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Abstract

The goal of image understanding by computer is to identify objects in visual images

and (if necessary) to determine their location and orientation. Objects are identi�ed

by comparing data extracted from images to an a priori description of the object or

object class in memory. It is a generally accepted premise that, in many domains,

the timely and appropriate use of knowledge can substantially reduce the complexity

of matching image data to object descriptions. Because of the variety and scope of

knowledge relevant to di�erent object classes, contexts and viewing conditions, black-

board architectures are well suited to the task of selecting and applying the relevant

knowledge to each situation as it is encountered.

This paper reviews ten years of work on the UMass VISIONS system ([12, 13]) and

its blackboard-based high-level component, the schema system ([6, 7]). The schema

system could interpret complex natural scenes when given carefully crafted knowledge

bases describing the domain, but its application in practice was limited by the problem

of model (knowledge base) acquisition. Experience with the schema system convinced

us that learning techniques must be embedded in vision systems of the future to reduce

or eliminate the knowledge engineering aspects of system construction.

The Schema Learning System (SLS) is a supervised learning system for acquiring

knowledge-directed object recognition (control) strategies from training images. The

recognition strategies are precompiled reactive sequences of knowledge source invoca-

tions that replace the dynamic scheduler found in most blackboard systems. Each

strategy is specialized to recognize instances of a speci�c object class within a speci�c

context. Since the strategies are learned automatically, the knowledge base contains

only general-purpose knowledge sources rather than problem-speci�c control heuristics

or sequencing information.

�
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1 Introduction

The goal of computer image understanding is to identify objects in visual images and (if

necessary) to determine their location and orientation (i.e. their pose). Objects are identi�ed

by comparing data extracted from images to an a priori description of the object or object

class in memory. It is a generally accepted premise that, in many domains, the timely and

appropriate use of knowledge can substantially reduce the complexity of matching image

descriptions to object models.

The blackboard architecture was �rst proposed by researchers working on automatic

speech recognition ([11]). In order to interpret one-dimensional acoustic signals in real time

it was necessary to integrate knowledge at di�erent levels of abstraction and to focus com-

putational resources on the most promising hypotheses �rst. The solution was the black-

board architecture, in which knowledge is encapsulated in independent procedural modules

called knowledge sources (KSs). Knowledge sources exchange information about hypotheses

through a central blackboard, which serves both to bu�er data and to insulate KSs from each

other. A heuristic scheduler associated with the central blackboard decides which knowledge

source should be executed on each cycle, invoking only those KSs which involve promising

hypotheses. Reviews of blackboard technology can be found in [20] and [10].

Faced with many of the same problems that arise during speech recognition, some vi-

sion researchers adopted the blackboard model. The VISIONS system used a blackboard

model to recognize common 2D views of 3D objects ([12]). Nagao and Matsuyama designed

an aerial photograph interpretation system around the blackboard model, with knowledge

sources for reasoning about the size, shape, brightness, location, color and texture of a region

([19]). PSEIKI ([1]) combined the blackboard programming model with the Shafer-Dempster

theory of evidence to recognize 2D objects. Some of the di�culties and advantages of using

2



blackboards for vision are discussed in [6].

2 Summary of the VISIONS Schema System

From the beginning, the goals of the schema system were di�erent from those motivating

the designs of most other computer vision systems. First, the schema system was designed

to recognize both man-made and natural objects in outdoor scenes. As a result, it could

not make many of the assumptions used by other model-based systems, such as assuming

polygonal objects. Instead, the schema system had to use many types of information about

object classes, including shape, color, texture and context, and to opportunistically select

the appropriate model features to compare to the image data; for this reason, the schema

system was initially conceptualized as a blackboard system ([12]).

Second, the schema system was meant to recognize not just single objects but entire

scenes. The premise was that it is easier to recognize objects in context than in isolation,

and that a partial interpretation generated for one region of an image can produce constraints

on the interpretation of the rest of the image. This led to a distributed blackboard system in

which both knowledge and computation were partitioned at a coarse-grained semantic level.

Coarse-grained knowledge was encapsulated in the schemas, with each schema serving as a

specialized \expert" at recognizing a single object class.

A schema instance is invoked for each object class hypothesized to be in the image

data. These instances execute independent (potentially concurrent) processes called recog-

nition strategies and communicate asynchronously through a global blackboard. The control

component of each schema schedules the application of general purpose procedures, called

knowledge sources, to gather the \right kind" of support for (or against) its hypothesis.

Competition and cooperation among the schema instances results in the combination of
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multiple, independent \object experts" into a large scale system which constructs internally

consistent interpretations.

