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Abstract

This paper presents a system for learning object-speci�c recognition

strategies from training images and libraries of image understanding rou-

tines. The motivation for this work is that thirty years of computer vision

research has produced hundreds of algorithms for visual subtasks ranging

from edge detection to pose determination, but very few complete vision

systems. The Schema Learning System (SLS) addresses this problem by

casting object recognition as an control problem: for every object to be

recognized, it learns a sequence of algorithms that will �nd it quickly and

robustly.

More formally, SLS learns control policies under supervision. For every

task, a user speci�es the target representation (e.g. 2D image position or

3D world position), and provides a set of training images and the locations

of the target objects. SLS then applies a three-step process of search, learn-

ing from examples and graph optimization to produce a recognition graph

that expresses a control policy for invoking image understanding routines

to recognize the object.

1. Introduction

Although the �eld of computer vision has has made signi�cant advances over

the past 30 years, there remains one notable exception { are area whose major

unsolved problems and lack of advancement are severely limiting the application of

computer vision technology to problems of practical importance. We have gained

little or no insight { at either a theoretical or practical level { into how the many

aspects of vision are integrated into functioning systems.

The most dramatic advances in the �eld have come not from researchers build-

ing task-focused systems, but rather from those who concentrate on better-de�ned

subproblems which admit to \clean" solutions. As a result, although the catalog of

1



2 DRAPER

image understanding algorithms keeps growing, relatively few complete computer

vision systems are built, and when they are it is almost always a major e�ort that

is costly in terms of design, integration and development time. Unfortunately, we

will not see the bene�ts of breakthroughs in the component technologies until we

understand, at both a theoretical and practical level, how the many components

of a complex vision system are integrated and controlled. It is as though we have

the supplies and tools to build a house, but lack the architectural drawings.

This paper presents a �rst step toward a practical understanding of how the

components of vision might be integrated

1

. It presents a system, called the Schema

Learning System (SLS), that learns object-speci�c recognition strategies from

training images and a library of image understanding routines. A user (or teacher)

marks the position of an object in training images, and SLS searches its IU library

for combinations of operators that reliably locate that object.

The principle underlying SLS is that vision is a goal-oriented process in which

visual algorithms or skills are combined in task-speci�c ways to generate percepts.

This idea in itself is not new: Arbib [3], Aloimonos [1], Ballard [4], and Ikeuchi and

Hebert [21] have all advocated goal-oriented vision, with Arbib and Aloimonos

putting particular emphasis on the integration of independent visual modules

(similar to Ullman's visual routines [30]).

The di�erence between these earlier position papers and this work is that

we present algorithms for constructing goal-directed systems automatically. SLS

demonstrates that goal-directed vision can be cast as a control problem. Most

visual tasks can be achieved by some combination of existing techniques, such

as edge extraction, vanishing point analysis or graph matching. SLS automati-

cally develops control policies for achieving goals, thus avoiding the cost of hand-

crafting systems [17]. The resulting object recognition systems should be imme-

diately useful in such emerging technologies as intelligent vehicles and exible

manufacturing systems, where predictable environments invite the use of special-

purpose recognition strategies.

In addition, SLS gives support to the notion of goal-directed vision, which has

been criticized on the grounds that the goal of computer vision research is not just

to create object recognition systems, but to put forth a coherent and parsimonious

theory of vision. Some researchers claim that by modeling vision as a loose (to

be critical, ad-hoc) collection of special-purpose recognition modules, proponents

of goal-directed vision abandon that goal. SLS puts forth a counterclaim by

example, however; a claim that special-purpose recognition strategies do not have

to be ad-hoc or unstructured, that they can arise through predictable and scienti�c

mechanisms in response to a viewer's environment. Indeed, the criticism can be

turned around: given that special-purpose strategies can be acquired through

experience, it seems unnecessary and unjusti�ed to assume that all visual goals

must be met by a single general-purpose mechanism.

1
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Figure 1: Top-level view of SLS architecture

2. The Schema Learning System

The Schema Learning System (SLS) learns special-purpose recognition strategies

from training images. A teacher provides a training signal indicating the target

(or goal) in each training image. SLS searches its library of image understanding

algorithms for combinations of operators that locate the target in the training

images. The resulting control policy is then available to application programs such

as autonomous vehicles or manufacturing robots any time they need to recognize

an instance of the object or object class. SLS is therefore a compile-time (or

\o�-line" or \batch") system that learns strategies in advance of the run-time

application that will use them, as shown in Figure 1.

2.1. Recognition Goals

More speci�cally, SLS learns control policies (which we will call recognition strate-

gies) to satisfy recognition goals. In SLS, a teacher provides a recognition goal

specifying the object to be recognized, the target representation (e.g. 2D image

position or 3D object pose) and corresponding accuracy thresholds. For example,

a recognition goal might be to recognize the (3D) position of the UMass engineer-

ing building, or to identify the centroid of the image projection of a tree. In both

cases, accuracy thresholds would be included; for example, the image position of

the tree might have to be accurate to within three pixels.

2.2. Visual Procedures

To satisfy such goals, SLS models vision in terms of visual procedures (VPs) and

hypotheses. Visual procedures are algorithms from the computer vision literature,
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such as edge extraction, vanishing point analysis or model matching. VPs are

thus analogous to knowledge sources in a blackboard system (e.g. [18, 16]) or

Ullman's visual routines [30], in the sense that they are the procedural primitives

used to build larger strategies. Hypotheses are intermediate-level data items, such

as edges or surfaces (or sets thereof). At each step in the recognition process, a

VP is applied to one or more hypotheses and either 1) measures a feature of the

hypothesis or 2) generates new, higher-level hypotheses. (Feature measurement

procedures are referred to as FMPs, while transformational procedures are called

TPs

2

.)

Figure 2 shows the template for declaring a visual procedure. The template

contains only enough syntactic information about a VP to allow SLS to apply it

to training images; any other information, such as the expected cost, much be

estimated by SLS. The VP template speci�es how many hypotheses are required

as (run-time) arguments, the level of representation of each argument, any pre-

requisite features, and a Lisp S-expression for invoking the VP. In addition, TP

declarations include the type of hypothesis generated, while FMP declarations

include the number of discrete feature values the FMP might return.

