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ABSTRACT

MODEL ACQUISITION USING

STOCHASTIC PROJECTIVE GEOMETRY

September 1993

Robert T. Collins

B.S., University of Hartford

M.S., University of Massachusetts AMHERST

Ph.D., University of Massachusetts AMHERST

Directed by: Professor Edward M. Riseman

This thesis presents a methodology for scene reconstruction that is based on the principles

of projective geometry, while dealing with uncertainty at a fundamental level. Uncertainty

in geometric features is represented and manipulated using probability density functions on

projective space, allowing geometric constructions to be carried out via statistical inference.

The main contribution of this thesis is the development of stochastic projective geometry,

a formalism for performing uncertain geometric reasoning during the scene reconstruction

process. The homogeneous coordinates of points and lines in the projective plane are rep-

resented by antipodal pairs of points on the unit sphere, and geometric uncertainty in their

location is represented using Bingham's distribution. Geometric reasoning about homoge-

neous coordinate vectors reduces to well-de�ned manipulations on probability density func-

tions. For example, a Bayesian approach to evidence combination on the sphere is presented

for fusing noisy homogeneous coordinate observations constrained by known projective inci-

dence relations. The result is an uncertainty calculus in projective space analogous to the

Gaussian uncertainty calculus in a�ne space. The main strength of the Gaussian calculus

is maintained, namely its uniform treatment of uncertainty in all stages of the geometric

vi



reasoning process. At the same time, the limitations of the Gaussian density function as a

representation of uncertainty in projective space are removed.

The e�ectiveness of stochastic projective geometry for dealing with noisy projective re-

lationships is demonstrated on three geometric vision problems: deriving line and plane

orientations using vanishing point analysis, partitioning scene features into planar patches

using line correspondence stereo, and extending a partial model of planar surface structure

using projective invariants.

vii



TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : v

ABSTRACT : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : vi

LIST OF TABLES : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : xi

LIST OF FIGURES : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : xii

1. Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1

1.1 Camera Geometry : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

1.1.1 Perspective Projection : : : : : : : : : : : : : : : : : : : : : : : : : : 5

1.1.2 Planar Homographies : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

1.2 Stochastic Projective Geometry : : : : : : : : : : : : : : : : : : : : : : : : 11

1.2.1 Topology of the Projective Plane : : : : : : : : : : : : : : : : : : : : 12

1.2.2 A Euclidean Model of the Projective Plane : : : : : : : : : : : : : : 13

1.3 Overview of the Thesis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19

2. Related Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

2.1 Geometric Reasoning : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21

2.1.1 Reasoning about Orientations : : : : : : : : : : : : : : : : : : : : : : 22

2.1.2 Vanishing Point Analysis : : : : : : : : : : : : : : : : : : : : : : : : 26

2.1.3 Projective Geometry : : : : : : : : : : : : : : : : : : : : : : : : : : : 33

2.2 Geometric Probability : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 35

2.2.1 Stochastic Projective Geometry : : : : : : : : : : : : : : : : : : : : : 36

2.2.2 Problems with the Gaussian Assumption : : : : : : : : : : : : : : : : 38

3. Stochastic Projective Geometry : : : : : : : : : : : : : : : : : : : : : : : : : 44

3.1 Probability in the Projective Plane : : : : : : : : : : : : : : : : : : : : : : : 47

3.1.1 Bingham's Distribution : : : : : : : : : : : : : : : : : : : : : : : : : 48

3.1.2 Bingham Maximum Likelihood Estimation : : : : : : : : : : : : : : : 54

viii



3.1.3 A Note Regarding Alternative Distributions : : : : : : : : : : : : : : 55

3.2 Transformations of Projective Uncertainty : : : : : : : : : : : : : : : : : : : 59

3.2.1 Transformation of Random Variables : : : : : : : : : : : : : : : : : : 60

3.2.2 Projective Coordinate Transformations on the Sphere : : : : : : : : 62

3.3 Approximation by a Bingham Density : : : : : : : : : : : : : : : : : : : : : 64

3.3.1 Maximum Likelihood Approximation : : : : : : : : : : : : : : : : : : 65

3.3.2 Taylor Series Expansion about the Mode : : : : : : : : : : : : : : : : 67

3.3.3 Singular Covariance Propagation : : : : : : : : : : : : : : : : : : : : 71

3.3.4 Comparing Approximations : : : : : : : : : : : : : : : : : : : : : : : 73

3.4 Statistical Inference In Projective Space : : : : : : : : : : : : : : : : : : : : 75

3.4.1 Bayesian Parameter Estimation : : : : : : : : : : : : : : : : : : : : : 77

3.4.2 Bayesian Estimation of Incidence Relations : : : : : : : : : : : : : : 86

4. Applications : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 95

4.1 Vanishing Point Analysis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 96

4.1.1 Vanishing Point Detection : : : : : : : : : : : : : : : : : : : : : : : : 98

4.1.2 Vanishing Point Estimation : : : : : : : : : : : : : : : : : : : : : : : 102

4.1.3 A Numerical Example : : : : : : : : : : : : : : : : : : : : : : : : : : 109

4.1.4 RADIUS Model Board 1 Experiment : : : : : : : : : : : : : : : : : : 112

4.1.5 Studies using Simulated Data : : : : : : : : : : : : : : : : : : : : : : 120

4.2 Line-Correspondence Stereo : : : : : : : : : : : : : : : : : : : : : : : : : : : 123

4.2.1 Line Orientations from Stereo : : : : : : : : : : : : : : : : : : : : : : 124

4.2.2 Recovering Planar Surfaces : : : : : : : : : : : : : : : : : : : : : : : : 125

4.2.3 An Example : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 128

4.3 Planar Model Extension : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 130

4.3.1 Image Plane to Image Plane : : : : : : : : : : : : : : : : : : : : : : : 131

4.3.2 Image Plane to Object Plane : : : : : : : : : : : : : : : : : : : : : : 134

5. Conclusions and Future Work : : : : : : : : : : : : : : : : : : : : : : : : : : 145

5.1 Thesis Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 146

5.2 Future Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 150

5.2.1 Robustness : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 150

5.2.2 Extensions to Other Manifolds : : : : : : : : : : : : : : : : : : : : : : 154

5.2.3 Towards Nonplanar Model Extension : : : : : : : : : : : : : : : : : : 155

A. Projective Geometry Primer : : : : : : : : : : : : : : : : : : : : : : : : : : : 160

A.1 Projective Transformations : : : : : : : : : : : : : : : : : : : : : : : : : : : 160

A.1.1 Perspectivities : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 161

A.1.2 Projectivities : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 163

A.1.3 Homographies : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 167

A.1.4 Estimating Projective Transformations : : : : : : : : : : : : : : : : : 169

A.2 Duality : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 171

ix



A.3 Incidence Relations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 173

A.4 Projective Invariants : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 174

APPENDICES

B. Probability on the Sphere : : : : : : : : : : : : : : : : : : : : : : : : : : : : 177

B.1 The Unit Sphere and Projective Space : : : : : : : : : : : : : : : : : : : : : 177

B.2 Density Functions on the Sphere : : : : : : : : : : : : : : : : : : : : : : : : 179

B.3 Polynomial Approximations and Spherical Harmonics : : : : : : : : : : : : : 182

C. Transformation of Random Variables : : : : : : : : : : : : : : : : : : : : : 186

C.1 Mapping R

n

to R

n

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 187

C.2 Mapping between R

n

and S

n

: : : : : : : : : : : : : : : : : : : : : : : : : : 194

C.2.1 Orthographic Projection : : : : : : : : : : : : : : : : : : : : : : : : : 198

C.2.2 Central Projection : : : : : : : : : : : : : : : : : : : : : : : : : : : : 199

C.2.3 Equal-Area Projection : : : : : : : : : : : : : : : : : : : : : : : : : : 200

C.3 Mapping S

n

to S

n

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 201

BIBLIOGRAPHY : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 206

x



LIST OF TABLES

Table Page

4.1 RADIUS Model Board experimental results. : : : : : : : : : : : : : : : : : : 119

4.2 Bingham structural con�dence region counts : : : : : : : : : : : : : : : : : : 121

4.3 Prentice structural con�dence region counts : : : : : : : : : : : : : : : : : : 121

4.4 Bingham functional con�dence region counts : : : : : : : : : : : : : : : : : : 122

4.5 Comparison of traditional vs. invariant model extension. : : : : : : : : : : : 139

xi



LIST OF FIGURES

Figure Page

1.1 The pinhole camera model of image formation. : : : : : : : : : : : : : : : : : 4

1.2 Coordinate frames for pinhole projection. : : : : : : : : : : : : : : : : : : : : 7

1.3 Some planar homographies in computer vision. : : : : : : : : : : : : : : : : : 9

1.4 Homogeneous coordinates of points and lines in the image. : : : : : : : : : : 15

1.5 Mapping uncertainty from the image to the sphere. : : : : : : : : : : : : : : 18

2.1 Vanishing point geometry. : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27

3.1 Bingham's distribution. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 50

3.2 Bingham's distribution on the circle. : : : : : : : : : : : : : : : : : : : : : : 52

3.3 Taylor series approximation of a Bingham density. : : : : : : : : : : : : : : : 70

3.4 Comparison of approximating distributions in terms of MSE. : : : : : : : : : 74

3.5 Parallel transport on the sphere. : : : : : : : : : : : : : : : : : : : : : : : : : 83

4.1 Straight line segments from an outdoor building scene. : : : : : : : : : : : : 97

4.2 Barnard's histogram method for �nding vanishing points. : : : : : : : : : : : 99

4.3 The three largest clusters found using Barnard's histogram method. : : : : : 103

xii



4.4 Vanishing point estimation on the sphere. : : : : : : : : : : : : : : : : : : : 104

4.5 Radius model board image J8. : : : : : : : : : : : : : : : : : : : : : : : : : : 113

4.6 Line segments extracted for Radius model board image J8. : : : : : : : : : : 115

4.7 The two largest line pencils found for image J8. : : : : : : : : : : : : : : : : 117

4.8 Three hypothesized planar surface patches. : : : : : : : : : : : : : : : : : : : 127

4.9 Numerical results for planar surface hypotheses. : : : : : : : : : : : : : : : : 129

4.10 Two views of Fort Hood, Texas. : : : : : : : : : : : : : : : : : : : : : : : : : 132

4.11 A �nal registered mosaic for the two images in Figure 4.10. : : : : : : : : : : 133

4.12 A typical image from Kumar's PUMA sequence. : : : : : : : : : : : : : : : : 136

4.13 Average percentage point to point distance. : : : : : : : : : : : : : : : : : : 141

4.13 Continued. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 142

5.1 Two aerial photographs that are not well-approximated by a single plane. : : 157

5.2 Residual di�erence vectors between predicted and actual locations. : : : : : : 158

A.1 A perspectivity between two lines in a plane. : : : : : : : : : : : : : : : : : : 162

A.2 A perspectivity between two planes. : : : : : : : : : : : : : : : : : : : : : : : 164

A.3 A projectivity is a sequence of two or more perspectivities. : : : : : : : : : : 165

A.4 E�ects of the eight independent planar homography parameters. : : : : : : : 170

C.1 The Jacobian of a transformation T from R

2

to R

2

. : : : : : : : : : : : : : : 189

xiii



C.2 The Jacobian of a transformation T from R

2

to S

2

. : : : : : : : : : : : : : : 195

C.3 The Jacobian of a transformation T from S

2

to S

2

. : : : : : : : : : : : : : : 202

xiv



C H A P T E R 1

Introduction

One of the main goals of computer vision is to infer three-dimensional scene structure

from one or more two-dimensional images. Object boundaries and surface markings appear

as intensity discontinuities in the image that can be reliably detected under a wide range

of viewing conditions. Algorithms for extracting these discontinuities produce a sparse rep-

resentation of the image composed of purely geometric features like vertices, line segments,

and curves. The task of inferring scene structure can therefore be viewed abstractly as a

process of geometric construction, where three-dimensional scene geometry is inferred from

a set of two-dimensional geometric primitives and a description of the imaging process.

Geometric modeling of complex environments can be di�cult. Even in the �eld of com-

puter graphics, where complete knowledge of the scene to be displayed is presumed available,

there are still unresolved issues in representing general curved surfaces and volumes. Add to

this the problem of e�ciently recovering such representations from 2D images and the task

seems computationally intractable. One simpli�cation is to focus on planar patch models.

Applications exist where signi�cant portions of the scene are indeed planar, such as indoor

mobile robotics, city or campus navigation, and aerial photo-interpretation of cultural sites.

1
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Even in unrestricted environments, the world is almost always at enough locally to approx-

imate by piecewise planar patches. The question is not whether we can approximate the

world this way, but how well.

Adopting the world-planarity assumption is attractive because the relevant geometric

entities, namely points, lines and planes, are linear subspaces and a rich set of mathemati-

cal tools from the �eld of projective geometry can be applied. The relevance of projective

geometry to the visual interpretation of man-made scenes cannot be overstressed: Projec-

tive geometry provides a mathematical foundation for characterizing and representing the

relationships between linear subspaces that remain invariant under the imaging process.

Part of the relevance of projective geometry for computer vision is that the process of

picture formation can be accurately modeled as a perspective projection from the 3D world

to a 2D image. Colinear line segments in the world appear as colinear segments in the image

plane because colinearity is a property that is invariant under perspective projection. When

a picture is taken of a planar surface the perspective mapping is 2D to 2D, and the projection

from local surface coordinates to image coordinates is invertible. The fundamental theorem of

projective geometry shows how to estimate a 2D projective transformation given four known

correspondences between object points and image points. The resulting transformation can

be used to predict where other features in the object plane will appear in the image. More

importantly, the inverse transformation can be used to project new image features back onto

the object, thereby extending the object model.

The theorems of projective geometry were developed with mathematically precise objects

in mind. In contrast, a practical vision system must deal with errorful measurements ex-

tracted from real image sensors. A more robust form of projective geometry is needed, one

that allows for possible imprecision in its geometric primitives. In this thesis, uncertainty in
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geometric object models is represented and manipulated using probability density functions

on projective space, allowing valid geometric constructions to be carried out via statistical

inference. The result is a methodology for scene reconstruction based on the principles of

projective geometry, yet also dealing with uncertainty at a fundamental level.

It will be shown that projective n-space can be visualized using the surface of a unit sphere

in n+1-dimensional Euclidean space. Each point in projective space is represented as a pair

of opposing or antipodal points on the sphere. By this map from projective space to the unit

sphere, antipodally symmetric probability distributions on the sphere may be interpreted as

probability distributions over the points of projective space. Standard constructions of pro-

jective geometry can then be augmented by statistical inferences on the sphere, resulting in

a Bayesian inference engine for performing geometric scene reconstruction. The e�ectiveness

of this framework is demonstrated on several geometric problems, including the derivation

of 3D line and plane orientations from a single image using vanishing point analysis, the

extraction of a planar patch scene model using stereo line correspondences, and the recon-

struction of planar surface structure using multiple images taken from unknown viewpoints

by uncalibrated cameras.

The remainder of this chapter develops these topics in more detail. Some familiarity

with the fundamental concepts of real projective geometry is assumed. For convenience,

basic background material is presented in Appendix A. The connection between projective

geometry and computer vision is made in Section 1.1 through the pinhole camera model

of image formation. In Section 1.2 the analytic formulation of projective geometry via

homogeneous coordinates is used to provide a Euclidean model of projective space, opening

the door to the introduction of metrics and probability theory. This chapter closes with an

overview of the rest of the thesis.
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1.1 Camera Geometry

The importance of projective geometry for describing the image formation process is

due to the pinhole camera model. Figure 1.1 shows a standard, left-handed pinhole camera

coordinate system. The origin is located at the camera focal point. The positive Z axis is

aligned with the focal axis, which is perpendicular to the image plane that is located some

unit distance away. Points in the image are measured in a local, U-V coordinate system

whose origin is at the principle point (intersection of the focal axis with the image plane),

and with image axes U and V parallel to the camera coordinate system X and Y axes.

U

V

X

Y

L

P

(x/z, y/z)

au+bv+c=0

(x, y, z)

(a, b, c)

image  plane Z = 1

focal point
(0, 0, 0)

Z

Figure 1.1: The pinhole camera model of image formation. The mapping from scene coordi-

nates into image coordinates is a 3D-to-2D perspective projection.
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The pinhole image of a scene point P = (x; y; z) is the point (u; v) = (x=z; y=z) where the

projection line passing through both the scene point and the focal point intersects the image

plane Z = 1. Likewise, a line segment in the scene projects to a line segment in the image. All

projection lines for points on line segment L lie in a projection plane aX+bY +cZ = 0, whose

normal vector (a; b; c) is the cross product of any two distinct points on line L. Intersecting

this projection plane with the image plane Z = 1 forms the in�nite image line aU+bV +c = 0,

along which the projected line segment must lie.

Since the pinhole camera model is clearly a perspective projection from the 3D scene

onto the 2D image plane Z = 1, geometric properties that are invariant under perspective

projection are of fundamental importance to a vision system. For instance, barring patho-

logical views, colinear 3D lines in the world will always project to colinear 2D line segments

in an image, whereas the projection of parallel 3D lines onto an image will not always pro-

duce parallel 2D lines. This is because colinearity is invariant under nonsingular perspective

projections, while parallelism is not.

1.1.1 Perspective Projection

It was well-known even in the early days of computer vision that the perspective projec-

tion that maps 3D object points to 2D image points can be represented as a linear trans-

formation in homogeneous coordinates [Roberts65]. The derivation involves applying a rigid

rotation and translation to transform a point in local object coordinates L-M-N (refer to

the coordinate system labels in Figure 1.2) into the camera coordinate system X-Y-Z, then
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applying pinhole projection to yield a point in the 2D image coordinate system U-V. This

process is written in matrix form as

k

2

6

4

u

v

1

3

7

5

=

2

6

4

1 0 0 0

0 1 0 0

0 0 1 0

3

7

5

2

6

6

6

4

r

11

r

12

r

13

t

1

r

21

r

22

r

23

t

2

r

31

r

32

r

33

t

3

0 0 0 1

3

7
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5

2
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6

6

4

l

m

n

1

3

7
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7

5

(1.1)
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2
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3
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7

7

5

(1.2)

with k an arbitrary homogeneous coordinate scale factor, R = fr

i;j

g an orthonormal rotation

matrix, and T = ft

i

g a translation vector. The result is a 3�4 projection matrix of parameters

p

ij

that are functions of the location and orientation of camera with respect to the external

scene { i.e. the extrinsic camera parameters.

For a subset of object points lying on a single plane, the projection matrix that maps

object points to image points simpli�es to a 3 � 3 matrix. One planar face of the object in

Figure 1.2 has a 2D coordinate system P-Q imprinted on it. Let that local plane coordinate

system be positioned with respect to the full 3D object coordinate system L-M-N by known

rotation and translation parameters r

0

ij

and t

0

i

. That is
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: (1.3)

By combining equations (1.2) and (1.3) the transformation from local 2D object plane
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Figure 1.2: Coordinate frames for pinhole projection.
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coordinates P-Q to image coordinates U-V is found to be
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=
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(1.4)

=

2
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23
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31

h

32

h

33

3

7
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6

4

p

q

1

3

7

5

: (1.5)

For this mapping to be nonsingular, and therefore invertible, it su�ces that the object plane

P-Q, when in�nitely extended, does not pass through the origin of the camera coordinate

system. The coordinates of object plane points can then be derived via backprojection from

the positions of points in the image.