2.1 Components of the Schema System

The schema system consists of �ve basic components: the schema hierarchy, the blackboard,

the knowledge sources, the interpretation (control) strategies, and mechanisms for evidence

representation and combination. Each of these is discussed very briey in the following

sections; more detail may be found in [7].

2.1.1 The Schema Hierarchy

The schema system partitions both knowledge and computation in terms of natural object

classes for a given domain. Schemas reside in class and part/subpart hierarchies; each class

of objects and object parts has a corresponding schema which stores all object and control

knowledge speci�c to the recognition of instances of that class. Knowledge about expected

object contexts and relationships to other objects is represented in the system by extending

the concept of an object to include contextual or scene con�gurations; as objects, these

entities also have schemas. A subcontext or \sub-scene" is like an object part; it is related

to its parent scene or context in predicatable ways.

2.1.2 Knowledge Sources

Knowledge sources are general-purpose procedures that generate the levels of abstract im-

age descriptions required in an image understanding system. Knowledge sources span the

gamut of traditional techniques in image processing (e.g. region, line, curve, and surface

extraction, feature measurement, etc), through intermediate level processes such as initial

object hypothesis generation and grouping operations to generally useful tools and tech-
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niques such as graph matching. The compile-time arguments and parameters supplied to a

general-purpose knowledge source as part of the recognition strategy may specialize it for a

particular purpose.

KSs typically create, manipulate, and construct abstract symbolic representations of

image events stored symbolically in the ISR ([4]), a database specially designed for image

understanding systems. The database supports associative retrieval, spatial relations, and

multi-level representations, and has been optimized for spatial retrieval. In the current

version of the schema system, which has recently been extended to include three-dimensional

object representations and three- dimensional interpretation, over 40 KSs are available as

basic building blocks.

2.1.3 Interpretation Strategies

Interpretation strategies, or simply strategies, are control programs that run within each

schema and ful�ll the role of a scheduler. Strategies are a procedural encoding of knowl-

edge about which knowledge sources to apply and in what order to apply them. To make

maximal use of parallelism, schemas may have multiple concurrent strategies corresponding

to di�erent methods for recognizing an object or to di�erent conditions under which recog-

nition must take place. Schemas can also contain strategies for di�erent subtasks, such as

initial hypothesis generation and hypothesis veri�cation, as well as for managing the internal

bookkeeping details of the schema, such as updating the global blackboard when necessary

and detecting and resolving conicts related to the hypothesis.

Each schema instance acquires information pertinent to the hypothesis it is pursuing.

Some of this information is generic, to the extent that its semantics are not object dependent.

For example, the degree of con�dence in a hypothesis, as well as its (2D) image location and

(3D) world location, is generic information, because every object hypothesis has a con�-
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dence level and an image location, and most have a meaningful 3D location. The generic

information about an object hypothesis is recorded in a global hypothesis.

Most of the information acquired by a schema instance, on the other hand, is object

speci�c. Information about how well an image region matches an expected color, for example,

is non-generic since its importance depends on the object model. A color match may be

important for �nding trees, but less so for recognizing automobiles. For this reason, all

of the information about which KSs support a particular hypothesis and which do not is

considered private to the schema instance, and is not included in the global hypothesis.

2.1.4 Blackboard Communication

The schema system is built around a global blackboard (Figure 1). The global hypothe-

ses written to the blackboard represent the image interpretation as it evolves. Schemas

communicate with each other by writing to and reading from the blackboard, dynamically

exchanging information about their respective hypotheses. Although the blackboard is di-

vided into sections corresponding to the object classes (rather than processing levels, as in

other systems [20]), schemas may read and write freely over the entire blackboard. The

division into sections gives some assurance that a schema will not have to search through a

large number of irrelevant messages. At the same time, each schema instance maintains its

own local blackboard for recording private information (Figure 2).

The distinction between the global and local blackboards was motivated both by com-

putational and knowledge engineering concerns. Computationally, most of the information

generated by an interpretation strategy concerns which KSs have been run, what each KS

returned, etc. While this information is crucially important within the schema instance for

making dynamic control decisions, it is of little importance to other schema instances. If

the strategies associated with multiple concurrent schema instances continually dump this
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Figure 1: The schema system's global blackboard (from [7]).

Figure 2: A local blackboard and its relationship to the global blackboard of the schema

system (from [7]).
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information to the global blackboard and then read it back again, the blackboard quickly be-

comes a computational bottleneck. The local blackboards alleviate this problem by reducing

the message tra�c on the global blackboard.

