
An Example of Learning in Knowledge-Directed Vision

Bruce A. Draper Allen R. Hanson

Dept. of Computer and Information Science

University of Massachusetts

Amherst, MA., USA. 01003

�

1 Introduction

The goal of image understanding systems is typically the identi�cation of objects in visual

imagery and the establishment of the three-dimensional relationships among the objects

and the viewer. It is a generally accepted premise that, in many domains, the timely

and appropriate use of relevant knowledge can substantially reduce the combinatorially

explosive search encountered in establishing 'instance-of' relationships between image

data and its interpretation(s).

Because of the variety and scope of knowledge pertinent to vision, the acquisition of

both object models and interpretation strategies remains a major outstanding problem

in model-based image understanding. While many vision algorithms at the low and

intermediate levels are available, successful use of knowledge in image understanding

requires a careful hand-crafting of the knowledge base. Typically this requires specifying,

for each object class, both the description of the generic object as well as one or more

recognition (control) strategies for instantiating instances of the object to image data.

The success of many knowledge-based image understanding systems can be traced

to a \small world" assumption, in which the number of objects in the domain are few,

the constraints on their descriptions are tight, and a complete world model is at least

a possibility. Consequently, special purpose systems are able to de�ne, structure, and

apply relevant task knowledge e�ectively. However, as the scope of a system broadens

towards a domain-independent, general-purpose system, an unfortunate chain of events

occurs: the size of the knowledge base increases, constraints on the object descriptions

become looser to account for wider variability, the system can make fewer assumptions

about the types of image descriptions necessary for matching, and the complexity of

matching increases substantially.

There are really two issues being discussed here, relating to the structure of object

and control knowledge in vision systems, and the acquisition of this knowledge. The

next section briey describes the knowledge component of the VISIONS image under-

standing system ([6, 7]) known as the schema system ([3]), from the point of view of

knowledge structuring and control. Subsequent sections discuss the role of learning in

the automatic acquisition of portions of the knowledge base. It is our contention that

learning techniques must be embedded in vision systems of the future in order to reduce

or eliminate the knowledge engineering aspects of system construction.

�

This work was supported in part by NSF CII grant CDA-8922572 and by U.S. Army ETL

under grant DACA76-89-C-0017

1

2 Summary of the VISIONS Schema System

The success of systems based on the \small world" assumption has led to the adoption

of a primary design philosophy for the knowledge component of an image understanding

system: both knowledge and computation should be partitioned at a coarse-grained

semantic level. In the VISIONS system, this coarse-grained knowledge is encapsulated

in a schema. Each schema is specialized to a single object class. This encapsulation

permits each schema to be an \expert" in the recognition of instances of the object

class and allows the wide range of control strategies necessary for di�erent objects to be

represented in a natural way.

A schema instance is invoked for each object class hypothesized to be in the im-

age data. These instances execute independent (potentially concurrent) processes called

recognition strategies and communicate asynchronously through a global blackboard.

The control component of each schema directs the application of general purpose proce-

dures, called knowledge sources, to gather the \right kind" of support for (or against)

its hypothesis. Competition and cooperation among the schema instances results in the

combination of multiple, independent \object experts" into a large scale system which

constructs internally consistent interpretations.

2.1 Components of the Schema System

The schema system consists of �ve basic components: the schemas and schema hierar-

chy, the blackboard, the knowledge sources, the interpretation (control) strategies, and

mechanisms for evidence representation and combination. Each of these is discussed very

briey in the following sections; more detail may be found in [3].

2.1.1 Schemas and the Schema Hierarchy

The schema system partitions both knowledge and computation in terms of natural

object classes for a given domain. Schemas reside in class and part/subpart hierarchies;

each class of objects and object parts has a corresponding schema which stores all object

and control knowledge speci�c to that class. Knowledge about expected object contexts

and relationships to other objects is represented in the system by extending the concept

of an object to include contextual or scene con�gurations; as objects, these entities also

have schemas. A subcontext or \sub-scene" is like an object part; it is related to its

parent scene or context in predicatable ways.

2.1.2 Knowledge Sources

Knowledge sources are general-purpose procedures that generate the levels of abstract

image descriptions required in an image understanding. Knowledge sources span the

gamut of traditional techniques in image processing (e.g. region, line, curve, and sur-

face extraction, feature measurement, etc), through intermediate level processes such

as initial object hypothesis generation and grouping operations to generally useful tools

and techniques such as graph matching. The compile-time arguments and parameters

supplied to a general-purpose knowledge sources as part of the recognition strategy may

specialize it for a particular purpose.