1.1.2 Planar Homographies

It is evident from equation (1.5) that the pinhole camera projection from an object

plane to the image plane is a homography, that is, an invertible linear transformation in

homogeneous coordinates.

1

Once this observation is made, powerful mathematical tools can

be used to analyze images containing planar patch objects. For example, the set of all planar

homographies forms a group. This means that every homography is invertible and closed

under composition (the mapping of object points to image points in a picture of a picture of

a planar object is still a homography). Because they are linear, invertible and closed under

composition, homographies greatly simplify the analysis of piecewise planar environments.

Figure 1.3 shows a familiar computer vision scenario where a single planar surface patch is

imaged by two cameras from two di�erent viewpoints. If the homographies relating object

1

Pinhole projection is actually a special type of homography called a perspectivity { Appendix A.1 contains

a review of these terms.
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plane coordinates to pinhole image coordinates for the �rst and second cameras are labeled

H

1

andH

2

respectively, then the homography relating points from the second pinhole image

to their corresponding positions in the �rst is simply H

1

H

2

-

1

.

C2
C1

H2H1

Object  Plane

Pinhole
Image 1

Pinhole
Image 2

Image 1 Image 2

Pinhole  camera
  perspectivity

    Affine  transformation
  caused  by  linear  lens
distortion  of  real  camera

Figure 1.3: Some planar homographies in computer vision. Here, an object plane is viewed by

two cameras whose linear camera calibration parameters distort the pure pinhole perspective

image by an a�ne transformation. Corresponding points in any two planes in this diagram

are related by a homography.
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In actuality, the pure pinhole camera model does not adequately characterize images

produced by real cameras. Disregarding nonlinear lens aberrations for the moment, the

deviation of a particular camera from the pinhole model is governed by a set of linear

internal calibration parameters. The internal or intrinsic camera parameters include the

e�ective focal length, image aspect ratio, position of the principle point, and image axis

skew. The e�ects of these parameters combine to produce an observed image that is some

2D a�ne deformation of the pure pinhole image [Horn86]. The a�ne deformations due to

camera calibration parameters are labeled C

1

and C

2

in Figure 1.3. A�ne transformations

are also homographies, therefore the composition of a pinhole projection H followed by

an a�ne deformation C yields a new homography CH. Geometric constructions that are

invariant under homographies will therefore remain valid regardless of whether or not the

camera is calibrated correctly. This result is of great practical importance since accurate

camera calibration is a demanding task, and in some situations (such as interpreting photos

taken from a book or magazine) estimates of the camera parameters are not available at all.

Since all the plane to plane transformations in Figure 1.3 are homographies, it is easy to

derive the transformation between any two planes in the diagram; for instance the transfor-

mation mapping points in image 2 into corresponding points in image 1 is C

1

H

1

H

-

1

2

C

-

1

2

.

The homography H

1

H

-

1

2

relating pinhole images of coplanar points has appeared in the

computer vision literature, and it has been shown that a decomposition of the homography

matrix allows recovery of the relative positions of the two cameras with respect to each

other and to the object plane [Tsai82, Faugeras88]. More recent work has focused on the

object plane to image plane mapping C

i

H

i

, and its inverse H

-

1

i

C

-

1

i

which backprojects
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image plane points to their appropriate object plane positions regardless of camera location

or linear calibration parameters [Mohr91, Collins92].

Unfortunately, some camera images show evidence of nonlinear lens distortion, and any

analysis based on projective transformations may be invalid. Under radial or \barrel" dis-

tortion, for example, the images of colinear points may no longer be colinear [ASP80], and

the mapping from object to image plane can therefore no longer be described by a homog-

raphy. In practice it is common to ignore nonlinear camera parameters, or to assume that

a preprocessing step has been performed to remove their e�ects [Grosky90]. In this thesis,

the term \calibrated camera" is used when enough information is known about the intrinsic

camera parameters, both linear and nonlinear, to recover the pure pinhole camera image.

The results cited for calibrated cameras are therefore general. In contrast, results presented

for uncalibrated cameras hold only when the unknown intrinsic camera parameters are linear

{ nonlinear lens e�ects must either be negligible, or known well enough to be corrected.

1.2 Stochastic Projective Geometry

Geometric measurements made by real camera systems are not exact. Indeed, geomet-

ric primitives extracted from real images su�er from a variety of degradations with causes

ranging from random sensor noise to the idiosyncracies of individual feature extraction algo-

rithms. For geometric constructions based on these inaccurate primitives to remain valid, a

mechanism must be in place that can represent and manipulate uncertain geometric objects,

allowing redundant measurements to be combined to achieve more robust results.

Stochastic Geometry provides a general approach to representing, manipulating, com-

paring and combining uncertain geometric features [Durrant-Whyte88]. In this formalism,
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uncertain geometric features are represented by probability distributions over a parameter-

ized space of geometric objects. Each point in the parameter space represents a possible

instantiation of one type of geometric object; di�erent geometric classes are described by

di�erent parameter spaces. A probability density function over points in a parameter space

represents the likelihood of observing a particular instance of that object class. The manipu-

lation of uncertain geometric structures then reduces to well-de�ned problems involving the

transformation and combination of probability density functions.

The appropriate parameter spaces for representing projective geometric objects relevant

to computer vision are the projective line, the projective plane and projective 3-space. These

projective spaces have a di�erent global structure than the corresponding Euclidean spaces,

therefore probability distributions appropriate for representing geometric features in Eu-

clidean space will not necessarily be valid in projective space. Section 1.2.1 �rst discusses

the topological di�erence between projective and Euclidean space. Then, in Section 1.2.2

homogeneous coordinates are used to develop a model in Euclidean space that is topologi-

cally correct. Projective n-space will be modelled by the surface of the Euclidean unit sphere

with antipodal points equated. Suitably de�ned probability distributions on the sphere may

then be used as distributions on projective space. This is the approach taken in Chapter 3.

1.2.1 Topology of the Projective Plane

Modeling the image formation process as a projective transformation greatly simpli�es

the analysis of piecewise planar scenes. This simpli�cation comes at a price, however. In

order to make a projective mapping bijective (one-to-one and onto), points at in�nity must

be added to the domain and range. Both image and object plane are now projective planes.
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The addition of points at in�nity gives the projective image plane quite di�erent prop-

erties than the familiar Euclidean image plane. The most important di�erence is that the

projective plane is topologically compact while the Euclidean plane is not. This means that

a single cluster of points centered around a point at in�nity in the projective plane appears

as two clusters in�nitely far apart in the Euclidean plane. Any estimation technique based

on \averaging" these points in the Euclidean plane will produce bad results. Proper han-

dling of point clusters at in�nity is not just of theoretical interest; such clusters do arise in

practice. For instance, parallel lines in the world project in the image as lines that converge

to a vanishing point. When the lines project to parallel lines in the image, the vanishing

point is said to be at in�nity. Since parallel image lines will normally be corrupted by er-

rors, some line intersections will appear to be close to in�nity in one direction, while some

will appear to be in�nitely far away in the opposite direction. A general-purpose algorithm

for vanishing point analysis therefore needs to be able to handle clusters of vanishing point

estimates centered around points at in�nity (see Chapter 4).

1.2.2 A Euclidean Model of the Projective Plane

Projective spaces of n-dimensions are not adequately modeled by their n-dimensional

Euclidean counterparts because of the need to explicitly represent points at in�nity. In this

section, homogeneous coordinates are used to build models in Euclidean (n+ 1)-space that

can be used to visualize projective n-space.

Recall that homogeneous coordinates represent a point in projective n-space by an (n+1)-

dimensional vector of numbers, not all zero, and that any two homogeneous coordinate

vectors are equivalent if one is a nonzero scalar multiple of the other. For concreteness,

consider the projective plane, where 2D points and lines are represented by homogeneous
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coordinate vectors in (R

3

�f0g). Let � be an equivalence relation over points in (R

3

�f0g)

such that

x � y i� (x

1

; x

2

; x

3

) = (ky

1

; ky

2

; ky

3

); k 6= 0: (1.6)

The projective plane P

2

is de�ned as the quotient space (R

3

� f0g)= �. Viewing R

3

as

Euclidean space, each equivalence class of homogeneous coordinates can be thought of as an

in�nite line through the origin, excluding the origin itself which can not correspond to any

homogeneous coordinate.

Figure 1.4 develops the relationship between homogeneous coordinates and perspective

camera geometry The homogeneous coordinates for a point p = (u; v) in the image plane are

k(u; v; 1). To view this geometrically, place the image plane at Z = 1. The set of equivalent

homogeneous coordinates for point p is now a line h

p

passing through the focal point and

point p in the image plane. The homogeneous coordinates of a line segment l lying along line

aU+bV +c = 0 in the image are k(a; b; c). This equivalence class of homogeneous coordinates

is visualized as line h

l

passing through the focal point perpendicular to the plane containing

the focal point and line segment l. Points at in�nity are easily represented using homogeneous

coordinates. A point at in�nity in the projective image plane is represented as k(u; v; 0) in

homogeneous coordinates, and is visualized as a line passing through the origin parallel to

the image plane. The homogeneous coordinates of the line at in�nity in the projective plane

are k(0; 0; 1). This is viewed as a line passing through the origin perpendicular to the image

plane. Since every line through the origin of R

3

corresponds to a unique point (and line) in

the projective plane, and vice versa, the two sets of elements are isomorphic. In fact it can

be shown that the two sets are homeomorphic { they have the same topological structure

[Boothby86].
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(u,v)

au + bv + c = 0
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Z = 1

X

Y

Z

(0,0,0)
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L

Figure 1.4: Homogeneous coordinates of points and lines in the image. Each equivalence

class of homogeneous coordinates can be viewed as an in�nite line through the origin of the

camera coordinate system.
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Although the homogeneous coordinates for points and lines in an image are not necessar-

ily related to viewing rays towards 3D features in the world, for pinhole camera images they

are directly related. This explains the emphasis that has been placed on accurate camera

calibration for 3D scene reconstruction. Associated with every calibrated camera is a

known transformation that brings the space of homogeneous image coordinates

for that camera into coincidence with the space of 3D view rays. This transfor-

mation is applied to an observed image to recover the pure pinhole camera image. After

applying this transform, the homogeneous coordinate vector of a point in the image gains

a second, physical interpretation as the projection line containing the camera focal point, a

point in the image, and the corresponding 3D point in the scene. Similarly, the homogeneous

coordinate vector of a line segment in the image can be interpreted as a normal vector to

the projection plane containing the focal point, image line, and corresponding 3D scene line.

Rather than dealing with a whole line through the origin, any point of which is equivalent

to any other, it is easier computationally to scale homogeneous coordinate vectors to have

unit length, resulting in points on the unit sphere. Since vector x is equivalent to vector �x

in homogeneous coordinates, the resulting unit vector can have either sign, thus a point on

one side of the sphere is indistinguishable from a point on the other. More formally, consider

the surface of the unit sphere S

2

= f(x

1

; x

2

; x

3

)jx

2

1

+ x

2

2

+ x

2

3

= 1g; and form the quotient

space S

2

= �; where � is the equivalence relation de�ned in equation (1.6). Each equivalence

class of this quotient space contains one pair of diametrically opposite points. Equating these

equivalence classes with homogeneous coordinates in the obvious way shows that the surface

of the unit sphere with antipodal points equated is isomorphic to the projective plane. This

mapping also preserves the topological structure of the projective plane [Boothby86].
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The sphere is a particularly appropriate model for the projective plane since it makes

explicit the fact that both are compact surfaces. Furthermore, by identifying points and

lines of the projective plane with pairs of antipodal points on the Euclidean unit sphere, a

metric is induced on the projective plane. The introduction of a metric in the projective

plane allows probability distributions on the sphere to be reinterpreted as distributions on

the projective plane. Since diametrically opposite points on the sphere must be treated as

equivalent in order to represent the projective plane, an appropriate distribution must possess

the property of antipodal symmetry, i.e. the probability density in a small neighborhood at

any point on the sphere must be the same as at the diametrically opposite point.

The image plane is not normally identi�ed with the projective plane. Indeed, many vision

applications have developed plausible probabilistic measures of geometric uncertainty that

treat the image plane as Euclidean. When such an error model is available, it may be mapped

to the projective plane in a straightforward manner, again using a geometric interpretation

of homogeneous coordinates. As shown in Figure 1.5, a probability density function (p.d.f.)

representing an uncertain point feature in the image plane induces a p.d.f. over the unit

vectors representing the homogeneous coordinates of that point, and thus a p.d.f. on the

sphere. Likewise, a p.d.f. representing the uncertain endpoints of an extracted line segment

induce a p.d.f. over the unit vectors normal to the projection plane of the line segment,

again resulting in a p.d.f on the sphere. The de�nition and propagation of probability

density functions on the sphere is the subject of Chapter 3.

Although this section has dealt primarily with the projective plane, certain aspects of

the approach are extendible to other projective spaces. Obviously, the representation of

uncertain points in the projective plane as random point processes on the sphere can be

extended to any dimension. A point in projective n-space is represented by an antipodal
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P

L

PH

LH

image plane

unit sphere

Figure 1.5: Mapping uncertainty from the image to the sphere. Probability distributions

over points and lines in the image plane induce probability distributions over the space of

homogeneous coordinates, thereby inducing antipodally symmetric distributions on the unit

sphere.
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point pair on the surface of the unit sphere in (n + 1)-dimensions. For example, points

on the projective line are isomorphic to antipodal pairs on the unit circle, and points in

projective 3-space can be represented as antipodal pairs on the unit hypersphere in R

4

. The

duality between points and lines in the projective plane (Appendix A.2), manifest by their

essentially interchangeable homogeneous coordinate representations, is what allows 2D lines

to be represented also by antipodal pairs of points on the sphere. In projective 3-space,

points and planes are duals. Therefore, random point processes on the hypersphere apply

equally well for planes as they do for points in projective 3-space. Lines in projective 3-space,

however, are self-duals, and cannot be represented easily in this framework. The problem of

representing uncertain in�nite lines in projective 3-space is still an open problem.

1.3 Overview of the Thesis

The rest of this thesis is organized as follows. Chapter 2 reviews related work on geometric

reasoning and the representation of geometric uncertainty. Chapter 3 presents an approach

to uncertain geometric reasoning in projective space. The approach is called stochastic pro-

jective geometry, since geometric reasoning about homogeneous coordinate vectors is reduced

to well-de�ned manipulations on probability density functions. Applications of this frame-

work are presented in Chapter 4. Three applications are considered: deriving line and plane

orientations using vanishing point analysis, partitioning scene features into planar patches

using line correspondence stereo, and extending a partial model of planar surface struc-

ture using projective invariants. Chapter 5 concludes this thesis with a summary and some

thoughts on future research directions.



C H A P T E R 2

Related Work

No dissertation is written in a vacuum. This thesis owes much to the scholarship of

others; the study of previous work has uncovered strengths to emulate and weaknesses to

avoid. Along the way, ideas from seemingly disparate �elds have been gathered and combined

to form a novel, and hopefully enlightening, approach to managing the geometric uncertainty

underlying visual scene reconstruction. This chapter traces the intellectual predecessors of

this dissertation and points out concurrent related work. No attempt has been made to

provide an exhaustive literature review. The works discussed here were chosen because they

are either representative of a particular approach, illustrate an important point, or have

contributed signi�cantly to the development of this thesis.

The review is divided into two sections. Section 2.1 traces various stages in the develop-

ment of tools for reasoning about visual geometry. It is seen that there has been a steady

evolution of ideas, placing more and more emphasis on projective geometry: from the early

block's world work on representing geometric constraints relating lines in the image plane

with the orientation of lines and surfaces in the scene under orthographic projection, through

the use of simple projective properties such as vanishing points to infer line and plane ori-

entations, up to recent work involving the explicit use of projective invariants to derive 3D

scene structure. In Section 2.2 the focus shifts to the representation and manipulation of

20
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geometric uncertainty, in particular the exible and powerful probabilistic approaches cur-

rently in favor. In most computer vision applications, uncertainty in geometric features

is represented and propagated using Gaussian probability density functions in a linearized

space of object parameters. We show that this is not always an appropriate representation,

particularly in projective space, and instead turn to probabilistic models of uncertainty on

the sphere.

2.1 Geometric Reasoning

The pinhole camera model describes how a well-calibrated camera forms an image of

the world. Under the pinhole camera model, point and line features in the image plane

are directly related to the orientation of viewing rays towards corresponding scene features.

Since the pinhole camera model is essentially a perspective projection of the scene onto the

image plane, for calibrated cameras the space of homogeneous coordinates of features in the

image coincides with the space of viewing ray orientations. The homogeneous coordinate

vector of a point in the image plane represents the orientation of the ray in camera coordinate

space that passes through the scene point in the world. The homogeneous coordinate vector

of a line in the image is perpendicular to the projection plane containing the focal point,

image line and 3D scene line. This implies that the homogeneous coordinate vector of a line

in the image is perpendicular to the 3D orientation of the corresponding line in the scene.

The nice overlap of projective space and orientation space for the calibrated pinhole

camera model perhaps explains why computer vision researchers have neglected the study of

projective geometry until recently. This section traces a little of the evolution of thought

in computer vision that has eventually teased apart the notions of orientation vs. projective
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space. Section 2.1.1 begins with a look at early systems for reasoning about simple block's

world scenes, and how they represented geometric constraints between the orientations of

3D lines and planes in the scene, and the orientations of 2D lines in the image. Two ap-

proaches to representing orientations and their constraints were developed; gradient space

and the Gaussian sphere. The work on vanishing point analysis described in Section 2.1.2

represents a move away from reasoning purely about orientations towards the simple, intu-

itive use of projective invariance for deriving scene structure. The original goal of vanishing

point analysis was to recover line and plane orientations using a calibrated camera, so the

di�erence between orientation space and projective space was still blurred. However, the

fact that vanishing points can still be detected in images formed by uncalibrated cameras

was soon exploited to perform the intrinsic camera calibration needed to bring orientation

space into alignment with projective camera space. Finally, in Section 2.1.3 recent work is

described that embraces projective geometry as a exible reasoning tool. Geometric con-

structions in projective space are no longer required to have physical interpretations in terms

of orientation space. The result is a powerful approach to deriving 3D scene structure in

a manner invariant to viewing location or camera calibration parameters. The downside is

that outside constraints must be provided to interpret a model built in projective space as

a physical object in Euclidean space.

2.1.1 Reasoning about Orientations

Recovering the 3D geometry of a scene from a set of 2D geometric primitives in the image

has long been a goal of computer vision research. Several early successes were achieved by

systems for interpreting line drawings of polyhedral objects. The �rst systems for interpreting

\block's world" images assigned symbolic labels { convex, concave, object boundary, or
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shadow { to the line segments in a drawing by determining sets of possible line labels at each

vertex, then propagating label constraints to adjacent vertices until a consistent labeling of

the whole edge graph emerged [Hu�man71, Waltz72]. Two problems soon became apparent

with this qualitative approach: objects with di�erent shapes could be given the same set of

edge labels, and consistent labelings could be generated for nonsensical objects that could

not exist as polyhedra.

