
Learning Grouping Strategies for 2D and 3D Object Recognition�

Bruce A. Draper
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

bdraper@cs.umass.edu

Abstract

The Schema Learning System (SLS) automatically as-

sembles task-specific object recognition programs from

existing IU algorithms. SLS brings together two emerg-

ing technologies – image understanding and machine

learning – to automatically build customized procedures

for recognizing and extracting specific object classes in

constrained contexts. This paper describes the represen-

tations and algorithms underlying SLS, and presents an

example of SLS learning to recognize rooftops in aerial

images of Ft. Hood. This task is the first of several tasks

from the ARPA/ORD sponsored RADIUS project [6]

that SLS is intended to learn without human interaction.

In later experiments, SLS will be tasked to automatically

construct 3D models of buildings and other objects of

interest from overlapping aerial images.

1 Introduction

Althoughthe field of image understanding(IU) has made

significant advances over the past twenty years, we have

not yet developed a theoretical or practical understanding

of how the many components of vision are combined

into coherent, functioning systems. As a result, there

are few applications of image understanding technology

in the real world, even though the library of available IU

techniques keeps growing. The problem is the labor and

expertise required to select the right set of IU algorithms

for a specific task, and to combine them into a single,

smoothly-functioning system.

Much of what makes the integration problem difficult is

that the most effective combinations of algorithms are

often object, context or task dependent. Some objects,

for example, have distinct colors that can be used to

�This work was supported by the Advanced Research Projects
Agency (via USAF Rome Laboratory) under contract number
F30602-94-C-0042.

focus attention on particular parts of an image, while

others have easily identifiable substructures, repetitive

textures, or other properties that help us to recognize

them and place them in space. Unfortunately, the spe-

cific features and techniques needed vary from object to

object and context to context, so that most visual tasks

require specialized solutions, even within constrained

domains such as aerial image interpretation. This lim-

its the general use of image understanding technology,

because successful vision systems must be redesigned

and/or hand-tuned for each new application.

At the same time, control engineers have long modeled

the control of discrete events (such as algorithms) as

Markov Decision Problems (MDPs). Although the tra-

ditional control-theoretic techniques for solving MDPs

(i.e. Dynamic Programming) require a more detailed

process model than is generally available for IU applica-

tions, we believe that recent advances in reinforcement

learning [15, 17, 16, 18] and in function approximation

(including, but not limited to, backpropagation neural

networks [13, 11]) make it possible to learn near-optimal

control policies for image understanding. In principle,

one should be able to transform the task of constructing a

new vision application to one of training the system with

a set of representative input-outputexamples relevant for

the task. Given a library of available IU algorithms and

representations, the goal is to automatically select se-

quences of algorithms and intermediate representations

to optimize specific applications while minimizing the

involvement of the user.

1.1 The Need for Learning in Complex IU
Applications

In many ways, the stage has been set for learning con-

trol strategies for image understanding by the research of

the past twenty years. Computer vision researchers have

been dividing naturally - without any global consensus or



mandate - into 10 or 20 subfields with small,well-defined

problems. This has led to the development of specific

mathematical theories and algorithmic techniques for

each subdiscipline. There are now several good and im-

proving algorithms for camera calibration, edge and line

extraction (straight and curved), stereo analysis, track-

ing, depth from motion (two-frame and multi-frame),

shape recovery, and 3D pose determination, to name just

a few. Indeed, computer vision researchers have made

more progress than most outside the field (and many in-

side) are aware of. This state of affairs is due primarily

to our inability to easily produce highly visible results in

the form of integrated task-specific systems.

The need for robust and flexible techniques that adapt

to the user without requiring extensive explicit program-

ming and customization is particularly apparent in image

understanding problems that exploit context and/or mod-

els, both of which can be expected to change over time.

Vision systems that learn and adapt are one of the most

important directions in IU research right now. This re-

flects an overall trend – to make intelligent systems that

do not need to be fully and painfully programmed. It

is the only way for us to develop vision systems for the

military that are robust and easy to use in many different

tasks.

1.2 Learning Strategies for 2D and 3D
Building Reconstruction

The ARPA/ORD RADIUS project is an interesting ex-

ample of both the importance of IU technology and the

problems with it. Current military doctrine is to achieve

dominant battlefield awareness by digitizing the battle-

field, which implies that the number of images collected

and interpreted will have to increase by orders of mag-

nitude. Unfortunately, the number of image analysts

available to interpret this data is expected to remain the

same or even decrease, meaninn that each analyst will

have to become far more productive, presumably by au-

tomating or semi-automating portions of their task.

