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ABSTRACT

This paper presents a system for learning object-specific recognition
strategies from training images and libraries of image understanding rou-
tines. The motivation for this work is that thirty years of computer vision
research has produced hundreds of algorithms for visual subtasks ranging
from edge detection to pose determination, but very few complete vision
systems. The Schema Learning System (SLS) addresses this problem by
casting object recognition as an control problem: for every object to be
recognized, it learns a sequence of algorithms that will find it quickly and
robustly.

More formally, SLS learns control policies under supervision. For every
task, a user specifies the target representation (e.g. 2D image position or
3D world position), and provides a set of training images and the locations
of the target objects. SLS then applies a three-step process of search, learn-
ing from examples and graph opltimization to produce a recognition graph
that expresses a control policy for invoking image understanding routines
to recognize the object.

1. INTRODUCTION

Although the field of computer vision has has made significant advances over
the past 30 years, there remains one notable exception — are area whose major
unsolved problems and lack of advancement are severely limiting the application of
computer vision technology to problems of practical importance. We have gained
little or no insight — at either a theoretical or practical level — into how the many
aspects of vision are integrated into functioning systems.

The most dramatic advances in the field have come not from researchers build-
ing task-focused systems, but rather from those who concentrate on better-defined
subproblems which admit to “clean” solutions. As a result, although the catalog of
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image understanding algorithms keeps growing, relatively few complete computer
vision systems are built, and when they are it is almost always a major effort that
is costly in terms of design, integration and development time. Unfortunately, we
will not see the benefits of breakthroughs in the component technologies until we
understand, at both a theoretical and practical level, how the many components
of a complex vision system are integrated and controlled. It is as though we have
the supplies and tools to build a house, but lack the architectural drawings.

This paper presents a first step toward a practical understanding of how the
components of vision might be integrated®. It presents a system, called the Schema
Learning System (SLS), that learns object-specific recognition strategies from
training images and a library of image understanding routines. A user (or teacher)
marks the position of an object in training images, and SLS searches its IU library
for combinations of operators that reliably locate that object.

The principle underlying SLS is that vision is a goal-oriented process in which
visual algorithms or skills are combined in task-specific ways to generate percepts.
This idea in itself is not new: Arbib [3], Aloimonos [1], Ballard [4], and Ikeuchi and
Hebert [21] have all advocated goal-oriented vision, with Arbib and Aloimonos
putting particular emphasis on the integration of independent visual modules
(similar to Ullman’s visual routines [30]).

The difference between these earlier position papers and this work is that
we present algorithms for constructing goal-directed systems automatically. SLS
demonstrates that goal-directed vision can be cast as a control problem. Most
visual tasks can be achieved by some combination of existing techniques, such
as edge extraction, vanishing point analysis or graph matching. SLS automati-
cally develops control policies for achieving goals, thus avoiding the cost of hand-
crafting systems [17]. The resulting object recognition systems should be imme-
diately useful in such emerging technologies as intelligent vehicles and flexible
manufacturing systems, where predictable environments invite the use of special-
purpose recognition strategies.

In addition, SLS gives support to the notion of goal-directed vision, which has
been criticized on the grounds that the goal of computer vision research is not just
to create object recognition systems, but to put forth a coherent and parsimonious
theory of vision. Some researchers claim that by modeling vision as a loose (to
be critical, ad-hoc) collection of special-purpose recognition modules, proponents
of goal-directed vision abandon that goal. SLS puts forth a counterclaim by
example, however; a claim that special-purpose recognition strategies do not have
to be ad-hoc or unstructured, that they can arise through predictable and scientific
mechanisms in response to a viewer’s environment. Indeed, the criticism can be
turned around: given that special-purpose strategies can be acquired through
experience, it seems unnecessary and unjustified to assume that all visual goals
must be met by a single general-purpose mechanism.

!Most of this material is from [15]
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Figure 1: Top-level view of SLS architecture

2. THE SCHEMA LEARNING SYSTEM

The Schema Learning System (SLS) learns special-purpose recognition strategies
from training images. A teacher provides a training signal indicating the target
(or goal) in each training image. SLS searches its library of image understanding
algorithms for combinations of operators that locate the target in the training
images. The resulting control policy is then available to application programs such
as autonomous vehicles or manufacturing robots any time they need to recognize
an instance of the object or object class. SLS is therefore a compile-time (or
“off-line” or “batch”) system that learns strategies in advance of the run-time
application that will use them, as shown in Figure 1.

2.1. RECOGNITION GOALS

More specifically, SLS learns control policies (which we will call recognition strate-
gtes) to satisfy recognition goals. In SLS, a teacher provides a recognition goal
specifying the object to be recognized, the target representation (e.g. 2D image
position or 3D object pose) and corresponding accuracy thresholds. For example,
a recognition goal might be to recognize the (3D) position of the UMass engineer-
ing building, or to identify the centroid of the image projection of a tree. In both
cases, accuracy thresholds would be included; for example, the image position of
the tree might have to be accurate to within three pixels.

2.2. VISUAL PROCEDURES

To satisfy such goals, SLS models vision in terms of visual procedures (VPs) and
hypotheses. Visual procedures are algorithms from the computer vision literature,
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such as edge extraction, vanishing point analysis or model matching. VPs are
thus analogous to knowledge sources in a blackboard system (e.g. [18, 16]) or
Ullman’s visual routines [30], in the sense that they are the procedural primitives
used to build larger strategies. Hypotheses are intermediate-level data items, such
as edges or surfaces (or sets thereof). At each step in the recognition process, a
VP is applied to one or more hypotheses and either 1) measures a feature of the
hypothesis or 2) generates new, higher-level hypotheses. (Feature measurement
procedures are referred to as FMPs, while transformational procedures are called
TPs?.)

Figure 2 shows the template for declaring a visual procedure. The template
contains only enough syntactic information about a VP to allow SLS to apply it
to training images; any other information, such as the expected cost, much be
estimated by SLS. The VP template specifies how many hypotheses are required
as (run-time) arguments, the level of representation of each argument, any pre-
requisite features, and a Lisp S-expression for invoking the VP. In addition, TP
declarations include the type of hypothesis generated, while FMP declarations
include the number of discrete feature values the FMP might return.