2.3. Recognition Graphs

Recognition strategies are represented by recognition graphs, which are a general-

ization of decision trees to multiple levels of representation. Recognition graphs

control hypothesis generation as well as hypothesis veri�cation, as shown in Fig-

ure 3. The underlying premise is that image data should not be matched directly

to object models. Instead, a sequence of more and more abstract descriptions of

the image data, represented as intermediate-level hypotheses, are built up under

constraints provided by the object model, until eventually goal-level hypotheses

are generated. Recognition graphs therefore model vision as a sequence of repre-

sentational transformations interleaved with hypothesis veri�cations. Each level

of the recognition graph corresponds to one type of intermediate-level hypothe-

sis (in blackboard terminology, one level of abstraction), with the decision tree at

that level determining which hypotheses can be de�nitively rejected based on their

feature values. Hypotheses that cannot be rejected are said to be veri�ed, and

veri�ed hypotheses are transformed into more abstract hypotheses, continuing the

cycle until goal-level hypotheses are generated.

2

Although TPs are described as transformation procedures, the word `transformation' should

not be construed as implying a one-to-one mapping between old and new hypotheses. TPs can

combine information from multiple hypotheses (e.g. stereo) and may generate an arbitrary num-

ber of new hypotheses (e.g. segmentation). In addition, TPs do not consume their arguments, so

multiple TPs may be applied to a single hypothesis. Some readers may therefore �nd it helpful

to think of TPs as procedures that generate new hypotheses from old hypotheses, rather than as

transformation operators.
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VP Name:

Type:

Arguments:

Levels:

Prerequisites:

Feature Value:

S-Expr:

List of discrete feature values (FMPs only)

Lisp s-expr to invoke procedure.

Level of representation of resulting hypothesis (TPs only)Result Level:

List pf required hypothesis features

Level of representation for each argument

Number of run-time arguments (hypotheses)

Transformation of Feature Measurement

VP Name
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Figure 2: VP Declaration Templates. Each VP declaration in the library includes

enough syntactic information for SLS to apply the VP to training images. This

includes the name of the VP, its type, the number of run-time arguments (hy-

potheses), the level of representation (and any prerequisites) of each argument,

and either the discrete feature values (for a FMP) or the type of hypothesis gen-

erated (for a TP).

2.3.1. Decision Trees

Each level of the recognition graph is a decision tree directing how hypotheses at

that level are veri�ed. Borrowed from the �eld of operations research, decision

trees are trees of alternating choice nodes and chance nodes designed to help man-

agers make decisions about actions with uncertain outcomes [19]. Choice nodes

in a decision tree represent decisions over which the agent (typically a business

manager) has control; chance nodes represent events the agent cannot control but

whose likelihoods can be estimated. Using decision trees, managers estimate the

probabilities of potential consequence of a decision or series of decisions before

any action is taken. For example, a manager might consider investing in a new

manufacturing facility. If the investment is made and the product sells there will

be a pro�t, but there is some possibility that the product will not sell and the

investment will be lost. This scenario can be represented by a decision tree with

a choice node at the root representing the option to invest or not, and a chance

node representing whether or not the product sells. In AI terminology, decision

trees can be thought of as state-space representations similar to game trees with

probabilistic opponents.

(Readers familiar with AI-style decision trees such as ID3 [26] will note that

the choice nodes in such systems are omitted. These systems make all their

choices while learning, leaving only the chances nodes in the tree. SLS does

the same, pruning away every option but one at each choice node. Nonetheless,
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Figure 3: A recognition graph. Levels of the graph are decision trees that verify

hypotheses using feature measurement procedures (FMPs). Hypotheses that reach

a subgoal are transformed to the next level of representation by transformation

procedures (TPs).
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it is convenient to leave the choice nodes in the formalism for describing the

optimization algorithm that produces minimum-cost trees.)

In SLS, decision trees represent the process of verifying or rejecting hypotheses.

Choice nodes in the tree are hypothesis knowledge states, represented by sets

of features, while chance nodes correspond to FMP invocations. The agent in

this scenario is the control program that decides which feature to calculate next

(i.e. which FMP to apply) based on the knowledge state of a hypothesis. The

uncontrollable events are FMP invocations that return discrete features according

to estimated distributions. Veri�cation is a cycle in which the control strategy

selects a FMP, the FMP returns a feature, and the control strategy selects another

FMP. This cycle is represented in a decision tree as a progression from a choice

node to a chance node and on to a new choice node. Eventually the process leads

to a leaf node, corresponding to features that either verify or refute a hypothesis.

Figure 4 shows a complete SLS-style decision tree. Hypotheses begin at the

start state with no computed feature values, leaving the control program to choose

which feature to compute. In the example shown in Figure 4 the choice is between

two FMPs, A & B. Whichever FMP is selected will return a feature, advancing

the hypothesis to a new knowledge state. (The reader may note that duplicate

knowledge states can be joined, since the same knowledge state results from ap-

plying A and then B as B and then A. This converts SLS's decision trees into

directed acyclic graphs.)

Ultimately, the goal behind the decision tree formalism is not just to represent

options and outcomes, but to aid in decision making. SLS constructs e�cient

veri�cation strategies by determining at compile-time which options minimize the

expected cost of veri�cation. By making these decisions at compile-time, SLS

eliminates the need for complex dynamic scheduling and permits the run-time

control mechanism to be implemented as table-lookup.

2.3.2. Goal-level Classification

Each level of a recognition graph can be viewed as a classi�er for distinguishing

hypotheses that lead to good goal-level hypotheses from those that do not. An

unusual feature of these classi�ers is that they are allowed to produce false positive

results but not false negatives, since verifying a poor hypothesis merely causes it

to be transformed to a higher level of representation and retested, while rejecting

a valid hypothesis may cause the strategy as a whole to fail.

The exception to this rule is at the goal level. Depending on the application,

rejecting a valid goal-level hypothesis may or may not be as damaging as verifying

a false one. Consequently, the best criterion function for training a goal-level clas-

si�er is task-speci�c. Goal-level classi�cation techniques also depends on whether

the recognition goal is to �nd a single object or to �nd multiple members of a

class of objects. If the goal is to �nd a single item, only one hypothesis should be

veri�ed per image; otherwise, many hypotheses may be correct.