KSs typically create, manipulate, and construct abstract symbolic representations

of image events stored symbolically in the ISR [2], a database specially designed for

2

image understanding systems. The database supports associative retrieval, spatial re-

lations, multi-level representations, and has been optimized for spatial retrieval. In the

current version of the schema system, which has recently been extended to included

three-dimensional object representations and three- dimensional interpretation, over 40

KSs are available as basic building blocks.

2.1.3 Interpretation Strategies

Interpretation strategies, or simply strategies, are control programs that run within each

schema. Strategies procedurally encode knowledge about which knowledge sources to

apply and in what order to apply them. In order to make maximal use of parallelism,

schemas may have multiple concurrent strategies. These strategies may correspond to

di�erent methods for recognizing an object or to di�erent conditions under which recog-

nition must take place. Schemas can also contain strategies for di�erent subtasks, such

as initial hypothesis generation and hypothesis veri�cation, as well as for managing the

internal bookkeeping details of the schema, such as updating the global blackboard when

necessary and detecting and resolving conicts related to the hypothesis.

Each schema instance acquires information pertinent to the hypothesis it is pursuing.

Some of this information is generic, to the extent that its semantics are not object

dependent. For example, the degree of con�dence in a hypothesis, as well as its (2D)

image location and (3D) world location, is generic information. Every object hypothesis

has a con�dence level and an image location, and most have a meaningful 3D location.

The generic information about an object hypothesis is recorded in a global hypothesis.

Most of the information acquired by a schema instance, on the other hand, is object

speci�c. Information about how well an image region matches an expected color, for

example, is non-generic since its importance depends on the object model. A color

match may be important for �nding trees, but less so for recognizing automobiles. For

this reason, all of the information about which KSs support a particular hypothesis and

which do not is considered private to the schema instance, and is not included in the

global hypothesis.

2.1.4 Blackboard Communication

The schema system is built around a global blackboard. The global hypotheses written

to the blackboard represent the image interpretation as it evolves. Schemas communicate

with each other by writing to and reading from the blackboard, dynamically exchanging

information about their respective hypotheses. Although the blackboard is divided into

sections corresponding to the object classes (rather than processing levels, as in other

systems [12]), schemas may read and write freely over the entire blackboard. The division

into sections gives some assurance that a schema will not have to search through a large

number of irrelevant messages. At the same time, each schema instance maintains its

own local blackboard for recording private information.

The distinction between the global and local blackboards was motivated both by

computational and knowledge engineering concerns. Computationally, most of the infor-

mation generated by an interpretation strategy concerns which KSs have been run, what

each KS returned, etc. While this information is crucially important within the schema

instance for making dynamic control decisions, it is of little importance to other schema

3

instances. If the strategies associated with multiple concurrent schema instances contin-

ually dump this information to the global blackboard and then read it back again, the

blackboard quickly becomes a computational bottleneck. The local blackboards alleviate

this problem by reducing the message tra�c on the global blackboard.

From a knowledge engineering viewpoint, the distinction between the global and

local blackboards promotes modularity. By allowing only the strict \global hypothesis"

protocol to be exchanged between schemas, the schema system encourages modularity.

Each schema can maintain local information in an idiosyncratic manner on its local

blackboard, allowing the schema designer the freedom of any appropriate knowledge

representation and control style. At the same time, because schemas communicate with

each other only through global hypotheses, the designer of a new schema is assured of a

smooth join to the remainder of the system.

2.1.5 Evidence Accumulation

The current version of the schema system takes a particularly simple view of evidence

representation and combination. Con�dence values lie along a coarse, �ve point ordinal

scale: `no evidence', `slim-evidence', `partial-support', `belief', and `strong-belief'. When

combining evidence, a heuristic mechanism is used that involves the speci�cation of key

pieces of evidence that are required to post an object hypothesis with a given con�dence

to the global blackboard. Subsets of secondary evidence are used to raise or lower these

con�dences. Speci�cations of these subsets, and the e�ect their con�dence has on the

overall con�dence, is part of the knowledge engineering e�ort involved in constructing

a schema. Although this method of evidence representation and accumulation may

lack considerably from a theoretical point of view, it has worked surprisingly well in

interpretation experiments on images of New England house and road scenes [3].

