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Abstract

This paper describes the design and implementa-

tion of a Single Instruction Multiple Data (SIMD)

depth-from-motion algorithm on the Image Un-

derstanding Architecture Simulator. Correspon-

dences are established in parallel for two tempo-

rally separated images through correlation. The

correspondences are used to determine the trans-

lational and rotational motion parameters of the

camera through a parallel motion algorithm. This is

done by �rst determining the approximate transla-

tional parameters and then constraining the search

for the exact translational and rotational param-

eters. Finally, the dense depth map is computed

from the image correspondences and the computed

motion parameters. Results are analyzed for three

image sequences acquired from mobile vehicles (the

Autonomous Land Vehicle, the Carnegie-Mellon

NAVLAB, and the UMass Denning Robot). Depths

are obtained at an average accuracy of about 8% in

outdoor image sequences. The depth maps are pro-

cessed to locate relatively small obstacles like cans

and cones to a distance of about 60 feet. Larger

obstacles like hills are located even when they are

much further away. Issues related to the speedup

and accuracy of the computationally intensive prob-

lem of motion analysis are explored in the context

of the algorithm.

1 Introduction and Motivation

Motion analysis is one of the most computationally

intensive tasks in computer vision. Usually motion

algorithms have relied on some form of point or

feature correspondences between two or more per-

spective views [1-9]. These correspondence{based

approaches take advantage of the image displace-

ments induced by egomotion. Most such methods

match a few hundred points or features in two tem-
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porally separated images and quantitatively mea-

sure the image displacements. A consistent set of

motion parameters is then determined to explain

these displacements. Once the motion parameters

have been determined, the depth of environmental

points can be found by using their individual image

displacements.

For autonomous navigation it is not enough to

compute depth at a few hundred isolated points in

the image. In order to detect and avoid obstacles it

is necessary to �nd depth at a dense set of points.

In addition, for practical scenarios it is desirable to

process a large number of high resolution images

within a small period of time. The example below

calculates the number of pairs of frames that must

be processed per second in a typical scenario for

motion analysis (through the use of point-based or

feature-based correspondence methods).

Let us assume that our camera has a resolution

of 256 � 256 pixels and a �eld of view of 45

� 2

.

Let us further assume that the vehicle is moving

with a speed of 50 km./hour and it is necessary

to determine depth to a distance of about 10{30

metres at about 10% accuracy (except in the re-

gion immediately surrounding the focus of expan-

sion (FOE)
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where errors in depth are necessarily

high). For correspondence{based methods it can

be proved theoretically [16] that in order to achieve

this accuracy the vehicle must move about 2 m.

forward between the processing of successive pairs

of frames. Since 50 km/hr is about 14 m/sec, the

motion processing system should therefore be able

to process a maximum of about 7 pairs of frames
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For better recovery of rotational parameters it is best to

have large �eld of view cameras with high image resolution.

However, large �eld of view lenses give rise to various distor-

tions and lower the e�ective resolution of the image. Our choice

of camera parameters are typical of commonly available image

processing systems.
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per sec. and thus, the computation associated with

each pair of frames should be approximately 140

milliseconds.

In spite of this severe requirement for speed,

the problem of time complexity has not been ad-

equately emphasized in the area of depth determi-

nation. Almost any reasonable motion algorithm

needs to solve complicated non-linear equations re-

lated to the 5 independent parameters of motion.

The sequential algorithms have concentrated on the

the use of approximations and search space reduc-

tion for the solution of these equations. Further-

more, they have not attempted to compute depth

at more than a few hundred locations in the image.

However, when 7 complete pairs of frames need to

be processed per second and the computation asso-

ciated with each frame pair involves many 
oating

point computations a parallel design and implemen-

tation is essential. If we could completely paral-

lelize the problem, theoretically we could achieve a

speedup by a factor of 65,536 times over the equiv-

alent sequential version with a 256 � 256 array of

processors.

None of the earlier work in parallel motion pro-

cessing [10{15] attempt a comprehensive solution

to the problem of dense depth determination from

a sequence of images. In the last few years a vari-

ety of processor arrays have emerged for solving low

level processing in computer vision [17]. The �ne

grained SIMD array computers have proved par-

ticularly versatile for solving such low level tasks.