From a knowledge engineering viewpoint, the distinction between the global and local

blackboards promotes modularity by allowing only the strict \global hypothesis" protocol

to be exchanged between schemas. Each schema can maintain local information in an id-

iosyncratic manner on its local blackboard, allowing the schema designer the freedom of any

appropriate knowledge representation and control style. At the same time, because schemas

communicate with each other only through global hypotheses, the designer of a new schema

is assured of a smooth join to the remainder of the system.

Local blackboards are also partitioned into sections, where each section usually corre-

sponds to a level of abstraction. The local blackboard is accessible to all the strategies within

a particular schema instance, but only those strategies. As a result, while messages to the

global blackboard are required to conform to a strict protocol, local blackboard messages

can be highly schema speci�c.

2.1.5 Evidence Accumulation

The current version of the schema system takes a particularly simple view of evidence rep-

resentation and combination. Con�dence values lie along a coarse, �ve point ordinal scale:

`no evidence', `slim-evidence', `partial-support', `belief', and `strong-belief'. When combin-

ing evidence, a heuristic mechanism is used that involves the speci�cation of key pieces of

evidence that are required to post an object hypothesis with a given con�dence to the global

blackboard. Subsets of secondary evidence are used to raise or lower these con�dences. Spec-

i�cations of these subsets, and the e�ect their con�dence has on the overall con�dence, is

part of the knowledge engineering e�ort involved in constructing a schema. Although this
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method of evidence representation and accumulation may lack considerably from a theoreti-

cal point of view, it has worked surprisingly well in interpretation experiments on images of

New England house and road scenes [7].

2.2 Knowledge Engineering in the Schema System

Schemas are assembled by specifying (1) the appropriate set of knowledge sources to be used,

(2) a set of strategies which conditionally sequence their application, and (3) a function to

translate internal evidence into a con�dence in the global hypothesis. One of the main im-

pediments to wide scale experimentation with the schema system has been the time and

energy required to design a schema. Schema construction can be viewed as an exercise in

experimental engineering, in which prototype schemas are developed using existing system

resources. These schemas must then be tested on a representative set of objects/images,

failures noted and analyzed, and the schemas re-engineered to account for the failures. In

many cases, the descriptive information provided by the knowledge sources may be inade-

quate. In this case, new knowledge sources must be developed and tested (often a major

research e�ort in its own right), integrated into the system, and the schemas re-engineered

to make use of the new information.

The problem of knowledge base construction has been a focus of research for several

years. In arti�cial intelligence, researchers have focused on how to extract knowledge from

experts, a scenario which does not apply to computer vision. Vision researchers have con-

centrated instead on how knowledge bases are speci�ed. By restricting the message types

written to the global blackboard, the schema system enforces schema modularity in an at-

tempt to make schemas easier to declare and improve. The SPAM project at CMU developed

a high-level language for describing objects ([18]). Work in Japan has involved both auto-

matic programming e�orts and higher-level languages for specifying image operations ([17]).
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Despite these e�orts, however, there are no blackboard-based vision systems in operation

today that are capable of recognizing more than a couple dozen objects, and we conclude

from their absence that the knowledge engineering problem has not yet been satisfactorily

solved.

3 Learning Scheduling Strategies

For the last two years we have taken a di�erent approach to knowledge base development.

Instead of making the knowledge base easier to program, we have decided to take the pro-

grammer out of the loop. Our goal is a knowledge-directed vision system that learns its own

interpretation strategies.

As a �rst step in this direction we have designed the Schema Learning System (SLS;

[8]), as shown in Figure 3. SLS's task is to learn interpretation strategies for object classes.

In particular, it learns object recognition strategies that minimize the cost of achieving a

recognition goal, speci�ed by a level of representation and accuracy parameters. For example,

a recognition goal might be to recognize the location and orientation of the building rep-

resented as a 6D coordinate transformation, accurate to within �ve percent of the distance

from the building to the camera. Alternatively, a simpler goal would be to recognize the

image location of a building in terms of its centroid and accurate to within two pixels.

SLS learns recognition strategies from training images and their \solutions", where the

solutions are in the form of the recognition goal. Thus if the goal is to recognize the pose of

an object, the pose of the object in each training image must be known; alternatively, if the

goal is to recognize the image position of an object, then the position of the object in the

training images must be known. In general, SLS learns to generate hypotheses that match

the solutions provided for the training images.
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Figure 3: Top-level view of SLS architecture

In learning strategies that minimize cost subject to reliability constraints, SLS is at

one end of a spectrum. At the other end would be a system that maximized recognition

performance within a �xed time/cost limit. In between would be systems that maximized

a utility function weighing cost against robustness. In the applications we have focused

on, however { navigation and robotic assembly { safety comes �rst, leading us to design a

system that minimizes cost subject to hard robustness constraints, rather than the other

way around.