To this end, the RADIUS project has sought to develop

IU tools to automate analysis tasks, such as (2D) building

detection, (3D) building reconstruction, change detec-

tion and road detection. As part of this program, several

universities have developed new and original algorithms

for achieving all or parts of these tasks. Because of the

practical nature of the RADIUS project’s goals,however,

these universities have had to craft not just isolated al-

gorithms, but complete, functioning systems. Although

many of the underlying algorithms are generally useful,

changes in the problem statement – such as new im-

age domains and/or new types of sensors – have often

meant that the overall system had to be retuned, if not

overhauled entirely, in order to work on the new task.

This is exactly the type of problem that SLS is meant to

address, so we have adopted the RADIUS data and task

statements as a test domain for SLS. This paper presents

some early results of a major experiment in using SLS

to accomplish RADIUS-project tasks such as building

detection and reconstruction. The first of these tasks

(described below) is to recognize the image positions of

rooftops in aerial photographs. Several other universities

have previously addressed this problem [7, 9] developing

hand-crafted strategies for finding rooftops by grouping

line segments, analyzing shadows, and exploiting other

2D image cues. Our goal for SLS is to automatically

learn an equivalent (or better) strategy based on the same

type of information.

Ideally, SLS’s library should contain the same subrou-

tines used in other rooftop recognition projects. Unfor-

tunately, SLS’s procedures must be executable UNIX

modules, while many of the subroutines developed for

RADIUS are Lisp functions embedded in RCDE [10].

Therefore, a small set of RADIUS-style vision routines

(recoded as stand-alone C or C++ modules) have been

used for this experiment, many although not all from

UMass. In this paper, the challenge for SLS is to find a

control policy for applying these algorithms that maxi-

mizes system performance on the (2D) roof recognition

task.

The strength of SLS is not only that it produces effective

control policies, but that it becomes possible to recon-

figure the system for new tasks as they arise. Currently,

SLS has access to only a small set of IU algorithms,

most of which extract 2D information from a single im-

age. In the next few months, however, we expect more

algorithms to be added to this library, including 3D al-

gorithms for computing digital elevation maps (DEMs)

from stereo image pairs and algorithms for fitting planes

and other surfaces to the DEM data. As each new algo-

rithm is added, SLS can learn a new control policy that

learns how best to take advantage of the new routine in

conjunction with the 2D and 3D algorithms already in

its library. SLS can also learn new control policies to

adapt to changing goals, as we expand the system from

finding flat-roofed buildings to constructing 3D build-

ing models of flat-roofed buildings and eventually to



constructing models of buildings with multi-level roofs,

peaked roofs, curved roofs, and/or large structures (such

as air conditioning or water storage units) on the roof.

2 Markov Decision Problems

Control engineers have long modeled the control of dis-

crete processes as a Markov Decision Problem (MDP).

Although even a brief tutorial on MDPs is beyond the

scope of this article, MDPs can be pictured in terms

of systems (similar to finite state machines) having a

discrete set of states and making discrete transitions be-

tween states as a result of actions. Initially, the system

starts in state s
0

; in response to an action (call it a
0

), the

system is advanced to a new state (call it s
1

); the system

is also given a reward (or penalty) for making the transi-

tion from state s
0

to state s
1

. The next action a

1

, applied

at state s
1

, advances the system to state s
2

at time t
2

(and

gives it another reward or penalty), and so on until the

system reaches a terminal state. The goal of a Markov

Decision Problem is to select a sequence of states and

actions s
0

; a

0

; s

1

; a

1

; :::; s

n

; a

n

that maximizes the total

reward of reaching a terminal state. (MDPs can also

maximize the total reward as t ! 1, but for the pur-

poses of this paper we will limit the discussion to tasks

with terminal states.)

Two features of the MDP formalism are particularly im-

portant. One is that the MDP formalism is stochastic;

each action a

i

has a probability function associated with

it that gives the probability of transitioning to state s

k

from state s
j

(written as P (s
j

ja

i

; s

k

)). The other is that

the solution to a Markov Decision Problem is a control

policy, often expressed as a table, that maps actions onto

states so as to maximize the expected total reward. (This

is necessary since the outcomes of actions are stochas-

tic.)