The AMT DAP series, the Connection Machine

and the lowest level of the IUA are three machines

which embody this computational paradigm. The

SIMD class of machine makes it feasible to attempt

real-time solutions to the dense depth-from-motion

problem. The algorithm presented in this paper is

implemented on the Image Understanding Archi-

tecture (IUA) simulator. The IUA is a three lay-

ered parallel machine speci�cally designed for im-

age analysis. The lowest layer of the IUA is the

CAAPP, a two dimensional grid of 1-bit serial pro-

cessing elements, operating in the SIMD mode.

A common scenario in ground-based navigation

occurs when the vehicle moves forward by undergo-

ing primarily translational motion along with small

rotations. In this case the FOE is within the �eld of

view. The algorithm presented in this paper is de-

signed to take advantage of this situation. It �rst

determines the approximate translation and then

constrains the search for the exact translational and

rotational parameters. In contrast to other methods

which have not demonstrated their ability to recover

dense depth maps and locate obstacles, our algo-

rithm is fast, simple and robust.

We start by providing a brief description of the

IUA which emphasizes the features most pertinent

to our application.

2 The Image Understanding Archi-

tecture (IUA)

We provide a brief description of the IUA [18] with

particular emphasis on the lowermost level of the

machine. The IUA is made up of three levels, each

having a particular type of processor:

1. Low Level consisting of the Content Address-

able Array Parallel Processor (CAAPP).

2. Intermediate Level consisting of the Interme-

diate Communications Associative Processor

(ICAP).

3. High Level consisting of the Symbolic Process-

ing Array (SPA).

The CAAPP and ICAP levels are controlled by

a dedicated Array Control Unit which is directed

from the SPA level. The low level processors are

ideal for �ne-grained SIMD computing, whereas the

intermediate and high level processors are ideal for

Multiple Instruction Multiple Data (MIMD) com-

puting. Our algorithm uses only the low level of the

IUA because of the nature of the task. The low level

or CAAPP level is a 256� 256 square grid array of

custom 1-bit serial processors with local memory,

one-bit registers, backing store, an ALU and data

routing circuitry. The bit-serial processing elements

are linked through a four way (North, South, East,

West) communications grid. Intra-level communi-

cation within the CAAPP can take place in several

ways [18].

3 Depth from Image Displacement

This section discusses the mathematical formula-

tion for the algorithm. Figure 1 shows a right-

handed coordinate system �xed with respect to the

camera. Let us also assume the right hand rule for

rotations and consider the case where the camera

is undergoing motion. As can be seen from Fig-

ure 1 the environmental point P , with world coor-

dinate (X;Y; Z), is projected onto point p, in the

image plane with image coordinates (x; y). Let f

be the focal length of the camera, and denote by

!

T

= (T

1

; T

2

; T

3

),

!




= (


1

;


2

;


3

) the transla-

tional and rotational rigid motion of the camera

(This implies that P

0

= �RP � T where R is

the rotation matrix and P

0

is the new position of P

after undergoing rigid motion to the next frame).

We shall use the small rotation

4

motion equa-

tions, and for simplicity use the following abbrevi-
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This means that the magnitude of rotation j � j� 1. Also,

sin(�) � � and cos(�) � 1 to order O(�

2

). Using the approxima-

tion j � j� 1 we note that even if j � j= 0:1 radians (i:e: ' 6

�

),

the relative error incurred is 0:2% for sin(�) and 0:5%. for

cos(�). The small angle assumption is not a restrictive one in

practical situations because large rotations induce such large im-

age displacements that correspondence algorithms are unable to

handle them reliably.



Figure 1: Coordinate System
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With the above abbreviations the image displace-

ment

!

l

, induced by the motion of the camera, is

given by

!

l

= u x̂+ v ŷ � (u; v) (1)

where x̂ and ŷ are unit vectors along the x-axis and

y-axis respectively, and

u =

J + (�=Z)

I � (T

3

=Z)

(2)

v =

K + (�=Z)

I � (T

3

=Z)

: (3)

The depth Z of an environmental point P can be

determined from either equation (2) or equation (3).

We denote by Z

x

the depth determined from equa-

tion (2) and by Z

y

the depth determined from equa-

tion (3). Hence,

Z

x

=

T

3

u+ �

Iu � J

(4)

Z

y

=

T

3

v + �

Iv �K

: (5)

Of course for perfect data, these would be equal;

however, in the presence of noise, they will in gen-

eral be unequal.

It is also possible to write the depth in terms of

the displacement vector

!

l

and the motion param-

eters by using equations (1),(2), and (3). However,

the resulting expressions are cumbersome to manip-

ulate.