2.3. REcoGNITION GRAPHS

Recognition strategies are represented by recognition graphs, which are a general-
ization of decision trees to multiple levels of representation. Recognition graphs
control hypothesis generation as well as hypothesis verification, as shown in Fig-
ure 3. The underlying premise is that image data should not be matched directly
to object models. Instead, a sequence of more and more abstract descriptions of
the image data, represented as intermediate-level hypotheses, are built up under
constraints provided by the object model, until eventually goal-level hypotheses
are generated. Recognition graphs therefore model vision as a sequence of repre-
sentational transformations interleaved with hypothesis verifications. Each level
of the recognition graph corresponds to one type of intermediate-level hypothe-
sis (in blackboard terminology, one level of abstraction), with the decision tree at
that level determining which hypotheses can be definitively rejected based on their
feature values. Hypotheses that cannot be rejected are said to be verified, and
verified hypotheses are transformed into more abstract hypotheses, continuing the
cycle until goal-level hypotheses are generated.

2 Although TPs are described as transformation procedures, the word ‘transformation’ should
not be construed as implying a one-to-one mapping between old and new hypotheses. TPs can
combine information from multiple hypotheses (e.g. stereo) and may generate an arbitrary num-
ber of new hypotheses (e.g. segmentation). In addition, TPs do not consume their arguments, so
multiple TPs may be applied to a single hypothesis. Some readers may therefore find it helpful
to think of TPs as procedures that generate new hypotheses from old hypotheses, rather than as
transformation operators.
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VP Declaration Template

VP Name: VP Name

Type: Transformation of Feature Measurement
Arguments: Number of run-time arguments (hypotheses)
Levels: Level of representation for each argument

Prerequisites: List pf required hypothesis features

Result Level: Level of representation of resulting hypothesis (TPs only)
FeatureValue:  List of discrete feature values (FMPs only)

S-Expr: Lisp s-expr to invoke procedure.

Figure 2: VP Declaration Templates. Each VP declaration in the library includes
enough syntactic information for SLS to apply the VP to training images. This
includes the name of the VP, its type, the number of run-time arguments (hy-
potheses), the level of representation (and any prerequisites) of each argument,
and either the discrete feature values (for a FMP) or the type of hypothesis gen-
erated (for a TP).

2.3.1. DecisioN TREES

Each level of the recognition graph is a decision tree directing how hypotheses at
that level are verified. Borrowed from the field of operations research, decision
trees are trees of alternating choice nodes and chance nodes designed to help man-
agers make decisions about actions with uncertain outcomes [19]. Choice nodes
in a decision tree represent decisions over which the agent (typically a business
manager) has control; chance nodes represent events the agent cannot control but
whose likelihoods can be estimated. Using decision trees, managers estimate the
probabilities of potential consequence of a decision or series of decisions before
any action is taken. For example, a manager might consider investing in a new
manufacturing facility. If the investment is made and the product sells there will
be a profit, but there is some possibility that the product will not sell and the
investment will be lost. This scenario can be represented by a decision tree with
a choice node at the root representing the option to invest or not, and a chance
node representing whether or not the product sells. In Al terminology, decision
trees can be thought of as state-space representations similar to game trees with
probabilistic opponents.

(Readers familiar with Al-style decision trees such as ID3 [26] will note that
the choice nodes in such systems are omitted. These systems make all their
choices while learning, leaving only the chances nodes in the tree. SLS does
the same, pruning away every option but one at each choice node. Nonetheless,
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Figure 3: A recognition graph. Levels of the graph are decision trees that verify
hypotheses using feature measurement procedures (FMPs). Hypotheses that reach

a subgoal are transformed to the next level of representation by transformation
procedures (TPs).
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it is convenient to leave the choice nodes in the formalism for describing the
optimization algorithm that produces minimum-cost trees.)

In SLS, decision trees represent the process of verifying or rejecting hypotheses.
Choice nodes in the tree are hypothesis knowledge states, represented by sets
of features, while chance nodes correspond to FMP invocations. The agent in
this scenario is the control program that decides which feature to calculate next
(i.e. which FMP to apply) based on the knowledge state of a hypothesis. The
uncontrollable events are FMP invocations that return discrete features according
to estimated distributions. Verification is a cycle in which the control strategy
selects a FMP, the FMP returns a feature, and the control strategy selects another
FMP. This cycle is represented in a decision tree as a progression from a choice
node to a chance node and on to a new choice node. Eventually the process leads
to a leaf node, corresponding to features that either verify or refute a hypothesis.

Figure 4 shows a complete SLS-style decision tree. Hypotheses begin at the
start state with no computed feature values, leaving the control program to choose
which feature to compute. In the example shown in Figure 4 the choice is between
two FMPs, A & B. Whichever FMP is selected will return a feature, advancing
the hypothesis to a new knowledge state. (The reader may note that duplicate
knowledge states can be joined, since the same knowledge state results from ap-
plying A and then B as B and then A. This converts SLS’s decision trees into
directed acyclic graphs.)

Ultimately, the goal behind the decision tree formalism is not just to represent
options and outcomes, but to aid in decision making. SLS constructs efficient
verification strategies by determining at compile-time which options minimize the
expected cost of verification. By making these decisions at compile-time, SLS
eliminates the need for complex dynamic scheduling and permits the run-time
control mechanism to be implemented as table-lookup.

2.3.2. GOAL-LEVEL CLASSIFICATION

Each level of a recognition graph can be viewed as a classifier for distinguishing
hypotheses that lead to good goal-level hypotheses from those that do not. An
unusual feature of these classifiers is that they are allowed to produce false positive
results but not false negatives, since verifying a poor hypothesis merely causes it
to be transformed to a higher level of representation and retested, while rejecting
a valid hypothesis may cause the strategy as a whole to fail.

The exception to this rule is at the goal level. Depending on the application,
rejecting a valid goal-level hypothesis may or may not be as damaging as verifying
a false one. Consequently, the best criterion function for training a goal-level clas-
sifier is task-specific. Goal-level classification techniques also depends on whether
the recognition goal is to find a single object or to find multiple members of a
class of objects. If the goal is to find a single item, only one hypothesis should be
verified per image; otherwise, many hypotheses may be correct.