Many readers may be familiar with Dynammic Program-

ming, a set of techniques for computing optimal control

policies for MDPs, given that the transition probabili-

ties and rewards are known a-priori for each action/state

pair. Unfortunately, such process models are often un-

available, and reinforcement learning is a branch of ma-

chine learning research that seeks to learn optimal con-

trol policies for MDPs without knowing the transition

probabilities in advance, generally by developing em-

pirical estimates of these probabilities on-line.

Another property of the MDP formalism are the V

�

(s)

and Q

�

(s; a) functions. Intuitively, V �

(s) is the ex-

pected reward from starting in state s and following

control policy � until a terminal state is reached; the

V

�

(s) function is also sometimes called the state value

function. Q�

(s; a) is the expected reward from starting

in state s, applying action a, and then following control

policy� thereafter until a terminal state is reached; the Q

function is sometimes called the state/action value func-

tion. The basis of Dynammic Programming algorithms

is that given a process model, they computeV �

(s) and/or

Q

�

(s; a) for every state or state/action pair, where � is

the optimal policy. The V

�

(s) and Q

�

(s; a) functions

can then be used to generate the optimal policy table by

selecting, for every state s, the action a with the highest

Q

�

(s; a) value.

3 The Schema Learning System

The Schema Learning System (SLS) uses reinforcement

learning and neural networks to automatically assem-

ble computer vision algorithms into working special-

purpose computer vision systems. It accomplishes this

by casting image understanding as a Markov Decision

Problem (MDP), in which the reward function is a mea-

sure of the accuracy of the final object hypothesis1. The

control policies learned by SLS reason across multiple

levels of representation, selecting the next action at each

step as a function of the “knowledge state” of the system.

The overall goal of SLS is to learn policies that produce

accurate object hypotheses, thereby maximizing the total

reward.

3.1 Actions

The levels of representation in SLS are a product of the

visual procedure library. Each procedure is declared to

have an input data type(s) and an output data type(s).

For example, an edge extraction procedure is applied

to images and produces edges, while an edge grouping

operator is applied to edges and produces either straight

lines or curves. The library therefore defines both the

visual procedures and the levels of representation that

SLS can reason across.

Not surprisingly, the visual procedures in the library are

the actions of the MDP. The states of the system cor-

respond to the data items (called tokens) produced by

visual procedures. For example, in the rooftop recogni-

tion scenario, the initial state of the system corresponds

to an image. If the action selected is an edge operator,

1In general, the reward functions may trade off accuracy for
efficiency, but we will not consider that here.



then this will produce a set of edges which becomes the

new state of the system. Thus the edge operator action

transitions the system from the initial image state to the

edge state.

3.2 State Spaces

Clearly, not all sets of edges are the same; neither are

all images, polygons, etc. In order to learn sophisticated

control policies, it is necessary to distinguish good (high

quality) data from bad. Unfortunately, it is not obvious

how to divide any given level of representation into a

discrete set of states a-priori (although in the past we have

learned policies by training decision trees to divide each

representation’s space of tokens into discrete states [5]).

As an alternative, we note that Markov Decision Prob-

lems can be defined over infinite state spaces. In this

formulation, the control policy becomes a function that

maps points in the (now infinite) state space onto ac-

tions, and the V

�

(s) and Q

�

(s; a) functions similarly

range over infinite state spaces. In particular, in SLS

we define a state space for every level of representation,

so that an action maps points in one space to points in

another space, depending on the level of representation

of its input and output. To return to the edge operator as

an example, it maps points in image space onto points in

edge space.

Each level of representation therefore has a state space

associated with it. This space is defined by the set of

measurable features defined for that representation. For

example, in the current experiment images have four

measurable features: average intensity, standard devi-

ation, edginess and speckle. The image state space is

therefore defined as a four dimensional space with each

feature as one dimension. Any particular image is rep-

resented as a point in this space. As another example,

one of the representation used heavily in the rooftop ex-

periments is the parallel line pair (i.e. two lines that are

parallel to each other). The parallel line pair space is five

dimensional, corresponding to the five features that we

have defined for parallel line pairs: relative angle, ex-

tent of overlap, average contrast, shadowness (whether

a shadow lies just to the outside of either line), and the

variance of the intensity (pixel) values between the lines.