As implied by Figure 3, SLS's operations can be divided into two parts: a compile-time

(or \learning-time") component in which SLS develops recognition strategies, and a run-time

component in which the interpretation strategies are applied to new images. In general,

SLS has been designed to optimize run-time performance, at the expense of compile-time

(learning) e�ciency.

The learning task is made easier by two simplifying assumptions. First, SLS learns to

recognize instances of each object class independently. This is easier than learning concur-

rent, cooperating strategies. Second, SLS is given a set of knowledge sources (KSs) from

which to build its recognition strategies. Thus SLS is not required to learn new KSs, but
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rather to learn to schedule KSs and combine evidence within the blackboard paradigm.

3.1 Modeling the Interpretation Process

SLS adopts the blackboard processing model in that interpretation is viewed as a process of

applying knowledge sources to hypotheses. Hypotheses are proposed statements about the

image or its interpretation, whose type is determined by their level of abstraction. Common

levels of abstraction for computer vision include: image, region, (2D) image line segment,

line segment group, (3D) world line segment, (3D) orientation vector, surface patch, face,

volume, object and context. An \interpretation" is a set of believed hypotheses at the

level of abstraction speci�ed by the recognition goal (also called the goal level). Knowledge

sources are procedures from the image understanding literature (e.g. region segmentation,

line extraction or vanishing point analysis) that can be applied to one or more hypotheses.

SLS, however, re�nes the blackboard model of interpretation by constraining knowledge

sources to fall into one of two classes. Generation knowledge sources (GKSs) create new hy-

potheses or transform old hypotheses from one level of abstraction to another. For example,

region segmentation is a GKS, since it creates new hypotheses (regions) when applied to the

image; a stereo line matching algorithm, which transforms two (2D) image line segments into

a new (3D) world line segment, is another GKS. Veri�cation knowledge sources (VKSs), on

the other hand, return discrete feature values describing the hypotheses they are applied to.

An example of a VKS is a pattern matching algorithm that determines the degree to which

the color or texture of an image region matches the expected color or texture of the object.

In general, any routine which measures features of hypotheses can be converted into a VKS

by discretizing its results.

12



3.2 Recognition Graphs

Interpretation strategies are represented in SLS as generalized multi-level decision trees

called recognition graphs that direct both hypothesis formation and hypothesis veri�cation,

as shown in Figure 4. The premise behind the formalism is that object recognition is a series

of small veri�cation tasks interleaved with representational transformations. Recognition

begins with trying to verify hypotheses at a low level of abstraction, separating to the extent

possible hypotheses that are reliable from those that are not. Veri�ed hypotheses (or at least,

hypotheses that have not been rejected) are then transformed to higher levels of abstraction,

where new veri�cation processes take place. The cycle of veri�cation followed by transfor-

mation continues until hypotheses are veri�ed at the goal level, or until all hypotheses have

been rejected.

Level of Abstraction: N

Level of Abstraction: N - 1

Know.
State

 VKS
Appl.

Know.
State

Know.
State

Know.
State

Know.
State

Know.
State

 VKS
Appl.

 VKS
Appl.

Subgoal

 GKS
Appl.

. . . 

. . . 

. . . 

. . . 

Figure 4: A recognition graph. Levels of the graph are decision trees that verify hypotheses

using veri�cation knowledge sources (VKSs). Hypotheses that reach a subgoal are trans-

formed to the next level of abstraction by a generation knowledge source (GKS).

The structure of the recognition graph reects the veri�cation/transformation cycle.

Each level of the recognition graph is a decision tree that controls hypothesis veri�cation at
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one level of abstraction by invoking VKSs to gather support for or against each hypothesis.

When su�cient evidence is accumulated for a hypothesis, a GKS transforms it to another

level of abstraction, where the process repeats itself.

As de�ned in the �eld of operations research (e.g. [14], Chapter 15), decision trees are a

form of state-space representation composed of alternating choice states and chance states.

When searching for a path from the start state to a goal state, an agent at a choice state is

allowed to choose which chance state to go to next. At chance states, the next choice states

are chosen probabilistically

1

. The search process is therefore similar to using a game tree

against a probabilistic opponent.