Goal-level classi�cation is therefore unique. When a single hypothesis is re-
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Figure 4: A Decision Tree. The squares indicate choice nodes, where the agent

chooses which action to take, and the circles indicate chance nodes representing

actions with probabilistic outcomes. In SLS, the agent is the run-time control

program, choice nodes are hypothesis knowledge states corresponding to sets of

discrete feature values, and chance nodes are FMP invocations to determine fea-

ture values. (For e�ciency, the implementation joins duplicate nodes, creating a

decision graph rather than a decision tree.
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quired, run-time classi�ers that compare hypotheses directly to each other and

select the best are used. In the experiments presented in this paper, for example,

the goal is always to �nd a single object, and a minimum-distance classi�er is used

to compare goal-level hypotheses and select the best. When multiple goal-level

hypotheses may be correct, on the other hand, classi�ers that do not compare

hypotheses directly to each other are more appropriate.

2.3.3. Capabilities and Limitations of Recognition Graphs

So far, object recognition has been described as a \bottom-up" process starting

with an image and ending with an abstract representation of an object. Although

we will continue to use bottom-up terminology, it should be noted that recognition

graphs can also represent \top-down" strategies and even mixed bottom-up and

top-down strategies. \Bottom-up" strategies are created from TPs that create

more abstract hypotheses from less abstract ones; top-down strategies are con-

structed from TPs that reduce abstract hypotheses to more concrete ones. Many

strategies are mixed, using TPs that produce both more and less abstract hy-

potheses. The only constraint enforced by SLS on recognition graphs is that the

VP library should not contain any loops, where hypotheses of type A are created

from hypotheses of type B and vice-versa.

At the same time, recognition graphs are not capable of representing strategies

based on relative strengths of hypotheses. Traditional blackboard systems can use

heuristic schedulers that apply a knowledge source to the top N hypotheses at

a level of representation, but such strategies cannot be embedded in recognition

graphs. Recognition graphs can represent strategies that apply VPs to hypotheses

with speci�c sets of features, but not to the N best hypotheses in an image. (This

is why a minimum distance classi�er is used to enforce the constraint that only

one goal-level hypothesis by veri�ed per image.)

SLS's strategies compare run-time hypotheses to training-time hypotheses. If

training-time hypotheses with similar features led to correct goal-level hypotheses,

then a hypothesis is pursued further; if not, it is rejected. SLS strategies base their

control decisions not on the relative strengths of hypotheses from a single image,

but on the relative strength of run-time hypotheses when compared to the larger

(but less speci�c) pool of training hypotheses.

3. The Three Algorithms of SLS

At the heart of SLS are algorithms that create recognition graphs from train-

ing images. SLS learns recognition graphs through a three step process of search,

learning from examples, and graph optimization, as shown in Figure 5. The search

algorithm looks for sequences of transformation procedures that produce correct

goal-level hypotheses; in the process, it also estimates the costs and likelihoods

associated with VPs and FMPs. The learning from examples algorithm inspects

the operator sequences identi�ed by the search algorithm and infers a generalized
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Figure 5: The Three Algorithms of SLS. This �gure expands the left-hand side

of Figure 1 to show the search, learning from examples, and graph optimization

modules that are the heart of SLS.

concept of how correct goal-level hypotheses are generated. Typically it will dis-

cover that in order to recognize an object reliably, several (possibly redundant)

operators must be applied to certain types of hypotheses. Finally, the graph op-

timization algorithm creates decision trees at each level of the recognition graph

that minimize the expected cost of veri�cation. The result is a multi-level recogni-

tion graph representing an e�cient and reliable strategy for identifying the target

object in terms of the speci�ed goal (e.g. 2D or 3D, approximate or exact).

3.1. Search

The search algorithmapplies visual procedures to training images and to intermediate-

level hypotheses generated from training images. It begins by applying TPs to

the images, producing intermediate hypotheses such as regions, lines, and points.

The properties of these hypotheses are measured by FMPs, and then they are

transformed by TPs into still more abstract hypotheses. The search algorithm

exhaustively expands the tree of hypotheses in this way until no new hypotheses

can be generated.

There are two reasons for exhaustively searching the space of hypotheses that

can be generated from training images. The �rst is to provide correct hypotheses

for the LFE algorithm. The training signal provided by the user distinguishes cor-

rect goal-level hypotheses from incorrect ones, but it does not indicate how goal-

level hypotheses can be generated from images through sequences of intermediate-

level hypotheses. To learn to generate goal-level hypotheses, SLS needs examples

of how correct hypotheses are created. By exhaustively generating all possible hy-

potheses, the search algorithm is guaranteed to create as many correct hypotheses

as possible, and it saves a record of how each hypothesis was generated.
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The second reason for exhaustively searching images is to estimate the costs

and bene�ts of VPs. In order to optimize the veri�cation process, SLS has to

know the probability of a feature given a hypothesis, as well as the expected cost

of measuring that feature. Unfortunately, SLS's VP library does not include any

information about the costs of FMPs or the probabilities of each discrete feature

value. SLS therefore has to build up a statistical characterization of the FMPs by

applying them to training images.

Although SLS is designed to maximize run-time, rather than compile-time,

e�ciency, there are many situations where exhaustively expanding the tree of

possible hypotheses is not feasible. In such cases, the cost of exploration can

be heuristically reduced by not exploring hypotheses that do not satisfy spatial

constraints derived from the training signal. For example, if the recognition goal

is to recover the three dimensional position of an object, any region hypotheses

that do not overlap the object's projection can be rejected without being explored

further. Similarly, points, lines, planes, and other types of geometric hypotheses

can be rejected if they fail to overlap the correct solution or its projection. In this

way, the combinatoric nature of exploration is damped, but the positive examples

required by the LFE algorithm are still generated.

The disadvantage of this heuristic is that negative examples are used in SLS

1) by the LFE algorithm, to select the minimal cost DNF subterm (see Sec-

tion 3.2.3.), and 2) to estimate the costs and probabilities associated with fea-

tures. At the risk of a less e�cient strategy, both tasks can be accomplished

by exploring only a subset of negative hypotheses and extrapolating the results.

We are currently experimenting with this and other heuristics for minimizing the

search cost; nonetheless, the experiments in this paper were run using exhaustive

search.

3.2. Learning from Examples (LFE)

SLS's learning from examples (LFE) algorithm analyses correct hypotheses pro-

duced during exploration and infers from them an e�cient scheme for generating

accurate goal-level hypotheses. The approach reects the idea that recognition

is a series of transformations interleaved with veri�cations. By looking at the

histories of how correct hypotheses develop, SLS learns how to generate goal-

level hypotheses from images through series of intermediate-level hypotheses. At

the same time, it learns which features of intermediate hypotheses indicate that

a hypothesis should be pursued, and which imply that a hypothesis should be

abandoned.