Mathematically, this is a clean formulation of the prob-

lem. In practice, it only works if we can learn estimate

for the Q

�

(s; a) or V �

(s) functions over these infinite

state spaces from a finite number of samples. Inspired by

Tesauro [16] and Zhang and Dietterich [18], we use back-

propagation neural networks to learn approximations to

theQ�

(s; a) function for each action, as described below

in Section 3.4. The control policies learned by SLS are

therefore represented as a set of neural networks, each

approximating the Q function for a state space / action

pair. At run-time, the best action to apply to a state (i.e.

data token) is the action with the highest estimated Q

value given its feature vector.

3.3 Backtracking and the State/Action Queue

As a first pass, SLS can therefore be visualized as a

system that begins with a data token s

0

, typically an

image. SLS evaluates the function Q(s

0

; a) for every

action a that can be applied to token (and state) s
0

, and

selects the action with the highest estimated total reward.

The action (a
0

) is then applied to data s

0

, creating a

new data token s

1

. SLS then selects the action with

the highest estimate for Q(s

1

; a) and applies it, creating

state s
2

. This process repeats itself, creating a sequence

of states and actions s
0

; a

0

; s

1

; a

1

; :::; until a data token

at the target level of representation (for example, 2D

roof hypothesis) is created. Such a token represents a

terminal state for the system.

The problem with this simplified version of SLS is that

many IU procedures – particularly matching procedures

– do not produce a single data item as output. One

of the visual procedures in the library for recognizing

rooftops, for example, is a graph matching procedure

that looks for a rectangle given a set of line segments.

Depending on the number of rectangles in the image,

the matching procedure may produce zero, one or many

rectangle hypotheses. Consequently, when this action is

applied to a data state s

i

, it may produce many (or no)

possible successor states s
j

.

SLS therefore maintains a state/action queue. When an

action produces multiple results s
j1

; :::; s

jn

, it evaluates

the Q function for each new state/action pair, and creates

a state/action queue sorted by the estimated Q values. It

then applies the highest rated state/action pair, producing

zero, one or more new data states, which are then added

to the state/action queue.

The state/action queue2 does more than just allow SLS

to accomodate visual procedures that return an indeter-

minate number of arguments. It also allows SLS to

backtrack during the interpretation process, if necessary.

When SLS selects an action, it does so because the esti-

2We refrain from calling it the Q-Queue.



mated reward for that action/state pair is high (meaning

that it expects it to lead to a good goal-level hypoth-

esis). Sometimes, however, this estimate is erroneous,

and the selected action creates low-quality data (i.e. data

with low estimated V (s) values). In this case, SLS will

not pursue the bad hypothesis. Since new action/state

pairs made from the bad hypothesis will have lower Q

estimates than some of the unexecuted state/action pairs

already on the queue, SLS will backtrack to try one of

these previously unexecuted actions. In essence, unlike

most MDP applications, SLS is maintaining a complete

search tree, and using the Q and V functions as heuristics

to select which nodes to expand, in a manner similar to

A

� search.

3.4 Computing Q and V

There are several reinforcement learning algorithms for

estimating Q or V without a-priori process models, with

TD(�) [15] and Q-Learning [17] being the best known.

These algorithms build successively better approxima-

tions of Q and V based on experience gained by running

the system; Tesauro [16] and Zhang and Dietterich [18]

have used these techniques with neural network func-

tion approximators to learn Q values for systems with

continuous state spaces.

One problem with these techniques is that they have to

execute tens of thousands of actions to converge to good

Q and V estimates – even more when continuous state

spaces are used. In an application domain in which each

action may take a minute or more to execute, we do not

have enough time to directly apply these techniques.

Fortunately, very few sequences of visual procedures are

very long; in general, it only takes between five and ten

IU prodecures to get from an image to an object hypoth-

esis. As a result, although the search trees associated

with object recognition problems have high branching

factors, they are typically not very deep. It is possible to

do an exhaustive search of a limited number of training

images and use this data to estimate Q and V. (In the

rooftop recognition experiment, the exhaustive search

took about 8 hours per training image; less when the

known positions of rooftops in the training images were

used to constrain the set of hypotheses).

In particular, for every data instance created from a train-

ing image during exhaustive search, we can compute the

reward of the best goal-level token that can be created

from it. These reward values are samples of a function

Q

opt

(s; a), which represents the best reward that can be

computed starting from a state/action pair. Q

opt

(s; a)

should not be confused with Q

�

(s; a), the estimated

reward for the optimal control policy. It may not be

possible to select the best action at every state because

of ambiguity in the feature vectors, so Q

opt

(s; a) is an

optimistic estimate of Q�

(s; a) (hence the term Q

opt),

with the property that Qopt

(s; a) � Q

�

(s; a) 8s; a. In

fact, as the data features become more discriminating,

Q

opt

(s; a) approaches Q

�

(s; a) from above. Most im-

portantly, Qopt

(s; a) can be computed from far fewer

training samples than Q

�

(s; a), because each Q

opt

(s; a)

is independent of every other, so the neural nets can be

trained separately.