In SLS, the choice states are hypothesis knowledge states as represented by sets of

hypothesis feature values. The choice to be made at each knowledge state is which VKS

(if any) to execute next. Chance states in the tree represent VKS applications, where the

chance is on which value the VKS will return. Hypothesis veri�cation is an alternating

cycle in which the control strategy selects which VKS to invoke next (i.e., which feature to

compute), and the VKS probabilistically returns a feature value. Thus hypotheses advance

from knowledge states to VKS application states and then on to new knowledge states. The

cycle continues until a hypothesis reaches a subgoal (veri�cation) state, indicating that it

should be transformed to a higher level of abstraction, or a failure state, indicating that it

is unreliable and should be rejected.

The goal is for SLS to learn in advance what VKS to choose at each knowledge state and

to build a recognition graph with just one option at each choice node, thereby eliminating

the need for run-time control decisions. Sometimes, however, the readiness of a VKS to be

executed cannot be determined until run-time, in which case SLS will leave several options

1

Operations research terminology is based on trees rather than spaces, so it refers to choice nodes and

chance nodes rather than choice states and chance states, and to leaf nodes and root nodes rather than goal

states and start states.
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at a choice node, sorted in order of desirability

2

. At run-time the system will choose the

highest-ranking VKS that is ready to be executed.

3.3 The Schema Learning System (SLS)

The Schema Learning System (SLS) constructs interpretation strategies represented as recog-

nition graphs. SLS is given (1) a set of knowledge sources; (2) a recognition goal; and (3)

a set of training images with solutions. It builds recognition strategies that minimize the

expected cost of satisfying the recognition goal by a three-step process: exploration applies

KSs to the training images in order to build a statistical characterization of each KS and to

generate examples of correct and incorrect hypotheses; learning from examples determines

how hypotheses are generated by learning which GKSs to use from the examples gener-

ated during exploration; and �nally graph optimization optimizes hypothesis veri�cation by

selecting the order VKSs are applied in at each level of abstraction.

3.3.1 Exploration

The exploration algorithm exhaustively applies the KSs in the knowledge base to the training

images, beginning with those KSs (both VKSs and GKSs) that can be applied directly to

images. Some of these GKSs will produce more abstract hypotheses such as regions or lines,

and KSs are applied to these hypotheses to produce still more hypotheses, until eventually

every KS has been applied to every possible hypothesis for each training image. (Since the

correct solution is known for every training image, exploration can be made more e�cient by

abandoning false hypotheses at low levels of abstraction, at the risk of biasing the learning

algorithm.)

2

This is just one of many complications that arise from multiple-argument knowledge sources. In general,

we will describe SLS as if all KSs took just one argument in order to keep the description brief; see [9] for a

more complete description.
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The purpose of exploration is twofold. First, it generates examples of how correct

hypotheses (i.e. hypotheses that match the user's solutions) are generated from images, for

use by the learning from examples algorithm. Second, it provides a basis for characterizing

KSs. In particular, the expected cost C(kjn) of every KS k is estimated, where n is a set of

feature values. In addition, it also estimates the likelihood of each feature value e, P (ejk; n),

for every VKS. In both cases, if feature combination n is seen too rarely during training

to provide reliable estimates, the values of C(k) and P (ejk) are substituted for C(kjn) and

P (ejk; n), respectively.

3.3.2 Learning from Examples (LFE)

SLS's second step looks at the correct interpretations produced during exploration and infers

from them a scheme for generating good hypotheses while minimizing the number of false

hypotheses; this is achieved by tracing the sequence of GKSs used to produce each good

hypotheses. For example, a correct 3D pose hypothesis might be generated by �tting a plane

to a set of 3D line segments. If so, the pose hypothesis is dependent on the plane �tting

GKS. It is also dependent on whatever GKS created the 3D line segments, and any GKSs

needed to create its arguments, etc. The result of tracing back a hypothesis' dependencies is

an AND/OR tree like the one shown in Figure 5. `AND' nodes in the tree result from GKSs

that require multiple arguments, such as stereo matching. `OR' nodes in the tree occur when

a hypothesis is redundantly generated by more than one GKS (or a single GKS applied to

multiple sets of hypotheses).

Each dependency tree is an example of how correct hypotheses are generated, and the

example is generalized by replacing the hypotheses in the tree with their feature vectors. In

other words, Figure 5 should be interpreted as showing how correct poses can be created by

applying certain GKSs to less abstract hypotheses with speci�c sets of features, where the
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Line-to-plane-fit TP Point-to-plane-fit TP

Stereo Matching TP Geometric Matching TP

Figure 5: An example of a dependency tree showing the di�erent ways that one correct pose

hypothesis can be created during training. AND nodes (shown with an arc) signify that both

branches must be satis�ed, while OR nodes (shown without an arc) signify that at least one

branch must be satis�ed.

features of the hypotheses are viewed as preconditions for the GKS. In the example shown

in Figure 5, correct pose hypotheses may be created by applying either the line-to-plane-�t

GKS to line hypotheses with the feature values of 3D-lineset-1 or the pt-to-plane-�t GKS to

point hypotheses with the feature values of 3D-point-set-19.