2.2 Knowledge Engineering in the Schema System

Schemas are assembled by specifying (1) the appropriate set of knowledge sources to be

used, (2) a set of strategies which conditionally sequence their application, and (3) a

function to translate internal evidence into a con�dence in the global hypothesis. One of

the main impediments to wide scale experimentation with the schema system has been

the time and energy required to design a schema. Schema construction can be viewed as

an exercise in experimental engineering, in which prototype schemas are developed using

existing system resources. These schemas must then be tested on a representative set of

objects/images, failures noted and analyzed, and the schemas re- engineered to account

for the failures. In many cases, the descriptive information provided by the knowledge

sources may be inadequate. In this case, new knowledge sources must be developed and

tested (often a major research e�ort in its own right), integrated into the system, and

the schemas re-engineered to make use of the new information.

The problem of knowledge base construction has been a focus of research for several

years. In arti�cial intelligence, researchers have focused on how to extract knowledge

from experts, a scenario which does not apply to computer vision. Vision researchers have

concentrated instead on how knowledge bases are speci�ed. By restricting the message

types written to the global blackboard, the schema system enforces schema modularity

in an attempt to make them easier to declare and improve. The SPAM project at CMU

went even farther, developing a high-level language for describing objects ([11]). Work

4

in Japan has involved both automatic programming e�orts and higher-level languages

for specifying image operations ([10]).

3 Learning in Knowledge-Directed Vision

For the last two years we have taken a di�erent approach to knowledge base development.

Instead of making the knowledge base easier to program, we have decided to take the

programmer out of the loop. Our goal is a knowledge-directed vision system that learns

its own interpretation strategies.

As a �rst step toward achieving this goal we have designed the Schema Learning

System (SLS; [4]), as shown in Figure 1. SLS's task is to learn interpretation strategies

for the di�erent object classes in a domain. In particular, its task is to learn a strategy

that minimizes the cost of object recognition, subject to accuracy constraints supplied by

the user. For example, a user might ask for a strategy for recognizing the (3D) position

and pose of a building, accurate to within 5%. SLS would then learn a strategy that

satis�ed this goal by experimenting with training images. Once learned, the strategy is

available any time the user needs to locate a building.

Training
Images

Object
Models

 Visual
Procedures

SLS Recognition
 Graph

Image

Exec.
Monitor Hypotheses

Compile-time (Training) Run-time

Learning Object Recognition Strategies Object Recognition

Figure 1: Top-level view of SLS architecture

As implied by the scenario above, SLS's operations can be divided into two parts: a

compile-time (or \learning-time") component in which SLS develops recognition strate-

gies, and a run-time component in which the interpretation strategies are applied to new

images. In general, SLS has been designed to optimize run-time performance, at the

expense of compile-time (learning) e�ciency.

SLS's task is made easier by two simplifying assumptions. First, SLS learns to recog-

nize instances of each object class independently. This is easier than learning concurrent,

cooperating strategies. Second, SLS is given a set of parameterized knowledge sources

from which to build its recognition strategies. Thus we are not asking SLS to learn new

knowledge sources or 3D object models. Instead, we are asking it to learn control and

evidence combination. It must decide which knowledge sources to execute when, and

how to combine the evidence from multiple knowledge sources into a single con�dence

5

value. Implicit in this task statement is the possibility that the object model may not

be completely accurate, and that some of the knowledge sources may be misleading or

irrelevant.

3.1 Modeling the Interpretation Process

SLS, like the schema system before it, adopts the blackboard model of interpretation.

In other words, interpretation is viewed as a process of applying knowledge sources to

hypotheses. Hypotheses are proposed statements about the image or its interpretation,

whose type is determined by their level of abstraction. Common levels of abstraction for

computer vision include: image, region, (2D) image line segment, line segment group,

(3D) world line segment, (3D) orientation vector, surface patch, face, volume, object and

context. An \interpretation" is a set of believed hypotheses at the level of abstraction

requested by the user. Knowledge sources are procedures from the image understanding

literature (e.g. region segmentation, line extraction or vanishing point analysis) that can

be applied to one or more hypotheses.