To overcome these di�culties, quantitative information about surface orientation was

introduced into the interpretation process. Mackworth introduced the notion of gradi-

ent space, based on earlier work by Hu�man, to represent constraints between plane and

line orientations in the world, and their relation to line segment orientations in the image

[Hu�man71, Mackworth73].

Gradient Space

Gradient space represents an orientation (a; b; c) by the 2D point (�a=c;�b=c). Geo-

metrically, this can be interpreted in the pinhole camera coordinate system of Figure 1.1

as intersecting the orientation ray k (a; b; c) with the plane Z = �1. General references to

gradient space and its use in representing geometric constraints between the orientations of

lines and surfaces can be found in [Shafer83] and [Kender80].

Gradient space has one serious aw: it can not represent orientations perpendicular to

the line of sight, namely those orientation vectors where c = 0. The representation is thus

\blind" to an important subset of surfaces, namely surfaces parallel to the line of sight. For

instance, when the camera is facing straight down a corridor, the side walls, the oor and the

ceiling are all parallel to the line of sight, and thus not representable in gradient space. This

was not a problem in the early block's world work where objects had limited extent in depth
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with respect to the viewing distance and orthographic (parallel) projection could be assumed.

The orthographic projection of a plane nearly parallel to the line of sight is singular anyway,

in that the plane projects to a single line in the image. However, when larger structures are

viewed under perspective projection, planes parallel to the line of sight are often seen in the

image and the limitations of gradient space become apparent. A di�erent representation is

needed to represent orientations under perspective projection.

Gaussian Sphere

Intuitively, a 3D orientation is most naturally represented as a unit vector having that

orientation. This observation motivated Barnard to introduce the Gaussian sphere represen-

tation [Barnard83]. The Gaussian sphere is a unit sphere, centered about the origin of the

camera coordinate system. A 3D orientation is represented as the point on the sphere where

a unit vector having that same orientation touches the surface of the sphere.

Barnard found the Gaussian sphere to be a more convenient space to express geometric

constraints under perspective projection than gradient space had been. He listed many

reasons for preferring the Gaussian sphere over gradient space:

� all orientations are represented,

� the sphere is a �nite (closed) space whereas gradient space is in�nite (open), hence

histogram-based methods become feasible,

� the sphere has the same symmetry as perspective projection (symmetric with respect

to the focal point) whereas gradient space has the symmetry of orthographic projection

(symmetric with respect to the line of sight), and



25

� gradient space is the limiting case of the Gaussian sphere representation as the fo-

cal length of the camera approaches in�nity and perspective projection approaches

orthography.

Every gradient space construction can be performed on the sphere by just mapping

the relevant entities from the gradient space plane Z = �1 onto the sphere using central

projection. That is, the point (p; q) in gradient space becomes point (p; q;�1)=

p

p

2

+ q

2

+ 1

on the sphere. Lines of points in gradient space map to great circles of points on the

sphere. What becomes apparent after working with the sphere for a short while is that

many relations have a clear, intuitive geometric meaning in terms of vectors, great circles, and

perpendicularity. Once these intuitions on the sphere have been built up, the corresponding

geometric interpretations in gradient space seem needlessly opaque.

Kender uses both gradient space and the Gaussian sphere in his work [Kender80]. He cites

the biggest drawback of the Gaussian sphere as being the complicated form that equations

take on when written in spherical coordinates. This is a common complaint, even among

advocates of the Gaussian sphere representation. For example, McGee and Aggarwal use

a clustering method on the sphere to detect vanishing point locations [Magee84]. Their

measurement of arc distance between two points with azimuth-elevation coordinates (�

1

; �

1

)

and (�

2

; �

2

) is the nonintuitive formula

� = arccosfcos(90 � �

1

) cos(90� �

2

) + sin(90 � �

1

) sin(90 � �

2

) cos(�

1

� �

2

)g:

Criticism of the Gaussian sphere based on complicated trigonometric expressions misses

its mark, however, since most of the relevant relationships on the sphere can be written simply

and concisely in terms of unit vector notation, rather than using spherical coordinates. For
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instance, the arc distance equation given above can be written much more simply as the unit

vector formula

� = arccos(u � v)

where u and v are unit vectors representing two points on the sphere.

2.1.2 Vanishing Point Analysis

Under perspective projection, 3D parallel lines in the world project to converging 2D

lines in the image plane. The common point of intersection, perhaps at in�nity, is called

the vanishing point . Vanishing points provide strong cues for inferring 3D scene structure

from only a single view [Haralick80, Horaud87, Shakunaga92, Straforini92]. For calibrated

cameras, the vanishing point of a group of parallel lines determines their orientation in space.

Two or more vanishing points from lines known to lie in a plane establish a vanishing line,

which completely determines the orientation of the plane. Analysis of vanishing points yields

simple methods for �nding the relative orientation of the viewer with respect to the world

[Bellutta89, Li90, Wang91], and for determining some of the intrinsic camera calibration

parameters [Caprile90, Kanatani92].

By tracing the development of vanishing point algorithms in some detail, we hope to

illustrate the interplay between orientation space and projective space in computer vision.

The history of vanishing point analysis also provides a nice case study of how heuristic

approaches for dealing with geometric uncertainty have given way to more formal statistical

estimation techniques.

Vanishing point geometry is easiest to describe for calibrated cameras (see Figure 2.1).

The normal vector of the projection plane of a 3D line is perpendicular to the orientation of

the line. The projection plane normals of parallel lines in space are therefore all perpendicular
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Figure 2.1: Vanishing point geometry.
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to the shared line orientation u. As a result, the projection planes of parallel lines are

constrained to form a pencil of planes, all intersecting in the line through the origin having

orientation u. The intersection of this pencil of planes with the image plane yields a pencil of

2D lines intersecting at a single point, the vanishing point. The vanishing point associated

with lines of orientation u is the image of the point at in�nity in projective space where all

parallel 3D lines of orientation u meet.

The pencil of projection planes for lines of orientation u intersects the Gaussian sphere

in a pencil of great circles. All great circles in this pencil intersect at two antipodal points

marking the tips of unit vectors �u. This simple geometric constraint leads to an e�cient

clustering technique for detecting pencils of lines converging to a vanishing point. In Barnard

[Barnard83], great circles representing the projection planes of line segments in the image are

mapped onto a histogram of the Gaussian hemisphere, partitioned by azimuth and elevation.

Each histogram bucket maintains a count of the number of great circles passing through it.

Potential vanishing points are detected as peaks in the histogram, corresponding to areas

where several great circles intersect.

While the computational complexity of Barnard's algorithm isO(n) in the number of lines

processed, vanishing points are located only to within the boundaries of a histogram bucket.

This makes the approach ill-suited for accurately determining the true vanishing point lo-

cation. Usually, the center of a histogram bucket is chosen as the vanishing point location

estimate, and a con�dence region is constructed having roughly the same size and shape

as the bucket. Since the surface of the sphere is not partitioned uniformly by azimuth and

elevation, this method estimates vanishing points more accurately in some directions than

in others. If high accuracy is required over the whole space of vanishing point orientations,

the spherical histogram must be partitioned very �nely, negating some of the computational
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bene�ts of the approach. This drawback can be overcome by using a more sophisticated al-

gorithm, such as the hierarchical re�nement method of [Quan89], a more regular tessellation

of the sphere, or a di�erent accumulator space altogether where the likelihood of �nding a

vanishing point in each bucket remains roughly constant [Brillault91]. Other problems (in-

herent to the Hough transform) remain [Grimson90]; for example, when the true vanishing

point falls near a histogram boundary, candidates which should be grouped together may fall

into separate buckets. In summary, while algorithms based on the Hough transform excel

at quickly clustering line segments into convergent groups, the �nal estimate of vanishing

point location and variance should be based on the line segments themselves rather than the

arbitrary bucket boundaries of a histogram data structure.

In contrast to line-based Hough transform approaches, Magee and Aggarwal compute

intersections of pairs of line segments directly, thus determining pairwise vanishing points

[Magee84]. A line intersection is represented as the point on the unit sphere where a ray

directed from the focal point towards the intersection point pierces the sphere. This ray

can be easily computed as the cross product of the projection plane normals of the two

lines. Vanishing points are detected as clusters of intersection points on the sphere. Since

computed points are maintained and distances compared uniformly over the entire surface,

vanishing points can be estimated with greater accuracy. One drawback, of course, is that

examining all pairs of line segments yields a complexity of O(n

2

). Magee and Aggarwal

further observe that the true focal length of the camera does not have to be known to �nd

vanishing point clusters, although it is necessary for deriving line orientation. This is because

a line pencil is a geometric con�guration that is invariant under projective transformations

caused by changing the intrinsic camera parameters. If the wrong focal length is used, all
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vanishing points can still be located, but their projection rays will no longer be aligned with

the true Euclidean orientations of lines in the scene.

A practical algorithm for �nding vanishing points must address two issues: how to cluster

line segments going to a single vanishing point, and how to accurately estimate the vanishing

point location from a given line cluster. Barnard's histogram method provides an e�ective

solution to the �rst subproblem, based on the constraint that the projection planes of a

pencil of lines slice through the Gaussian sphere in a pencil of great circles. Collins and

Weiss [Collins89] present an e�cient solution to the estimation subproblem based on the

dual constraint: that the normal vectors of a pencil of planes must themselves lie in a plane,

which implies that the unit normal vectors on the sphere span a great circle. They use the

normal vector to the orthogonal least-squares plane-�t as the estimate of the true vanishing

point direction. This approach maintains the O(n) e�ciency of Barnard's method but yields

vanishing point estimates having far greater accuracy. In particular, Barnard's histogram is

applied as an initial clustering method and as an e�cient spatial access mechanism on the

sphere, while the �nal estimation of vanishing point location is performed on the underlying

data.

In real images, line segments are perturbed by errors both in the imaging process and

in the method of line segment extraction. The uncertainty in line segment position and

slope leads to uncertainty in the true vanishing point location and hence in derived 3D

line orientation. As mentioned above, histogram-based methods locate each vanishing point

within a histogram bucket on the sphere, the shape of the histogram bucket itself providing a

discrete error bound on the true position. Weiss, Nakatani and Riseman [Weiss90] represent

uncertainty in 3D line orientation as a circular error bound around the nominal vanishing

point position on the sphere. This constrains any vector perpendicular to an uncertain line
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orientation to lie somewhere within a \belt" of constant width on the sphere, and therefore

the surface normal of a planar patch containing two or more uncertain line orientations lies

somewhere within the intersection of their constraint belts.

Collins and Weiss [Collins90] present a formal statistical approach to estimating uncertain

line orientations from vanishing points. The approach is described more fully in Chapter 4.

Assuming that image line segments have been previously grouped into pencils, the projec-

tion plane normals for each group form a set of points on the sphere clustered about a great

circle perpendicular to the true vanishing point location. Collins and Weiss treat this cluster

as a random sample from an equatorial distribution on the sphere, and estimate the van-

ishing point location as the polar axis of least dispersion. Under the assumption that the

sample is distributed according to Bingham's distribution on the sphere, the polar axis can

be found using standard maximum likelihood techniques [Bingham74]. A second, nonpara-

metric approach is based on the method of moments, requiring only the assumption that

the distribution is antipodally symmetric. Both approaches yield the eigenvector associated

with the smallest eigenvalue of the sample second moment matrix as an estimate of the axis

of least dispersion, which interestingly enough is the same result produced by a least-squares

perpendicular error plane �t to the heads of the projection plane normals [Collins89]. Both

distributional assumptions provide con�dence regions for the estimated axis that are fairly

similar in size and shape.

The work of Collins and Weiss represents the �rst application of probability distributions

on the sphere to estimate vanishing point locations. However, it is based on the unrealistic

assumption that the projection plane normals of a pencil of line segments are independent

and identically distributed according to an equatorial distribution on the sphere. This is

unrealistic for two reasons. First, longer line segments are measured much more accurately
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than shorter ones, and should thus be given more credence when estimating their intersection.

Yet even if a weighted variant of maximum likelihood estimation or the method of moments

is substituted, a more subtle problem remains. Each projection plane normal on the sphere

represents a noisy observation of an unknown, true value. Collins and Weiss assume these

true values are themselves random samples from an equatorial distribution. There is no

reason to believe the true values are distributed according to any particular distribution,

however. What is instead the case is that the true values are constrained to lie on a great

circle by the geometry of vanishing point formation. In formal terms [Anderson84] the

tendency of projection plane normals to cluster about a great circle should be treated as

a functional relationship (i.e. a geometric constraint) rather than a structural relationship

(i.e. evidence of an underlying stochastic process).

Kanatani [Kanatani93b] removes some of these troublesome assumptions. To reect

the di�ering accuracy of individual lines and their projection plane normals, each vector is

weighted by an estimate of its uncertainty, represented as a 2D Gaussian distribution in the

tangent plane to the sphere centered about the tip of the nominal vector location. These

projection plane uncertainties are derived from an error model of line segment extraction

in the image. An iterative search �nds the axis that minimizes a least-squares, statistically

weighted dispersion across the cluster of points on the sphere. Uncertainty in this computed

vanishing point location is approximated by a Gaussian distribution in the tangent plane to

the estimated axis. Although this approach removes many of the defects of the earlier work

of Collins and Weiss, it does so at the cost of oversimplifying the representation of uncertain

unit vectors. What should ideally be a probability distribution on the sphere is instead

represented in a linearized parameter space, namely a tangent plane to the sphere. While

there is little di�erence for small errors, larger errors typi�ed by vanishing points far from
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the image plane will be underestimated, because the inherent curvature of the parameter

space of 3D orientations is being ignored.

In Chapter 4 we revisit the classic problem of vanishing point estimation. As in [Collins90]

we use probability distributions on the sphere to characterize uncertainties in unit vector

orientations. As in [Kanatani93b] we allow each projection plane normal to have an inde-

pendent estimate of accuracy, and make no assumptions about the distribution of sample

points except that they are noisy observations of true values that lie on a great circle whose

axis identi�es the location of the vanishing point. This axis is estimated using a Bayesian

nonlinear regression technique.

2.1.3 Projective Geometry

Due to the projective nature of computer vision, it is not surprising that past work

has been implicitly based upon the principles of projective geometry. However, only in the

past �ve years have appreciable numbers of researchers explicitly focused on projective ge-

ometry as a problem solving framework. Among the �rst were Naeve and Eklundh, who

argue that projective space is the proper place to formulate questions about scene geometry

[Naeve87]. They point out that representations in terms of homogeneous coordinates yield

geometric equations of particularly simple form, usually linear. As a result, problems solved

in projective form tend to make explicit the degrees of freedom of the solution. Finally,

projective spaces are compact, so the search space for analytic solutions is bounded, and

histogram-based methods for grouping data become possible. Naeve illustrates these ad-

vantages by developing projective coordinates for representing 3D lines in the world, and

analyzing what this coordinate system implies about solutions to common problems such as
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�nding parallel 3D lines from a 2D image (the vanishing point problem), and �nding pairs

of lines in the image which form right angles in the world.

Both the INRIA and LIFIA research teams in France made signi�cant early progress in

applying projective geometry for use in vision applications. Quan and Mohr use perspective

invariants such as colinearity and convergence to dictate how to group 2D line segments into

larger structures relevant for matching against 3D object models [Quan89]. The main idea is

that initial matching hypotheses are more likely to succeed when they are based on geometric

structures which remain intact throughout the image formation process. They also discuss

the use of the cross ratio as a consistency check to prune out bad matches. Faugeras and

Lustman show that when coplanar points (or lines) are viewed from two di�erent positions,

the relation between their corresponding 2D locations in the image planes is a homography

[Faugeras88]. They use iterative mean square techniques to estimate the 3� 3 homography

matrix from several hypothesized point (line) matches. They show how to decompose the

homography matrix to solve for the relative pose of the two viewing positions, and discuss

ambiguities in the solution. The results roughly duplicate those of Tsai, Huang, and Zhu,

who solved the same problem but did not discuss the problem in projective geometric terms

[Tsai82]. Finally, Mohr and Morin use projective invariant point and line coordinates for

determining 3D scene structure without laborious calibration of the camera [Mohr91].

Forsyth et.al. investigate the use of projective invariant shape descriptors to index a

model base of curved planar objects [Forsyth91]. Object curves are �tted with conics, and

then labeled with the projective invariants of those conics. Models in the database are

stored according to those invariants as well. This e�ectively decouples the problem of object

identi�cation from that of pose determination. After extracting the appropriate object model

from the database, the accurate 3D object pose can be determined by �nding the perspective
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transformation that maps two known conics on the object plane to two conics found in the

image plane. Follow-up work has investigated invariant indexing functions for other planar

feature sets such as a conic and three lines, and �ve coplanar lines [Rothwell92].

The early successes in object recognition based on planar invariants sparked considerable

interest in developing more general 3D-to-2D invariants. However, work by Burns shows

that there is no holy grail | there are no 3D-to-2D invariants for general con�gurations of

points in space [Burns93]. This has been widely misinterpreted as meaning that no 3D-to-2D

invariants exist for any object. Fortunately, this is not the case, as Rothwell et.al. show by

exhibiting invariants for sets of points lying on the vertices of a polyhedron, and for objects

having bilateral symmetry [Rothwell93].

Projective invariants are insensitive not only to camera position, but also to the linear

intrinsic parameters of the camera itself. This has led researchers to consider what 3D struc-

ture can be recovered from views of a scene taken by uncalibrated cameras. One fundamental

result is now known: given an uncalibrated stereo pair, i.e. two views taken from unknown

viewing position by two di�erent unknown cameras, the 3D structure of the world can still

be recovered up to an unknown projective transformation [Faugeras92a, Hartley93, Mohr92,

Shashua93]. The recovery and use of non-metric structure is currently a subject of intense

interest in the �eld.

2.2 Geometric Probability

The ability to represent and propagate uncertainty in geometric models, sensed data,

and estimated transformations is an important requirement for robust vision and robotics

systems. This issue pervades numerous application areas such as mobile robot navigation,
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automated assembly planning, dexterous hand manipulation, and geometric model acquisi-

tion.

In this section standard techniques for handing uncertainty in vision and robotic systems

are examined. Most geometric reasoning tasks can be formulated as the problem of estimat-

ing a state vector of parameters from a set of noisy observations related to the parameters

by nonlinear constraint equations. Statistical methods based on the Gaussian probability

density are the most prevalent and powerful approaches for solving this estimation problem.

Such methods include the popular Kalman �lter. At the end of this section we analyze the

assumption of Gaussian errors in the context of uncertain projective geometric reasoning

and �nd the Gaussian distribution lacking. In the next Chapter, we explore alternatives to

the Gaussian that make sense in projective space.

2.2.1 Stochastic Projective Geometry

Geometric features are often represented algebraically as parameterized functions. Partic-

ular instances of these geometric features can then be represented as points in the appropriate

space of parameters. For example, the equation x cos � + y sin � � � = 0 represents a line of

in�nite extent in the a�ne plane. The parameter space f(�; �)j0 � � < 2�; 0 � �g represents

the space of all possible lines in the plane; a particular line is singled out by choosing one

pair of values for � and �.