By de�nition, any set of GKSs and GKS preconditions that satis�es a dependency tree

would generate the correct hypothesis the tree represents. A set of GKSs and GKS precon-

ditions that satis�es the dependency trees of all the correct hypotheses will generate correct

hypotheses for every training image. SLS �nds such a set of preconditioned GKSs by ANDing

the dependency trees together and converting the resulting expression to conjunctive normal

form (DNF). Every conjunctive subterm of the DNF expression is a set of preconditioned

GKSs that will generate a correct hypothesis for every training image, and SLS selects the

subterm that generates the fewest false hypotheses along with the correct ones.

The AND/OR dependency tree is converted into DNF by a standard algorithm that

�rst converts its subtrees to DNF and then either merges the subterms (if the root is an OR
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node) or takes the symbolic cross-product of the subterms (if the root is an AND node).

SLS, however, is designed to �nd just the minimal term of the DNF expression; as a result,

whenever one subterm of a DNF is a logical superset of another term, the superset term can

be pruned from the expression.

3.3.3 Optimization

As was stated earlier, recognition graphs interleave veri�cation and transformation, using

VKSs to gather evidence to verify or reject hypotheses, and GKSs to transform them to

higher levels of abstraction. In the previous step, the LFE algorithm not only learned which

GKSs to use, it also learned what conditions (feature values) a hypothesis must have before a

GKS transforms it to the next level. The optimization algorithm builds decision trees at each

level of abstraction that minimize the expected cost of acquiring these features; hypotheses

not meeting the preconditions are rejected. Decision trees are built at each level by laying

out a graph of all possible sequences of knowledge states and VKS applications and then

pruning it to leave just the tree that minimizes the expected cost.

At each level of abstraction, graph layout begins with a start state, representing a

hypothesis for which no features have been computed. The start state is a choice state, and

the choice is which feature to compute �rst. Chance states are generates for every VKS

that can be applied to a hypothesis in the start state, and these chance states lead to new

choice states, depending on which discrete value the VKS returns. These choice states lead

to still more chance states, and so on, until a choice state are reached that either satisfy the

preconditions of a GKS (i.e. a subgoal state), or is incompatible with the preconditions (i.e.

a failure state).

Once the graph has been created it is pruned to where each choice state contains just a

single option. The pruning requires a single pass through the graph, starting at the subgoal

18



and failure nodes and working toward the start state. At each chance (VKS application)

state, the expected cost of reaching a subgoal or failure node from the application state is

calculated. At each choice state, the chance state with the lowest expected cost is selected

and all others are removed from the graph. (In the event that the optimal VKS might not

be executable at run time, it sorts the remaining VKSs in order of least to greatest expected

cost rather than removing them.

More formally, the subgoal states and failure states at one level of a recognition graph

are the terminal states for that level. The cost of promoting a hypothesis from choice state n

to a terminal state is the Expected Decision Cost (EDC) of state n, and the expected cost of

reaching a terminal state from state n through chance state (VKS) k is the Expected Path

Cost (EPC) of n and k. We refer to the possible discrete outcomes of a VKS k as R(k), and

the probability of a particular value e being returned as P (ejk; n); e 2 R(k).

The EDC's of knowledge states can be calculated starting with the terminal states and

working backwards through the recognition graph. Clearly, the EDC of a subgoal or failure

state is zero:

EDC(n) = 0; n 2 fterminal statesg:

The expected path cost of reaching a terminal state from a chance state is:

EPC(n; k) = C(k) +

X

e2R(k)

(P (ejn; k)� EDC(n [ e))

where n is the previous choice state expressed as a set of feature values, n[e is the knowledge

state that results from VKS k returning feature value e and C(k) is the estimated cost of

applying k.

The EDC of a choice state, then, is the smallest EPC of the VKSs that can be executed
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at that state:

EDC(n) = min

k2KS(n)

(EPC(n; k))

where KS(n) is the set of VKSs applicable at node n.