SLS, however, re�nes the blackboard model of interpretation by constraining knowl-

edge sources to fall into one of two classes. Generation knowledge sources (GKSs) create

new hypotheses. For example, region segmentation is a GKS, since it creates new hy-

potheses (regions) when applied to an old hypothesis (the image); a stereo line matching

algorithm, which produces a (3D) world line segment from two (2D) image line segments,

is another GKS. Veri�cation knowledge sources (VKSs), on the other hand, return dis-

crete evidence values about the hypotheses they are applied to. An example of a VKS

is a pattern matching algorithm that determines if the color or texture of an image re-

gion matches the expected color or texture of the object. In general, any routine which

measures features of hypotheses can be converted into a VKS by discretizing its results.

3.2 Recognition Graphs

Interpretation strategies are represented in SLS as generalized multi-level decision trees

called recognition graphs that direct both hypothesis formation and hypothesis veri�ca-

tion, as shown in Figure 2. The premise behind the formalism is that object recognition

is a series of small veri�cation tasks interleaved with representational transformations.

Recognition begins with trying to verify hypotheses at a low level of abstraction, separat-

ing to the extent possible hypotheses that are reliable from those that are not. Veri�ed

hypotheses (or at least, hypotheses that have not been rejected) are then transformed to

a higher level of abstraction, where a new veri�cation process takes place. The cycle of

veri�cation followed by transformation continues until hypotheses are veri�ed at the goal

level of abstraction (as speci�ed by the user), or until all hypotheses have been rejected.

The structure of the recognition graph reects the veri�cation/transformation cycle.

Each level of the recognition graph is a decision tree that controls hypothesis veri�cation

at one level of abstraction by invoking VKSs to gather support for or against each

hypothesis. When the decision tree determines that a hypothesis is reliable, a GKS

transforms it to another level of abstraction, where the process repeats itself.

As de�ned in the �eld of operations research, decision trees are a form of state-space

representation composed of alternating choice states and chance states. When searching

for a path from the start state to a goal state, an agent is only allowed to choose where

to go next from a choice state. If the current state is a chance state the next state is

6

Level of Abstraction: N

Level of Abstraction: N - 1

Know.
State

 VKS
Appl.

Know.
State

Know.
State

Know.
State

Know.
State

Know.
State

 VKS
Appl.

 VKS
Appl.

Subgoal

 GKS
Appl.

. . .

. . .

. . .

. . .

Figure 2: A recognition graph. Levels of the graph are decision trees that verify hy-

potheses using VKSs. Hypotheses that reach a subgoal are transformed to the next level

of abstraction by a GKS.

selected probabilistically

1

. The search process is therefore similar to using a game tree

against a probabilistic opponent.

In SLS, the choice states are hypothesis knowledge states as represented by sets of

hypothesis feature values. The choice to be made at each knowledge state is which VKS

(if any) to execute next. Chance states in the tree represent VKS applications, where the

chance is on which value the VKS will return. Hypothesis veri�cation is an alternating

cycle in which the control strategy selects which VKS to invoke next (i.e., which feature

to compute), and the VKS probabilistically returns a feature value. Thus hypotheses

advance from knowledge states to VKS application states and then on to new knowledge

states. The cycle continues for each hypothesis until it reaches a subgoal state, indicating

that it has been veri�ed and should be transformed to a higher level of abstraction, or a

failure state, indicating that the hypothesis is unreliable and should be rejected.

In general, SLS learns in advance what VKS to choose at each knowledge state

in order to avoid making run-time control decisions. As a result, when SLS builds a

recognition graph it leaves just one option at each choice node. Sometimes, however,

the readiness of a VKS to be executed cannot be determined until run-time, in which

1

Operations research terminology is based on trees rather than spaces, so it refers to choice

nodes and chance nodes rather than choice states and chance states, and to leaf nodes and root

nodes rather than goal states and start states.

7

case SLS will leave several options at a choice node, sorted in order of desirability

2

. At

run-time the system will choose the highest-ranking VKS that is ready to be executed.

It should be pointed out that recognition graphs can represent a variety of strategies.

Bottom-up strategies are represented by having GKS links point \up" the hierarchy, i.e.

by having them generate more abstract hypotheses from less abstract ones. Top-down

strategies are implemented by having the GKS links point the other way. Most strategies

are mixed, in that they have GKS links going both up and down the hierarchy. For

example, 2D line segment hypotheses can either be extracted from the image (bottom-

up) or predicted by an object pose hypothesis (top-down). Re�nement strategies can be

represented through seemingly circular links representing iterative processing, as when

a perspective KS projects a 3D pose hypothesis, creating 2D line segment hypotheses

which are compared to lines extracted from the image and used to generate a more

accurate pose hypothesis (which, if veri�ed, can be used to revise the 2D line segment

hypotheses...).