Goal-level classification is therefore unique. When a single hypothesis is re-
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Figure 4: A Decision Tree. The squares indicate choice nodes, where the agent
chooses which action to take, and the circles indicate chance nodes representing
actions with probabilistic outcomes. In SLS, the agent is the run-time control
program, choice nodes are hypothesis knowledge states corresponding to sets of
discrete feature values, and chance nodes are FMP invocations to determine fea-
ture values. (For efficiency, the tmplementation joins duplicate nodes, creating a
decision graph rather than o decision tree.
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quired, run-time classifiers that compare hypotheses directly to each other and
select the best are used. In the experiments presented in this paper, for example,
the goal is always to find a single object, and a minimum-distance classifier is used
to compare goal-level hypotheses and select the best. When multiple goal-level
hypotheses may be correct, on the other hand, classifiers that do not compare
hypotheses directly to each other are more appropriate.

2.3.3. CAPABILITIES AND LIMITATIONS OF RECOGNITION GRAPHS

So far, object recognition has been described as a “bottom-up” process starting
with an image and ending with an abstract representation of an object. Although
we will continue to use bottom-up terminology, it should be noted that recognition
graphs can also represent “top-down” strategies and even mixed bottom-up and
top-down strategies. “Bottom-up” strategies are created from TPs that create
more abstract hypotheses from less abstract ones; top-down strategies are con-
structed from TPs that reduce abstract hypotheses to more concrete ones. Many
strategies are mixed, using TPs that produce both more and less abstract hy-
potheses. The only constraint enforced by SLS on recognition graphs is that the
VP library should not contain any loops, where hypotheses of type A are created
from hypotheses of type B and wvice-versa.

At the same time, recognition graphs are not capable of representing strategies
based on relative strengths of hypotheses. Traditional blackboard systems can use
heuristic schedulers that apply a knowledge source to the top N hypotheses at
a level of representation, but such strategies cannot be embedded in recognition
graphs. Recognition graphs can represent strategies that apply VPs to hypotheses
with specific sets of features, but not to the N best hypotheses in an image. (This
is why a minimum distance classifier is used to enforce the constraint that only
one goal-level hypothesis by verified per image.)

SLS’s strategies compare run-time hypotheses to training-time hypotheses. If
training-time hypotheses with similar features led to correct goal-level hypotheses,
then a hypothesis is pursued further; if not, it is rejected. SLS strategies base their
control decisions not on the relative strengths of hypotheses from a single image,
but on the relative strength of run-time hypotheses when compared to the larger
(but less specific) pool of training hypotheses.

3. THE THREE ALGORITHMS OF SLS

At the heart of SLS are algorithms that create recognition graphs from train-
ing images. SLS learns recognition graphs through a three step process of search,
learning from examples, and graph optimization, as shown in Figure 5. The search
algorithm looks for sequences of transformation procedures that produce correct
goal-level hypotheses; in the process, it also estimates the costs and likelihoods
associated with VPs and FMPs. The learning from examples algorithm inspects
the operator sequences identified by the search algorithm and infers a generalized
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Figure 5: The Three Algorithms of SLS. This figure expands the left-hand side
of Figure 1 to show the search, learning from examples, and graph optimization
modules that are the heart of SLS.

concept of how correct goal-level hypotheses are generated. Typically it will dis-
cover that in order to recognize an object reliably, several (possibly redundant)
operators must be applied to certain types of hypotheses. Finally, the graph op-
timization algorithm creates decision trees at each level of the recognition graph
that minimize the expected cost of verification. The result is a multi-level recogni-
tion graph representing an efficient and reliable strategy for identifying the target
object in terms of the specified goal (e.g. 2D or 3D, approximate or exact).

3.1. SEARcCH

The search algorithm applies visual procedures to training images and to intermediate-
level hypotheses generated from training images. It begins by applying TPs to
the images, producing intermediate hypotheses such as regions, lines, and points.
The properties of these hypotheses are measured by FMPs, and then they are
transformed by TPs into still more abstract hypotheses. The search algorithm
exhaustively expands the tree of hypotheses in this way until no new hypotheses
can be generated.

There are two reasons for exhaustively searching the space of hypotheses that
can be generated from training images. The first is to provide correct hypotheses
for the LFE algorithm. The training signal provided by the user distinguishes cor-
rect goal-level hypotheses from incorrect ones, but it does not indicate how goal-
level hypotheses can be generated from images through sequences of intermediate-
level hypotheses. To learn to generate goal-level hypotheses, SLS needs examples
of how correct hypotheses are created. By exhaustively generating all possible hy-
potheses, the search algorithm is guaranteed to create as many correct hypotheses
as possible, and it saves a record of how each hypothesis was generated.
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The second reason for exhaustively searching images is to estimate the costs
and benefits of VPs. In order to optimize the verification process, SLS has to
know the probability of a feature given a hypothesis, as well as the expected cost
of measuring that feature. Unfortunately, SLS’s VP library does not include any
information about the costs of FMPs or the probabilities of each discrete feature
value. SLS therefore has to build up a statistical characterization of the FMPs by
applying them to training images.

Although SLS is designed to maximize run-time, rather than compile-time,
efficiency, there are many situations where exhaustively expanding the tree of
possible hypotheses is not feasible. In such cases, the cost of exploration can
be heuristically reduced by not exploring hypotheses that do not satisfy spatial
constraints derived from the training signal. For example, if the recognition goal
is to recover the three dimensional position of an object, any region hypotheses
that do not overlap the object’s projection can be rejected without being explored
further. Similarly, points, lines, planes, and other types of geometric hypotheses
can be rejected if they fail to overlap the correct solution or its projection. In this
way, the combinatoric nature of exploration is damped, but the positive examples
required by the LFE algorithm are still generated.

The disadvantage of this heuristic is that negative examples are used in SLS
1) by the LFE algorithm, to select the minimal cost DNF subterm (see Sec-
tion 3.2.3.), and 2) to estimate the costs and probabilities associated with fea-
tures. At the risk of a less efficient strategy, both tasks can be accomplished
by exploring only a subset of negative hypotheses and extrapolating the results.
We are currently experimenting with this and other heuristics for minimizing the
search cost; nonetheless, the experiments in this paper were run using exhaustive
search.

3.2. LearnING FROM Exampres (LFE)

SLS’s learning from examples (LFE) algorithm analyses correct hypotheses pro-
duced during exploration and infers from them an efficient scheme for generating
accurate goal-level hypotheses. The approach reflects the idea that recognition
is a series of transformations interleaved with verifications. By looking at the
histories of how correct hypotheses develop, SLS learns how to generate goal-
level hypotheses from images through series of intermediate-level hypotheses. At
the same time, it learns which features of intermediate hypotheses indicate that
a hypothesis should be pursued, and which imply that a hypothesis should be
abandoned.