The equations above establish a mutually recursive de�nition of the expected decision

cost of a choice state. The EDC of a choice state is the EPC of the optimal VKS application

at the state; the EPC of a chance state is the expected cost of the VKS plus the remaining

EDC after the VKS has been applied. The recursion bottoms out at terminal nodes, whose

EDC is zero. Since every path through the object recognition graph ends at either a subgoal

or a failure node, the recursion is well de�ned. Furthermore, since the EDC of a level's start

state estimates the expected cost of verifying a hypothesis at that level of abstraction, the

EDCs of all the start states can be combined with estimates of the number of hypotheses

generated at each level to estimate the expected run-time of the strategy as a whole.

3.4 Experimental Results

The previous sections give a simpli�ed description of a complex system that has only recently

been implemented. Because the system is new, complete and thorough experiments testing

its success both as a knowledge engineering tool and as a machine learning system are only

now underway; in this section we report the results of one such experiment.

The goal of the experiment was to test SLS within the scenario of learning to accurately

recognize the pose of a complex object from an approximately known viewpoint; other ex-

periments are testing its ability to perform 2D recognition and to perform 3D recognition

from arbitrary viewpoints. The motivation for testing recognition from an approximately

known viewpoint �rst is that the images are more self-similar, and therefore require smaller

training sets. Experiments on recognition from an unknown viewpoint require considerably
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larger training sets than used here.

The training images for the current experiment were a set of twenty images of the

Marcus Engineering building on the UMass campus, including the ones shown in Figures 6

and 7, taken along a dirt path at distances ranging from three to four hundred feet from

the building. The pictures were taken level to gravity (i.e. with zero tilt and roll) but with

small rotations (pan) from one image to the next, leaving four degrees of freedom in the

pose of the building: three for location and one for rotation. The training solutions (i.e.,

ground truth) were determined by matching hand-selected points in each image to points on

a wire-frame model of the building, and using Kumar's algorithm to determine the pose of

the building ([16]). The goal was to learn a strategy that could recognize the pose of the

building to within 10

�

rotation (pan), 5% depth (scale) and 1

�

of the correct image angle

(the angle between the optical axis and a ray from the focal point to the object).

The knowledge sources available to SLS included a geometric matcher for comparing

wire-frame models to image data ([2]), perspective analysis routines for estimating orien-

tations ([5, 15]), a line grouping system ([21]), a pattern classi�er ([3]), and a template

matching routine. It was also given knowledge sources for checking domain constraints such

as distance from an object to the camera or the height of an object above (or below) the

camera plane.

SLS was tested by a \leave one out" scheme in which strategies were trained on nineteen

images and tested on the twentieth; the error between the best-veri�ed (highest con�dence)

hypothesis for an image and the user's solution is shown in Table 1. (When the highest

con�dence value was shared by multiple hypotheses, Table 1 shows the average of their

errors.) SLS's strategies generated pose hypotheses that matched the user's solutions (to

within the accuracy parameters in the recognition goal) in nineteen of the twenty tests. As

an example, Figure 8 shows the pose found for image twenty (shown in Figure 6). In two
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Figure 6: The �rst Marcus Engineering image

Figure 7: The last Marcus Engineering image

22



of the tests, however, poses with excessive error were rated more highly than the correct

hypotheses, so the recognition strategy succeeded in only seventeen of twenty trials.

A system's failures are often more informative than its successes. In this case, one of the

most e�cient strategies for �nding the pose of the building depends on �nding the trihedral

junction corresponding to the building's upper left hand corner. (The junction indicates both

the building's image location and, through perspective distortion, its orientation, specifying

three of four degrees of freedom.) This strategy works on nineteen of the twenty images

in the training set; in image 6, however, the top line of the building is missing, perhaps

due to noise, and no trihedral junction can be found. Consequently, when SLS is trained

on the nineteen images other than image 6, it notices that every training sample produces

a trihedral junction and concludes that no backup strategy is necessary. It then fails to

�nd the building in image 6. Interestingly, when image 6 is included in the training set,

SLS notices that the trihedral junction method can fail and includes otherwise redundant

techniques based on vanishing points.

The result on image 6 raises the question of how to proceed when SLS's recognition

strategy fails. Traditional blackboard systems, when confronted with a failure, will switch

to backup recognition strategies. The same approach is possible with SLS, since each con-

junctive subterm of LFE's DNF expression is the basis for a recognition strategy. In general,

however, there may be no way to detect a failure, since a negative result may correctly in-

dicate that the object is not in the image. Moreover, there is no way to know which of the

alternate strategies might be e�ective, nor is there a guarantee that any of them will work.

In most situations, the most e�ective strategy is to take another picture and try the �rst

strategy again.