One simple, yet popular approach to representing uncertain geometric features is to

specify a a region in parameter space within which the true parameter value is known to lie

[Brooks84, Grimson90]. Since the true value can be anywhere within its allowed bounds, this

method implies a uniform uncertainty over the circumscribed volume of parameter space.

Uncertain information is combined by intersecting corresponding volumes. However, the
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geometric volume representing the result of even one or two intersections can become very

di�cult to describe. In practice, the uncertainty bound approach often degenerates into a

crude, worst-case analysis using volumes of simple shape, but imprecise content.

A more powerful representation for geometric uncertainty is based on stochastic geometry

[Baddeley82, Stoyan87]. Uncertainty in a geometric object is represented as a probability

density function over the space of object parameters, higher probabilities representing more

likely parameter values. Applications of this approach in robotics and computer vision typ-

ically use the Gaussian distribution, so that uncertainty in a parameter is represented by a

mean value plus an associated covariance matrix [Durrant-Whyte88]. Durrant-Whyte con-

siders two geometric reasoning tasks : transferring uncertain features into a new coordinate

system (to bring measurements made from two camera positions into a common reference

frame, for example), and building new geometric object descriptions from existing uncer-

tain features (e.g. aggregating two uncertain point features into an uncertain line passing

through them). Both types of problem are solved by computing the mean and covariance

of parameter vector y = f(x) where x is a multivariate Gaussian variable. When f is a

linear function, y will also be Gaussian. In general f will be nonlinear, but by expanding the

function in a Taylor series about the mean parameter value for x, f can be approximated

by a linear function. Propagating the mean and covariance of x through this \linearized"

version of f results in the approximate mean and covariance of y.

Crowley notes that estimates of Gaussian uncertainty can aid in determining compatible

feature matches via the Mahalanobis measure of statistical distance in parameter space

[Crowley87]. Gaussian uncertainty propagation can therefore form the basis of a cyclic

processing paradigm where an uncertain prior model of the world guides the interpretation

of sensed data, which then is used to constrain the estimated location of the observer, which
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in turn is then used to further re�ne the world model. This cycle of uncertainty and constraint

lies at the core of many current robotic navigation systems [Matthies87a].

A notable example of the cycle of uncertainty and constraint is the work of Ayache

and Faugeras [Ayache91], who describe a successful model-based stereo navigation system.

The strength of this system is its uni�ed, homogeneous treatment of uncertainty in all

stages of model construction, image interpretation and motion determination. All tasks are

reduced to the estimation of a state vector of parameters given noisy observations that are

related to the current system parameters via multiple, nonlinear constraint equations. All

observation errors are assumed to be Gaussian, unbiased and independent of each other, with

known covariance. Estimation of the state parameters is performed within the framework of

Kalman �ltering, an iterative version of the weighted least-squares estimation procedure that

incrementally improves parameter estimates as more observations are built up over time.

2.2.2 Problems with the Gaussian Assumption

Parameter estimates produced by the Kalman �lter are provably optimal provided the

equations relating observations with parameters are linear and the measurement noise is truly

Gaussian, When nonlinear constraint equations are used (the usual case) they must �rst be

linearized about current parameter estimates. The implicit linearization of the parameter

space due to the assumption of Gaussian noise, plus the enforced linearization of the con-

straint equations, make the Kalman �lter in practice an approximate method. In particular,

approaches to uncertain geometric reasoning based on Gaussian covariance propagation will

not work well when

� the uncertainty is large, or

� the parameter spaces or transformations considered are highly nonlinear, or
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� the true error distribution is signi�cantly non-Gaussian.

Indeed, when these three constraints are not met, problems have been noted in the literature

[Matthies87b, Maybank90b].

A further problem with the Gaussian assumption, at least in the context of this thesis,

is that the Gaussian is not stochastically well-conditioned under projective transformations

[Durrant-Whyte88]. This means that a Gaussian density function is no longer Gaussian

after being subjected to a projective transformation, and approximating the resulting true

density function using linear covariance propagation can yield extremely misleading results.

Not only is a projectively transformed Gaussian no longer Gaussian, the constant probability

contours of the transformed function are no longer ellipses, or even conic sections. Worst of

all, the resulting density function may even turn bimodal. These statements can be derived

formally using results presented in Appendix C, example C.9.

Gaussian covariance propagation will perform badly under projective transformations

whenever the transformed mean approaches in�nity. This is primarily due to the fact that

the projective plane is compact, while the a�ne plane (where the Gaussian is de�ned), is not.

A density function that is unimodal in the projective plane is bimodal in the a�ne plane

whenever an appreciable amount of probability mass straddles the line at in�nity. Since

the Gaussian density function is de�ned over the a�ne plane, and is unimodal, it cannot

adequately approximate these situations. This problem is solved in the next chapter by using

probability density functions de�ned over the projective plane instead.



C H A P T E R 3

Stochastic Projective Geometry

Geometric measurements made by real camera systems are inherently uncertain, due

to causes ranging from random sensor noise to grouping and �tting errors in the low-level

feature extraction routines. Algorithms for scene reconstruction that do not take this un-

certainty into account run the risk of generating invalid or poor results. In this chapter we

present an inference engine for performing uncertain geometric reasoning during the scene

reconstruction process. We call this formalism stochastic projective geometry to highlight

the similarity between this approach and the popular stochastic geometry method described

in Section 2.2.1. Just as in that work, geometric objects are represented by points in a

parameter space, and geometric uncertainty is represented by probability distributions over

the space of object parameters. Geometric reasoning about uncertain objects reduces to

well-de�ned manipulations of the underlying probability distributions.

The distinguishing character of this work, that makes it stochastic projective geometry,

is that the geometric objects under consideration are projective objects and the appropri-

ate parameter space for representing them is projective space. Earlier chapters have shown

that projective space has a di�erent global structure than its a�ne and Euclidean counter-

parts, and that probability distributions in these spaces, particularly the Gaussian, are not

appropriate in topologically compact projective space.

44
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In this chapter the fundamental principles of stochastic projective geometry are de�ned.

The goal is to develop an uncertainty calculus in projective space analogous to the Gaussian

uncertainty calculus in a�ne space. Above all, we seek to maintain the main strength of the

Gaussian calculus, namely its uniform treatment of uncertainty in all stages of the geometric

reasoning process. At the same time, the limitations of the Gaussian as a representation of

uncertainty in projective space are removed.

For concreteness, the methods of this chapter are developed speci�cally for the projective

plane, but the results are easily generalized to projective spaces of other dimension. In

Chapter 1 the projective plane was shown to be topologically equivalent to the quotient

space formed from the surface of the Euclidean unit sphere modulo the set of in�nite lines

through the sphere's center. This quotient space amounts to equating antipodal pairs of

points on the surface of the sphere. By identifying the projective plane with this quotient

space, antipodally symmetric probability density functions on the sphere to be reinterpreted

as density functions on projective space. In Section 3.1 a family of exponential distributions

on the sphere is considered, and Bingham's distribution is chosen from this family to represent

uncertainty over points and lines in the projective plane.

Once a suitable representation of uncertainty has been chosen over a parameter space,

there are two fundamental types of operations of interest to an uncertain geometric reasoning

system. The �rst is determining how the chosen representation of uncertainty transforms un-

der a change of coordinates or under a change in parametric representation. The coordinate

transformations of interest in plane projective geometry are the nonsingular planar projec-

tive transformations or homographies. Section 3.2 shows that a projective transformation,

although linear in homogeneous coordinates, induces a nonlinear bijective transformation on

the surface of the sphere. Using a method called transformation of variables, the change
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in point and line uncertainty due to a projective coordinate transformation is determined

by propagating the Bingham probability density function through this nonlinear transfor-

mation. Also considered is the initialization of Bingham uncertainty measures by mapping

representations of uncertain points and lines in the image plane onto the sphere via central

projection.

We shall see that Bingham's distribution does not remain invariant under projective

transformations. In order to maintain a uniform representation of uncertainty, it will be

necessary to approximate an analytic density function computed by the transformation of

variables technique by an appropriate Bingham density. Three methods for approximating

a given density function by a Bingham density are explored in Section 3.3. These methods

are compared in terms of the mean-squared error metric.

After several geometric observations from multiple sensors and/or multiple images have

been brought into a comparable coordinate system and found to represent separate measure-

ments of the same phenomenon by some test, a second fundamental geometric reasoning task

involves fusing these multiple estimates into a single, more accurate geometric description.

Section 3.4 examines the incidence relations of projective geometry, reformulating them to

take into account uncertainty in the underlying point and line primitives. Bayesian param-

eter estimation is used on the sphere to combine multiple measurements of incident points

and lines to derive more accurate feature descriptions. This chapter closes with a brief recap

of the main principles underlying stochastic projective geometry as an approach to geometric

reasoning in projective space.

In an attempt to make this document as self-contained as possible, basic background

material regarding probability density functions on the sphere is presented in Appendix B.
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A description of the transformation of variables technique, and its use in deriving the results

referred to in the text, can be found in Appendix C.

3.1 Probability in the Projective Plane

In Section 1.2.2 it was shown via homogeneous coordinates that the projective plane can

be visualized as the Euclidean unit sphere with antipodal points equated. By identifying the

projective plane with the quotient space S

2

= �, antipodally symmetric probability distribu-

tions on the sphere may be reinterpreted as distributions in the projective plane. A useful

characterization of probability distributions on the sphere is presented by Beran [Beran79].

Beran considers a family of probability density functions of the form expfPg, with P being

some polynomial evaluated over the surface of the sphere (see Appendix B). Although limit-

ing the density functions considered to those having exponential form may appear restrictive

at �rst, it is not in fact a very severe restriction, since any strictly positive analytic function

F on the sphere can be represented as expflogfFgg. Probability density functions having

exponential form play an important role in statistics due to their ease of use in maximum

likelihood estimation [Mendel87].

Beran chooses the spherical harmonic polynomial basis for writing polynomial P , yielding

a polynomial decomposition on the sphere analogous to the decomposition of polynomials

in Euclidean space using Fourier analysis. Let Y

n

denote a spherical harmonic polynomial

consisting only of terms of degree n. If a density function on the sphere is required to

have antipodal symmetry, all the odd order harmonic polynomials in its expansion must

be identically zero. This leaves an expression expfY

0

+ Y

2

+ Y

4

+ : : :g. The zeroth-order

harmonic Y

0

is just a constant term, so expfY

0

g can be factored out of the expression and



48

absorbed into the density function's normalization constant. Therefore, the lowest-order

approximation to any antipodally symmetric density function on the sphere will have the

form CexpfY

2

g. A distribution having this form has already been studied in the statistical

literature, where it is called Bingham's distribution [Bingham74].

Principle 1: Uncertainty in the projective plane will be rep-

resented as a Bingham probability density function, because

this is a computationally convenient approximation to any an-

tipodally symmetric density function on the sphere.

The following two subsections provide a review of Bingham's distribution, and a com-

parison with alternative distributions that could have been used instead.

3.1.1 Bingham's Distribution

Bingham's distribution is a standard probability distribution for representing both bipolar

and equatorial clusters of points on the sphere [Bingham74, Mardia72]. It is a second-order

approximation to any antipodally symmetric probability distribution on the sphere, and

plays a role analogous to the Gaussian distribution on the sphere and the projective plane

[Breitenberger63]. A Bingham random process can be constructed by taking N

3

(x; 0;�),

a trivariate Gaussian with zero mean and arbitrary covariance matrix, and conditioning

variable x to have unit length. Bingham's distribution thus represents the portion of a

trivariate Gaussian distribution that intersects the surface of the unit sphere, normalized

so that the total probability density over the sphere integrates to one. Varying ellipsoidal
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shapes of the underlying Gaussian contours produce a variety of distributional forms on the

sphere.

The real symmetric covariance matrix � of a trivariate Gaussian can always be de-

composed as USU

t

, where U = [u

1

; u

2

; u

3

] is a 3 � 3 orthonormal matrix and S =

diag(�
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1

; �

2

2

; �

2

3

) is a diagonal matrix of variances. Without loss of generality, assume that
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3
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and constraining x to have unit

length yields the Bingham density function

B(x;U;K) = C(K) expfx
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where C(K) is the normalizing constant required to make

R

B(x;U;K) dS

2

= 1.

It is easy to verify that B(�x;U;K) = B(x;U;K); showing that the density function

is antipodally symmetric, and that it is appropriate to interpret x as an undirected axis, or

as a point in the projective plane. Further analysis shows that the \shape" parameters �

i

are determined only up to an additive constant. This is so because points on the surface of

the unit sphere really have only two degrees of freedom. For uniqueness it is customary to

subtract out the largest �

i

, in this case �

3

, leaving k

i

= �

i

� �

3

with k

1

� k

2

� k

3

= 0.

1

The relative values of the canonical Bingham shape parameters k

1

and k

2

characterize the

di�erent distributional forms of Figure 3.1.

In geometric terms, the additive indeterminacy of the Bingham shape parameters means

that there are an in�nite number of trivariate zero-mean Gaussians that produce the same

1

This is an arbitrary decision. The additive indeterminacy of the shape parameters could also be removed

by requiring �

1

+ �

2

+ �

3

= 1, for example. Subtracting out the largest parameter �

3

is the convention that

has been adopted in the literature.
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a. uniform
k1 = k2 = 0

b. symmetric bipolar
k1 = k2 << 0

c. asymmetric bipolar
k1 < k2 << 0

d. asymmetric girdle
k1 << k2 < 0

e. symmetric girdle
k1 << k2 = 0

U1

U2

U3

Figure 3.1: Bingham's distribution. Representative contours are shown for varying magni-

tudes of the canonical Bingham shape parameters k

1

and k

2

.
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Bingham density function when normalized over the surface of the sphere. Removing this

indeterminacy by constraining the largest parameter k

3

to be zero corresponds to picking a

singular Gaussian as the unique representative for that Bingham density. The Gaussian is

called singular because the determinant of its inverse covariance matrix is zero. In terms of

variance, this means that the representative Gaussian has in�nite variance along (at least)

one of its axes.

Bingham's distribution can easily be generalized to spheres of arbitrary dimension. For

the unit sphere S

n

, a Bingham density function is de�ned by intersecting an (n + 1)-

dimensional zero-mean singular Gaussian with the surface of the sphere, then renormalizing

so that the density on the sphere integrates to one. The resulting distribution is described

by an (n + 1) � (n + 1) orthonormal matrix of orientation parameters, and n independent

shape parameters k

1

� � � � � k

n

� 0. Bingham distributions on the unit circle, sphere,

and hypersphere represent probability distributions over points on the projective line, the

projective plane, and projective three-space, respectively.

Example 3.1 Bingham's distribution on S

1

is formed by normalizing a zero-mean bivariate

Gaussian over the unit circle. Let the Gaussian have variances �

1

2

<= �

2

2

along minor and

major axes u

1

and u

2

respectively. The corresponding Bingham distribution on the circle

has modal axis u

2

and a single canonical shape parameter k

1

= �w = �

1

2

(

1

�

1

2

�

1

�

2

2

): Choose

a spherical coordinate system indexed by angle �, aligned with the major and minor axes such

that any unit vector x is represented as sin �u

1

+cos �u

2

. The density function maxima then

occur at � values of 0 and �, and minima occur at �=2 and 3�=2 (Figure 3.2). Within this
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2
u

u
1

p(   )

in  degrees

0 90 180 270 360

Figure 3.2: Bingham's distribution on the circle. Left shows iso-density contours of a

zero-mean bivariate Gaussian superimposed over the unit circle. A Bingham density func-

tion is formed by intersecting the Gaussian density with the circle and renormalizing to get

total probability one. At right is a plot of the resulting bimodal Bingham density function,

coordinatized by circular angle � from one of the modes.

spherical coordinate system the Bingham density function on the circle is written

C expf�w sin

2

� g : (3.2)

The constant C is computed by normalizing this expression over the unit circle. Using the

trigonometric identity cos 2� = 1� 2 sin

2

�, we �nd

1=C =

Z

2�

0

expf�w sin

2

� g d� (3.3)

= expf�

w

2

g

Z

2�

0

expf

w

2

cos 2� g d� (3.4)

= expf�

w

2

g 2� I

0

(

w

2

) ; (3.5)

with I

0

being standard notation for the modi�ed Bessel function of the �rst kind and order

0. The last integral was evaluated by noting that

R

expf

w

2

cos 2�g is the inverse normal-

ization constant for an axial von-Mises distribution with concentration parameter k = w=2
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([Mardia72], Section 2.6). This derivation shows that Bingham's distribution on the circle

is equivalent to the axial von-Mises distribution.

Example 3.2 A rotationally-symmetric version of Bingham's distribution (such as that

shown in Figure 3.1b) is obtained by letting k

1

= k

2

= �w, and implicitly k

3

= 0. Since

the Bingham shape parameters k

i

are de�ned only up to an additive constant, an equivalent

density function is obtained by letting k

�

i

= k

i

+ w, so that k

�

1

= k

�

2

= 0, and k

�

3

= w. The

Bingham density function of equation 3.1 simpli�es to the form

B(x;U;K) = C expfx

t

(wu

3

u

t

3

) x g = C expfw (u

t

3

x)

2

g : (3.6)

This probability distribution is more commonly known as the Dimroth-Watson distribution

[Mardia72, Upton89]. The value of the density function depends only on the arc distance

of a point from the poles �u

3

, and thus the distribution is symmetric (invariant) under

rotations about polar axis u

3

. Iso-density contours are concentric circles on the sphere. The

single shape parameter w, called the concentration parameter, governs the concentration of

probability mass with respect to the poles. When w > 0, the probability mass is attracted to the

poles and the distribution is bimodal. A high concentration value results in sharp, well-de�ned

antipodal peaks, while a low concentration value leads to atter, more di�use modal peaks.

For w < 0 the probability mass is repelled from the poles and clusters about the great circle

halfway between them. The sharpness of this modal belt is again directly proportional to the

absolute value of the concentration parameter. When w = 0 the distribution reduces to the

uniform distribution on the sphere.
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3.1.2 Bingham Maximum Likelihood Estimation

Maximum likelihood estimation is commonly used to estimate the parameters of a dis-

tribution from a set of sample observations. Maximum likelihood estimation of Bingham

parameters from a random sample is performed in the usual way, by setting up the likeli-

hood equations for an independent and identically distributed (iid) sample of size N; then

solving for the parameters that maximize the likelihood.

Assume a set of N unit vectors x

i

= hx

i

; y

i

; z

i

i that are distributed according to a

Bingham density. Based on general results for estimating the parameters of a density function

in the exponential family [Beran79, Clutton-Brock90], the parameters that maximize the

likelihood function must be chosen so that the second moments of the estimated density are

equal to the second moments of the sample. The maximum likelihood result obtained in this

situation will therefore be equivalent to that found by the method of moments parameter

estimation procedure.

A su�cient statistic for the orientation and shape parameters U and K is the sample

second moment or scatter matrix

M =

1

N

N

X

i=1

(xx

t

) =

1

N

2

6

4

P

x

i

2

P

x

i

y

i

P

x

i

z

i

P

x

i

y

i

P

y

i

2

P

y

i

z

i

P

x

i

z

i

P

y

i

z

i

P

z

i

2

3

7

5

: (3.7)

Since the scatter matrix is a symmetric real matrix, it can be decomposed intoM = A�A

t

;

where A = [a

1

; a

2

; a

3

] is an orthonormal matrix of eigenvectors, and � = diag(�

1

; �

2

; �

3

)

is a diagonal matrix of corresponding eigenvalues with �

1

� �

2

� �

3

summing up to 1. It

can be shown [Bingham74, Mardia72] that the maximum likelihood estimate of the Bingham

orientation matrix U is the matrix of eigenvectors A. Maximum likelihood estimates of the



55

shape parameters k

1

and k

2

are nontrivial functions of � that can be looked up in tables

[Mardia77] or computed numerically [Kent87, Upton89].

