threshold. (2) Because elevation estimates

near discontinuities are not reliable, points on a roof

polygon are selected if their distance to the bound-

ary is greater than half of the width of the matching

correlation window. (3) Because roof top structures

usually are built up, points are selected if they were

above the roof plane. (4) If a point is not located

in shadow.

The histogram of the absolute di�erence between

the �tted plane and the raw elevation data for the

main roof is shown in Figure 4. The outlier thresh-

old is 0.57 meters, which rejected 12% of the data.

In addition, half the width of the matching win-

dow was 14 pixels, and a value of 40 was used for

the shadow threshold. To �ll in small gaps, the in-

tersection mask was �ltered with two passes of a

dilation operator. Figure 5 shows these four masks

and their intersection for the test building, and a

close-up of the main roof section with the identi�ed

roof top structures. Of the nine identi�ed objects,

seven appear to be real (including the four objects

in the shadow of the roof section) and two appear

to be false. In addition, two small real objects seem

to have been missed. A rendered view of the �nal

reconstruction is shown in Figure 6.
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Figure 4: Histogram of the absolute di�erence between

the �tted and raw elevations within the main roof poly-

gon. The outlier threshold (indicated by the vertical

line) is 0.57 meters and rejects 12% of the data.

4.2 Ft.Hood Peaked Roofs

As a second case study, a set of buildings located at

Ft. Hood Texas, were used for reconstruction. As

before, the UMass Ascender system generated the

2D roof polygons and the 3D elevation estimates



Figure 5: Boolean masks generated during outlier anal-

ysis, and detected roof top structures. From top to bot-

tom, along the left edge the Boolean masks are: intersec-

tion, shadows, positive di�erences, main roof, and out-

liers.

were computed from the UMass terrain reconstruc-

tion system. An aerial view of the site and the

detected roof polygons is shown in Figure 7. The

image contained several peaked roof buildings and

a large two level 
at roof building. Trees, shadows,

and the fact that the image is at a much lower reso-

lution than the image of the �rst case study makes

detection and reconstruction of the buildings an in-

teresting task.

The 2D polygon detector was run on the image and

the results are shown in Figure 7. Seven polygons

were detected. Five of the polygons denote peaked

roof buildings while two polygons represent the two

sections of the large 
at roofed building. The two


at roof polygons were �t to the elevation data us-

ing the three dimensional planar roof model as in

Section 4.2. To ensure that two pieces of the 
at

buildings form a coherent single model, a set of rules

embodying geometric knowledge of building struc-

tures are applied to the �t planes.

Figure 6: Rendered view of the �nal reconstruction.

Figure 7: Subimage of the Ft. Hood dataset with roof

polygons detected.

A peaked roof model was �t to the elevation data

within the �ve remaining polygons. Currently, the

full robust �tting algorithm has not been imple-

mented for peaked roof models. Instead, the initial

least-median-squares algorithm brings the model

into alignment, determines the best peak angle, po-

sition of the ridge line, and height of the peak.

A ground plane was �t to the elevation estimates

within a bounding box surrounding the seven poly-

gons. Only elevation points exterior to the polygons

are considered for the ground plane �t. For illustra-

tion purposes, the plane computed in the bounding

box was extended to cover the entire site so that the

model �tting results would be clearer. This plane

may not actually re
ect the actual terrain eleva-

tions. Figure 8 shows the site after this reconstruc-

tion process.



Figure 8: Six reconstructed buildings from the Ft. Hood scene. Pixels that lay on the ground plane were darkened

to highlight the results.

4.3 IFSAR from Kirkland AFB

4.3.1 Introduction

Three-dimensional fusion and grouping strategies

can be applied to a combination of Interferometric

Synthetic Aperture Radar (IFSAR) data and elec-

tro optical (EO) imagery. The following strategies

were developed as part of an initial exploration into

grouping and fusion of a single optical image and

an IFSAR elevation map. Because of several im-

portant di�erences between photogrammetric and

IFSAR elevation data, earlier reconstruction strate-

gies had to be adapted to the IFSAR sensor char-

acteristics. Typically, IFSAR DEMs have a higher

variance and more dropouts (i.e. no values) than

photogrammetrically produced DEMs. In addition,

the viewing geometry associated with IFSAR and

photogrammetric DEMs vary greatly. IFSAR work

best at grazing angles, whereas photogrammetric

techniques work best with near nadir views. The

grouping strategies discussed below were developed

and tested on only a small fraction of the available

data and should therefore be considered to be very

preliminary.