3.2.1. LEARNING FROM EXAMPLES: A DEFINITION

In the machine learning literature, the term learning from examples refers to
algorithms that learn rules for evaluating examples. Following the terminology in
the AI Handbook [12], learning from examples problems are defined in terms of
instance spaces and rule spaces. The instance space is the set of possible examples
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or instances that might be encountered, either during training or testing. The
rule space is the set of possible inference rules for evaluating instances. Learning
from examples algorithms search rule spaces for the best methods of evaluating
instances.

In SLS’s LFE algorithm, the task is to generate correct goal-level hypothe-
ses from images through sequences of intermediate representations. Instances are
strings of hypotheses and TPs that lead from images to correct goal-level hy-
potheses. The rule space is composed of (sets of) features and TPs: the features
determine which hypotheses should be pursued (at each level of representation),
and the TPs indicate how they should be transformed. The goal of the LFE algo-
rithm is to select a set of TPs and features that will generate a correct hypothesis
for every target object instance in the training set, while generating as few false
hypotheses as possible.

3.2.2. DEPENDENCY TREES

Inside the LFE algorithm, instances of correct hypotheses are represented as de-
pendency trees. A dependency tree is an AND/OR tree recording the TPs and
intermediate-level hypotheses on which a goal-level hypothesis depends. For ex-
ample, a 3D pose hypothesis can be created by a geometric matching algorithm
that finds the pose that minimizes the error of projecting a (3D) object model
onto a set of (2D) image line segments. If so, the pose hypothesis is depen-
dent on the geometric matching TP and the image line segments, as well as the
TPs and hypotheses needed to generate the image line segments, as shown in
Figure 6. In general, dependency is recursive, with ‘AND’ nodes resulting from
TPs that require multiple arguments (and are therefore dependent on more than
one hypothesis), and ‘OR’ nodes occurring when more than one TP redundantly
generates the same hypothesis.

Each dependency tree represents the different methods for generating a spe-
cific hypothesis. In the example in Figure 6, pose-10 can be generated either
by applying the geometric matching TP (to an image lineset hypothesis) or the
planar distance TP3, but at least one of the two is required. Furthermore, if the
geometric matching TP is used, it must be applied to 2D-lineset-2. Alternatively,
if the planar distance TP is used instead, it must be applied to region-14 and
orientation-3. (The planar distance TP takes two image-based arguments.)

Dependency trees like the one in Figure 6 apply to specific hypotheses gener-
ated during the search phase of SLS. The first step in inferring a more generalized
scheme for generating goal-level hypotheses is to replace specific hypotheses with
their feature vectors, as shown in Figure 7. The rationale for the substitution is
that TPs have preconditions associated with them that select which hypotheses
they should be applied to. If a TP needs to be applied to hypothesis H to ensure
that a goal is met, then only features of H should be considered as preconditions

3The Planar Distance TP converts a 3D orientation hypothesis into a plane hypothesis by
scaling it relative to a region or set of image points.
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Pose-10

Geometric Matching Planar Distance

2D-lineset-2 Region-14 Orientation-3

Rectalinear Line Grouping Multivariate DT Vanishing Point Analysis

2D-lineset-1 Segmentation-2 Pencil-5

Figure 6: An example of a dependency tree showing the different ways that one
correct pose hypothesis can be created during training. The names of transforma-
ttonal procedures are in italics, while hypotheses (data instances) are in bold.

for the TP.

In general, a hypothesis is guaranteed to be created by any set of precondi-
tioned TPs that “satisfies” its dependency tree. A dependency tree DT is satisfied
by a set of TPs G (with affiliated preconditions P) if: 1) the root of DT is an
AND node, and every subtree of DT is satisfied; 2) the root of DT is an OR node,
and at least one subtree of DT is satisfied; or 3) the root of DT is a leaf node
with TP g and preconditions P such that g is in G and the preconditions of g
either match or are a superset of P.

3.2.3. LFE: A DNF-BASED ALGORITHM

The algorithm for finding optimal sets of TPs and preconditions is deceptively
simple:

1. Convert the generalized dependency tree of a correct goal-level hypothesis
to disjunctive normal form (DNF)*.

2. For every other correct goal-level hypothesis:

(a) Convert its generalized dependency tree to DNF.

b) “AND” together the new DNF expression with the previous DNF ex-
pression.

*The disjunctive normal form of a logical expression is an OR of ANDs of monomial expres-
sions, for example (AA B)V (A A C).
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OR

{Planar Distance TP, applied to hypotheses
with features of Region-14 (argument #1)
and features of Orientation-3 (argument #2).}

{Geometric Matching TP, applied to
hypotheses with features of 2D-lineset-2}

AND
AND

{Rectalinear Line Grouping TP, applied
to hypotheses with features of 2D-lineset-2}

Figure 7: A generalized dependency tree created by replacing the hypotheses in
Figure 4.8 with their feature values.

(c) Convert the resulting ‘AND’ tree to DNF®.
3. Select the conjunctive subterm that generates the fewest total hypotheses.

By the logic of the dependency relation, the TPs and preconditions in any conjunc-
tive subterm of the final DNF expression are sufficient to re-generate all correct
goal-level hypotheses from the training images. By selecting the minimal term,
SLS chooses the best method for generating correct hypotheses.

AND/OR dependency trees are converted to DNF by a standard algorithm
that first converts every subtree to DNF and then either merges the subterms, if
the root is an OR node, or takes the symbolic cross product® of the subterms, if
the root is an AND node. If a TP is ANDed with itself when taking the cross
product, the resulting preconditions are the intersection of the preconditions of
the two instances being ANDed.

This basic algorithm is altered slightly to improve efficiency. Because SLS
seeks to find the minimal term (measured as the number of hypotheses generated)
of the DNF expression rather than every term, any conjunctive subterm that is
a logical superset of another can be pruned, reducing the total number of terms
considered. A second modification is to sort the correct goal-level hypotheses

®Logically, this algorithm is equivalent to the simpler two-step process of ANDing all the
dependency trees together and converting the result to DNF. However, iteratively adding each
new dependency tree to an evolving expression simplifies the probabilistic analysis given in [15].