3.1.3 A Note Regarding Alternative Distributions

We have chosen Bingham's distribution for representing uncertainty on the sphere and

projective plane. In order to fully understand the strengths and weaknesses of this choice, this

section briey reviews some of the other possibilities. It is not meant to be a complete review

of distributions on the sphere, but rather a look at those distributions that are used most

often, and are therefore the most obvious possible alternatives. More details are available in

[Mardia72, Upton89, Watson83, Jupp91].

In applied statistics on the sphere, the two most popular distributions in practice are

the Fisher (or Langevin) distribution and the Dimroth-Watson distribution [Upton89]. The

Fisher distribution is a higher-dimensional generalization of the Von-Mises distribution on

the circle. Since it is unimodal, it is automatically disquali�ed as a representation of uncer-

tainty in projective space where antipodal (bimodal) symmetry is required. An antipodally

symmetric variant of the Fisher distribution can be de�ned; the result is the Dimroth-Watson

distribution, which is an antipodally symmetric distribution with circular iso-density con-

tours. The Dimroth-Watson distribution is actually a special case of Bingham's distribution

with k1 = k2 (see Example 3.2). Since probability values depend only on arc distance from

the mode (the point of highest probability mass), independent of rotational angle about the

mode, this distribution is easier to use than the full Bingham model. However we shall see

cases where accurate description of uncertainty requires the elongated, ellipsoidal iso-density

contours available from the more exible Bingham density.
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Commonly used distributions on the sphere, including Bingham's distribution, share

the property of remaining invariant in form under rotations of the underlying coordinate

system. The set of all instantiations of a density function formed by giving speci�c values

to its parameters is called a family of densities. The Bingham family is said to be closed

under rotations since, although the values of the parameters may be di�erent in the new

coordinate system, no new parameters are needed and the density function retains the same

basic functional form. This is an important property when reasoning about orientations

because it guarantees that the inferences made are invariant to the (arbitrary) choice of the

underlying orientation coordinate system.

When reasoning in projective space, the choice of the underlying coordinate system should

likewise be arbitrary. Since a change of coordinates from one projective frame to another in-

volves a general projective transformation, it is desirable that the family of density functions

used to represent uncertainty in projective space be closed under projective transforma-

tions. Unfortunately, the Bingham family is not closed under projective transformations,

as will be shown formally in the next section. Transforming a Bingham density function

via a projective transformation does not yield a new Bingham density, and the process of

making the resulting function Bingham entails an approximation process. Precision may be

lost because this approximation deteriorates under very distorted coordinate systems, and

as a result, the accuracy of the geometric inferences made may depend on which coordinate

frame is used. This does not turn out to be an overwhelming problem in practice, since

there is a natural coordinate frame to use for camera-center projective reasoning, namely

the pinhole camera coordinate system in which the homogeneous coordinate vectors of image

features are aligned with the orientations of 3D view rays towards corresponding features

in the scene. Although the exact geometry of the pinhole coordinate system depends on
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camera parameters that may not be known exactly, such as focal length and image center,

we hypothesize that any reasonable approximation to the true viewing geometry will yield

equally valid statistical inferences. In practice, the non-closedness of Bingham's distribution

under projective transformation merely means that extremely distorted coordinate systems

must be avoided. When a coordinate system with a �eld of view angle of 2

�

is used when

the angle is in fact 30

�

, or an aspect ratio of 1000 : 1 is speci�ed when it is more like 1 : 1,

numerical problems may ensue.

In contrast, the Angular Central Gaussian distribution is closed under projective trans-

formations [Tyler87]. The density function can be intuitively described as the marginal

distribution of directions of a zero-mean, multivariate Gaussian distribution. That is, the

value of the density function at a point on the sphere is the integral of a Gaussian over the

ray starting from the center of the Gaussian and having the same direction as that de�ned

by the given point on the sphere. Because the angular central Gaussian family is closed

under projective transformations, statistical inferences based on this distribution are truly

invariant to the choice of projective coordinate system. It thus seems to be the natural dis-

tribution to use for statistical reasoning in projective space. Unfortunately, this distribution

is hard to use analytically. Even the simplest estimation tasks, such as maximum likelihood

estimation of density parameters from a set of independent, identically distributed samples,

must be performed using iterative numerical methods [Tyler87]. Our choice of Bingham's

distribution over the angular central Gaussian is a case where computational expediency has

been chosen over theoretical rigor.

Two approaches to representing uncertain orientation data in the vision literature, both

using the Gaussian distribution, are worthy of mention here. Kanatani performs statistical

reasoning tasks over uncertain points on the sphere for several vision applications, many of



58

which are also treated in this thesis [Kanatani92, Kanatani93a, Kanatani93b]. He represents

unit vector uncertainty using a 2D Gaussian distribution in a plane tangent to the sphere

at the nominal position of the uncertain vector. This approach is asymptotically equivalent

to using Bingham's distribution when the amount of uncertainty is very small, and thus the

relevant portion of the sphere's surface is well-approximated by a tangent plane. The tangent

plane approach will be less useful, however, when errors are large or sample sizes are small.

In these cases the probability mass is spread out over larger portions of the sphere's surface,

and the curvature of the sphere must be taken into account. For this reason, approaches

based on tangent plane Gaussian approximations are always overly optimistic in the sense

that the generated con�dence regions are too small. This misrepresentation gets worse as

variance increases.

Hel-Or and Werman present an interesting application of the singular 3D Gaussian dis-

tribution [Hel-Or92]. Their goal is to develop a uni�ed approach to computing 3D camera

pose given a set of 3D model points and a set of uncertain measured data points, which

could come from either 3D range data, 2D image projections, or combinations of both. They

unify the treatment of both 2D and 3D data by converting each 2D image point into a 3D

point lying somewhere along a view ray. The total lack of knowledge in the actual position

of the point on the ray is represented by setting the variance of the point position along the

view ray to in�nity. Earlier in this section it was shown that a singular Gaussian distribution

having in�nite variance along an axis passing through the center of projection can be thought

of as a Bingham distribution. Hel-Or and Werman's treatment of 2D projected image data

can thus be reinterpreted as representing the uncertainty in the orientation of the view ray

towards the unknown 3D point. This is an interesting and perhaps fruitful way of looking

at their work. In actuality, however, they do not treat the uncertain entity they produce
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as an orientation at all, but rather as a 3D location estimate that is very uncertain in one

direction. The notion of statistical reasoning on the sphere never comes up, and is thus not

addressed.

3.2 Transformations of Projective Uncertainty

At the heart of any uncertain reasoning system lie two tasks: transferring uncertain

geometric features from one coordinate system to another, and fusing multiple feature ob-

servations to infer either new or more accurate geometric descriptions. This section addresses

the former; the latter is the topic of Section 3.4.

Determining how geometric uncertainty changes under coordinate transformations is nec-

essary for a variety of reasons. First, multiple measurements of one feature are often made

in more than one coordinate frame (due to motion for example). It is required to bring

these disparate measurements into a common reference frame so that they may be com-

pared or fused. In addition to transforming the geometric object parameters themselves,

any associated description of uncertainty must also be transformed into the new coordinate

frame. A closely related task is reparameterization of feature descriptions, such as convert-

ing from Cartesian to polar coordinates. Finally, simple aggregations of low-level primitives

into higher-level features can also be described as coordinate transformations. For instance,

computing the feature description of the line passing through two points is a deterministic

transformation amenable to the techniques of this section.
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3.2.1 Transformation of Random Variables

When uncertain geometric objects are represented as random variables, changes in uncer-

tainty due to coordinate transformations are reected by changes in the probability density

function. The parameter vectors of a geometric object before and after a change of coordinate

frames or a reparameterization are related by the vector function y = T (x). If parameter

vector x is a vector of random variables representing an uncertain geometric object, then

the resulting parameter vector y is also a random vector, with a probability distribution

determined both by the distribution of x and by the transformation T . For an aggregation

of two geometric objects into a third, the transformation is written as z = T (x;y) where

vector function T describes how the parameters of x and y combine to produce the new

object parameters z. Once again, density functions attached to random vectors x and y can

be propagated through T to determine the probability density function of random vector z.

The process used to compute the probability density function of a function of random

variables is called the transformation of variables technique. If the transformation function is

bijective (one-to-one and onto) as well as di�erentiable, computation of the resulting density

function is a well-de�ned process. Consider a random vector x distributed according to g (x),

and the bijective transformation y = T (x). Since T is bijective the inverse transformation

T

-

1

is de�ned, and the probability density function of the random vector y is known to be

h(y) = g (T

-

1

(y))J

T

-

1

(y) (3.8)

where the Jacobian J

T

-

1

(y) speci�es the change in area of a di�erential surface patch at

point y under transformation T

-

1

(see Appendix C).
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Principle 2: Changes in uncertainty due to coordinate trans-

formations will be determined by computing a new proba-

bility density function using the transformation of variables

technique.

The transformation of variables technique provides a powerful tool for determining how

a probability density function changes as a result of a coordinate transformation. Unfortu-

nately, it takes only a few transformations before exact computation of the resulting density

function becomes complicated to the point of intractability [Springer64]. When uncertain

parameters are Gaussian it is common practice to approximate the density resulting from a

nonlinear transformation as another Gaussian by computing just the �rst and second order

moments (mean and covariance) of the transformed density. This uniform representation of

uncertainty provides a exible and powerful framework for uncertain geometric reasoning. It

makes good sense to adopt the same approach on the sphere, where Bingham's distribution

provides a low-order approximation to any antipodally symmetric density function.

Principle 3: Any transformed density function that is not of

Bingham form will be approximated as a Bingham density in

order to maintain a uniform representation of uncertainty.

The rest of this section derives an analytic formula describing how a Bingham density

function transforms under a projective coordinate transformation on the sphere. Since the

resulting probability density functions is not always Bingham, Section 3.3 will discuss ways

to approximate a computed density function by a Bingham density.
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3.2.2 Projective Coordinate Transformations on the Sphere

The coordinate transformations of fundamental interest to projective geometry are of

course the projective transformations. Let A be a nonsingular 3 � 3 matrix representing a

plane-to-plane projective transformation in homogeneous coordinates. Identify each equiv-

alence class of homogeneous coordinates with a line through the origin of R

3

. This line

intersects the unit sphere S

2

in a pair of antipodal points. Under a projective transforma-

tion, each in�nite line through the origin is mapped to a new line through origin, which

intersects the unit sphere in another pair of antipodal points. The operation of A upon

the sphere is said to be the transformation P that maps a pair of antipodal points on the

sphere before transformation A to the corresponding pair after transformation A. This

transformation is

y = P (x) =

Ax

kAxk

: (3.9)

Notice that P (�x) = �P (x) so that antipodal pairs are indeed mapped to antipodal pairs.

Further note that although a projective transformation is linear in homogeneous coordinates,

it is not necessarily linear over points on the sphere.

The probability density of y is a function of the density g(x) and of the inverse projective

transformation matrix B = A

-

1

. The formula is derived in Appendix C (example C.11) as

h(y) = g

 

B y

kB yk

!

j detB j

kB yk

3

: (3.10)

This equation will now be specialized to the case where g is a Bingham probability density

function.
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Transformation by Rotations and Reections

A special case of equation 3.10 occurs when the transformation matrix is orthonormal.

Let A = R be an orthonormal matrix, so that R

t

R = I and detR = �1: Matrices of this

form can be interpreted as a rotation or reection about the origin of Euclidean space. Since

vector length is preserved, formula 3.10 reduces to

h(y) = g(R

t

y): (3.11)

Assuming g(x) is a Bingham density function with orientation parameters U and shape

parameters K (see equation 3.1)

g(x) = B(x;U;K) = c(K) expfx

t

UKU

t

xg:

Substituting this into the previous equation yields the density function of y

h(y) = c(K) expf(R

t

y)

t

UKU

t

(R

t

y)g

= c(K) expfy

t

(RU)K(RU)

t

yg

= B(y; (RU);K) (3.12)

No approximation is needed, since the result is a Bingham density function with orientation

parameters RU and shape parameters K, i.e. just a rotated or reected version of the

original Bingham density function. Bingham's distribution therefore remains invariant in

form and shape under orthonormal projective transformations. This result also holds for

scaled orthonormal mappings kR:
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General Projective Transformations

Let A be a general, nonsingular 3 � 3 matrix with inverse B, and let x be a Bingham

variable with orientation parameters U and shape parameters K. Inserting the Bingham

density function (3.1) into the transformation of variables equation (3.10) yields

h(y) = c(K) expf(

B y

kB yk

)

t

UKU

t

(

B y

kB yk

)g

j detB j

kB yk

3

: (3.13)

No signi�cant simpli�cation can be performed. This density function is clearly not of Bing-

ham form, due to the nonconstant Jacobian and the nonlinear way variable y is involved in

the exponential term. Propagating a Bingham density function through a general projec-

tive transformation on the sphere will therefore require an approximation step to reduce the

resulting probability density function to a corresponding Bingham density.

3.3 Approximation by a Bingham Density

The transformation of variables technique is a powerful tool for deriving analytic de-

scriptions of the probability density function resulting from a coordinate transformation.

The resulting density functions can be quite complicated, however. To make the process

of uncertainty propagation manageable, any computed probability density function not of

Bingham form will always be approximated by a Bingham density. This ensures a uniform

representation of uncertainty at all stages of the geometric reasoning process.

It remains to be seen how to actually determine the parameters of the Bingham density

function that best approximates a given probability density function on the sphere. In

this section three possible approaches are considered. The �rst is developed by analogy to
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maximum likelihood estimation of Bingham parameters from a set of samples. The strategy

is to replace the sample moments in that procedure by the actual population moments

computed analytically from the given density function. The remaining two approximation

techniques are based on the observation that Bingham's distribution is formed as a zero-mean

Gaussian intersected with the surface of the sphere. This suggests a Tayor-series expansion

around the mode of the density function, in an e�ort to estimate the parameters of the

underlying 3D Gaussian. This of course requires the mode to be found �rst, which will be

done using a modi�cation of the Newton-Raphson method of �nding extrema of functions.

The third approximation technique considered in this section abandons the surface of the

sphere completely, relying instead on covariance propagation in the ambient Euclidean space.

Rather than being given an analytic description of a density function on the sphere, this

approach propagates a singular covariance matrix representing a Bingham density function

through a linearized version of the given transformation to determine a new covariance

matrix, and thereby a new approximate Bingham density function.

3.3.1 Maximum Likelihood Approximation

A method for estimating the parameters of the Bingham density that best approximates

a given density function can be developed by analogy with maximum likelihood estimation

of Bingham parameters from a random sample. The idea is to replace the sample statistics

in the likelihood equations by the population statistics computed from the given density

function.
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The second moments of a given density function f(x), where x = (x; y; z) is a point on

the sphere, are the expected values of the quadratic monomials in x, y and z. The population

second moment matrix is therefore written as (c.f. equation 3.7)

M =

E

(xx

t

) =

2

6

4

E

(x

2

)

E

(xy)

E

(xz)

E

(xy)

E

(y

2

)

E

(yz)

E

(xz)

E

(yz)

E

(z

2

)

3

7

5

: (3.14)

Each expected value is found by integration of the monomial times the density function over

the surface of the sphere. For example,

E

(x

2

) =

R

x

2

f(x) dS

2

using the integral notation of

Appendix B.2. Since x

2

+ y

2

+ z

2

= 1, one of the integrals can be avoided by computing

E(z

2

) = 1 � E(x

2

) � E(y

2

). As before, to maximize the likelihood equations the Bingham

orientation parameters are chosen to be the eigenvectors of the population second moment

matrix, and the shape parameters are functions of the eigenvalues.

This modi�ed maximum likelihood method for density approximation is not very useful in

practice, however. The main drawback is that the surface integrals for computing population

second moments often cannot be solved in closed form. In fact for most examples we have

tried, the resulting integrals have had to be evaluated using numerical integration techniques

{ an approach that is much too slow to be included in a working vision system.

A second problem with this approach is that, occasionally, the quality of the approx-

imations obtained is low, even given accurate computations. Classic maximum likelihood

estimation assumes that the samples observed are drawn from the type of distribution whose

parameters are being estimated. It is not necessarily designed to give good results when used

for density approximation. It is known, for example, that within the exponential family of

distributions the approximating distribution obtained using maximum likelihood estimation
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maximizes Kullback-Liebler divergence, an information-based measure of the di�erence be-

tween two distributions [McCulloch88]. However, it is also known that \goodness-of-�t"

measures based on Kullback-Liebler divergence give too much weight to the tails of a dis-

tribution [Clutton-Brock90]. That is, the Kullack-Liebler loss function disproportionately

rewards approximations that �t the target distribution accurately in places where the prob-

ability mass approaches zero.

We propose instead to use mean-squared-error (MSE) as a goodness-of-�t measure, be-

cause the MSE criterion rewards approximations that �t best where the probability density

is highest. This is an important consideration when doing Bayesian analysis, an approach

to statistical inference used in the next section. In most Bayesian work, the mode of the

posterior density function is taken as an estimate of the most likely parameter value, and a

con�dence region for this estimate is constructed based on the shape of the density function

near the mode. It is thus desirable that an approximate Bingham density function should

�t the true density function best near the mode, where most of the probability mass is.

3.3.2 Taylor Series Expansion about the Mode

When �rst presented in Section 3.1.1, it was mentioned that the Bingham density function

is proportional to a zero-mean, trivariate Gaussian density function intersected with the

surface of the sphere. This suggests approaches based on estimating the covariance matrix

of a zero-mean, trivariate Gaussian, keeping in mind that the only measurements available

are on the sphere.

One standard approach to approximating a given density function by a Gaussian is

based on Taylor series expansion of the log density function about the mode of the analytic

density [Lindley65]. Taylor series is only a local approximation, but by expanding about
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the mode, the density function is best approximated where most of the probability mass

is. An attractive feature of Taylor series expansion as an approximation technique is that

it only requires taking derivatives of the analytic density function, rather than the numeric

integration involved with maximum likelihood approximation.

The standard derivation runs as follows [Lindley65]. Let f(x) be the probability density

function to be approximated. A second order Taylor series expansion of log f about x

0

yields

log f(x) � log f(x

0

) + r

t

(x� x

0

) +

1

2

(x� x

0

)

t


(x� x

0

) (3.15)

where r and 
 are the gradient vector and Hessian matrix of log f , evaluated at x

0

. A

de�ning feature of the mode
^
x of log f is that the gradient is 0 there. Evaluating the Taylor

series of log f at the mode, and exponentiating to recover an approximation of f thus yields

f(x) � C exp

�

1

2

(x�
^
x)

t


(x�
^
x)

�

: (3.16)

Comparing this equation with that of the Gaussian density function yields an approximate

Gaussian mean of
^
x and inverse covariance matrix �
.