3.2.1. Learning from Examples: A Definition

In the machine learning literature, the term learning from examples refers to

algorithms that learn rules for evaluating examples. Following the terminology in

the AI Handbook [12], learning from examples problems are de�ned in terms of

instance spaces and rule spaces. The instance space is the set of possible examples
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or instances that might be encountered, either during training or testing. The

rule space is the set of possible inference rules for evaluating instances. Learning

from examples algorithms search rule spaces for the best methods of evaluating

instances.

In SLS's LFE algorithm, the task is to generate correct goal-level hypothe-

ses from images through sequences of intermediate representations. Instances are

strings of hypotheses and TPs that lead from images to correct goal-level hy-

potheses. The rule space is composed of (sets of) features and TPs: the features

determine which hypotheses should be pursued (at each level of representation),

and the TPs indicate how they should be transformed. The goal of the LFE algo-

rithm is to select a set of TPs and features that will generate a correct hypothesis

for every target object instance in the training set, while generating as few false

hypotheses as possible.

3.2.2. Dependency Trees

Inside the LFE algorithm, instances of correct hypotheses are represented as de-

pendency trees. A dependency tree is an AND/OR tree recording the TPs and

intermediate-level hypotheses on which a goal-level hypothesis depends. For ex-

ample, a 3D pose hypothesis can be created by a geometric matching algorithm

that �nds the pose that minimizes the error of projecting a (3D) object model

onto a set of (2D) image line segments. If so, the pose hypothesis is depen-

dent on the geometric matching TP and the image line segments, as well as the

TPs and hypotheses needed to generate the image line segments, as shown in

Figure 6. In general, dependency is recursive, with `AND' nodes resulting from

TPs that require multiple arguments (and are therefore dependent on more than

one hypothesis), and `OR' nodes occurring when more than one TP redundantly

generates the same hypothesis.

Each dependency tree represents the di�erent methods for generating a spe-

ci�c hypothesis. In the example in Figure 6, pose-10 can be generated either

by applying the geometric matching TP (to an image lineset hypothesis) or the

planar distance TP

3

, but at least one of the two is required. Furthermore, if the

geometric matching TP is used, it must be applied to 2D-lineset-2. Alternatively,

if the planar distance TP is used instead, it must be applied to region-14 and

orientation-3. (The planar distance TP takes two image-based arguments.)

Dependency trees like the one in Figure 6 apply to speci�c hypotheses gener-

ated during the search phase of SLS. The �rst step in inferring a more generalized

scheme for generating goal-level hypotheses is to replace speci�c hypotheses with

their feature vectors, as shown in Figure 7. The rationale for the substitution is

that TPs have preconditions associated with them that select which hypotheses

they should be applied to. If a TP needs to be applied to hypothesis H to ensure

that a goal is met, then only features of H should be considered as preconditions

3

The Planar Distance TP converts a 3D orientation hypothesis into a plane hypothesis by

scaling it relative to a region or set of image points.
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2D-lineset-1 

Planar Distance

Region-14 Orientation-3

Pose-10

Geometric Matching 

2D-lineset-2

Rectalinear Line Grouping Multivariate DT Vanishing Point Analysis

Segmentation-2 Pencil-5

Figure 6: An example of a dependency tree showing the di�erent ways that one

correct pose hypothesis can be created during training. The names of transforma-

tional procedures are in italics, while hypotheses (data instances) are in bold.

for the TP.

In general, a hypothesis is guaranteed to be created by any set of precondi-

tioned TPs that \satis�es" its dependency tree. A dependency treeDT is satis�ed

by a set of TPs G (with a�liated preconditions P ) if: 1) the root of DT is an

AND node, and every subtree of DT is satis�ed; 2) the root of DT is an OR node,

and at least one subtree of DT is satis�ed; or 3) the root of DT is a leaf node

with TP g and preconditions P such that g is in G and the preconditions of g

either match or are a superset of P .

3.2.3. LFE: A DNF-based Algorithm

The algorithm for �nding optimal sets of TPs and preconditions is deceptively

simple:

1. Convert the generalized dependency tree of a correct goal-level hypothesis

to disjunctive normal form (DNF)

4

.

2. For every other correct goal-level hypothesis:

(a) Convert its generalized dependency tree to DNF.

(b) \AND" together the new DNF expression with the previous DNF ex-

pression.

4

The disjunctive normal form of a logical expression is an OR of ANDs of monomial expres-

sions, for example (A ^ B) _ (A ^C).
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OR

AND

{Geometric Matching TP, applied to
 hypotheses with features of 2D-lineset-2}

{Rectalinear Line Grouping TP, applied
 to hypotheses with features of 2D-lineset-2}

AND

{Planar Distance TP, applied to hypotheses
 with features of Region-14 (argument #1)
 and features of Orientation-3 (argument #2).}

Figure 7: A generalized dependency tree created by replacing the hypotheses in

Figure 4.3 with their feature values.

(c) Convert the resulting `AND' tree to DNF

5

.

3. Select the conjunctive subterm that generates the fewest total hypotheses.

By the logic of the dependency relation, the TPs and preconditions in any conjunc-

tive subterm of the �nal DNF expression are su�cient to re-generate all correct

goal-level hypotheses from the training images. By selecting the minimal term,

SLS chooses the best method for generating correct hypotheses.

AND/OR dependency trees are converted to DNF by a standard algorithm

that �rst converts every subtree to DNF and then either merges the subterms, if

the root is an OR node, or takes the symbolic cross product

6

of the subterms, if

the root is an AND node. If a TP is ANDed with itself when taking the cross

product, the resulting preconditions are the intersection of the preconditions of

the two instances being ANDed.

This basic algorithm is altered slightly to improve e�ciency. Because SLS

seeks to �nd the minimal term (measured as the number of hypotheses generated)

of the DNF expression rather than every term, any conjunctive subterm that is

a logical superset of another can be pruned, reducing the total number of terms

considered. A second modi�cation is to sort the correct goal-level hypotheses

5

Logically, this algorithm is equivalent to the simpler two-step process of ANDing all the

dependency trees together and converting the result to DNF. However, iteratively adding each

new dependency tree to an evolving expression simpli�es the probabilistic analysis given in [15].