4.3.2 Strategies for Processing the

Sandia Kirkland AFB Data

Figures 9 and 10 show the optical and IFSAR im-

ages, respectively, chosen from the Kirkland data

set for this study. First, the optical image was reg-

istered to the IFSAR DEM by matching building

corners and then warping the IFSAR DEM image

so that the two images were aligned.

The general reconstruction strategy is similar to

that described earlier. The optical images is pro-

cessed to extract various types of features that can

be used in a knowledge-directed control strategy for

multi-sensor information fusion. Grouping of lines

and analysis of shadow boundaries are clear cues for

invoking context-sensitive strategies to e�ectively

process the DEM to extract 3D features in the face

of noise that might otherwise obscure the goal, as

will be shown via examples.

4.3.3 Fitting planar roof models to

IFSAR DEM data.

The 2D building extraction algorithm produced an

initial set of 2D polygons that represent building

roof hypotheses. These polygons provide focus of

attention regions that are likely to be planar sur-

faces in the fairly noisy IFSAR data. For example,

the elevation of rooftop polygon A in Figure 9 is

7.33 meters while the standard deviation (exclud-

ing dropouts) of the IFSAR DEM points within the

polygon is 13.4 meters! Although the elevation data

are noisy, there is a clear separation between roof

and ground level elevations. Next, a robust least-

median-squared (LMS) �tting technique provides

an estimate of the elevation of the roof polygons.

The elevation data within the roof polygons then

can be replaced with the recovered plane. Assum-

ing that the buildings lay on a planar surface, all



Figure 9: Optical subimage and the corresponding IF-

SAR data of Sandia/Kirkland dataset. Dotted lines in

the optical image are described in the text.

non-building elevation points can be �t to a me-

dian ground plane. Finally, the optical image is

draped over the re�ned elevation map to produce a

phototextured 3D model, as shown in Figure 10.

Note that some of the buildings in the test region

are not detected by this strategy. Examination of

the missed building provides clues for developing

additional strategies, as well as the means to invoke

them. Because line data may not be reliable, it is

imperative that several complementary approaches

be employed when extracting buildings.

The quality of the IFSAR image depends upon the

orientation and position of the sensor with respect

to objects within the site. Thus, certain regions of

the IFSAR DEMmay not contain reliable data. For

example, in Figure 9, the Quonset huts to the right

of building D are degraded by radar dropouts and

shadows. In contrast, the same type of huts to the

right of building C are clearly visible in the IFSAR

elevation (see Figure ??). This demonstrates the

e�ect of object orientationwith respect to the radar.

4.3.4 Region growing.

Consider the building near the center of the image

labeled M in Figure 9. All the boundaries lines are

not extracted, and one of the 2D roof polygons was

not completed. In this case, the polygon detection

algorithm failed because the line extraction algo-

rithm was unable to detect roof edges along the top

of the building. In contrast, region segmentation

strategies within the radar data can �nd rooftop

planes that were missed in the search of the optical

image. To extract the missing building (bldg. M),

we make use of the following observations:

� In the optical data, only 2 or 3 sides of the

building have detected; and a closed building

polygon has not been detected. Nevertheless,

the number of sides is su�cient to hypothesize

a building.

� In the IFSAR DEM there are a signi�cant num-

ber of pixels above the surrounding ground

plane. In this case, the roof plane is extracted

by selecting pixels associated with the distinc-

tive cluster and �tting a planar model to the

extracted elevations.

� In the SAR images some building edges and

corners are clearly visible. These cues may

compliment the optically detected building fea-

tures and can be used to improve the accuracy

of IFSAR processing by localizing and �lling in

missing building boundaries.