3.3 The Schema Learning System (SLS)

The Schema Learning System (SLS) constructs interpretation strategies represented as

recognition graphs. SLS is given (1) a set of parameterized knowledge sources; (2) a set of

user-interpreted training images; and (3) a goal, in terms of a target representation and

the required accuracy. It produces a recognition strategy that minimizes the expected

cost of achieving the goal.

3.3.1 Exploration

SLS learns recognition strategies through a three-step process of exploration, learning

from examples, and optimization. The �rst step, exploration, is algorithmically the

least interesting. It exhaustively applies all available knowledge sources (both VKSs and

GKSs) to the training images in order to estimate the expected cost of each knowledge

source (measured as execution time) and the probability of each VKS result. The ex-

haustive exploration phase also produces as many correct interpretations as possible with

the existing GKSs to serve as examples for the second phase of learning. At this point

computational e�ciency is unimportant, since the goal is run-time e�ciency.

3.3.2 Learning from Examples

SLS's second step looks at the correct interpretations produced during exploration and

infers from them a scheme for generating good hypotheses while minimizing the number

of false hypotheses by tracing back the GKSs employed to produce each good hypotheses.

For example, a correct 3D pose hypothesis might be generated by �tting a plane to a set

of 3D line segments. If so, the pose hypothesis is dependent on the plane �tting GKS. It

is also dependent on whatever GKS created the 3D line segments, and any GKSs needed

to create its arguments, etc. The result of tracing back a hypothesis' dependencies is

an AND/OR tree like the one shown in Figure 3. `AND' nodes in the tree result from

2

This is just one of many complications that arise from multiple-argument knowledge sources.

In general, we will describe SLS as if all KSs took just one argument in order to keep the

description brief; see [5] for a more complete description.

8

GKSs that require multiple arguments, such as stereo matching. `OR' nodes in the tree

occur when a hypothesis is redundantly generated by more than one GKS (or a single

GKS applied to alternate hypotheses).

Pose-10

3D-lineset-1 3D-point-set-19

Left-lineset-2 Right-lineset-2 2D-point-set-4
.
.
.

.

.

.

.

.

.

Line-to-plane-fit TP Point-to-plane-fit TP

Stereo Matching TP Geometric Matching TP

Figure 3: An example of a dependency tree showing the di�erent ways that one correct

pose hypothesis can be created during training.

Each dependency tree is viewed as an example of how correct hypotheses are created.

The example is generalized by replacing the hypotheses in the tree with their feature

vectors. In other words, instead of viewing Figure 3 as showing how pose-10 was created

during training, we interpret it as an example showing how poses can be created by a

speci�c GKS (e.g. the GKS for �tting lines to planes) when applied to hypotheses with

speci�c features (in this case, the feature values of 3D-lineset-1).

Since the goal is to learn a strategy that will generate (and later verify) all instances of

an object or object class, SLS collects the dependency trees of all the correct hypotheses

into a single multi-sample tree by ANDing their root nodes together. By de�nition,

any set of conditioned GKSs (i.e. GKSs with speci�c feature values as preconditions to

the arguments derived from the training set) that satis�es this tree will generate all the

correct hypotheses over the training images. However, there is no reason to believe that

such a set of GKSs will generate only correct hypotheses; it will generate incorrect ones as

9

well. Therefore, SLS's job in step two is to �nd a set of (conditioned) GKSs that satis�es

the multi-sample dependency tree while minimizing the number of incorrect hypotheses

generated.

SLS �nds the optimal set of generation knowledge sources (GKSs) by converting

the multi-sample dependency tree into disjunctive normal form (DNF) and selecting the

conjunctive subterm that generates the fewest incorrect hypotheses. Because of the way

the tree was constructed, the GKSs in any subterm are su�cient to generate correct

goal-level hypotheses for every object instance in the training set.