6

Symbolic cross product: fA;Bg � fC;Dg = fAC;AD;BC;BDg.
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according to the size of their dependency trees and to iterate in step two from the

simplest dependency trees to the most complicated. This reduces the size of the

interim DNF expressions without a�ecting the �nal result.

3.3. Graph Optimization

As was stated earlier, recognition graphs interleave veri�cation and transforma-

tion, using FMPs to measure properties of hypotheses and TPs to transform them

to higher levels of representation. By building dependency trees from the training

samples, converting them to DNF and picking the minimal subterm, SLS learns

which TPs to use to transform hypotheses from one level to the next. Just as

important, it learns which preconditions a hypothesis must meet before it should

be transformed. These preconditions are the subgoals of the recognition process

at intermediate levels of representation.

The optimization algorithm builds decision trees for each level of represen-

tation that minimize the expected cost of reaching a subgoal or, conversely, of

deciding that a hypothesis cannot satisfy a subgoal and should be rejected. The

decision trees are constructed by �rst building a graph representing all possible

sequences of FMP applications, and then optimizing the graph by determining

which options at each choice node minimize the overall cost of recognition, and

removing the other options. The �nal result is a decision tree at each level of

representation that minimizes the expected cost of veri�cation.

3.3.1. Estimating FMP properties

A preliminary step to building e�cient decision trees is to characterize the per-

formance of FMPs. In particular, SLS estimates:

� Expected Cost (VP, F), the expected cost of applying a VP to a hypoth-

esis with the feature values F;

� Feature Likelihood (FMP, f1, F), the likelihood of a FMP returning

feature value f1 when applied to a hypothesis with feature values F.

In general, these values are estimated from applications of FMPs to similar hy-

potheses during training. When an insu�cient number of similar hypotheses (i.e.

hypotheses with feature values F) are generated during training, the dependency

on F is dropped and the values are estimated across all hypotheses.

Unfortunately, these statistical measures cannot be inferred directly from the

search data, because the probabilities and costs associated with features depend

on the quality of the hypotheses being measured. The search algorithm, which

exhaustively explores the space of possible hypotheses, generates more hypotheses

of lesser quality than SLS's run-time recognition strategy will. The exploration

hypotheses are therefore drawn from a di�erent statistical distribution than the

run-time hypotheses will be.

As a result, the estimations of FMP performance are delayed until after the

LFE algorithmhas been run. The results of LFE are used to prune the exploration
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data, removing those hypotheses that are merely artifacts of exhaustive search

and would not be generated using the VPs and preconditions selected by the LFE

algorithm. Once the search data has been pruned, the remaining hypotheses are

used to characterize the performance of VPs.

3.3.2. Graph Layout

For each level of representation, a directed acyclic graph is constructed represent-

ing all possible sequences of FMP applications. The graph starts from a single

knowledge state, corresponding to a newly generated hypothesis for which no fea-

tures have been computed. The start state, like all knowledge states, is a choice

node, since the control program gets to choose which FMP to apply �rst. FMP

applications nodes are therefore added for every feature that can be measured of

a hypothesis in the start state. These FMP application nodes lead to new knowl-

edge states (one for each possible feature value), which in turn have more FMP

applications attached to them, and so on. The expansion of the graph contin-

ues until it reaches either a subgoal knowledge state or a knowledge state that is

incompatible with every remaining subgoal (i.e. a failure state).

For example, Figure 8 shows the initial graph for a level of representation with

two FMPs and a subgoal of fa1,b1g. Graph construction begins with the start

state and expands by adding a chance state for each FMP. The FMPs lead to a

total of �ve new knowledge states, but three of them are failure states that are

incompatible with the subgoal fa1,b1g. The other two states each have one more

FMP to be applied, leading to four more knowledge states, one of which is the

subgoal state and three of which are failure states.

More formally, we refer to subgoal states and failure states as the terminal

states for each level of the recognition graph. The cost of promoting a hypothesis

from knowledge state n to a terminal state is called the Expected Decision Cost

(EDC) of knowledge state n, and the expected cost of reaching a terminal state

from state n using FMP v

7

is the Expected Path Cost (EPC) of n and v. Since

features are discrete, we denote the possible outcomes of a FMP v as a set R(v),

and the probability of a particular feature value f being returned as P (f jv; n); f 2

R(v).

The EDC's of knowledge states can be calculated starting from the terminal

states and working backward through the recognition graph. Clearly, the EDC of

a subgoal or failure state is zero:

EDC(n) = 0; n 2 fterminal statesg:

The expected path cost of reaching a terminal state from a FMP application

node is:

EPC(n; v) = C(v) +

X

f2R(v)

(P (f jn; v)� EDC(n[ f))

7

v is an awkward abbreviation for a feature measurement procedure, but f will be used for

feature values and p would look like a probability value. Since FMPs are a subclass of VPs, v is

therefore used.
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Level of Representation: X
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EDC = 0.0
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EDC = 0.0
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Figure 8: An initial decision graph. Choice nodes, shown as rectangles, correspond

to knowledge states of a hypothesis. Chance nodes, shown as ovals, represent FMP

applications. Starting from an empty knowledge state, the system adds a chance

node corresponding to each FMP. Since FMPs measure feature values, they lead

to new knowledge states, where new FMPs can be selected. The graph expands

until it reaches either a veri�cation state, or a state that is incompatible with the

features of a veri�cation state.



18 DRAPER

where n is a knowledge state expressed as a set of feature values, n [ f is the

knowledge state that results from FMP v returning feature value f , and C(v) is

the estimated cost of applying v.

The EDC of a knowledge state, then, is the smallest EPC of the FMPs that

can be executed from that state:

EDC(n) = min

v2V P (n)

(EPC(n; v))

where V P (n) is the set of FMPs applicable at node n. The minimal-cost decision

tree is created by making a single pass through the directed acyclic graph, starting

at the terminal nodes and working backward toward the start state. At each

knowledge state, the pruning process calculates the EPC of every FMP that can

be applied from that state, and removes all FMP application nodes except the

one with the smallest EPC. The �nal result is a minimal-cost decision tree.

Figure 9 shows the result of pruning the initial graph shown in Figure 8.