3.5 Properties of SLS

Readers who are familiar with MDPs may want a clari-

fication of certain technical points:

� Markov State Properties. The theory behind

MDPs, Dynammic Programming and Reinforce-

ment Learning relies on the so-called "Markov

Assumption" that the transition probabilities for a

state/action pair depend only on the state (and the

action), and not on any previous states. Formally,

it assumes that:

8i; j; k P (s

k

js

i

; a

j

) = P (s

k

js

1

; :::; s

i

; a

j

)

Clearly, this is only approximately true for the states

in SLS, as represented by the feature vectors associ-

ated with data instances. (Strictly speaking, SLS’s

states should be called situations.) Consequently,

the formal proofs that TD(�) and Q-Learning con-

verge to the optimal control policy do not apply.

� Optimality of Qopt. Even if SLS had true states

(instead of situations), a greedy policy with respect

to Q

opt would not be optimal. It is easy to construct

artificial examples in which Q

opt

(s; a)� Q

�

(s; a)

for some state/action pairs and not for others, lead-

ing to inefficient behavior. However, because Qopt

is an optimistic estimate and SLS uses a state/action

queue, applyingQopt

(s; a) will always produce the

optimal answer, even it sometimes executes unnec-

cessary actions along the way (assuming true states

and perfect function approximators, and therefore

an accurate estimate of Qopt

(s; a)).



Representation Features

Image Avg. Intensity, SD

Edginess, Speckle

LinePairSet Count, Avg Contrast

Parallel Line Pair angle, overlap, shadowness

surface fit, distance

Corner (L-Junction) angle, gap, shadowness

surface fit, scale

Line Group Count, Parallel Count

Corner Count

Polygon Edge Cover %

Worst Edge Cover

Avg Perimeter Contrast

Worst Side Contrast

Plane fit error (intensity data)

scale, shadowness

Table 1: Features defined for each level of representation in
the visual procedure library for recognizing rooftops.

4 Experiment – Detecting Rooftops

As has already been discussed extensively, we assigned

SLS the task of finding rooftops in aerial images of

Ft. Hood, a task that was copied from the RADIUS

project task domain. On each trial, the system is given

a subimage containing one or sometimes two buildings,

and a set of 3D line segments computed as described

in [4]. SLS is also given a visual procedure library that

defines eight levels of representation and nine visual

procedures. The levels of representation correspond to

images, sets of 3D line segments, parallel line pairs,

corners (i.e. vertices of orthogonal lines), line groups

and polygons. Because much of the power of SLS lies

in its ability to distinguish good data from bad based on

feature measurements, Table 1 gives the set of features

defined for each level of representation.

4.1 The Visual Procedure Library

The visual procedures employed are meant to approxi-

mate some of the techniques being used by researchers in

the RADIUS project. The 3D line segments were com-

puted off-line as described in [4], and filtered according

to the known height of the ground plane. Eight other vi-

sual procedures are available. The rectilinear line group-

ing (RLGS) procedure is an updated version of [12] that

computes relationships between nearby line segments; it

was updated to use information about the camera pose

(available for all RADIUS images) to remove the effects

of perspective distortionfrom orthogonal and parallel re-

lations. The SelectParallel and SelectCorner procedures

select parallel line pairs and corners out of the relations

computed by RLGS.

The grouping procedures (GroupParallel and Grou-

pLJnct) take a pair of parallel lines (or a corner) and

form a group out of all the lines that share a significant

relation to one of the lines in the original pair. This

results in a small group of line segments in which the

Graph Matching procedure can search for a rectangle of

lines. Alternatively, given a pair of parallel or orthogo-

nal line segments, the Par2Polygon and Corner2Polygon

algorithms go back to the original image data and apply

edge extraction and edge linking operators top down, in

order to look for evidence of additional lines that might

complete the rectangle. Finally, the Polygon2Roof pro-

cedure serves no purpose other than to give SLS a way

to designate a particular polygon as a roof.