The AND/OR dependency tree is converted into DNF by a standard algorithm that

�rst converts its subtrees to DNF and then either merges the subterms (if the root is an

OR node) or takes the symbolic cross-product of the subterms (if the root is an AND

node). SLS, however, is designed to �nd just the minimal term of the resulting DNF

expression; as a result, any time during the conversion process that a DNF has two

subterms one of which is a logical superset of the other, the superset term can be pruned

from the expression.

Readers may note that converting an arbitrary AND/OR tree to DNF is an expo-

nentially expensive process: in the worst case, a tree with N literals can produce a DNF

expression with 2

N

subterms. In the case of SLS, the pruning condition reduces the

worst-case complexity to N choose b

N

2

c, but this is still exponential. The worst-case

analysis, however, is largely inappropriate because it corresponds to random data. As

long as the samples in the training set are visually similar (and unless all of the knowledge

sources produce random results) the worst case will never arise.

3.3.3 Optimization

As was stated earlier, recognition graphs interleave veri�cation and transformation, using

VKSs to gather evidence to verify or reject hypotheses, and GKSs to transform them to

higher levels of abstraction. By building a dependency tree from the training samples,

converting it to DNF and picking the minimal subterm (measured by the number of

incorrect hypotheses generated), SLS learned which GKSs to include in a strategy that

generates correct hypotheses while minimizing the number of false alarms (and presum-

ably cost). Just as important, it learned what evidence to require of a hypothesis before

it should be transformed. The subterms of the DNF expression are GKSs constrained

to be applied to hypotheses with speci�c sets of features, and these feature sets are the

subgoals of the recognition process.

In the third step of the algorithm, SLS optimizes recognition by building decision

trees for each level of abstraction that minimize the expected cost of reaching a subgoal

or, conversely, of deciding that a hypothesis cannot satisfy any subgoal and should be

rejected. This is achieved at each level by �rst laying out the graph of all possible

sequences of knowledge states and VKS applications and then pruning it to leave just

the tree that minimizes the expected cost.

For each level of abstraction, the initial graph layout begins with a start state. VKS

applications are added for every VKS that can be applied to a hypothesis in the start

state, and these VKS applications lead to new knowledge states, which in turn have more

VKS applications attached to them, and so on. The expansion of the graph continues

until it reaches either a subgoal knowledge state or a knowledge state that is incompatible

with every remaining subgoal (i.e. a failure state).

10

Once the initial graph has been laid out, SLS begins to prune it by working backwards

from the subgoal and failure nodes toward the start state. At each VKS application

node it calculates the expected cost of reaching a subgoal or failure node from that

particular application node. At each knowledge state, it �nds which of the possible VKS

applications has the lowest expected cost and removes the other VKSs from the list of

candidates (in the event that the optimal VKS might not be executable at run time, it

sorts the remaining VKSs in order of least to greatest expected cost rather than removing

them.

More formally, we refer to the subgoal states and the failure states at one level

of a recognition graph as the terminal states for that level. The cost of promoting a

hypothesis from knowledge state n to a terminal state is called the Expected Decision

Cost (EDC) of state n, and the expected cost of reaching a terminal state from state n

using VKS k is the Expected Path Cost (EPC) of n and k. Since veri�cation KSs return

discrete values, we refer to the possible outcomes of a veri�cation KS k as R(k), and the

probability of a particular value e being returned as P (ejk; n); e 2 R(k).

The EDC's of knowledge states can be calculated starting with the terminal states

and working backwards through the recognition graph. Clearly, the EDC of a subgoal

or failure state is zero:

EDC(n) = 0; n 2 fterminal statesg:

The expected path cost of reaching a terminal state using a particular VKS is:

EPC(n; k) = C(k) +

X

e2R(k)

(P (ejn; k)� EDC(n [e))

where n is the knowledge state expressed as a set of feature values, n[e is the knowledge

state that results from VKS k returning feature value e and C(k) is the estimated cost

of applying k.

The EDC of a knowledge state, then, is the smallest EPC of the knowledge sources

that can be executed at that state:

EDC(n) = min

k2KS(n)

(EPC(n; k))

where KS(n) is the set of VKSs applicable at node n.

The equations above establish a mutually recursive de�nition of the expected decision

cost of a knowledge state. The EDC of a knowledge state is the EPC of the optimal

VKS application at the state; the EPC of a VKS application is the expected cost of

applying the VKS plus the expected remaining EDC after the VKS has been applied.