Starting at the terminal nodes and working backward, the �rst choice states the

pruning algorithmconsiders are a1 and b1. These states have only one option each,

however, so selecting the minimum-cost option has no e�ect. The next choice node

encountered is the start state fg, where there are two options, since the system

can choose to compute feature A or feature B. However, as depicted in Figure 8,

the expected cost (EPC) of verifying a hypothesis if feature B is computed �rst is

1.53, while the cost of verifying a hypothesis by computing feature A �rst is only

1.4. Consequently, the optimization algorithm prunes option B from the start

node in Figure 8, leaving the optimized decision tree shown in Figure 9.

3.3.3. Estimating Total Cost

The equations above establish a mutually recursive de�nition of the expected

decision cost of a knowledge state. The EDC of a knowledge state is the EPC of

the optimal FMP application from the state; the EPC of a FMP application is

the expected cost of applying the FMP plus the expected EDC remaining after

the FMP has been applied. The recursion bottoms out at terminal nodes, whose

EDC is zero. Since every path through the object recognition graph ends at either

a subgoal or a failure node, the recursion is well de�ned.

Furthermore, the total cost of recognition can be estimated from the EDCs of

start states and the expected costs of the TPs selected by the LFE algorithm. The

EDC of the start state for a level of representation estimates the expected cost of

verifying or rejecting hypotheses at that level. By estimating the total number of

hypotheses generated at each level by the preconditioned TPs and multiplying it

by the EDCs of the start states, the total cost of veri�cation can be estimated.

Since the expected number of times a TP will be executed can also be estimated

from the LFE algorithm's results, the total expected cost of recognition can be

obtained easily.
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Level of Representation: X
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Figure 9: A pruned decision graph. This Figure shows the graph depicted in

Figure 8 after it has been pruned by the graph optimization algorithm. All actions

which either do not lead to the subgoal state or which are not on the most e�cient

path to the subgoal have been removed.

4. Experiments

We present an example of SLS learning to recognize the (3D) position and orien-

tation of a building in images taken from an approximately known location. As

described in [15], SLS has also been used to recognize the (2D) image position

of a tree from an approximately known viewpoint and the (3D) position and ori-

entation of another building from an unknown viewpoint. Taken together, these

exercises suggest that SLS can recognize both natural and man-made objects, can

recognize them from either known or unknown viewpoints, and can do so in either

two dimensions or three. In this paper, however, we shall limit ourselves to the

one demonstration of �nding the pose of the Marcus Engineering building from

an approximately known viewpoint.

4.1. Training Images

The training data is selected from a set of twenty-one images collected along a

hundred foot stretch of a footpath on the UMass campus. Figures 10 and 11 show

the �rst and last images of the sequence. The images were taken level to gravity

(�1

�

) and from approximately four feet above the ground, although the ground

rises and falls over the course of the sequence. The camera was also subjected

to small rotations in pan from one image to the next. As a result, the pose of

the camera has four degrees of freedom, with large variations in position in the

ground plane and smaller deviations in camera height and pan.

The \ground truth" positions and orientations of the Marcus Engineering



20 DRAPER

Figure 10: The �rst of twenty-one training images. The images were taken along

a hundred-foot section of the path, with the camera level to gravity.

Figure 11: The last of twenty-one training images. The pose of the camera has

four degrees of freedom, with large variations in position in the XZ (ground) plane

and small di�erences in camera height and pan.
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building were determined by manually matching image points to model points

and applying Kumar and Hanson's algorithm [23] to determine the building's

pose relative to the camera. The training signal is therefore composed of error-

ful pose estimates, rather than true positions. However, Kumar and Hanson's

results suggest that, with correct correspondences, their algorithm produces pose

estimates that are extremely accurate when compared to the relatively lax error

thresholds in the recognition goal. The estimated poses can therefore reasonably

be used as a training signal.

4.2. Recognition Goal

The recognition goal is to �nd the pose of Marcus Engineering relative to the

camera. Pose hypotheses are represented as rotation matrices with translation

vectors, in the traditional

P

0

= RP + T

representation, where R and T are the rotation matrix and translation vector that

transform a set of points P in the model's coordinate system into a set of points

P

0

in the camera's coordinate system. Unfortunately, errors expressed in terms

of R and T tend to be unintuitive, since if an object is rotated slightly about its

center, this will be represented as a rotation about the focal point, counteracted

by a large translation

8

. It is helpful, therefore, to express the error tolerances in

a di�erent representation.

Since the pose of the building has only four degrees of freedom, the tolerance

thresholds in the recognition goal are expressed in terms of scale, image position,

and object angle. These parameters reect the fact that the pose of the building

can be expressed as a vector from the focal point to any known point on the

building, plus a horizontal rotation about the known point (remember that the

building has no tilt or roll relative to the camera). Errors in the positional vector

are expressed as an error in length, measured as a percent of the true camera-to-

object distance, and an error in position, measured as an angle. (Since we are

interested in the magnitude of the orientation error, not its direction, this can be

written as a scalar.) Errors in the rotation of the object are also represented as

an angle, this time about the axis of gravity.

The error thresholds for this exercise require the position of the building to

be correct to within one degree of image angle and ten percent depth, while the

orientation of the building must be correct to within �ve degrees around the axis

of gravity. This implies that the hypothesized building poses should be highly

accurate with respect to image position and reasonably accurate in orientation,

but only approximate in depth. Figure 12 shows an example of a pose that satis�es

these criteria, in this case the building pose identi�ed by SLS's strategy in the

�rst of twenty-one trials.

8

The size of the counteracting translation is a function of both the extent of the rotation and

the distance from the object center to the focal point.
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Figure 12: A correct pose from one trial of the Marcus recognition strategy. The

pose shown here was generated and veri�ed on the �rst of twenty-one trials, and

is o� by 1.8% in depth, 4.79 degrees in orientation about the axis of gravity, and

0.16 degrees in image location.

4.3. The Visual Procedure Library

The visual procedure library used in this experiment is shown in Table 1. It

includes many procedures for extracting and grouping two-dimensional represen-

tations such as points and lines. Lines can be extracted using the edge-linking

algorithm of Boldt and Weiss [7], and regions can be extracted by the algorithm

described in Beveridge, et. al. [5]. Regions can also be created by �tting a convex

hull to a set of line segments. Regions that match an expected color and texture

can be selected from a region segmentation by a multivariate decision tree [8, 14].