In this experimental scenario the vehicle is mov-

ing forward into the scene. The motion is mostly

translational with small rotations. For this kind

of \approximate translational motion" the approxi-

mate location of the focus of expansion [19, 20] can

be found quite easily. This gives an initial approx-

imate estimate for motion parameters. If the focal

length of the camera is unknown, but the focus of

expansion is known, then the time-to-adjacency [19]

relationship is sometimes used to compute rough

depth from the approximate estimate for motion

parameters. The time-to-adjacency relationship

gives

Z

T

3

=

D

d

(6)

where

� D = distance in pixels of point p

i

, from the

FOE.

� d = displacement of the point p

i

.

To �nd better depths a more elaborate scheme

is needed. From equations (4) and (5) we can see

that there are two ways of determining depth for

a particular set of motion parameters and image

displacement. Z

x

is the depth that is determined

from the x-component (u) of the image displace-

ment and Z

y

is the depth that is determined from

the y-component (v) of the image displacement. As

u becomes close to 0, Z

x

becomes hard to deter-

mine. Similarly, as v becomes close to 0, Z

y

be-

comes hard to determine. When the movement of

the vehicle is mostly forward a major portion of the

image has signi�cant magnitudes of both u and v

and either Z

x

or Z

y

can give good depths.

For any point i in the image the depth Z

�

is com-

puted as the average of Z

x

and Z

y

(except in patho-

logical cases where either u or v is zero). It is pos-

sible to arrive at an estimate of the reliability of Z

�

by noting the di�erence of Z

x

and Z

y

from each

other. The reliability � is de�ned as

� =

0(Z

x

; Z

y

)

q

Z

2

x

+ Z

2

y

: (7)

where

0(x; y) = j x+ y j if x � 0 and y � 0

= j x� y j otherwise (8)

The reliability scale varies from 0 to

p

2 (no mat-

ter what the values of the two depths) with 0 being

the best reliability. Qualitatively, we are testing

how well the depths computed from the two com-

ponents of the displacement vectors match. If both

depths are positive and equal then � is zero (i.e.

high reliability). If both depths are negative then

then � is high (low reliability). In general, when

one depth is positive and the other depth is nega-

tive then reliability is poor, although not as poor

as the case when both are negative.

Let �

i

be the reliability for depth obtained at

point i in the image. Let n be the total number of

displacement vectors. Z

x

i

and Z

y

i

are the depths



computed by using the x and y-components respec-

tively of the i

th

displacement vector and the hy-

pothesized values of the motion parameters. Then

� =

n

X

i=1

�

i

n

(9)

The motion parameters for which � is minimum

is the best set of motion parameters. Unlike several

other approaches this optimization criterion allows

us to avoid the rather di�cult problem of eliminat-

ing the depths from the error functions (which has

to be done somehow when the deviation between

the actual and predicted image displacements must

be minimized). We can call the error function �,

given by equation (9) as the normalized absolute

deviation in directional depths. The nice property

of � is that it varies between 0 and

p

2. The lower

the value of � the better the minimization.

We follow this section with the algorithm for

depth determination.

4 Depth Determination Algorithm

The objective is to recover reliable depths of envi-

ronmental points over as large a part of the image

as possible. The parallel algorithm works in the

following stages:

1. Determination of image correspondence.

2. Selection of the best image displacements be-

tween frames.

3. Determination of the approximate transla-

tional motion parameters.

4. Determination of the exact translational and

rotational motion parameters.

5. Depth determination.

4.1 Image Correspondence

The algorithm for establishing image correspon-

dence takes as input two temporally displaced im-

ages and the maximum possible displacement at

any pixel. Restricting the maximum displacement

does not signi�cantly limit the e�cacy of the imple-

mentation since it is usually possible to predict it in

advance. The row and column displacements at ev-

ery pixel are computed through correlation match-

ing.

The parallel algorithm for computing image dis-

placements works as follows

||||||

Parallel Correlation

Store Frame-1 and Frame-2 of the im-

age sequence in local processing ele-

ment (PE) memory

FOR hypothesized displacements within

the maximum displacement range DO

BEGIN

Shift each pixel in Frame-2 by the negative

of the hypothesized displacement

Compute sum-of-absolute-di�erences cor-

relation between the pixels of frame-1

and the shifted frame-2 in a spiral pat-

tern [21].