To tailor this derivation to approximate a bimodal, antipodally symmetric probability

density function f(x) on the sphere with a Bingham density function, let
^
x be one of the two

antipodal modes of f(x). The major axis of the underlying zero-mean, trivariate Gaussian

density function will lie along
^
x. Choose vectors u

1

and u

2

so that the matrix R � [u

1

u

2

^
x]

is an orthonormal rotation matrix. Vectors u

1

and u

2

thus span the tangent plane to the

unit sphere at point
^
x. Let 
 be the Hessian matrix of log f , evaluated at

^
x, and de�ne a
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directional second derivative of log f with respect to vectors a and b to be the value a

t


b.

The 2 � 2 matrix
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=

2

4

u

t

1


u

1

u

t

1


u

2

u

t

1
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2

u

t

2


u

2

3

5

(3.17)

represents the Hessian matrix of second partial derivatives of log f restricted to the tangent

plane at point
^
x, and by the above argument �


T

is the inverse covariance of a 2D Gaussian

cross-sectional \slice" perpendicular to the major axis of the 3D Gaussian distribution being

estimated (Figure 3.3).

All that remains to be estimated is the change in scale of the cross-sectional Gaussian

slices along the major axis, i.e. the inverse variance along the major axis. An obvious

measure is (-1) times the directional second derivative along that axis. One requirement

must be imposed for this to work, however, namely that the variance along the major axis

must be maximal (greater than the variance along any other axis). A simple constraint that

maintains such consistency, and is ful�lled by all the density functions that arise in this

thesis, is that f(x), when treated as an unconstrained 3D function, has a single mode at the

origin x = 0 and decreases monotonically along any ray emanating out from the origin. This

constraint can be relaxed to include the case where f has a mode consisting of a single line

of points through the origin. The extent to which it can be relaxed still further has not been

explored. Assume this consistency constraint is satis�ed, and let ! =
^
x

t



^
x be the directional
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tangent  plane  at  x

u1

u
2

T

x

u1

u
2

T

w

underlying  Gaussian
covariance  ellipsoid

Figure 3.3: Taylor series approximation of a Bingham density. A second-order Taylor series

expansion at the mode of the target density function on the sphere determines the parameters

of a zero-mean, trivariate Gaussian distribution from which a Bingham density is constructed

by normalizing over the surface of the sphere. Refer to the text.
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second derivative along the major axis. The Taylor series Bingham approximation can then

be written as

B(x) = C exp

8

>

<

>

:

x

t

[u

1

u

2

^
x ]
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>

=

>

;

(3.18)

This derivation assumes that the mode
^
x of density function f on the sphere is known. To

locate the mode of a density function on the sphere, a modi�cation of the Newton-Raphson

method for �nding the extrema of functions was developed. This modi�cation constrains

the search for extrema to the surface of the sphere. Newton-Raphson is a particularly

appropriate algorithm for this application since the directional second derivatives necessary

for Equation 3.18 are generated as a byproduct.

3.3.3 Singular Covariance Propagation

The �nal Bingham approximation method considered in this section is based on standard

covariance propagation techniques. In Section 3.1.1 it was shown that Bingham's distribution

on S

2

can be represented by a unique, singular Gaussian density function centered around

the origin of the ambient space R

3

. Let the inverse covariance matrix of this Gaussian be

�. Matrix � is always symmetric, and it is also singular (it has determinant 0) since one of

its eigenvalues is 0. In terms of covariance this means that the Gaussian density function

has in�nite variance along at least one axis. Given the orientation matrix U and shape
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parameters k

1

and k

2

of a Bingham density function, the inverse covariance matrix of the

unique singular Gaussian representing it can be reconstructed

� = �2 U

2

6

4

k

1

k

2

0

3

7

5

U

t

(3.19)

Conversely, given a singular, symmetric matrix �, the unique Bingham density function

corresponding to it is written

B(x) = C exp

n

�1=2 x

t

�x

o

(3.20)

Let transformation y = T (x) be a nonlinear coordinate transformation on the sphere

with inverse T

-

1

, and let � be a singular, symmetric matrix representing a Bingham density

function on the sphere. The Jacobian matrix J

T

-

1

of the inverse transformation speci�es the

linear transformation of R

3

that best approximates the nonlinear inverse transformation T

-

1

at the point at which the Jacobian is evaluated. An obvious choice is the point T (x̂), the

image of the mode of the original Bingham density. A linear transformation of R

3

maps a

zero-mean Gaussian with inverse covariance matrix � to another zero-mean Gaussian having

inverse covariance matrix

�

0

= J

t

� J : (3.21)

This new matrix is guaranteed to be symmetric. It is also singular, even if J is nonsingular,

since

det�

0

= (detJ

t

) (det�) (detJ)

and � has determinant 0. The unique Bingham density function associated with �

0

will

be chosen as an approximation of the density obtained by propagating a Bingham density

through the linearized version of the nonlinear transformation T .
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3.3.4 Comparing Approximations

Each of the three approximations considered here has good features and bad. The maxi-

mum likelihood approach to computing the parameters of the best-�tting Bingham approx-

imation to an analytic density function has been theoretically analyzed in the statistical

literature where it is shown that the approximations produced minimize Kullback-Liebler

divergence, an information-based measure of the discrepancy between two distributions.

Unfortunately, the integrals required for determining the population second moments are

rarely solvable in closed-form, and evaluating them numerically incurs a large computational

expense. Furthermore, the Kullback-Liebler criterion is known to favor approximations that

�t well at the \tails" of a distribution, but not necessarily at the mode, where most of the

probability mass is.

In contrast, an approach based on second-order Taylor series expansion of the log density

at the mode of the analytic density function produces Bingham approximations that �t

well near the mode. The mode of the approximating Bingham is located exactly at the

mode of the analytic density. The Taylor series is computed entirely from derivatives of

the analytic density function, rather than integrals, and thus the computational expense is

considerable lower. The method does require predetermination of the mode, however. An

iterative, Newton-Raphson-style algorithm has been adapted for use in �nding the extrema

of functions on the sphere. The Newton-Raphson algorithm has attractive convergence

properties when started out close to the goal, but a good initial estimate of the mode is

necessary to use this method e�ciently.

Propagation of Gaussian covariance matrices through linear approximations of nonlinear

functions is a powerful tool that underlies most current uncertainty analysis in computer
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vision. By noting the one-to-one and onto correspondence between zero-mean, singular

Gaussian densities and Bingham density functions, an approximate Bingham propagation

algorithm has been developed based on propagating the inverse covariance matrices of sin-

gular Gaussians through a local, linear approximation to a given transformation. In general,

the mode of the approximating distribution will not necessarily coincide with the mode of

the target density function. Yet, because the approximations are derived in closed-form, this

is an extremely useful method for performing a �rst-order error analysis of the behavior of

a Bingham density function with respect to various transformations on the sphere.

Figure 3.4 shows a comparison of these three di�erent approximating strategies in terms

of mean-squared error (MSE) for several di�erent projective transformations of a Bingham

density function on the circle (example 3.1). The original 2D Bingham density had modal axis

1/8 1/4 1/2 1 2 4 8

0.2

0.4

0.6

0.8

Figure 3.4: Comparison of approximating distributions in terms MSE. Refer to text for

details. MLE = maximum likelihood, TAY = taylor series expansion, COV = singular

covariance propagation.



75

(x; y) = (cos

�

6

; sin

�

6

) and concentration parameter w = 5. The projective transformations

applied to it were of the form

"

x

0

y

0

#

=

"

1 0

0 S

# "

x

y

#

:

Figure 3.4 shows the MSE values of each approximation, for values of S ranging from 1=8 to 8.

All approximations have zero MSE for S = 1, since that indexes the identity transformation.

As seen from the �gure, approximation using singular covariance propagation consistently

outperforms the other estimators in terms of MSE. Combined with its simplicity, singular

covariance propagation is the most attractive of the three alternatives considered here.

3.4 Statistical Inference In Projective Space

The essence of geometric inference is the discovery of spatial relationships between ob-

jects. When geometric objects are represented as parameter vectors, spatial relationships

between objects can be written as algebraic equations relating their parameters. Geometric

reasoning over parameterized objects can therefore be given a �rm algebraic foundation.

For projective spaces, the fundamental primitives are points, lines and planes represented

by homogeneous coordinate parameter vectors, and the relevant spatial relationships are

the incidence relations, which remain invariant under projective transformations. In the

projective plane the relevant objects are points and lines, and there are two types of incidence

relation (see Appendix A.3). Rank I incidence relations hold between objects of the same

kind. Two points or two lines are said to be incident i� their homogeneous coordinate vectors

p and q are related by the equation p = kq: If two geometric elements of the same kind

are incident, they are in fact the same object, in the sense that their parameter vectors
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lie in the same equivalence class of homogeneous coordinates. Rank II incidence relations

hold between primitive elements of di�erent kind. A point and a line are incident i� their

homogeneous coordinate vectors p and q are related algebraically by p

t

q = 0. Multiple

points incident to a single line are said to be colinear. Multiple lines incident to a single

point form a line pencil.

When the projective plane is represented by the quotient space S

2

= �, homogeneous

coordinate vectors are represented by antipodal pairs of points on the unit sphere. Homoge-

neous coordinate vectors related by Rank I incidence are represented by the same antipodal

pair of points on the sphere. Vectors related by Rank II incidence are represented by points

separated on the surface of the sphere by an arc distance of �=2. Multiple points incident to

a single line are represented by a great circle of points whose polar axis is aligned with the

antipodal pair of points representing the line. Similarly for a set of lines incident to a single

point.

These geometric de�nitions are not quite so crisp when geometric primitives are allowed

to be uncertain. Multiple measurements of the same point or line may no longer exactly

coincide on the sphere. Points that should lie on a great circle may no longer do so after

being perturbed by measurement errors. When dealing with uncertain geometric objects

it is best to make as many redundant measurements as possible, and then combine these

observations into more accurate feature descriptions. This task is often called data fusion

in the computer vision literature. How to fuse multiple observations related by projective

incidence relations is the topic of this section. A general Bayesian mechanism for evidence

combination on the sphere is presented in Section 3.4.1. The problem of combining uncertain

projective object descriptions, using known incidence relations to estimate the parameters

of new uncertain objects, is deferred until Section 3.4.2.
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3.4.1 Bayesian Parameter Estimation

Data fusion over a space of uncertain, parameterized objects can be formalized as a

parameter estimation problem. The task is to estimate the value of an unknown parameter

vector � from a set of observed parameter vectors x = fx

1

; x

2

; : : : ; x

m

g. Ideally x = � =

f�

1

; �

2

; : : : ; �

m

g, a set of unknown true values related to vector � through a set of implicit,

possibly nonlinear, constraint equations

f(� ; � ) = 0 : (3.22)

Due to noise, however, each observation x

i

is corrupted by a probability density function with

known parameters M

i

. Thus x

i

is distributed according to a probability density function g

that depends on �

i

and M

i

p(x

i

) = g( x

i

; �

i

; M

i

) :

Each observation x

i

is either a direct measurement of the parameter vector �, in which case

�

i

= �, or is related indirectly through the constraint equations 3.22. In the latter case,

the noise-free observables � are called nuisance parameters, because estimating their value

is not the primary goal of the exercise, but is nevertheless a necessary intermediate step for

determining � .

What has just been sketched is an implicit, nonlinear parameter estimation problem.

This general form has widespread applications in the sciences [Britt73, Bates88, Seber89]

and computer vision [Ayache91]. If equation (3.22) can be rewritten so that � is expressed

explicitly as a function of �, the problem reduces in form to an explicit, nonlinear parameter

estimation task [Britt73], which is sometimes called errors-in-variables nonlinear regression

[Reilly81, Schwetlick85]. Although on the surface they appear di�erent, solution techniques

for implicit and explicit nonlinear models are essentially equivalent [Dolby76, Benichou89].
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A notable feature of current geometric reasoning systems in vision and robotics is the

cyclic nature of the processing involved [Ayache91, Matthies87a]. This cyclic style of pro-

cessing lends itself well to sequential (recursive) parameter estimation techniques. When

uncertainty in geometric features is represented using probability density functions, the nat-

ural choice for a sequential inference engine is Bayesian parameter estimation.

The heart of Bayesian analysis is of course Bayes rule, which states that after the ob-

servations have been made, the probability of any given parameter value being correct is

proportional to the probability of seeing the observations given that value times the prior

probability that the value is correct. Assuming there are no nuisance parameters �

i

for the

moment, Bayes rule is written

2

p(�jx) / p(xj�) p(�) : (3.23)

The unspeci�ed constant of proportionality is the value necessary to make the resulting

density integrate to one, namely the reciprocal of

R

p(xj�)p(�)d�:Note that this is a constant

that does not depend on the value of �.

Bayes rule describes how a probability density function is modi�ed by new observations

to produce an updated density function. The three terms in Bayes rule are the prior density

p(�), the likelihood function p(xj�), and the posterior density p(�jx). The prior density

describes the state of knowledge about the parameters � before any observations have been

seen. The joint probability of seeing the observations given a particular value of �, when

interpreted as a function of �, is called the likelihood function. The likelihood function encap-

sulates all the knowledge gained from the sample observations. These two terms combine to

2

Technically, each term in this equation should also be conditioned on the given noise parameters M =

fM

1

;M

2

; : : : ;M

m

g. This fact has been omitted for notational clarity.
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produce a function of � that is proportional to the posterior density. The posterior probabil-

ity density function describes the updated state of knowledge about � after the observations

x have been taken into account.

The Prior Density

The inclusion of the prior distribution has led to charges that Bayesian analysis is less

objective than classical statistical methods such as maximum likelihood [Efron86]. We dis-

agree, for several reasons. First, choosing a prior distribution based on experience is no more

subjective than choosing the form of the underlying distribution for maximum likelihood es-

timation, or in choosing which features of a problem to model and which to ignore. Secondly,

for recursive estimation formulations where uncertain observations are aggregated over time,

the prior density is the natural place to accumulate partial results. Finally, if no convincing

prior information is available, an uninformative prior density can be used, that is, a density

function that gives no overwhelming amount of weight to any particular hypothesis. In that

case the posterior density is dominated by the likelihood function, so that maximizing the

posterior is equivalent to maximizing the likelihood. It is well known that for linear param-

eter estimation problems using multivariate Gaussian samples, Bayesian analysis using an

uninformative prior yields the same results as classical maximum likelihood and least-square

techniques [Gelb86].

Ironically, the use of uninformative priors that brings Bayesian estimation into accordance

with classical estimation methods leads to another criticism. In order to accurately reect the

absence of information over an in�nite domain, an improper prior that is not a well-de�ned

probability density function must be used. For instance, there is no uniform distribution over

the whole real number line, since there is no constant value C such that

R

1=C dx = 1: This
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is not a problem in the application considered here, however, since the projective parameter

spaces are compact and therefore a proper uniform prior exists. Furthermore, since the

uniform density function on the sphere can be written in the form expC for some constant

C (see Appendix B.2), the uniform prior on the sphere is actually a Bingham density with

shape parameters k1 = k2 = k3 = 0.

Principle 4: Uncertain parameter values will be estimated

using Bayesian estimation on the sphere. When no convincing

prior information is available a proper uninformative prior

density will be used, speci�cally the uniform distribution on

the sphere.
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The Likelihood Function

The likelihood function relates any value of the unknown parameter vector � to the

probability of seeing the observations x. In the absence of overwhelming prior evidence,

Bayes rule states that parameter values that maximize the probability of having seen the

available observations are more likely to be the correct values. Each observation may be

treated as independent, so that

p(xj�) =

m

Y

i=1

p(x

i

j�) : (3.24)

It is assumed that sample vector x

i

is generated by a bipolar Bingham noise process with

modal axis aligned with �. The probability of observing an individual x

i

given � is therefore

p(x

i

j�) = g(x

i

; �;M

i

) = C expfx

t

i

M

i

(�) x

i

g ; (3.25)

where the Bingham parameter matrix M

i

has been written as a function of � to make that

relationship explicit. It needs to be stressed that this is not an additive noise model; samples

are not generated by taking the true parameter value � and adding a noise vector. Since

di�erent Bingham processes are allowed for each measurement error, it is necessary either to

know a priori each Bingham parameter matrix M

i

, or to have several replications of each

observation [Reilly81]. Since each x

i

comes from a previous Bayesian inference or from a

transformation of random variables, it already has an uncertainty estimate associated with

it, but represented as a Bingham density function with modal axis aligned with x

i

.

An analogous situation arises in engineering applications, where errors are assumed to

be Gaussian. There, the variance of the Gaussian process that generated x

i

is estimated by

the variance of the Gaussian process that would generate observations if x

i

were the true
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value [Bevington69, Press90]. The former is the variance of an unknown Gaussian density

centered around �, while the latter variance is taken from a Gaussian density centered

about x

i

, computed from Monte Carlo-like perturbations of previous observed values or via

covariance propagation. For the computed variance in x

i

to be a relevant indicator of the

measurement noise incurred in observing �, either the observed value x

i

must indeed be near

the true value �, or the e�ects of random errors upon experimentally measured values must

vary slowly with respect to the position of �. Given a possible true value �

0

, the Gaussian

density function centered about x

i

is transformed via translation into a Gaussian with modal

value �

0

, which is then used to compute the likelihood of observing x

i

given �

0

.

On the sphere, where Bingham's distribution is an analogue of the Gaussian, the analogue

of translation is parallel transport. Parallel transport (sometimes called parallel displace-

ment or parallel translation) is a general mechanism for \translating" vectors on a manifold

[Boothby86]. The general idea is that a vector v at point a is transported to point b by

sliding it along a geodesic curve from a to b while maintaining a constant angle between

the moving vector v and the local tangent vector to the curve at every intermediate point

(see Figure 3.5). On the sphere, parallel transport from point a to point b is performed

by a rotation about axis a � b through angle ArcCos(a

t

b). This is a minimal rotation, in

the sense that the angle of rotation is smaller than any other (axis,angle) combination that

carries point a to point b.

On the sphere, an estimate of the uncertainty in the sample value x

i

is provided by

a Bingham density function with modal axis aligned with x

i

. Let the known Bingham

parameter matrix for this density function be the covariance matrixM

i

(x

i

). It is desired to

transport this density to have an arbitrary modal axis � so that the likelihood equation 3.25

can be computed for each possible value of �. Let R(x

i

; �) be the minimal rotation that
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a

b

a x b

R

a

b

parallel  transport

along  a  geodesic  curve

parallel  transport
on  the  sphere

rotation  R  with

axis : a x b

angle : arccos ( a . b )

x

M x x

M

M xx
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Figure 3.5: Parallel transport on the sphere. Parallel transport provides a general mechanism

for \translating" vectors on the surface of the sphere. Transport from point a to b is achieve

by performing the minimal rotation taking a to point b. The likelihood value computed by

performing parallel transport of a Bingham density function from x

i

to �, then evaluating

the probability at point x

i

, is the same as the value returned by the original density function

centered around x

i

, when evaluated at point �.
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transports axis x

i

to axis �. In Section 3.2.2 it was shown that under a coordinate rotation

R, a Bingham density function with parameter matrix M maps to new Bingham density

with parameter matrix RMR

t

. In the case under consideration, the result is the parameter

matrix M

i

(�) of a new Bingham density function with modal axis aligned with �, just as

required to compute the likelihood function. The likelihood equation (3.25) becomes

p(x

i

j�) = C expfx

t

i

R(x

i

; �)M

i

(x

i

) R

t

(x

i

; �) x

i

g : (3.26)

The ellipsoidal symmetry of Bingham's distribution allows an important simpli�cation

to be made to equation (3.26). In particular,

x

t

i

R(x

i

; �)M

i

(x

i

) R

t

(x

i

; �) x

i

= �

t

M

i

(x

i

) � (3.27)

so that

p(x

i

j�) = C expf�

t

M

i

(x

i

) � g : (3.28)

In other words, the likelihood value computed by performing parallel transport of a Bingham

density function from x

i

to �, then evaluating the probability at point x

i

, is the same as the

value returned by the original density function centered around x

i

, when evaluated at point

�. This observation is fundamental to the closed-form solution for inferring rank I incidence

relations reported in Section 3.4.2.