(This algorithm is included twice in the library with two di�erent parameteri-

zations, one designed to select red brickface regions, the other highly textured

window regions.) Nearby regions can be grouped by a region merging TP, while

another TP groups lines that intersect a given region. Nearby lines that are par-

allel, collinear or orthogonal can be grouped according to the relations de�ned by

Reynolds and Beveridge [28]. (All of the grouping VPs are implemented using the

facilities of the ISR database system [9].) Image points are extracted by �nding

trihedral junctions of lines.

The procedure library also includes routines that create or consume three-

dimensional representations. Orientation hypotheses represent the orientation,

but not location, of a plane in space, while planar surface hypotheses specify

both the orientation and location of a plane. Most importantly, transformation

hypotheses represent a coordinate transformation from one coordinate system to



1. LEARNING STRATEGIES POLICIES 23

Transformational Proc. Input Output Ref

Line Extraction Image 2D Lines [7]

Region Segmentation Color Image Segmentation [5]

Multivariate Decision Tree Segmentation Regions [8, 14]

Region Merging Regions Region

Interest Operator (Anandan) Image, Region 2D Points [2]

Interest Operator (Moravec) Image, Region 2D Points [24]

Min. Dist. Classi�cation Region Label

Polygonal Approximation Region 2D Lines

Line Extension 2D Lines 2D Line Groups

Rectalinear Line Grouping 2D Lines 2D Line Groups [28]

Pencil Extraction 2D Lines Line Pencils [13]

Vanishing Point Analysis Line Pencils 3D Orientation [13]

Convex Hull Line Pencil Region

Trihedral Jnct Finder 2D Lines Trihedral Jnct

Trihedral Angle Analysis Trihedral Jnct 3D Orientation [22]

Planar Distance (Scale) Region or 2D Points, 3D Pose

3D Orientation

Subgraph Isomorphism 2D Line Group Correspondence [29]

Image Resection 2D Points, 3D Pose

Correspondence

Perspective Projection 3D Pose 2D Points

Geometric Matching 2D Lines 3D Pose [6]

Table 1: Transformational Procedures (TPs). Note that the Input column lists

only image-based arguments. Model-based arguments are not listed for Subgraph

Isomorphism, Geometric Matching and Planar Distance TPs.
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another, represented as a rotation matrix and a translation vector. Transforma-

tion hypotheses determine the pose of a modeled object by giving the transforma-

tion from the object model coordinate system to the camera coordinate system,

and are goal-level hypotheses in this demonstration.

Three dimensional hypotheses are generated and manipulated by many vi-

sual procedures. Collins and Weiss [13] provide an e�cient TP for grouping line

segments into pencils, which are sets of lines that meet at a common point of in-

tersection. Vanishing point analysis [13] infers the orientations of planes in space

by assuming that the image lines in a pencil are the projections of parallel lines

in space. Another approach to inferring the orientation of an object in space is to

�nd trihedral junctions of line segments �rst, and then use the perspective angle

equations of Kanatani [22] to infer the orientations of the planes, assuming the

lines form right angles, like the corner of a building.

The distance from an object to the camera can be estimated when the size of

the object is known; in the case of Marcus Engineering, the size of the building

(and its wire-frame model) was extracted from its blueprints. Two parameter-

izations of the scaling TP are available in the VP library, one that estimates

distance based on the apparent width of a window and the estimated angle of

the building face, and a second that estimates distance from the height of the

building using a direct inverse relationship of size to distance. (Note that since

the images have zero tilt, the orientation of the building face is not needed to

estimate distance from the building's height). Of course, since any two points

on the object model can serve as compile-time parameters to a scaling TP, many

other parameterizations of the scaling TP could be included in the library.

Although the visual procedure library shown in Table 1 is su�cient for the pur-

poses of this experiment, it includes just a few of the computer vision algorithms

described in the literature. Unfortunately, the current Lisp implementation of SLS

has proved an impediment to building a larger library, since source code for most

visual procedures is available only in C. We are currently reimplementing SLS

in C++, in part so that it can access libraries of computer vision routines such

as those included in Khoros [27] and KBVision [31] (and someday the IUE [25]).

Already the C++ version of SLS can access over �fty visual procedures, including

almost all Khoros and KBVision routines. Unfortunately, no experimental results

are yet available that use the new implementation.

4.4. Testing Methodology

Because of the relatively small size of the training set, SLS was tested with a

\leave one out" methodology, in which strategies are trained on twenty images

and tested on the twenty-�rst. The process is repeated twenty-one times, each

time with a di�erent image \left out" of the training set and used as the test image.

Each trial tests whether a strategy learned over twenty training images satis�es

the recognition goal on the twenty-�rst. In addition to testing for robustness,

the suite of twenty-one trials also tests SLS's ability to predict the reliability and
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average cost of its strategies.

4.5. Reliability Results

Table 4.5. summarizes the results of twenty-one trials of learning to recognize the

pose of Marcus Engineering from an approximately known viewpoint. The right

side of the table shows the errors in the best goal-level hypothesis generated, even

if this hypothesis was never veri�ed, while the right side shows the errors in the

goal-level hypothesis veri�ed by the minimum distance classi�er. The veri�ed

pose for trial number one, which is also the best pose generated for that trial, was

shown earlier in Figure 12.

Pose errors in Table 4.5. are measured in terms of the length and orientation

of a vector from the focal point to the corner of the building, and the rotation

of the building. More precisely, the error in the position of the building is mea-

sured as 1) the error in the distance to the building, measured as a percentage

of the true distance, and 2) the image position of the building, measured by the

angle between the true vector from the focal point to the building corner and the

estimated vector (labeled \Im Pos" in Table 4.5.). The error in the building's

orientation is measured as the angle about the gravitational axis between the es-

timated orientation of a building face and its true orientation (labeled \Rot." in

Table 4.5.).

The most striking feature of Table 4.5. is the result of trial sixteen. The strat-

egy learned by SLS in trial sixteen did not generate a single goal-level hypothesis,

either correct or incorrect, for the test image. An a posteriori analysis reveals

that in twenty of the twenty-one images, the corner of the building is marked by

a trihedral junction of image lines. In one image, however, noise eliminates one

of the three lines. As a result, when the image without the trihedral junction is

removed from the training set (and used as the test image), SLS learns a strategy

that relies entirely on �nding trihedral junctions. The strategy does not succeed in

�nding any trihedral junctions in the test image, however, and therefore generates

no goal-level hypotheses. Ironically, in the other twenty trials, the training sets

include the case in which trihedral junctions fail, and therefore the other twenty

strategies all include redundancy to account for the possibility of trihedral failure,

a redundancy that is never needed for the test images to which they are applied.