#Symbolic cross product: {4, B} x {C,D} = {AC,AD,BC,BD}.
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according to the size of their dependency trees and to iterate in step two from the
simplest dependency trees to the most complicated. This reduces the size of the
interim DNF expressions without affecting the final result.

3.3. GRAPH OPTIMIZATION

As was stated earlier, recognition graphs interleave verification and transforma-
tion, using FMPs to measure properties of hypotheses and TPs to transform them
to higher levels of representation. By building dependency trees from the training
samples, converting them to DNF and picking the minimal subterm, SLS learns
which TPs to use to transform hypotheses from one level to the next. Just as
important, it learns which preconditions a hypothesis must meet before it should
be transformed. These preconditions are the subgoals of the recognition process
at intermediate levels of representation.

The optimization algorithm builds decision trees for each level of represen-
tation that minimize the expected cost of reaching a subgoal or, conversely, of
deciding that a hypothesis cannot satisfy a subgoal and should be rejected. The
decision trees are constructed by first building a graph representing all possible
sequences of FMP applications, and then optimizing the graph by determining
which options at each choice node minimize the overall cost of recognition, and
removing the other options. The final result is a decision tree at each level of
representation that minimizes the expected cost of verification.

3.3.1. ESTIMATING FMP PROPERTIES

A preliminary step to building efficient decision trees is to characterize the per-
formance of FMPs. In particular, SLS estimates:

¢ Expected Cost (VP, F), the expected cost of applying a VP to a hypoth-
esis with the feature values F;

e Feature Likelihood (FMP, f1, F), the likelihood of a FMP returning
feature value f1 when applied to a hypothesis with feature values F.

In general, these values are estimated from applications of FMPs to similar hy-
potheses during training. When an insufficient number of similar hypotheses (i.e.
hypotheses with feature values F) are generated during training, the dependency
on F is dropped and the values are estimated across all hypotheses.

Unfortunately, these statistical measures cannot be inferred directly from the
search data, because the probabilities and costs associated with features depend
on the quality of the hypotheses being measured. The search algorithm, which
exhaustively explores the space of possible hypotheses, generates more hypotheses
of lesser quality than SLS’s run-time recognition strategy will. The exploration
hypotheses are therefore drawn from a different statistical distribution than the
run-time hypotheses will be.

As a result, the estimations of FMP performance are delayed until after the
LFE algorithm has been run. The results of LFE are used to prune the exploration



16 DRAPER

data, removing those hypotheses that are merely artifacts of exhaustive search
and would not be generated using the VPs and preconditions selected by the LFE
algorithm. Once the search data has been pruned, the remaining hypotheses are
used to characterize the performance of VPs.

3.3.2. GRAPH LayouT

For each level of representation, a directed acyclic graph is constructed represent-
ing all possible sequences of FMP applications. The graph starts from a single
knowledge state, corresponding to a newly generated hypothesis for which no fea-
tures have been computed. The start state, like all knowledge states, is a choice
node, since the control program gets to choose which FMP to apply first. FMP
applications nodes are therefore added for every feature that can be measured of
a hypothesis in the start state. These FMP application nodes lead to new knowl-
edge states (one for each possible feature value), which in turn have more FMP
applications attached to them, and so on. The expansion of the graph contin-
ues until it reaches either a subgoal knowledge state or a knowledge state that is
incompatible with every remaining subgoal (i.e. a failure state).

For example, Figure 8 shows the initial graph for a level of representation with
two FMPs and a subgoal of {al,bl}. Graph construction begins with the start
state and expands by adding a chance state for each FMP. The FMPs lead to a
total of five new knowledge states, but three of them are failure states that are
incompatible with the subgoal {al,b1}. The other two states each have one more
FMP to be applied, leading to four more knowledge states, one of which is the
subgoal state and three of which are failure states.

More formally, we refer to subgoal states and failure states as the terminal
states for each level of the recognition graph. The cost of promoting a hypothesis
from knowledge state n to a terminal state is called the Expected Decision Cost
(EDC) of knowledge state n, and the expected cost of reaching a terminal state
from state n using FMP v” is the Expected Path Cost (EPC) of n and v. Since
features are discrete, we denote the possible outcomes of a FMP v as a set R(v),
and the probability of a particular feature value f being returned as P(f|v,n), f €
R(v).

The EDC’s of knowledge states can be calculated starting from the terminal
states and working backward through the recognition graph. Clearly, the EDC of
a subgoal or failure state is zero:

EDC(n) =0, n € {terminal states}.

The expected path cost of reaching a terminal state from a FMP application
node is:
EPC(n,v) v) + Z (fln,v) x EDC(nU f))

FER(v)

"y is an awkward abbreviation for a feature measurement procedure, but f will be used for
feature values and p would look like a probability value. Since FMPs are a subclass of VPs, v is
therefore used.
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Level of Representation: X
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Figure 8: An initial decision graph. Choice nodes, shown as rectangles, correspond
to knowledge states of a hypothesis. Chance nodes, shown as ovals, represent FMP
applications. Starting from an empty knowledge state, the system adds a chance
node corresponding to each FMP. Since FMPs measure feature values, they lead
to new knowledge states, where new FMPs can be selected. The graph expands
until it reaches either a verification state, or a state that is incompatible with the

features of a verification state.
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where n is a knowledge state expressed as a set of feature values, n U f is the
knowledge state that results from FMP v returning feature value f, and C(v) is
the estimated cost of applying v.

The EDC of a knowledge state, then, is the smallest EPC of the FMPs that
can be executed from that state:

EDC(n)= min (EPC(n,v))

vEV P(n)

where V P(n) is the set of FMPs applicable at node n. The minimal-cost decision
tree is created by making a single pass through the directed acyclic graph, starting
at the terminal nodes and working backward toward the start state. At each
knowledge state, the pruning process calculates the EPC of every FMP that can
be applied from that state, and removes all FMP application nodes except the
one with the smallest EPC. The final result is a minimal-cost decision tree.

Figure 9 shows the result of pruning the initial graph shown in Figure 8.
Starting at the terminal nodes and working backward, the first choice states the
pruning algorithm considers are al and b1. These states have only one option each,
however, so selecting the minimum-cost option has no effect. The next choice node
encountered is the start state {}, where there are two options, since the system
can choose to compute feature A or feature B. However, as depicted in Figure 8,
the expected cost (EPC) of verifying a hypothesis if feature B is computed first is
1.53, while the cost of verifying a hypothesis by computing feature A first is only
1.4. Consequently, the optimization algorithm prunes option B from the start
node in Figure 8, leaving the optimized decision tree shown in Figure 9.