The Posterior Density

The di�erence between Bayesian vs. classical approaches to uncertain reasoning is that

all Bayesian inferences are based on the posterior density function. It is nevertheless helpful

to summarize the information contained in the density function by specifying the point most

likely to be the true value, and regions that contain the true value with some degree of
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con�dence. A common point estimate for Bayesian analysis is the mode of the posterior

density function, know as the maximum a posteriori (MAP) estimator. There are many

ways to construct con�dence regions containing a speci�ed amount of probability mass. The

most intuitive is the highest posterior density (HPD) region. The choice of this region is

based on the principle that the probability density of any point inside the region is at least

as large as the density at any point outside the region. The boundary of the region obviously

follows an iso-density contour of the posterior density function. It can also be shown that

the region constructed occupies the smallest possible volume of any region containing the

speci�ed amount of probability mass [Box73].

When both the likelihood function and the prior density function are Bingham, the

resulting posterior density is also Bingham. In Bayesian terminology the Bingham density

function is conjugate or closed with respect to Bayes rule [Zacks81]. However, the likelihood

function need not always be Bingham, and thus the posterior density may have a di�erent

form. When this non-Bingham function is used as a prior density in new inferences, the result

can be a cascade of increasingly more complicated distributional forms. This situation is

similar to that described under transformation of variables, and the solution to this potential

problem is the same.

Principle 5: To keep the propagation of uncertainty through

Bayes rule manageable, any posterior density not of Bingham

form will be approximated by a Bingham density

For a bipolar Bingham posterior density function, the MAP estimator will obviously co-

incide with the two antipodal modes. An HPD region constructed from a bipolar Bingham
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posterior will consist of two disjoint regions, bounded by Bingham iso-density contours con-

taining each of the two antipodal modes. These contours are the space-curves formed by the

intersection of a zero-mean Gaussian iso-density ellipsoid with the surface of the sphere.

Nuisance Parameters

When the observations x are not direct measurements of the unknown vector �, but

rather of parameters � related indirectly to � via the constraint equation (3.22), the nuisance

parameters � become additional unknowns that must also be estimated. Bayes rule is

modi�ed to incorporate the extra unknowns as

p(�;�jx) / p(xj�;�) p(�;�) : (3.29)

The posterior is now a function of variables � and �. To obtain a posterior density that

is a function of � only, the nuisance parameters are integrated out to reveal the marginal

posterior density

p(�jx) =

Z

p(�;�jx) d� : (3.30)

This topic is continued in the next section, under the solution for inferring rank II incidence

relations.

3.4.2 Bayesian Estimation of Incidence Relations

The section provides solutions to the problem of inferring accurate homogeneous coor-

dinate descriptions of points and lines in the projective plane by combining multiple, noisy

observations related by known incidence relations. The parameter space is the projective

plane, represented via normalized homogeneous coordinate vectors on the manifold S

2

= �.
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All observations and unknowns are unit vectors; two unit vectors di�ering only in sign are

considered equivalent.

Two general problems are considered. The �rst is data fusion of points or lines under

Rank I incidence relations. This problem involves combining multiple, noisy observations of

the same entity to produce a more accurate homogeneous coordinate description. The input

is a (bipolar) cluster of observed points on the sphere, along with a Bingham parameter

matrix describing the measurement uncertainty in each point. The task is to estimate the

single point that best characterizes the cluster, along with a Bingham parameter matrix

summarizing its associated uncertainty.

The second problem is data fusion of points and lines under Rank II incidence relations.

Multiple, colinear points are fused into a single line description, or multiple, converging lines

are fused into a single point describing their intersection. The input is a set of points on the

sphere that are clustered about a great circle, with a Bingham parameter matrix quantifying

the measurement uncertainty in each point. The task is to estimate the polar axis of the

great circle, and to summarize its uncertainty with a Bingham parameter matrix. As an

intermediate step, estimates of the true positions of the observables are recovered { all lying

exactly on a great circle.

For both problems, a prior estimate of the location and uncertainty of the parameter

vector being estimated can be speci�ed by a Bingham prior density function. If no prior

estimate is given, the uniform density function on the sphere is used.
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Inferring Rank I Incidence

Let x = fx

1

; x

2

; : : : ; x

m

g be a bipolar cluster of observed unit vectors on the sphere.

The goal is to estimate the vector � that best describes the axis of this cluster. A prior

estimate of � is given by the prior Bingham density function

p(�) = C expf�

t

M

0

� g : (3.31)

Associated with each observation x

i

is an estimate of its measurement uncertainty. This

uncertainty is represented by a bipolar Bingham probability density function with modal

axis aligned with x

i

. Let the known Bingham parameter matrix for x

i

be M

i

. By (3.28)

the log likelihood for x

i

is, up to constant term C,

log p(x

i

j�) = C + �

t

M

i

� ; (3.32)

and the log likelihood of all observations jointly is

log p(xj�) = log

m

Y

i=1

p(x

i

j�) =

m

X

i=1

log p(x

i

j�)

= C +

m

X

i=1

�

t

M

i

� (3.33)

Combining the prior density (3.31) with the log likelihood (3.33) results in the log posterior

density

log p(�jx) = C + �

t

M

0

� +

m

X

i=1

�

t

M

i

�

= C + �

t

 

m

X

i=0

M

i

!

� (3.34)

Evidently, the posterior probability density function for � is also a Bingham density func-

tion, with parameter matrixM =

P

m

i=0

M

i

. The MAP estimate for the axis � of the cluster
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of observations is the unit vector

^

� that maximizes

^

�

t

M

^

�. This is found computationally

as the eigenvector associated with the largest eigenvalue of M . Boundaries of the HPD

con�dence regions coincide with the iso-density contours of the Bingham density function.

Example 3.3 Let the uncertainty in each observation x

i

be represented by a rotationally

symmetric Bingham density function with modal axis x

i

and concentration parameter w

i

(Example 3.2). The log likelihood for each observation is then

log p(x

i

j�) = C + �

t

(w

i

x

i

x

t

i

) � : (3.35)

Assuming a uniform prior density, the log posterior is

log p(�jx) = C + �

t

 

m

X

i=1

w

i

x

i

x

t

i

!

� : (3.36)

The MAP estimator for the bipolar axis of the cluster of observations is the eigenvector asso-

ciated with the largest eigenvalue of (

P

w

i

x

i

x

t

i

). This is also recognized to be the weighted,

least-squares solution; that is, the MAP estimator selects the line through the center of the

sphere that minimizes the sum of squares of the weighted orthogonal distances to the observed

points.

Inferring Rank II Incidence

Let x = fx

1

; x

2

; : : : ; x

m

g be an equatorial cluster of unit vectors on the sphere. Each

x

i

is assumed to be a noisy observation of some true point �

i

lying exactly on a great circle

with polar axis �. The goal is to estimate �. Each true value �

i

is a nuisance parameter
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related to the desired vector � by the constraint equation �

t

�

i

= 0. In the presence of

nuisance parameters, equation (3.29) is the relevant form of Bayes rule to use.

Constrained Bayesian estimation can usually be handled by incorporating the constraints

into the prior density so that parameter values that don't satisfy the constraint have zero

prior probability [Box73]. Consider the log prior

log p(�;�) = C + log p(�) + log p(�j�) (3.37)

= C + �

t

M

0

� +

m

X

i=1

log p(�

i

j�) (3.38)

= C + �

t

M

0

� +

m

X

i=1

�

i

t

(�1��

t

)�

i

(3.39)

where the prior density for � is speci�ed as a Bingham density function with parameter

matrixM

0

and �1 is shorthand notation meaning �k as k !1. Recall from example 3.2

that exp f�

i

t

(�k��

t

)�

i

g is a rotationally symmetric Bingham density with probability mass

clustered around G(�), the great circle of points perpendicular to �. In the limit as k goes to

in�nity, the probability density goes to zero everywhere except on the great circle of points

G(�). This limiting prior density function therefore constrains every �

i

to lie on a great

circle perpendicular to �.

Each observation x

i

is a noisy observation of some true value �

i

. As before, let an

estimate of the uncertainty with which x

i

is measured be represented as a bipolar Bingham

probability density function with modal axis aligned with x

i

, and with known parameter

matrix M

i

. By (3.28) the log likelihood of x

i

given a true value �

i

is

log p(x

i

j�;�

i

) = C + �

t

i

M

i

�

i

; (3.40)
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and the log likelihood of all observations jointly is

log p(xj�; �) = C +

m

X

i=1

�

t

i

M

i

�

i

(3.41)

Combining the log prior density (3.39) with the log likelihood (3.41) results in the log pos-

terior density

log p(�; �jx) = C + �

t

M

0

� +

m

X

i=1

�

t

i

(M

i

�1 ��

t

)�

i

(3.42)

The joint posterior density function for � and � is therefore proportional to

C expf�

t

M

0

� g

m

Y

i=1

expf�

t

i

(M

i

�1 ��

t

)�

i

g (3.43)

To make inferences about � alone, the e�ects of the nuisance parameters � must be

integrated out, leaving a marginal posterior density for �. The range of integration for each

�

i

is the surface of the sphere S

2

. However, by construction the joint posterior density is

zero everywhere except for the great circle of points G(�). Therefore integration over S

2

reduces to integration over G(�). That is

p(�jx) =

Z

p(�; �jx) d�

= C expf�

t

M

0

� g

m

Y

i=1

Z

S

2

expf�

t

i

(M

i

�1 ��

t

)�

i

g dS

2

(3.44)

= C expf�

t

M

0

� g

m

Y

i=1

Z

G(�)

expf�

t

i

M

i

�

i

g dG (3.45)

The MAP estimate is the value

^

� 2 S

2

that maximizes equation (3.45). An exact, closed-form

solution seems unlikely.
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We now develop an approximate MAP estimator based on two assumptions : 1) the

uncertainty in each observation is small, and 2) the uncertainty is rotationally symmetric.

Assumption 2 can be enforced in practice by choosing w

i

= �k

2

. This creates a rotationally

symmetric density function that consistently overestimates the variance in the measurement

errors, a situation that is certainly less harmful than underestimating it. These two assump-

tions specify that the Bingham density function representing measurement uncertainty in x

i

has a parameter matrix of the formM

i

= w

i

x

i

x

t

i

with w large. For notational convenience,

a uniform prior density function will be assumed for �, so that �

t

M

0

� = 0.

When w

i

is large, the probability mass of the rotationally symmetric bipolar Bingham

density function is tightly concentrated in two sharp antipodal peaks. In this case each

integral in equation (3.45) can be approximated ([Box73], Section 1.6.2) as

Z

G(�)

expf�

t

i

M

i

�

i

g d�

i

� 2 sup

G(�)

expf�

t

i

M

i

�

i

g ; (3.46)

where sup

G(�)

stands for the maximal value attained when �

i

ranges over the great circle of

points G(�).

Substituting in the de�nition of M

i

yields

2 sup

G(�)

expf�

t

i

M

i

�

i

g = 2 sup

G(�)

expf�

t

i

w

i

x

i

x

t

i

�

i

g (3.47)

Since the density function speci�ed by M

i

is rotationally symmetric the maximum value is

attained where G(�) comes closest to x

i

, namely at the point

^
�

i

=

x

i

� (�

t

x

i

)�

1� (�

t

x

i

)

2

: (3.48)



93

Inserting
^
�

i

into equation 3.47 yields a �nal simpli�cation

2 sup

G(�)

expf �̂

i

t

w

i

x

i

x

t

i

�̂

i

g = expf 2 w

i

(1 � (�

t

x

i

)

2

) g : (3.49)

Inserting this result into equation (3.45) shows that an approximate log posterior density

function for the polar axis � of an equatorial cluster of observations x

i

is given by

log p(�jx) � C +

m

X

i=1

2w

i

f1 � (�

t

x

i

)

2

g (3.50)

= C � �

t

 

m

X

i=1

w

i

x

i

x

t

i

!

� : (3.51)

Let W be the following weighted scatter matrix

W =

m

X

i=1

w

i

x

i

x

t

i

: (3.52)

The MAP estimate for polar axis � of the great circle of observations is the unit vector

^

�

that minimizes

^

�

t

W

^

�. This is found computationally as the eigenvector associated with

the smallest eigenvalue �

1

of W .

Con�dence regions for this estimator can be derived by analogy to a method presented

in [Watson83] for testing coplanarity of random samples from the Fisher distribution on

the sphere. The following approximate results hold when the concentration parameter w

i

is

large:

2 w

i

(�

t

x

i

)

2

� �

2

1

(3.53)

2

m

X

i=1

w

i

(�

t

x

i

)

2

� �

2

m

(3.54)
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2

m

X

i=1

w

i

(

^

�

t

x

i

)

2

� �

2

m�2

(3.55)

where �

2

d

is a chi-squared random variable with d degrees of freedom.

Then, by analogy with the analysis of variance (ANOVA), an approximate con�dence

region for a proposed polar axis � is

P

m

i=1

w

i

(�

t

x

i

)

2

�

P

m

i=1

w

i

(

^

�

t

x

i

)

2

P

m

i=1

w

i

(

^

�

t

x

i

)

2

�

2F

�

(2;m� 2)

m� 2

; (3.56)

where F (2;m�2) is an F variable with 2 and m�2 degrees of freedom. This can be written

more compactly in matrix form as

�

t

W� � �

1

�

1

�

2F

�

(2;m� 2)

m� 2

(3.57)

where W is the scatter matrix of equation 3.52 and �

1

is its smallest eigenvalue.



C H A P T E R 4

Applications

Chapter 3 developed a probabilistic framework for uncertain geometric reasoning in pro-

jective space. Concrete applications of this approach are presented in this chapter. Three

computer vision applications are addressed : the derivation of line and plane orientations

using vanishing point analysis, partitioning of scene features into planar patches using line

correspondence stereo, and extending a partial model of planar surface structure using pro-

jective invariants.

Each application considered here involves the estimation of a vector of homogeneous co-

ordinates from a set of noisy observations related to the desired value by either Rank I or

Rank II incidence constraints. Since these incidence constraints are invariant under a�ne

and projective transformations, the results derived will be valid regardless of camera calibra-

tion or pose. However, the derivation of projective structure is more easily comprehended

and evaluated when converted into Euclidean form. This is possible when the intrinsic

camera calibration parameters are known. The ideal pinhole image can then be recovered,

and the homogeneous coordinate vectors of points and lines gain additional interpretations

as 3D scene orientations. Validity of projective inferences can then be evaluated in terms

of Euclidean relationships such as perpendicularity that are known to hold. For this rea-

son, information about the camera calibration parameters has been used whenever possible

95
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to convert derived homogeneous coordinate vectors into camera-centered estimates of 3D

orientation.

4.1 Vanishing Point Analysis

Under perspective projection, parallel lines in three-space project to converging lines

in the image plane. The common point of intersection, perhaps at in�nity, is called the

vanishing point . Vanishing point analysis provides strong cues for inferring the 3D structure

of a scene from only a single view [Haralick80, Horaud87]. Under known camera geometry,

the vanishing point of a group of parallel lines determines their orientation in three-space.

Two or more vanishing points from lines known to lie in a single 3D plane establish a

vanishing line, which completely determines the orientation of the plane. A more complete

overview and a review of previous work was presented in Section 2.1.2.

Vanishing point analysis requires parallel, linear structures to be present in the scene,

and their projections to be identi�ed in the image. Figure 4.1 shows a set of straight line

segments extracted from an outdoor building scene by the Boldt straight line extraction

algorithm [Boldt89]. Identifying converging lines in the image is easiest when there many

lines in each convergent cluster, since an e�cient clustering mechanism (to be described

shortly) is applicable. However, as lines become more sparse the clustering method begins

to break down, to the point where it is hard to distinguish vanishing point clusters from

accidental line intersections. Although these requirements limit vanishing point analysis to

scenes containing lots of parallel linear structure, the techniques that are used, most notably

detecting clusters of converging lines using a histogram data structure on the unit sphere,
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and the statistical estimation of the axis of a great circle of points, are applicable to more

general cases.

Figure 4.1: Straight line segments from an outdoor building scene. These line segments were

computed by the Boldt straight line extraction algorithm [Boldt89]. There were 2372 lines

extracted for this image.

In computer vision, the pure geometry of vanishing point analysis must be applied to noisy

observations of the physical world. The slopes of line segments in the image are perturbed by

noise both in the imaging process and in the method of line segment extraction. Finding the

vanishing point from a set of converging lines becomes a problem of estimation. A practical
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algorithm for �nding vanishing points from a set of line segments in an image must therefore

address two issues : how to cluster line segments going to a single vanishing point, and how

to estimate an accurate vanishing point from a given line cluster.

4.1.1 Vanishing Point Detection

Vanishing point detection involves �nding clusters of lines that nearly converge to a

single point of intersection. A Hough-transform approach originally due to Barnard excels

at quickly clustering line segments into potentially convergent groups [Barnard83]. Line

segments in the image are mapped onto a histogram representing the surface of the unit

sphere x

2

+ y

2

+ z

2

= 1 centered about the camera focal point. In practice, only the positive

hemisphere z > 0 needs to be represented, and the surface of the hemisphere is partitioned

by longitude and colatitude (see Figure 4.2). The sphere is a more appropriate histogram

space than the image plane because the sphere is a compact, �nite surface, while the image

plane is not.

Each line segment in the image, taken together with the camera focal point, forms a pro-

jection plane which intersects the unit (hemi)sphere in a great (semi)circle. Each histogram

bucket maintains a count of the number of great circles passing through it. Potential vanish-

ing points are detected as peaks in the histogram, corresponding to areas where several great

circles intersect, and the vanishing point location is chosen as the center of the histogram

bucket containing a peak.

The implementation used in this thesis contains some modi�cations to the basic algorithm

described above. The most fundamental change is that the histogram data structure is

applied here as an initial clustering method and as an e�cient spatial access mechanism,

but the �nal analysis of vanishing point location is performed on the underlying data. To
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Figure 4.2: Barnard's histogram method for �nding vanishing points. A hemispherical his-

togram is partitioned by longitude and colatitude. For each line segment in the image, a

great circle of histogram cells is incremented. Potential vanishing points are detected as

peaks in the histogram, corresponding to areas where several great circles intersect.
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achieve this, each histogram bucket maintains a list of the line segments that pass through it

in addition to the count. After a peak is detected, the line segments within it are retrieved and

statistical estimation techniques are applied to derive a more accurate estimate of vanishing

point position.