At first glance, the visual procedure library would ap-

pear to have only four paths to the goal, which would

make SLS’s task fairly easy. The procedure for selecting

corners, however, typically finds on the order of fifty to

one hundred corners per image, while the procedure for

finding parallel line pairs typically finds twice that many.

As a result, there are approximately five hundred poly-

gons that SLS might detect in most images, and most of

the work that SLS does is in selecting which hypotheses

– in terms of which corners, parallel pairs, and polygons

– to pursue.

4.2 Detecting Rooftops

SLS was tested on a set of ten image fragments taken

from the RADIUS project’s images of Ft. Hood. The

training and evaluation was carried out using the ground

truth data developed for the (self) evaluation of UMass’s

hand-crafted building detector and 3D reconstruction

system [4].

SLS was tested using a “leave one out” methodology.

On each trial, SLS was be trained on data from nine

images, and then the control policy it learned would be

applied to the tenth image. This was repeated ten times,

each time holding a different image out of the train-

ing set for testing. Figure 1 shows one of the rooftops

extracted by SLS. Over ten trials, SLS found a polygon

that corresponded to a true roof surface nine times; in the

tenth trial, SLS confused part of the roof boundary with

shadow line that was near to (and parallel with) the true

edge of the roof, creating an incorrect roof hypothesis.



Figure 1: One of the ten aerial images of buildings at Ft.
Hood, and the roof hypothesis (shown in white) SLS learned
to find in it.

The contol policies learned by SLS did not always take

a straight path to the solution. Although they always

prefered finding corners to parallel lines, they would

often select one corner as being the most promising,

use it to generate a polygon hypothesis, and then decide

that the polygon was not as good as it thought it would

be. (In other words, the V value of the hypothesis was

lower than the Q value of the action that created it.)

The system would then backtrack, find the next most

promising corner, and try again. In general, the system

created ten to twenty polygon hypotheses (out of several

hundred possible ones) before finding the polygon it

finally selects to be the rooftop.

Significantly, SLS can adapt quickly to the introduction

of new procedures or features. The first time we tested

the system on the Ft. Hood data, it succeeded in only

about half the trials. Looking at its mistakes, we real-

ized it was often confusing shadows with the edges of the

buildings that cast them. We then added a shadowness

feature to the parallel pair, corner and polygon represen-

tations, and immediately SLS’s performance improved.

In general, we suspect that this is how SLS will be used

– as a system to which people add knowledge until it

is able to accomplish the assigned task. Ironically, it

could therefore be viewed as a very good knowledge

engineering tool.

5 Future Experimental Plans: 3D Building
Reconstruction

The goals of the RADIUS project go beyond simply rec-

ognizing objects in aerial images and determining their

image position. One of the goals of RADIUS is to pro-

vide the image analyst with tools that automatically con-

struct 3D models of buildings from overlapping aerial

views. Although more thorough testing of SLS on the

2D recognition task is also planned, the primary empha-

sis in the future will be on getting SLS to learn control

policies for 3D building reconstruction.

Although there are clues to 3D structure in monocular

images that SLS is not currently taking advantage of

(such as the sun angle and length of shadows), we be-

lieve that what will make 3D building reconstruction

far more effective is the depth information provided by

overlappingaerial views. The UMass terrain reconstruc-

tion system [14] constructs dense digital elevation maps

(DEMs) accurate to within a meter from pairs of images,

even when those images were taken with wide baselines

at highly oblique angles. This type of dense, 3D data, in

combination with the 3D lines computed in [4], should

make it possible to reconstruct highly accurate building

models. These procedures, along with additional pro-

cedures for fitting planes and complex surfaces to DEM

data, should give SLS many alternative strategies for

constructing 3D building models.

SLS’s task will be to combine the new 3D procedures

with the previous 2D set to form accurate and efficient

control policies. Although the 3D reconstruction results

are not available at the time of printing, we invite readers

to visit our URL site to see how the experiments are

going:

http:\\vis-www.cs.umass.edu

\projects\SLS3D.html

6 Conclusions

Over the last twenty years, image understanding re-

searchers have developed many effective algorithms for

solving visual subproblems,such as edge and line extrac-

tion, stereo analysis, tracking and pose determination.



Unfortunately, we have not developed a comprehensive

theory of how these algorithms might be put together

into functioning systems, with the result that many ad-

vances in IU have yet to see their way into military or

civilian applications.