SLS's strategy also failed to verify the best hypotheses for images 7 and 9. Goal-level

hypothesis veri�cation is a classi�cation task, and these failures are indicative of the di�culty
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of hypothesis classi�cation in general, and of classi�cation by discrete features in particular.

In this case, none of the available VKSs are sensitive enough to detect small changes in a

pose's rotation or scale. The veri�ed hypothesis for image 9, for example, was within one

degree (pan) of being within tolerance, a distinction not captured by the coarsely-discretized

features used here. Increasing the number of discrete values per feature can reduce this type

of error, but there will alwaus be some distinctions that are beyond the resolution of any

set of discrete features. Finely-discretized features also require larger training sets, since the

relative impact of each feature value must be estimated.

In addition to being robust, SLSs strategies are also supposed to be e�cient. Unfortu-

nately, they cannot be directly compared to hand-crafted strategies, since no such strategies

are available for this domain and knowledge base. In can be noted, however, that the exhaus-

tive interpretations of the training images by the exploration algorithm took, on average,

3

1

2

hours per image on a TI Explorer lisp machine, while the strategies learned by SLS rec-

ognized the building in an average of 310:6 seconds, or about 2

1

2

% of the time required by

exhaustive search. (All times were measured as the sum of KS execution times, and do not

include system overhead.)

4 Conclusion

It is generally accepted that the timely and appropriate use of relevant knowledge can sub-

stantially reduce the search encountered in matching image data to object descriptions. This

premise is supported by our experience with the schema system, a blackboard-based object

recognition system that embedded object-speci�c knowledge in multiple concurrent processes

called schemas. Unfortunately, the problem of how to acquire and structure knowledge has

limited the schema system as well as other knowledge-based vision systems to highly con-
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1 2 3 4 5 6 7 8 9 10

Prob 0.79 0.87 0.88 0.86 0.86 { 0.90 0.89 0.87 0.89

Pan(

�

) 4.95 2.50 7.87 1.75 6.21 { 2.58 2.95 11.00 4.48

Scale(%) 2.26 1.21 0.45 1.43 4.44 { 11.23 0.60 4.87 2.24

ImAngle(

�

) 0.13 0.03 0.07 0.14 0.13 { 0.21 0.09 0.21 0.25

11 12 13 14 15 16 17 18 19 20

Prob 0.88 0.88 0.86 0.86 0.86 0.85 0.86 0.97 0.90 0.90

Pan(

�

) 3.27 1.65 3.58 0.07 1.16 6.95 6.14 1.40 1.33 0.82

Scale(%) 4.83 1.39 1.35 2.33 0.97 0.73 2.47 2.58 3.44 1.34

ImAngle(

�

) 0.08 0.04 0.20 0.08 0.04 0.15 0.10 0.13 0.12 0.05

Table 1: The errors between the most probable pose hypothesis and the true pose for each

test image. Pan refers to di�erence in rotation about the gravitational axis measured in

degrees, scale to the distance from the camera to the object measured as a percentage of the

true distance, and image angle to the angle between a ray from the camera to the object

and the camera's optical axis. The user's tolerance thresholds were 5% scale, 10

�

pan and

1

�

image angle.

strained domains. We feel that if blackboard-based vision is to become practical, recognition

strategies will have to be acquired automatically.

The schema learning system (SLS) is an experimental system for learning recognition

strategies from training images. The eventual goal is to completely eliminate the knowledge

engineering task; at the moment, a human is still required to supply sets of knowledge sources

(GKSs and VKSs) and training images. The previously time-consuming process of supplying

control knowledge, however, has been replaced by SLS.

SLS's strategies have two advantages besides ease of construction over hand-crafted ones.

First, they are robust to the extent that they will correctly interpret every training image.

Hand-crafted strategies may or may not have this property. Second, the are e�cient in that

they minimize the number of (goal-level and intermediate-level) hypotheses generated when

recognizing an object, and minimize the cost of verifying or rejecting hypotheses at each

level of abstraction. As a result, they are generally optimal in the sense of minimizing the

total expected cost of recognition, although counterexamples are theoretically possible.
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Figure 8: The most probable pose generated for the image shown in Figure 6 (Image #1 in

Table 1).

As with all learning systems, however, SLS's strategies may fail if the test image is

signi�cantly di�erent from all of the training images (e.g., image 6). Our current e�orts in

extending SLS focus on developing a theoretical bounds on the reliability of strategies on

test images based on the history of their training. We are also interested in developing an

adaptive form of SLS's batch-oriented learning algorithm for use on an autonomous vehicle.
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