3.3.3. EsTIMATING ToTAL CosT

The equations above establish a mutually recursive definition of the expected
decision cost of a knowledge state. The EDC of a knowledge state is the EPC of
the optimal FMP application from the state; the EPC of a FMP application is
the expected cost of applying the FMP plus the expected EDC remaining after
the FMP has been applied. The recursion bottoms out at terminal nodes, whose
EDC is zero. Since every path through the object recognition graph ends at either
a subgoal or a failure node, the recursion is well defined.

Furthermore, the total cost of recognition can be estimated from the EDCs of
start states and the expected costs of the TPs selected by the LFE algorithm. The
EDC of the start state for a level of representation estimates the expected cost of
verifying or rejecting hypotheses at that level. By estimating the total number of
hypotheses generated at each level by the preconditioned TPs and multiplying it
by the EDCs of the start states, the total cost of verification can be estimated.
Since the expected number of times a TP will be executed can also be estimated
from the LFE algorithm’s results, the total expected cost of recognition can be
obtained easily.
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Figure 9: A pruned decision graph. This Figure shows the graph depicted in
Figure 8 after it has been pruned by the graph optimization algorithm. All actions
which either do not lead to the subgoal state or which are not on the most efficient
path to the subgoal have been removed.

4., EXPERIMENTS

We present an example of SLS learning to recognize the (3D) position and orien-
tation of a building in images taken from an approximately known location. As
described in [15], SLS has also been used to recognize the (2D) image position
of a tree from an approximately known viewpoint and the (3D) position and ori-
entation of another building from an unknown viewpoint. Taken together, these
exercises suggest that SLS can recognize both natural and man-made objects, can
recognize them from either known or unknown viewpoints, and can do so in either
two dimensions or three. In this paper, however, we shall limit ourselves to the
one demonstration of finding the pose of the Marcus Engineering building from
an approximately known viewpoint.

4.1. TRAINING IMAGES

The training data is selected from a set of twenty-one images collected along a
hundred foot stretch of a footpath on the UMass campus. Figures 10 and 11 show
the first and last images of the sequence. The images were taken level to gravity
(£1°) and from approximately four feet above the ground, although the ground
rises and falls over the course of the sequence. The camera was also subjected
to small rotations in pan from one image to the next. As a result, the pose of
the camera has four degrees of freedom, with large variations in position in the
ground plane and smaller deviations in camera height and pan.

The “ground truth” positions and orientations of the Marcus Engineering
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Figure 10: The first of twenty-one training images. The images were taken along
a hundred-foot section of the path, with the camera level to gravity.

Figure 11: The last of twenty-one training images. The pose of the camera has
four degrees of freedom, with large variations in position in the XZ (ground) plane
and small differences in camera height and pan.
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building were determined by manually matching image points to model points
and applying Kumar and Hanson’s algorithm [23] to determine the building’s
pose relative to the camera. The training signal is therefore composed of error-
ful pose estimates, rather than true positions. However, Kumar and Hanson’s
results suggest that, with correct correspondences, their algorithm produces pose
estimates that are extremely accurate when compared to the relatively lax error
thresholds in the recognition goal. The estimated poses can therefore reasonably
be used as a training signal.

4.2. RECOGNITION GOAL

The recognition goal is to find the pose of Marcus Engineering relative to the
camera. Pose hypotheses are represented as rotation matrices with translation
vectors, in the traditional

P =RP+T

representation, where R and T are the rotation matrix and translation vector that
transform a set of points P in the model’s coordinate system into a set of points
P' in the camera’s coordinate system. Unfortunately, errors expressed in terms
of R and T tend to be unintuitive, since if an object is rotated slightly about its
center, this will be represented as a rotation about the focal point, counteracted
by a large translation®. It is helpful, therefore, to express the error tolerances in
a different representation.

Since the pose of the building has only four degrees of freedom, the tolerance
thresholds in the recognition goal are expressed in terms of scale, image position,
and object angle. These parameters reflect the fact that the pose of the building
can be expressed as a vector from the focal point to any known point on the
building, plus a horizontal rotation about the known point (remember that the
building has no tilt or roll relative to the camera). Errors in the positional vector
are expressed as an error in length, measured as a percent of the true camera-to-
object distance, and an error in position, measured as an angle. (Since we are
interested in the magnitude of the orientation error, not its direction, this can be
written as a scalar.) Errors in the rotation of the object are also represented as
an angle, this time about the axis of gravity.

The error thresholds for this exercise require the position of the building to
be correct to within one degree of image angle and ten percent depth, while the
orientation of the building must be correct to within five degrees around the axis
of gravity. This implies that the hypothesized building poses should be highly
accurate with respect to image position and reasonably accurate in orientation,
but only approximate in depth. Figure 12 shows an example of a pose that satisfies
these criteria, in this case the building pose identified by SLS’s strategy in the
first of twenty-one trials.

8The size of the counteracting translation is a function of both the extent of the rotation and
the distance from the object center to the focal point.
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Figure 12: A correct pose from one trial of the Marcus recognition strategy. The
pose shown here was generated and verified on the first of twenty-one trials, and
is off by 1.8% in depth, 4.79 degrees in orientation about the axis of gravity, and
0.16 degrees in image location.

4.3. THE VIisUAL PROCEDURE LIBRARY

The visual procedure library used in this experiment is shown in Table 1. It
includes many procedures for extracting and grouping two-dimensional represen-
tations such as points and lines. Lines can be extracted using the edge-linking
algorithm of Boldt and Weiss [7], and regions can be extracted by the algorithm
described in Beveridge, et. al. [5]. Regions can also be created by fitting a convex
hull to a set of line segments. Regions that match an expected color and texture
can be selected from a region segmentation by a multivariate decision tree [8, 14].
(This algorithm is included twice in the library with two different parameteri-
zations, one designed to select red brickface regions, the other highly textured
window regions.) Nearby regions can be grouped by a region merging TP, while
another TP groups lines that intersect a given region. Nearby lines that are par-
allel, collinear or orthogonal can be grouped according to the relations defined by
Reynolds and Beveridge [28]. (All of the grouping VPs are implemented using the
facilities of the ISR database system [9].) Image points are extracted by finding
trihedral junctions of lines.