If the correlation at a pixel is the mini-

mum obtained until now, then store the

hypothesized displacement and the cur-

rent minimum correlation value in the

local PE memory.

END

After all hypothesized displacements have

been considered the displacement cor-

responding to the minimum correla-

tion at each pixel is the image displace-

ment at that pixel. The value of the

correlation gives a measure of the reli-

ability of the match.

||||||

It should be noted that using sum-of-absolute dif-

ferences rather than the sum-of-squared di�erences

as the correlation measure saves time by avoid-

ing multiplications. The repeated correlation com-

putations are the most computationally intensive

part of the algorithm and this is an important ef-

�ciency consideration. Integer representations are

also preferable because 
oating point computations

are costly in a bit-serial processor.

4.2 Selection of best image displacements

The coterie network of the CAAPP is used to par-

tition the image into equal divisions [18]. For ex-

ample, in one experiment the 256� 256 image was

divided into 64 sub-regions of 32 � 32 pixels each.

In each sub-region the pixel which has the most

reliable displacement vector is selected in parallel.

Hence there are as many selected pixels as there

are sub-regions. The displacement vectors at these

selected pixels are called \selected" displacement

vectors. The FOE and motion parameters are de-

termined with the selected displacement vectors.

4.3 Approximate Translation

In dynamic imaging situations where the sensor is

undergoing primarily translational motion with a

relatively small rotational component, approximate

translational motion algorithms may be e�ective in

determining approximate depth [20]. By restrict-

ing the processing to the two dimensions of trans-

lational motion, there is a tremendous reduction

in complexity from the �ve dimensions (excluding

the scaling component of sensor velocity) of general

motion.

The FOE recovery algorithm works as follows.

First it draws a line through each selected displace-

ment vector in the image. Let these lines be called

\extended" displacement vectors. Then it �nds all



the possible intersections of the extended displace-

ment vectors and votes in a Hough transform array

corresponding to each intersection [22]. The pa-

rameter space for the Hough transform is given by

the image coordinates where the extended displace-

ment vectors can intersect each other. The number

of votes for each intersection is an increasing func-

tion of the length and con�dences of the displace-

ment vectors forming the intersection. This ensures

that longer displacement vectors are more heavily

weighted and that more reliable vectors are also

weighted more heavily. The point where the max-

imum number of intersections occur is the approx-

imate FOE. A contiguous region which surrounds

the approximate FOE and includes at least � frac-

tion of the votes is the region where the exact FOE

is likely to be present.

The parameter space for the Hough transform

is spread over all the processing elements of the

CAAPP. The intersections have an x-coordinate

and a y-coordinate. Since the CAAPP is a two

dimensional array, it is easy to map each possible

intersection into a distinct PE. The local memory

of each PE contains the number of votes for an ap-

proximate FOE. The contiguous region where the

exact FOE might be located is determined by sum-

ming up in parallel the votes gathered by neighbors

[22].

4.4 Exact Translation and Rotation

Once the region in which the exact FOE can lie is

determined the exact translational and rotational

parameters can be computed by the optimization

method stated in equation (9).

For example let the approximate FOE be at

(70; 55) with the exact FOE lying within 10 pixels

of the approximate FOE. Then a square whose sides

are 20 pixels is formed with (70; 55) as the intersec-

tion point of its two diagonals. Then FOE's are

hypothesized at each pixel bounded by the square

(i.e. starting at (60; 45) and ending at (80; 65)).

At each hypothesized FOE the normalized absolute

deviation in directional depths �, is computed for

the three dimensions of rotations. The rotations

corresponding to the minimum � are the optimal

rotational parameters corresponding to the hypoth-

esized FOE. The minimum � is determined among

all the hypothesized FOE's. The translation and

rotation corresponding to minimum � are the exact

motion parameters.

4.5 Depth Determination

Once the motion parameters are obtained the depth

at each point in the image can be found by using

the image displacements and the intrinsic camera

parameters. Since each pixel of the image is rep-

resented by one processing element in the CAAPP,

this stage is totally parallelized. The equations used

for this purpose have been described in Section 3.

Cone-5
Cone-6

Cone-4Cone-3
CAN

Cone-2

Cone-1

Tree-1

Tree-2Tree-3

Figure 2: First frame of the Sequence.

Cone-5
Cone-6

Cone-4Cone-3
CAN

Cone-2

Cone-1

Tree-1

Tree-2Tree-3

Figure 3: Computed depth map.