The recursion bottoms out at terminal nodes, whose EDC is zero. Since every path

through the object recognition graph ends at either a subgoal or a failure node, the

recursion is well de�ned. Furthermore, since the EDC of a level's start state estimates

the expected cost of verifying a hypothesis at that level of abstraction, the EDCs of all

the start states can be combined with estimates of the number of hypotheses generated

at each level to estimate the expected run-time of the strategy as a whole.

3.4 Preliminary Results

The previous sections give a simpli�ed description of a complex system that has only

recently been implemented. Because the system is new, complete and thorough ex-

11

periments to examine its behavior on real images have not yet been run. Preliminary

experiments testing its success both as a knowledge engineering tool and as a machine

learning system are underway; in this section we report the results of one such experi-

ment.

The goal of the experiment was to test (1) how long it would take using SLS to

develop a strategy for recognizing a building from an approximately known viewpoint

and (2) how robust the resulting strategy would prove to be. To this end fourteen images

like the one shown if Figure 4 were taken of the Marcus Engineering Building on the

UMass campus from a dirt path three to four hundred feet from the building. The

pictures were taken so that the image's y-axis would be parallel to gravity (i.e. with

zero tilt and roll), however there were signi�cant rotations in pan from one image to the

next; as a result, the pose of the building has four free parameters, three locational and

one rotational. SLS's goal was to learn a strategy that could identify the pose of the

building to within 10

�

rotation, 10% depth (scale) and 1

�

of the correct image angle.

Figure 4: The �rst of twenty-one images taken from the same approximate view-

point showing the Marcus Engineering building.

3.4.1 Knowledge Engineering

From the knowledge engineering perspective, preparing the strategy required fewer than

three days of e�ort by a single person. One day of this was spent establishing the ground

truth data that would be used to judge which hypotheses were correct and which were

not. Another day was spent constructing a wire-frame model of the building's shape to

be used as a compile-time argument to the pose determination ([9]) and geometric model

12

Figure 5: The same image as Figure 4, with the building pose found by SLS

overlaid on it.

matching ([1]) knowledge sources. Finally, part of a third day was spent parameterizing

and/or slightly modifying general-purpose knowledge sources.

Overall, the experiment can be considered a success from the knowledge engineering

perspective. Not only was the knowledge base development time reduced to under three

days, but most of that time was spent on tasks that can be easily automated. Ground

truth, in particular, can be established to within acceptable limits by laser range �nders

or other direct 3D-imaging devices when the training images are acquired, and in many

industrial applications shape models can be transfered directly from existing CAD/CAM

databases. It therefore seems reasonable that object recognition strategies can be ac-

quired in less than a day.

3.4.2 Experimental Robustness and E�ciency

The aim of the experiment was to test both the robustness of the strategies learned by

SLS and the computational complexity of SLS itself. The later point, in particular, was

of concern: in the worst case, the algorithms for reducing dependency trees to DNF

format can produce exponentially more terms than there are training samples, but the

worst case corresponds to essentially random data. As long as the training sample are

self-similar this case should never arise; in fact, we expected that the observed complexity

measured as the number of terms in the DNF expression should be nearly linear in the

number of training samples, since each additional training sample is less likely than its

predecessor to alter the �nal DNF expression.

Robustness was tested by a \leave N out" scheme of testing. We began by training

13

a strategy on thirteen of the images and testing on the fourteenth, and repeating this

process fourteen times. Not only did SLS learn a strategy which succesfully generated a

correct hypothesis for the test image every time, but it learned the same strategy in all

fourteen cases. (The strategy's ability to verify hypotheses was not tested.)

The experiment was then repeated using smaller and smaller sets of images as train-

ing data, training initially on twelve images, then on eleven, and so on all the way down

to the ridiculous extreme of training a strategy on a single image and testing it on the

other thirteen. Figure 6 shows the results of running fourteen tests for each number of

training samples; in this domain, eight training images were enough for SLS to learn

a strategy that reliably generated correct hypotheses, and even strategies infered from

only seven training images could generate a correct building pose hypothesis 95% of the

time.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

of training samples

0%

20%

40%

60%

80%

100%

%
 C

or
re

ct

Learning Hypothesis Generation Strategies

(Engineering Building)

Figure 6: Performace of the strategy learned by SLS for recognizing a particular

building from a known viewpoint. The horizontal axis shows the number of

images in the training set, while the vertical axis shows the percentage of test

images in which the correct hypothesis was generated.