The procedure library also includes routines that create or consume three-
dimensional representations. Orientation hypotheses represent the orientation,
but not location, of a plane in space, while planar surface hypotheses specify
both the orientation and location of a plane. Most importantly, transformation
hypotheses represent a coordinate transformation from one coordinate system to
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Transformational Proc. Input Output Ref
Line Extraction Image 2D Lines [7]
Region Segmentation Color Image Segmentation [5]
Multivariate Decision Tree Segmentation Regions 8, 14]
Region Merging Regions Region
Interest Operator (Anandan) | Image, Region 2D Points (2]
Interest Operator (Moravec) | Image, Region 2D Points [24]
Min. Dist. Classification Region Label
Polygonal Approximation Region 2D Lines
Line Extension 2D Lines 2D Line Groups
Rectalinear Line Grouping 2D Lines 2D Line Groups | [28]
Pencil Extraction 2D Lines Line Pencils [13]
Vanishing Point Analysis Line Pencils 3D Orientation | [13]
Convex Hull Line Pencil Region
Trihedral Jnct Finder 2D Lines Trihedral Jnct
Trihedral Angle Analysis Trihedral Jnct 3D Orientation | [22]
Planar Distance (Scale) Region or 2D Points, | 3D Pose

3D Orientation
Subgraph Isomorphism 2D Line Group Correspondence | [29]
Image Resection 2D Points, 3D Pose
Correspondence
Perspective Projection 3D Pose 2D Points
Geometric Matching 2D Lines 3D Pose [6]

Table 1: Transformational Procedures (TPs). Note that the Input column lists
only image-based arguments. Model-based arguments are not listed for Subgraph
Isomorphism, Geometric Matching and Planar Distance TPs.
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another, represented as a rotation matrix and a translation vector. Transforma-
tion hypotheses determine the pose of a modeled object by giving the transforma-
tion from the object model coordinate system to the camera coordinate system,
and are goal-level hypotheses in this demonstration.

Three dimensional hypotheses are generated and manipulated by many vi-
sual procedures. Collins and Weiss [13] provide an efficient TP for grouping line
segments into pencils, which are sets of lines that meet at a common point of in-
tersection. Vanishing point analysis [13] infers the orientations of planes in space
by assuming that the image lines in a pencil are the projections of parallel lines
in space. Another approach to inferring the orientation of an object in space is to
find trihedral junctions of line segments first, and then use the perspective angle
equations of Kanatani [22] to infer the orientations of the planes, assuming the
lines form right angles, like the corner of a building.

The distance from an object to the camera can be estimated when the size of
the object is known; in the case of Marcus Engineering, the size of the building
(and its wire-frame model) was extracted from its blueprints. Two parameter-
izations of the scaling TP are available in the VP library, one that estimates
distance based on the apparent width of a window and the estimated angle of
the building face, and a second that estimates distance from the height of the
building using a direct inverse relationship of size to distance. (Note that since
the images have zero tilt, the orientation of the building face is not needed to
estimate distance from the building’s height). Of course, since any two points
on the object model can serve as compile-time parameters to a scaling TP, many
other parameterizations of the scaling TP could be included in the library.

Although the visual procedure library shown in Table 1 is sufficient for the pur-
poses of this experiment, it includes just a few of the computer vision algorithms
described in the literature. Unfortunately, the current Lisp implementation of SLS
has proved an impediment to building a larger library, since source code for most
visual procedures is available only in C. We are currently reimplementing SLS
in C++, in part so that it can access libraries of computer vision routines such
as those included in Khoros [27] and KBVision [31] (and someday the IUE [25]).
Already the C++ version of SLS can access over fifty visual procedures, including
almost all Khoros and KBVision routines. Unfortunately, no experimental results
are yet available that use the new implementation.

4.4. TESTING METHODOLOGY

Because of the relatively small size of the training set, SLS was tested with a
“leave one out” methodology, in which strategies are trained on twenty images
and tested on the twenty-first. The process is repeated twenty-one times, each
time with a different image “left out” of the training set and used as the test image.
Each trial tests whether a strategy learned over twenty training images satisfies
the recognition goal on the twenty-first. In addition to testing for robustness,
the suite of twenty-one trials also tests SLS’s ability to predict the reliability and
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average cost of its strategies.

4.5. RELIABILITY RESULTS

Table 4.5. summarizes the results of twenty-one trials of learning to recognize the
pose of Marcus Engineering from an approximately known viewpoint. The right
side of the table shows the errors in the best goal-level hypothesis generated, even
if this hypothesis was never verified, while the right side shows the errors in the
goal-level hypothesis verified by the minimum distance classifier. The verified
pose for trial number one, which is also the best pose generated for that trial, was
shown earlier in Figure 12.

Pose errors in Table 4.5. are measured in terms of the length and orientation
of a vector from the focal point to the corner of the building, and the rotation
of the building. More precisely, the error in the position of the building is mea-
sured as 1) the error in the distance to the building, measured as a percentage
of the true distance, and 2) the image position of the building, measured by the
angle between the true vector from the focal point to the building corner and the
estimated vector (labeled “Im Pos” in Table 4.5.). The error in the building’s
orientation is measured as the angle about the gravitational axis between the es-
timated orientation of a building face and its true orientation (labeled “Rot.” in
Table 4.5.).

The most striking feature of Table 4.5. is the result of trial sixteen. The strat-
egy learned by SLS in trial sixteen did not generate a single goal-level hypothesis,
either correct or incorrect, for the test image. An a posteriori analysis reveals
that in twenty of the twenty-one images, the corner of the building is marked by
a trihedral junction of image lines. In one image, however, noise eliminates one
of the three lines. As a result, when the image without the trihedral junction is
removed from the training set (and used as the test image), SLS learns a strategy
that relies entirely on finding trihedral junctions. The strategy does not succeed in
finding any trihedral junctions in the test image, however, and therefore generates
no goal-level hypotheses. Ironically, in the other twenty trials, the training sets
include the case in which trihedral junctions fail, and therefore the other twenty
strategies all include redundancy to account for the possibility of trihedral failure,
a redundancy that is never needed for the test images to which they are applied.

Trial sixteen is the only case in which the strategy learned by SLS fails to
generate a correct goal-level hypothesis, giving it a success rate at generating 3D
building hypotheses of 95%. In trials fifteen and twenty, however, SLS verified
the wrong hypothesis, giving it an over-all success rate of 86%.