The Schema Learning project is an attempt to understand

both the science and the practice of combining IU algo-

rithms into special-purpose vision system, by casting

the control of image understanding as a Markov Deci-

sion Problem. At an abstract level, this requires defining

state spaces for IU and algorithms for calculating the

Q and V functions; more practically, it requires build-

ing a system capable of integrating many different IU

algorithms.

The Schema Learning System (SLS) is a first pass at

such an algorithm and system. This paper presents the

results of an early experiment in which SLS was able

to learn control policies that successfully found rooftops

in aerial images in nine out of ten trials. The near-

term future goal, however, is to learn control policies for

automatically constructing 3D building models.

Acknowledgements

Many people have contributed their time, effort and code

to the Schema Learning System. Madi Das created the

neural net C++ object, based on code published in [11].

Bob Collins created the algorithm for computing 3D

line segments, as well as constructing the ground truth

models. Lionel Gaucher updated the 2D line extrac-

tion code of [2], thereby making the Par2Polygon and

Corner2Polygon procedures possible. Shashi Buluswar

contributed the shadow feature measurement program.

Gokhan Kutlu and Robert Heller programmed large parts

of ISR3, including SLS’s graphics interface. Frank

Stolle calculated the ground heights for each image, and

Chris Jaynes extracted the camera positions from RCDE.

References

[1] A. Barto, S. Bradtke and S. Singh. “Learning to

Act using Real-Time Dynamic Programming,” Ar-

tificial Intelligence, 1995.

[2] M. Boldt, R. Weiss and E. Riseman. "Token-Based

Extraction of Straight Lines," in IEEE Trans. on

Systems, Man and Cybernetics, 19(6):1581–1594,

1989.

[3] R. Collins, A. Hanson, E. Riseman, C. Jaynes, F.

Stolle, X. Wang and Y. Cheng. “UMass Progress

in 3D Building Model Acquisition,” ARPA Image

Understanding Workshop, 1996.

[4] B. Draper. “Learning Control Strategies for Ob-

ject Recognition,” in Symbolic Visual Learning, K.

Ikeuchi and M. Veloso (eds.), Oxford University

Press, New York, to appear 1996.

[5] D.Gerson and S.Wood, “RADIUS Phase II – The

RADIUS Testbed System,” Arpa Image Under-

standing Workshop, Monterey, CA, November

1994, pp. 231–237.

[6] A. Huertas, C. Lin and R. Nevatia. “Detection of

Buildings from Monocular Views Using Percep-

tual Grouping and Shadows,” ARPA Image Under-

standing Workshop, Washington, DC. 1993.

[7] R. Mohan and R. Nevatia. “Using Perceptual Orga-

nization to Extract 3D Structures,” IEEE Trans. on

Pattern Analysis and Machine Intelligence, 1989.

[8] J.Mundy, R.Welty, L.Quam, T.Strat, W.Bremner,

M.Horwedel, D.Hackett and A.Hughes, “The RA-

DIUS Common Development Environment,” Arpa

IUW, San Diego, CA, Jan 1992, pp. 215–226.

[9] Yoh-Han Pao. Adaptive Pattern Recognition and

Neural Networks. Addison-Wesley, 1989.

[10] G. Reynolds and R. Beveridge, "Searching for Ge-

ometric Structure in Images of Natural Scenes",

ARPA Image Understanding Workshop, Los Ange-

les, CA, Feb. 1987, pp. 257-271.

[11] D. Rumelhart, G. Hinton and R. Williams. “Learn-

ing Internal Representations by Error Propaga-

tion,” in Parallel Distributed Processing, Vol 1,

Rumelhart and McClellan (eds), MIT Press, Cam-

bridge, MA.

[12] H. Schultz. “Terrain Reconstruction from Widely

Separated Images,” SPIE: Integrated Photogram-

metric Techniques with Scene Analysis and Ma-

chine Vision II, Orlando, FL, April 1995, pp. 113-

123.

[13] “Learning to Predict by the Method of Temporal

Differences”, Machine Learning 3:9-44.

[14] G. Tesauro. “Temporal Difference Learning and

TD-Gammon” Communications of the ACM,

38(3):58-68

[15] C. Watkins. Learning from Delayed Rewards,

Ph.D. thesis, Cambridge University, 1989.

[16] W. Zhang and T. Dietterich. “A Reinforcement

Learning Approach to Job-Shop Scheduling,” Int.

Joint Conference on Artificial Intelligence, 1995.