Trial sixteen is the only case in which the strategy learned by SLS fails to

generate a correct goal-level hypothesis, giving it a success rate at generating 3D

building hypotheses of 95%. In trials �fteen and twenty, however, SLS veri�ed

the wrong hypothesis, giving it an over-all success rate of 86%.

4.6. Timing

Table 4.5. addresses the robustness of the strategies learned by SLS, but not their

e�ciency. Table 4.6. shows SLS's expected run-time (in seconds, rounded to the

nearest whole second) for the strategy learned in each trial as compared to the

actual run-time when the strategy was applied to a test image. On any given
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Table 2: Results of twenty-one trials of learning to recognize the pose of the Marcus

Engineering Building. The left side of the table shows the errors in the best goal-

level hypothesis generated for each trial, while the left side shows the errors in

the hypothesis veri�ed by the minimum distance classi�er. Errors are speci�ed in

terms of the parameters discussed in Section 4.2., namely: 1) error in distance

from the object to the camera, expressed as a percentage of the true distance from

the object to the camera; 2) error in orientation about the axis of gravity; and 3)

error in image position, measured in degrees.

Best Generated Pose Selected Pose

Trial Dist. Rot. Im Pos Dist. Rot. Im Pos

1 1.81 4.79 0.16 1.81 4.79 0.16

2 1.34 0.82 0.05 1.34 0.82 0.05

3 1.18 1.33 0.11 2.74 1.33 0.09

4 0.69 1.40 0.13 1.97 1.40 0.13

5 2.64 2.33 0.10 2.64 2.33 0.10

6 0.73 6.95 0.15 0.73 6.95 0.15

7 0.27 1.16 0.05 6.58 1.16 0.07

8 2.33 0.07 0.08 2.33 0.07 0.08

9 1.01 3.58 0.20 1.69 3.58 0.20

10 1.39 1.65 0.04 2.07 1.65 0.05

11 0.50 3.27 0.08 2.37 3.27 0.25

12 2.24 4.48 0.25 2.24 4.48 0.25

13 2.07 1.54 0.04 2.07 1.54 0.04

14 0.36 1.63 0.09 0.36 1.63 0.09

15 2.13 2.58 0.21 11.23 2.58 0.21

16 { { { { { {

17 4.44 6.21 0.13 4.44 6.21 0.13

18 1.07 1.75 0.09 1.77 1.76 0.16

19 0.41 3.83 0.07 1.07 3.83 0.07

20 0.92 2.50 0.03 14.64 2.50 0.03

21 1.18 4.95 0.13 2.26 4.95 0.13
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Table 3: Timing results for the twenty-one Marcus Engineering trials. The �rst

row shows the expected cost (in seconds, rounded to the nearest whole second) of

applying the strategy, as predicted by SLS. The second row shows the actual cost.

Trial 1 2 3 4 5 6 7 8 9 10 11

Exp. 82.9 84.7 84.2 78.6 85.1 85.0 84.9 85.0 85.2 85.3 84.6

Act. 107.3 88.4 79.4 113.7 88.9 74.8 66.2 71.7 72.6 67.4 74.5

Trial 12 13 14 15 16 17 18 19 20 21 Avg.

Exp. 86.2 85.1 85.4 83.2 61.3 79.6 85.5 84.9 80.1 85.7 83.0

Act. 61.4 89.4 73.2 82.7 45.5 62.3 74.4 69.2 76.6 57.4 79.3

trial, the discrepancy between the predicted and actual run-times is quite large.

On average, however, the predicted run-times are within �ve percent of the actual

run-times. This reects the average-case nature of expected costs. The actual

cost of recognizing an object in an image depends critically on the contents of the

image, but as long as the training images are indicative of the test domain the

average cost of recognition can be estimated. Indeed, an a posteriori analysis of

the data shows that the �ve percent overestimate of the expected run time was

caused by VPs executing more quickly during testing than during exploration,

due primarily to variations in paging.

5. Conclusions

The primary contribution of SLS is that it automatically learns special-purpose

recognition strategies under supervision. There has been earlier work on learn-

ing shape-based recognition strategies from CAD/CAM models [20, 10], and on

learning to recognize two-dimensional objects from features that can be measured

directly in the image (without using intermediate representations) [11]. None of

these systems, however, can do what SLS can do: learn to recognize arti�cial or

natural objects in complex images by integrating cues from shape, color, context

and other types of knowledge.

SLS is able to achieve these goals because it reasons across multiple levels

of representation, and takes advantage of the wealth of available computer vi-

sion procedures. By casting object recognition as a discrete control problem,

SLS is able to leverage o� 30 years of computer vision research, selecting those

representations and techniques that are appropriate for a given task. Moreover,

because it learns control policies automatically, it can generate systems capable

of recognizing speci�c objects for a variety of applications, using already available

components.

A more mundane, but still important, contribution is that SLS is the �rst

system to supply a user (or application program) with an estimate of the expected

cost of satisfying a recognition goal. This information can be critical for planning

and resource allocation in robotic systems that rely on computer vision. Just as
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importantly, if the library of visual procedures is incapable of robustly achieving

a recognition goal, SLS warns the user that the goal will not be met.

6. Future Work

SLS remains the focus of a great deal of research. The top two priorities are

1) reducing the cost of the initial search phase and 2) converting the system to

incremental, rather than batch, learning. E�ort is also being invested to reim-

plementing SLS in C++, partly to make it run faster but mostly to allow it to

access available libraries of C and C++ computer vision algorithms, including

those available within the Khoros [27] and KBVision [31] systems.

The relationship between SLS, dynamic programming (DP) and reinforcement

learning (RL) is also being explored. Although there are many problems in ap-

plying DP or RL to SLS's domain, the potential bene�ts in terms of reliable

incremental systems make the possibilities worth pursuing.

Finally, SLS assumes a library of executable procedures, when in fact most

computer vision algorithmsmust be parameterized before they can be used. These

parameters vary from simple sensitivity settings to complex geometric structures

(such as might be given to a graph matching algorithm). So far, all such param-

eters have been speci�ed by hand, and at times di�erent parameters are used for

di�erent tasks. For SLS to completely eliminate human knowledge engineering, it

must learn to parameterize visual procedures as well as control them. This, too,

is an area of current research.
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