4.6. TIMING

Table 4.5. addresses the robustness of the strategies learned by SLS, but not their
efficiency. Table 4.6. shows SLS’s expected run-time (in seconds, rounded to the
nearest whole second) for the strategy learned in each trial as compared to the
actual run-time when the strategy was applied to a test image. On any given
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Table 2: Results of twenty-one trials of learning to recognize the pose of the Marcus
Engineering Building. The left side of the table shows the errors in the best goal-
level hypothesis generated for each trial, while the left side shows the errors in
the hypothesis verified by the minimum distance classifier. Errors are specified in
terms of the parameters discussed in Section 4.2., namely: 1) error in distance
from the object to the camera, expressed as a percentage of the true distance from
the object to the camera; 2) error in orientation about the axis of gravity; and 3)
error in image position, measured in degrees.

Best Generated Pose Selected Pose
Trial | Dist. Rot. Im Pos || Dist. Rot. Im Pos
1 1.81 4.79 0.16 1.81 4.79 0.16
2 1.34 0.82 0.05 1.34 0.82 0.05
3 1.18 1.33 0.11 2.74 1.33 0.09
4 0.69 1.40 0.13 1.97 1.40 0.13
5 2.64 2.33 0.10 2.64 2.33 0.10
6 0.73 6.95 0.15 0.73 6.95 0.15
7 0.27 1.16 0.05 6.58 1.16 0.07
8 2.33 0.07 0.08 2.33 0.07 0.08
9 1.01 3.58 0.20 1.69 3.58 0.20
10 1.39 1.65 0.04 2.07 1.65 0.05
11 0.50 3.27 0.08 2.37 3.27 0.25
12 2.24 4.48 0.25 2.24 4.48 0.25
13 2.07 1.54 0.04 2.07 1.54 0.04
14 0.36 1.63 0.09 0.36 1.63 0.09
15 2.13 2.58 0.21 11.23 2.58 0.21
16 - - - - - -
17 4.44 6.21 0.13 4.44 6.21 0.13
18 1.07 1.75 0.09 1.77 1.76 0.16
19 0.41 3.83 0.07 1.07 3.83 0.07
20 0.92 2.50 0.03 14.64 2.50 0.03
21 1.18 4.95 0.13 2.26 4.95 0.13
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Table 3: Timing results for the twenty-one Marcus Engineering trials. The first
row shows the expected cost (in seconds, rounded to the nearest whole second) of
applying the strategy, as predicted by SLS. The second row shows the actual cost.

Trial | 1] 2| 3] 4| 5| 6| 7| 8| 9] 10| 11]
Exp. | 82.9 ‘ 84.7 ‘ 84.2 ‘ 78.6 ‘ 85.1 ‘ 85.0 ‘ 84.9 ‘ 85.0 ‘ 85.2 ‘ 85.3 ‘ 84.6 H
Act. | 107.3 | 88.4 | 79.4 | 113.7 | 88.9 | 74.8 | 66.2 | 71.7 | 72.6 | 67.4 | 74.5
Trial | 12| 13| 14| 15| 16| 17| 18| 19| 20| 21| Avg. |
Exp. | 86.2 ‘ 85.1 ‘ 85.4 ‘ 83.2 ‘ 61.3 ‘ 79.6 ‘ 85.5 ‘ 84.9 ‘ 80.1 ‘ 85.7 ‘ 83.0 H
Act. | 61.4 | 89.4 | 73.2 | 82.7 | 45.5 | 62.3 | 74.4 | 69.2 | 76.6 | 57.4 | 79.3

trial, the discrepancy between the predicted and actual run-times is quite large.
On average, however, the predicted run-times are within five percent of the actual
run-times. This reflects the average-case nature of expected costs. The actual
cost of recognizing an object in an image depends critically on the contents of the
image, but as long as the training images are indicative of the test domain the
average cost of recognition can be estimated. Indeed, an a posteriori analysis of
the data shows that the five percent overestimate of the expected run time was
caused by VPs executing more quickly during testing than during exploration,
due primarily to variations in paging.

5. (CONCLUSIONS

The primary contribution of SLS is that it automatically learns special-purpose
recognition strategies under supervision. There has been earlier work on learn-
ing shape-based recognition strategies from CAD/CAM models [20, 10], and on
learning to recognize two-dimensional objects from features that can be measured
directly in the image (without using intermediate representations) [11]. None of
these systems, however, can do what SLS can do: learn to recognize artificial or
natural objects in complex images by integrating cues from shape, color, context
and other types of knowledge.

SLS is able to achieve these goals because it reasons across multiple levels
of representation, and takes advantage of the wealth of available computer vi-
sion procedures. By casting object recognition as a discrete control problem,
SLS is able to leverage off 30 years of computer vision research, selecting those
representations and techniques that are appropriate for a given task. Moreover,
because it learns control policies automatically, it can generate systems capable
of recognizing specific objects for a variety of applications, using already available
components.

A more mundane, but still important, contribution is that SLS is the first
system to supply a user (or application program) with an estimate of the expected
cost of satisfying a recognition goal. This information can be critical for planning
and resource allocation in robotic systems that rely on computer vision. Just as
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importantly, if the library of visual procedures is incapable of robustly achieving
a recognition goal, SLS warns the user that the goal will not be met.

6. FUTURE WORK

SLS remains the focus of a great deal of research. The top two priorities are
1) reducing the cost of the initial search phase and 2) converting the system to
incremental, rather than batch, learning. Effort is also being invested to reim-
plementing SLS in C++, partly to make it run faster but mostly to allow it to
access available libraries of C and C++ computer vision algorithms, including
those available within the Khoros [27] and KBVision [31] systems.

The relationship between SLS, dynamic programming (DP) and reinforcement
learning (RL) is also being explored. Although there are many problems in ap-
plying DP or RL to SLS’s domain, the potential benefits in terms of reliable
incremental systems make the possibilities worth pursuing.

Finally, SLS assumes a library of executable procedures, when in fact most
computer vision algorithms must be parameterized before they can be used. These
parameters vary from simple sensitivity settings to complex geometric structures
(such as might be given to a graph matching algorithm). So far, all such param-
eters have been specified by hand, and at times different parameters are used for
different tasks. For SLS to completely eliminate human knowledge engineering, it
must learn to parameterize visual procedures as well as control them. This, too,
is an area of current research.
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