The missing sides were hypothesized using geomet-

ric constraints and symmetry. In this example, a

bounding box within the IFSAR data was computed

using the extracted optical edges of building M. A

median plane was �t to the region and the improved

site model is shown in Figure 10.

4.4 Determination of building models

from optical cues.

Other optical cues, such as shadow information, can

help determine the form of the parametric model.

Consider, for example, the Quonset huts in area K

(see Figure 9). The shadows clearly imply that the

buildings have curved roof. The structure of the two

Quonset huts were found by �rst segmenting the



Figure 10: Improved site model after extraction of build-

ing M (see Figure 9 using focussed detection mechanisms

footprint of the building using the EO image, then

smoothing the IFSAR DEM with a median �lter,

and �nally �tting the smoothed elevation estimates

to a fourth order polynomial. Figure 11 shows the

EO image draped over the recovered shape of one

of the Quonset huts. The shadow of similar shaped

building in the optical image allows the peaked roof

buildings to be easily and clearly distinguished from

the Quonset hut buildings as shown in Figure 1.

This allows invocation of a peaked roof parametric

model for processing the DEM.

Figure 11: Recovered surface of Quonset hut

These three strategies represent an exemplar of a

general approach that makes use of multiple image

cues, possibly obtained from the di�erent sources of

data, to select the appropriate IU strategy and ob-

ject model. These results demonstrate a reasonably

straightforward extension of the grouping strategies

developed in the UMass RADIUS e�ort. They im-

ply the feasibility of the development of a set of ro-

bust complementary strategies to infer the presence

and extract 3D models of various objects, including

buildings, parking lots, vehicles, etc.

4.5 2.5D Line Grouping

The graph-based perceptual organization algorithm

used in Ascender for organizing lines and corners

into closed 2D polygons [9] has been modi�ed to

handle 2.5D lines (see Section 4.5). An additional

set of 3D consistency checks have been introduced

to ensure that compatible lines and corners are

roughly at the same elevation in the scene. Indi-

vidual line heights are combined and propagated

into grouped corner, chain, and polygon hypothe-

ses. The results are closed 2D polygons with asso-

ciated elevation values, which are easily converted

into 
at 3D roof polygons using the known cam-

era projection equations. The bene�t of the 2.5D

approach to roof polygon detection is that image

line segments caused by shadows and ground-level

features are automatically ignored, and there is less

chance of overgrouping multiple roof levels into a

single polygon hypothesis containing edges that ac-

tually occur at di�erent elevations in the scene (Fig-

ure 12).

Using 2D lines only

Using 2.5D lines

Figure 12: Using 2.5D lines in the grouping process helps

disambiguate multi-level building roofs (note the build-

ing shadow, which shows two distinct roof levels). The

Z-coordinates of vertices on the left and right 2.5D poly-

gon hypotheses are 260.32 and 261.66 meters, respec-

tively, as compared with ground truth Z-values of 260.65

and 262.31.

5 Conclusions and Future Development

This paper demonstrates the utility of data fusion

when applied to the problem of site model recon-

struction. We combined the results from hierarchi-

cal image matching, feature based building detec-



tion, robust plane �tting, and heuristic assemble

algorithms to form an accurate, robust site model

reconstruction system. In the future, the techniques

described here will be extended to more complex

buildings, including gabled and curved roofs, by �t-

ting the elevation data to a wider variety of geo-

metric models. An additional goal is to use the

partially closed chains as focus of attention mecha-

nisms and to explore approaches for recovering sur-

face structure between arbitrary sequences of cor-

ners and lines.

Overall, we expect to continue the investigation of

plausible strategies for grouping generic elements

into complex structures and for simultaneously fus-

ing information from multiple sources into coher-

ent models. The results shown here are encour-

aging. The accuracy of the �nal reconstructions

can be observed from the visually consistent render-

ings. Through the careful combination of primitive

elements and special purpose strategies, we have

the beginnings of an automatic, accurate, and func-

tional system.
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