Object True Computed

depth Depth

(feet) sample

#1 #2 #3

cone1 21 22 23 25

cone2 36 35 44 33

cone3 56 45 53 54

cone4 56 54 55 56

can 46 41 44 43

cone5(*) 76 96 66 70

cone6 76 62 67 55

Tree1 - 50 51 51

Tree2 - 58 59 57

Tree3 - 90 91 91

Table 1: Depth Values of some environmental

points.(*) Cone5 is near the FOE and its depths

are erroneous.



5 Experiments

The algorithm for parallel depth determination was

coded on the IUA simulator. This section contains

the results obtained on several image sequences.

Carnegie Mellon NAVLAB sequence - The

�rst set of experiments used a sequence of twenty

images. The images were collected on the Carnegie

Mellon NAVLAB. The �rst image of the sequence is

shown in Figure 2. The vehicle was made to move

in an approximately straight line such that the dis-

tance between frames was 2 feet. The �eld of view

of the camera was 45

�

and 256�256 images images

were collected. In order to determine the ground

truth for environmental objects, tra�c cones and

a can were placed at measured distances (ranging

from 21 to 76 feet). Obviously with a total move-

ment of the vehicle of 40 feet, some of the cones

disappeared from the scene in later frames. Figure

2 shows environmental objects whose depths had

been hand measured (black dots), along with the

rest of the scene with objects whose distances were

not measured (e.g. trees). It should be noted that

in general the scene is quite complex because of the

presence of large homogeneously textured regions

like road and grass, and the occlusion of the dis-

tant buildings through trees.

The quantitative results for the known envi-

ronmental objects and some unknown objects are

shown in Table 1. Three visually selected pixels

were marked on each object. The value of depth

returned by the algorithm at each of these pixels

are recorded in Table 1. These recordings are re-

ferred to as \samples" in the table. From the table

the average error in depth for the known objects

is computed to be about 8%

5

. This corresponds

quite well to the theoretical limits on depth deter-

mination presented in our previous work [16].

The depth map obtained by using the algorithm

between the �rst and third frame of the sequence

is shown in Figure 3

6

. Complete separation of ob-

stacles (e.g. cones, can) is not possible from the

depth map because part of the surroundings of an

obstacle in the depth map is at almost the same

depth as the obstacle. This is very di�erent from

an intensity image where all regions of an obsta-

cle usually have a di�erent image intensity from its

surrounding. The darker the color the closer the en-

vironmental point is to the camera (Since the gray-

level representation of depth on a printed page is

poor , the results will be presented in various rep-

resentations. On a high resolution display device

the depth maps appear a lot better to the human

eye. ). It should be noted that white on the depth

5

The mean depth of each known object is the average of the

three smaples that have been shown in Table 1

6

The correspondences in the experimental section are from

a hierarchical correlation based algorithm which has not been

completely parallelized on the IUA. The completely parallel IUA

implementation gives somewhat inferior results for depth.

map indicates points at which depths are over 120

feet. Black indicates points where depth cannot be

computed reliably (e.g. periphery of the image that

is not visible in both images, points where displace-

ment vectors are small or erroneous thereby giving

rise to wrong depths etc.). Parts of cones, can and

trees stand out in the depth map in subsequent rep-

resentations.

Figure 4(a)-(l) shows the two frames, some inter-

mediate results and several depth maps at di�erent

regions of the image. An explanation is necessary

for the legends which illustrate the depth maps.

The legends are histograms of depth maps. The

x-axis shows the depth values and the y-axis indi-

cates the number of pixels with a particular depth

value. The shading of the histogram corresponds to

the shading of the depth map. For example, in �g-

ure 4(e) (whose histogram is shown in �gure 4(f)),

the lightest region show depths of over 80 feet. The

top of cones and can stand out in the depth maps.

Observers unaccustomed to seeing depth images of-

ten attempt to compare them with intensity images

and draw erroneous conclusions. In the case of a

cone standing upright on the ground in 3-D, the

2-D image will have the following characteristics:

� The top of the cone is surrounded in the image

by locations which are much further away than

the cone.

� The bottom of the cone has almost the same

depth as the ground in front of it and to its

sides.