Throughout this experiment, the complexity of the algorithm matched our predic-

tions. The number of terms in the DNF expression, instead of growing exponentially

with the number of training samples as the worst-case analysis predicts, was an approx-

imately linear function of the number of training samples; in fact, the slope of the line

was negative, and in no case did the �nal DNF expression have more than six terms.

Figure 7 shows the average number of terms in the DNF expression for each training set

size.

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13

of training instances

0

1

2

3

A
vg

. #
 o

f
T

er
m

s
in

 D
N

F
ex

pr
.

Complexity of Learning By Examples

(Engineering Building)

Figure 7: The observed complexity of learning by examples (average). The hor-

izontal axis shows the number of images in the training set, while the vertical

axis shows the average number of terms in the resulting DNF expression.

4 Conclusion

It is generally accepted that the timely and appropriate use of relevant knowledge can

substantially reduce the search encountered in establishing 'instance-of' relationships be-

tween image data and its interpretation(s). This premise is supported by our experience

with the schema system, a system that used object-speci�c knowledge to interpret road

and house scenes.

Unfortunately, the problem of how to acquire and structure knowledge has limited

most knowledge-based vision systems to highly constrained domains. The schema learn-

ing system (SLS) is an experimental system that learns how to recognize objects from

training images. The eventual goal is to completely eliminate the knowledge engineering

task.

At the moment, SLS still requires a human to supply it with parameterized knowledge

sources and a set of interpreted training images. The previously time-consuming process

of supplying control knowledge, however, has been eliminated, reducing the time specify

and test a new object description to about one day. SLS learns its own control strategies

that minimize the expected cost of recognition. Moreover, since visual control strategies

are often counterintuitive, the interpretation strategies learned by SLS often outperform

interpretation strategies designed by hand.

References

[1] J. Ross Beveridge, Richard Weiss and Edward M. Riseman. \Optimization of 2-

15

Dimensional Model Matching," Proc. of the DARPA Image Understanding Work-

shop, Palo Alto, CA., June 1989. Morgan-Kaufman Publishers, Los Altos, CA. pp.

815-830.

[2] John Brolio, Bruce A. Draper, J. Ross Beveridge and Allen R. Hanson. \The ISR:

an intermediate-level database for computer vision", Computer, 22(12):22-30 (Dec.

1989).

[3] Bruce A. Draper, Robert T. Collins, John Brolio, Allen R. Hanson and Edward M.

Riseman. \The Schema System," International Journal of Computer Vision, 2:209{

250 (1989).

[4] Bruce A. Draper and Edward M. Riseman. \Learning 3D Object Recognition Strate-

gies", 3rd International Conference on Computer Vision, Osaka, Japan, Dec., 1990.

pp. 320-324.

[5] B.A. Draper. Learning Object Recognition Strategies, forthcoming Ph.D. dissertation,

Univ. of Massachusetts.

[6] Allen R. Hanson and Edward M. Riseman. \VISIONS: A Computer System for

Interpreting Scenes," in Computer Vision Systems, Hanson and Riseman (eds.),

Academic Press, N.Y., 1978. Pp. 303-333.

[7] Allen R. Hanson and Edward M. Riseman, \The VISIONS image understanding

system { 1986" in Advances in Computer Vision,C. Brown (ed.), Erlbaum: Hillsdale,

N.J., 1987.

[8] Frederick S. Hillier and Gerald J. Lieberman. Introduction to Operations Research.

Holden-Day, Inc: San Francisco, 1980.

[9] Rakesh Kumar and Allen R. Hanson. \Robust Estimation of Camera Location and

Orientation from Noisy Data with Outliers," ??.

[10] Takashi Matsuyama. \Expert Systems for Image Processing: Knowledge-Based

Composition of Image Analysis Processes" Computer Vision, Graphics, and Image

Processing, 48:22{49 (1989).

[11] David M. McKeown, Jr., Wilson A. Harvey, and Lambert E. Wixson. \Automating

Knowledge Acquisition for Aerial Image Interpretation" Computer Vision, Graphics,

and Image Processing, 47:37{81 (1989).

[12] H. Penny Nii. \Blackboard Systems: The Blackboard Model of Problem Solving and

the Evolution of Blackboard Architectures," AI Magazine, 7(2):38-53 (1986).

16