Hence, in the depth map the bottom of the

cones and can merge with the surrounding ground

whereas the top clearly stands out from its sur-

roundings. Virtually all the major obstacles at least

partially stand out in a magni�ed depth map. We

have not magni�ed all the obstacles in Figure 4 be-

cause of space limitations. Nevertheless, it is quite

clear from the �gures that portions of the two trees,

the can and the cones clearly stand out in the depth

map. Thus in addition to the quantitative depths

the obstacles are also detected. It can be seen that

even small obstacles like cones and can are detected

quite robustly by this algorithm to a distance of

about 60 feet. Larger structure like trees can obvi-

ously be detected more easily even when they are

quite far away.

Autonomous Land Vehicle sequence- A sec-

ond experiment was done on a sequence collected

via the Autonomous Land Vehicle. The data collec-

tion process is detailed in [23]. Preliminary results

on this sequence are shown in Figure 5. It can be

seen that the mountain which is rather far away is

clearly identi�ed.

Umass DenningRobot sequence-A third ex-

periment was done on a sequence collected via the

Denning robot at the University of Massachusetts

at Amherst. This image was taken indoor under

poor lighting conditions. The robot moved 1.95 feet



(a) First image. (b) Second image. (c) Image displacements.

(d) Hough Transform.

(e) Depth map of full image

with legend in �g. f.

Note the gradual increase in depth with the trees standing out

(f) Legend for �g. e.

(g) Magni�ed can from �g. a.

The top of the marked can stands out whereas the bottom merges with the ground.

(h) Depth map of �g. g. (i) Legend for �g. h.

(j) Magni�ed cones from �g. a.

The tops of the three cones stand out whereas the bottoms merge with the ground.

(k) Depth map of �g. j. (l) Legend for �g. k.
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Figure 4: Results for the CMU sequence.



between frames. The results for the depth maps are

shown in Figure 5.

Timings

Before presenting the timings let us caution the

reader that these are results obtained by running

our algorithm on the simulator of an experimen-

tal parallel machine under development

7

. For the

Carnegie Mellon NAVLAB sequence the PE cycles

taken for the various stages are as follows:

CY CLES

Correspondence stage 5315983

Trans: stage after vector selection 78513

Trans: and Rot: stage with depth 35318

|||||||||||||| |||

Sum of the above three stages 5429814

This gives us an estimate of about 0.54 sec. for

running the algorithm on an IUA running at 10

MHz. The majority of the time in our algorithm is

consumed by the computation of correspondences

in searching over a 41� 41 window for possible dis-

placements. Reducing the size of the search win-

dow, for example by assuming contraints on the

translational magnitude and direction, along with

some rudimentary knowledge of depth, can make

the algorithm much faster.

It should be noted that with sophisticated me-

chanical devices like land navigation systems, gyro-

scopes, inertial navigation systems etc. it is is often

possible to constrain the estimates of the motion pa-

rameters. If such knowledge is available then this

algorithm can be speeded up considerably because

the range for hypothesized FOE's and the range of

rotational parameters become smaller.

6 Conclusions

This research demonstrates the feasibility of fast

depth determination through the use of motion al-

gorithms under the SIMD mode of processing. The

algorithm is relatively simple because it has been

designed speci�cally for the case of a vehicle moving

mostly ahead with small rotations. It is a common

scenario in navigation. Even though it is algorith-

mically simple, the depth computations are robust.

Furthermore, there is usually no manual selection

among multiple minima for computing motion pa-

rameters. Some widely used algorithms (like that

proposed by Horn [4]) frequently require manual

selection of the optimal motion parameters because

of the presence of multiple minima. In this algo-

rithm only the region around the approximately de-

termined FOE is searched for computing optimal

7

The timings given are estimates and are subject to change.

The estimates include only the time taken by the CAAPP. The

time required for front-end processing is not available. Since, the

rotation computation part is still in the process of development,

there are some sequential aspects involving front-end processing.

This will be reduced in subsequent implementations.

motion parameters. This does not normally give

rise to multiple minima for small rotations.

The system can compute approximate depth even

when the focal length of the camera is not known.

This is done by using the time-to-adjacency rela-

tionship after determining the approximate FOE.

The drawback of the system is that the large num-

ber of 
oating point operations are expensive for a

SIMD machine. However, the large number of pro-

cessors more than compensate for this. The algo-

rithm is being re�ned for getting faster and better

correspondences. Methods for taking care of larger

rotations are are also being investigated.

To summarize, the key contribution of this system

is that it is able to recover dense depth maps and

locate obstacles quickly, simply and robustly. With

reasonable assumptions, the algorithm can run in

real time on the IUA.
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