Peak selection in Hough-transform methods is inherently problematic [Grimson90]. In

particular, when the true position of a vanishing point on the sphere falls near a histogram

boundary, candidate line segments that should be grouped together fall into separate buckets.

For this reason, the set of line segments forming a convergent cluster is actually collected

from a whole neighborhood of buckets surrounding the peak. The neighborhood is speci�ed

as a circular region with some given radius � on the sphere, where � is a user-speci�ed

parameter that is typically set between 3 and 5 degrees. The cluster selection mechanism

works as follows. Let x be a unit vector representing the projection plane normal of a line

segment in the image, and G(x) represent the great circle of points having polar axis x.

Once a peak is found, the set of n projection plane normals fx

i

g corresponding to the n

great circles passing through the peak bucket are selected, and the direction along which the

dispersion of these vectors is minimal is computed as the eigenvector û associated with the

smallest eigenvalue of the scatter matrix

P

x

i

x

t

i

. Vector û is simultaneously an estimate of

the polar axis of the great circle that best �ts the set of vectors fx

i

g, and an estimate of

the point of intersection of the set of great circles fG(x

i

)g. Given the estimated intersection
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point û, all histogram buckets that intersect the circular area jû � vj � cos � are activated,

and all projection plane normals x

i

within them are subjected to the boolean �lter

j û � x

i

j � sin � : (4.1)

Every projection plane normal x

i

that passes the �lter is guaranteed to lie within a belt

of radius � around great circle G(û). Each corresponding great circle G(x

i

) is therefore

known to pass through a circular area of radius � around the proposed intersection point û.

Line segments in the image corresponding to these converging great circles are returned as

a cluster.

The procedure just outlined relies on the ability to determine which set of buckets in the

hemispherical histogram are neighbors of any given peak bucket. This must be done with

care, however. Representing the surface of the unit (hemi)sphere as a 2D rectangular array

of grid cells is not faithful to the topology of the sphere, and must by necessity \break" the

neighborhood structure in some places. Let the spherical histogram be indexed by longitude

0 � � < 360

�

and by colatitude 0 � � � 90

�

such that the corresponding point on the sphere

has coordinate vector (sin � cos�; sin � sin �; cos �). Referring back to Figure 4.2, the process

of clustering adjacent accumulator cells is complicated by at least three factors

wraparound : All arithmetic involving longitude � is modulo 360 degrees, i.e. (� = 0; � =

�) is the same point as (� = 360; � = �). Thus pairs of cells on the extreme right and

left sides of the �{� array are adjacent.

singularity : The �{� coordinate system has a singularity at the north pole, since that

point is represented by � = 0 degrees while � may take any arbitrary value. Therefore

the whole row of cells along the top of the array are actually adjacent to each other.
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instability : When lines are parallel, their intersection lies along the equator � = 90, but

the intersection can be at either � = +� or � = ��. Therefore, along the bottom

row of the accumulator array, pairs of points di�ering by 180 degrees (modulo 360) are

adjacent.

A routine has been implemented to iteratively visit every grid cell falling within a circle of

radius � from a given point on the hemisphere, taking into account all of the above topological

considerations.

After the largest cluster of converging lines is detected, all lines contained within it are

deleted from the histogram, and all bucket counts are updated. The highest remaining peak

is taken as the second cluster, and so on. Multiple peaks are thus detected in decreasing

order of number of lines contributing to them. The number of vanishing point clusters to

look for is a user-supplied parameter { usually less than three appear in any image.

Figure 4.3 illustrates the extraction of the three largest clusters of converging line seg-

ments from Figure 4.1. Notice that the problem of false peaks associated with coincidental

line intersections becomes apparent after the lines associated with the largest two peaks

are removed. It is not uncommon to have such false peaks, particularly when repetitive,

\checkerboard" patterns are seen, such as the pattern formed by the windows on the wall of

the far building in this image.

4.1.2 Vanishing Point Estimation

Once image line segments have been clustered into convergent groups (line pencils), the

problem remains of estimating the correct vanishing point location. The geometry of vanish-

ing point estimation was described in detail in Section 2.1.2. The homogeneous coordinate

vectors of every line in a line pencil, when normalized to have unit length, form a great circle
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Histogram of all line segments

... all line segments minus first cluster

... minus first two clusters

First Cluster

Second Cluster

Third Cluster

Figure 4.3: The three largest clusters found using Barnard's histogram method. Each his-

togram bucket has been mapped back onto its proper position on a hemisphere, and drawn

as a black dot with radius proportional to the number of lines in the bucket (relative to the

number of lines in the highest peak). The number of lines in peaks 1{3 is 536, 216, and 146,

respectively.
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of points on the sphere. The polar axis of this great circle coincides with the homogeneous

coordinate vector of the vanishing point of the line pencil. Due to noise in the extracted

image line segments, coplanarity of their normalized coordinate vectors will not be exactly

satis�ed. The corresponding points on the sphere no longer lie exactly on a great circle,

but instead form a cluster around it. Computing the polar axis of this great circle, and

hence of the vanishing point, becomes a problem of statistical estimation on the sphere (see

Figure 4.4).

Figure 4.4: Vanishing point estimation on the sphere. The homogeneous coordinate vectors

of converging line segments cluster around a great circle on the unit sphere. The polar axis

of the best-�tting great circle coincides with the homogeneous coordinates of their vanishing

point.

The purpose of this section is to introduce three statistical estimators of the polar axis

of a great circle of noisy sample points. Experimental evaluations of these estimators are

presented in the following sections. The estimators considered can be broken into two groups

on the basis of how knowledge that the given samples cluster about a great circle is incor-

porated into the estimation process. Under the functional model this knowledge is treated
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as a geometric constraint, while under the structural model it is treated as evidence of an

underlying probability distribution. To illustrate the di�erence, the approach to Bayesian

inference under Rank II incidence presented in Chapter 3 is a functional approach. The

sample points are treated as noisy observations whose unknown true values all lie exactly

on some great circle. No other relationship between the points is assumed, and in par-

ticular, each true value may be perturbed by unrelated noise processes having completely

di�erent covariances. In contrast, [Collins90] presents a structural approach to vanishing

point calculation. Each sample point is assumed to be an observation from some equatorial

probability density function on the sphere. Let X be a random variable over the surface of

the unit sphere, and f(X) be an antipodally symmetric probability density function. In the

structural model, the set of sample points x

1

; : : : ;x

n

forms an independent and identically

distributed random sample from f(X).

The three estimators to be considered di�er not only in their assumptions, but also in

their methods of solution. The three estimation frameworks considered are :

� Bingham structural model { All observed points x

i

are assumed to be indepen-

dent, identically distributed (i.i.d.) samples from an equatorial Bingham distribution.

The parameters of the polar axis of this great circle are estimated using maximum

likelihood estimation.

� Nonparametric structural model { All observed points x

i

are assumed to be

i.i.d. samples from a general antipodally symmetric distribution. The parameters of

the polar axis are estimated using the method of moments.

� Bingham functional model { This approach was detailed in Section 3.4. The true

values �

i

of each sample point x

i

are assumed to lie exactly on a great circle. Each
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observed point is generated by an independent, bipolar Bingham density function with

known parameter matrix. The polar axis of the great circle of true values is estimated

using Bayesian MAP estimation.

Bingham Structural Model

Maximum likelihood estimation given a set of i.i.d. samples from a Bingham density

function was described in Section 3.1. To restate the relevant results, a su�cient statistic

for the orientation and shape parameters U and K is the sample second moment matrix

M =

1

n

n

X

i=1

(x

i

x

t

i

) = A�A

t

; (4.2)

factored into A = [a

1

; a

2

; a

3

], an orthogonal matrix of eigenvectors, and diagonal matrix

� = diag(�

1

; �

2

; �

3

) of corresponding nondecreasing eigenvalues. The maximum likelihood

estimate of the orientation matrix U is the matrix of eigenvectorsA. In particular, the max-

imum likelihood estimate of the polar axis of both the equatorial and asymmetric bipolar

forms of Bingham's distribution is
^
u

1

= a

1

. Maximum likelihood estimates of the nonzero

shape parameters k

1

and k

2

are nontrivial functions of �. We compute them using a pro-

gram provided by Dr. John Kent that performs the asymptotic series expansions developed

in [Kent87].
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For large sample sizes, an approximate 1� � con�dence region (con�dence cone) for
^
u

1

is the set of unit vectors [Bingham74]

(

v : v

t

R v �

�

2

2;�

2n

)

; (4.3)

where R is the matrix

[a

2

; a

3

]

"

(k

1

� k

2

)(�

1

� �

2

) 0

0 k

1

(�

1

� �

3

)

#

[a

2

; a

3

]

t

and �

2

2;�

is the upper � critical point of the �

2

distribution with 2 degrees of freedom.

Nonparametric Structural Model

Prentice develops a nonparametric estimation procedure for antipodally symmetric dis-

tributions on the sphere [Prentice84]. His argument, based on the method of moments,

is that the population second moment matrix E(xx

t

) = UKU

t

can be estimated by the

sample second moment matrix (4.2). Equating matrix factors in the obvious way leads to

estimators
^
u

i

= a

i

, so that again the desired polar axis estimate is a

1

.
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Variances of the computed parameters are estimated from the quantities

c

jk

=

1

n

n

X

i=1

(
^
u

t

j

x

i

)

2

(
^
u

t

k

x

i

)

2

; 1 � i; j � 3

which are the nonzero sample fourth moments in the coordinate system of the principle axes.

Again invoking the method of moments, and assuming large sample sizes, an approximate

1� � con�dence region for
^
u

1

is found to be

(

v : v

t

Q v �

�

2

2;�

n

)

; (4.4)

where Q is the matrix

[a

2

; a

3

]

"

(�

1

� �

2

)

2

=c

12

0

0 (�

1

� �

3

)

2

=c

13

#

[a

2

; a

3

]

t

and �

2

2;�

is as before.

Bingham Functional Model

This problem was the treated in Section 3.4.2 using Bayesian MAP estimation. Exact

computation of the resulting estimator turned out to be intractable. Instead, a computa-

tionally simple approximation to the MAP estimator was developed. Let l

i

be the length of

the observed image line segment associated with sample point x

i

. A weighted scatter matrix

is then written as

W =

n

X

i=1

l

2

i

(x

i

x

t

i

) : (4.5)

Let �

1

be the smallest eigenvalue of W , a

1

be its associated eigenvector, and let m be the

number of lines in the sample cluster. Then an approximate MAP estimator for the polar
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axis of the great circle of sample points is
^
u = a

1

. Based on an analogy to the analysis of

variance procedure, an approximate 1 � � con�dence region for
^
u was found to be

�

t

W� � �

1

�

1

�

2F

�

(2;m� 2)

m� 2

; (4.6)

where F (2; n� 2) is an F variable with 2 and n� 2 degrees of freedom.

4.1.3 A Numerical Example

Figure 4.1 at the beginning of this section displayed a set of straight line segments ex-

tracted from an outdoor building scene. The 512 � 512 image was taken using a camera

with a �eld of view of roughly 30 degrees. Figure 4.3 showed the largest three line pencils

found. The largest cluster contains 536 line segments. Its sample second moment matrix is

(all quantities rounded to four decimal places)

M =

1

536

�

�

�

�

�

�

�

521:8195 �19:7644 2:3812

�19:7644 2:1703 �3:4969

2:3812 �3:4969 12:0102

�

�

�

�

�

�

�

;

which yields eigenvector and eigenvalue matrices

A =

�

�

�

�

�

�

�

0:0305 �0:0154 0:9993

0:9588 �0:2817 �0:0380

0:2820 0:9594 0:0049

�

�

�

�

�

�

�

� =

1

536

�

�

�

�

�

�

�

0:4189 0 0

0 12:9985 0

0 0 522:5825

�

�

�

�

�

�

�

;

ordered so that the eigenvalues appear in increasing magnitude. Both of the structural

estimators yield a

1

, the �rst column of A, as the estimate of the polar axis. The unit vector
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(0.0305, 0.9588, 0.2820) is therefore the estimate for the direction u of the original 3D line

segments.

Under the Bingham structural assumption, eigenvalues �

1

= 7:816E

-4

, �

2

= 0:0243,

and �

3

= 0:975 yield maximum likelihood estimates k

1

= �640:23 and k

2

= �21:16 (see

[Kent87]). An approximate 95% con�dence region (4.3) for u is thus the ellipse centered at

a

1

, with axes of half length

b

12

=

s

5:991

15607:822

rad = 1:12deg b

13

=

s

5:991

668631:96

rad = 0:17deg;

directed along great circles towards axes a

2

and a

3

respectively.

For the Prentice nonparametric structural estimator, con�dence regions are based on the

sample fourth moment matrix y

i

= A

t

x

i

. This turns out to be

C =

�

�

�

�

�

�

�

1:5048E

-6

2:327E

-5

7:5682E

-4

2:327E

-5

1:0098E

-3

2:3218E

-2

7:5682E

-4

2:3218E

-2

9:5099E

-1

�

�

�

�

�

�

�

:

The con�dence region (4.4) is located and oriented the same as in the Bingham structural

case, and has axes of half length

p

12

=

s

5:991

12740:426

rad = 1:24deg p

13

=

s

5:991

672178:85

rad = 0:17deg:

quite similar to the Bingham half lengths.

Line orientation estimates and associated con�dence regions were similarly computed

for the other two convergent line clusters in Figure 4.1. For the second largest cluster

the estimated line orientation vector was (0.775, -0.1762, 0.6069). An approximate 95%

con�dence ellipse on the sphere for the Bingham assumption has major and minor axis half
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lengths of 1:35 deg and 0:23 deg. The Prentice nonparametric method yields corresponding

half lengths of 1:41 deg and 0:23 deg. For the third largest cluster the estimated 3D line

orientation of (-0.6, -0.234, 0.765) is computed. The Bingham 95% con�dence ellipse has half

lengths of 1:25 deg and 0:2 deg, while the corresponding Prentice half lengths are 1:14 deg

and 0:2 deg. No asolute ground truth orientation data is available for this image, however

an idea of the relative accuracy of the derived vanishing point orientations is provided by

examining the angles between pair of derived vectors. These angles are 87:7

�

, 88:5

�

, and

91:5

�

. The true relative angles are presumably 90

�

.

Estimates of vanishing point location and con�dence were also computed under the Bing-

ham functional model. The orientation estimate for the largest cluster was found to be

(0:041; 0:968; 0:25) with 95% con�dence region half lengths of :65 deg and :1 deg. For the

second largest cluster, the orientation estimate was (0:8;�0:19; 0:573) with con�dence half

lengths on the sphere of 0:85 deg and :13 deg. Finally, the orientation estimate for the third

cluster was (�0:6;�0:24; 0:76) with computed half lengths of :57 deg and :06 deg. As men-

tioned above, no ground truth orientation data is available for this image, but the relative

angles between these computed estimates are 90:2

�

, 93:6

�

, and 90:0

�

. A test on images with

ground truth data is described in the next section.

One notable di�erence between the functional model and the structural model is that

the con�dence regions for the functional model are much smaller in size than those com-

puted under the structural model. Estimators with small con�dence regions are said to be

more statistically e�cient than those with larger regions. E�cient estimators are desireable

because they are less likely to accept false positives.
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4.1.4 RADIUS Model Board 1 Experiment

The goal of this experiment is to compare 3D line orientations computed via vanishing

point analysis against absolute ground truth orientations measured independently. Good

ground truth measurements of camera orientation are hard to come by. This experiment

uses data supplied through the Arpa-ORD RADIUS project (Research and Development

for Image Understanding Systems) [Gerson92, Gee93]. The focus of the RADIUS project is

automated site model update and construction from aerial imagery. The images and camera

parameters used in this experiment comprise the \model board 1" data set distributed with

version 1.0 of the RCDE (RADIUS Common Development Environment) software package

[MM93].

Figure 4.5 shows a single image from the eight model board images J1{J8. The scene is

a 1:500 inch scale model of an industrial site, built on a table top that can be raised and

tilted to simulate a variety of camera altitudes and orientations. For model board images

J1{J8 the table was set to simulate aerial photographs taken with a ground sample distance

of 18 inches, that is, pixels near the center of the image backproject to quadrilaterals on the

ground plane with sides approximately 18 inches long (which in scale model coordinates is 18

/ 500 = .036 inches). Each image contains approximately 1320� 1035 pixels, with about 11

bits of grey level information per pixel. The dimensions of each image vary slightly because

the images have been resampled, and unmodeled geometric and photometric distortions have

been introduced to more accurately reect actual operating conditions.

Buildings in urban or industrial areas are often oriented with respect to an underlying

orthogonal grid plan (city blocks, for example). When seen from the air, their roof lines form

rectilinear structures with sides running parallel to two dominant, orthogonal directions.
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Figure 4.5: Radius model board image J8.

These two sets of parallel lines are typically quite easy to �nd using the vanishing point

clustering algorithm described in Section 4.1.1. When internal camera parameters are known,

each recovered vanishing point provides an estimate of the 3D orientation of each set of

parallel lines with respect to the camera, and to thereby determine the orientation the

camera with respect to the underlying local site coordinate grid. In the model board images

the local building coordinate grid is also aligned with the primary compass directions, and

thus the orientation of the camera is determined in a global frame of reference as well.
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Accurate ground control measurements are available for about 110 points scattered

throughout the model. These ground control points were used by Lynn Quam at SRI In-

ternational to perform a multi-image, block adjustment procedure [ASP80] to compute the

camera pose parameters, e�ective camera focal length, and principle point (image center) for

all eight images. For example, the camera pose parameters, principle point and focal length

for the image shown in Figure 4.5 are

R =

2

6

4

�0:04679 �0:7617 �0:6462

0:9800 0:0904 �0:1775

0:1936 �0:6416 0:7422

3

7

5

T =

2

6

4

�6280:8250

�996:3453

7609:7137

3

7

5

(4.7)

(u

0

; v

0

) = ( 651:5 ; 516:0 ) pixels (4.8)

f = 5700 pixels/microns (4.9)

Based on these computations, the ground truth orientations of the north-south, east-west

building horizontals in the coordinate system of the camera are

vp1 = (�0:04679;�0:7617;�0:6462)

vp2 = (0:98; 0:0904;�0:1775)

and the a�ne transformation for mapping pinhole camera coordinates into observed image

plane coordinates is

Cam(u

0

; v

0

; f) =

2

6

4

f 0 u

0

0 f v

0

0 0 1

3

7

5
: (4.10)
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Computing Vanishing Point Orientations

Figure 4.6 shows a set of line segments produced from the image in Figure 4.5 by the

Burns straight line extraction algorithm [Burns86], as implemented in the KBVision image

understanding development system [AAI91]. Line extraction was run on each of the eight

images J1{J8. Due to the large size of these images, they were �rst reduced in resolution

to half their original size before line extraction. After line extraction, the segments found

were rescaled back into original image coordinates, then �ltered so that each line segment in

the �nal set has a length of at least 5 pixels long and a contrast (di�erence in average grey

level across the line) of at least 15 grey levels. This procedure produced roughly 5000 line

segments per image.

Figure 4.6: Line segments extracted for Radius model board image J8. These lines were

found using the Burns straight line extraction algorithm [Burns86].
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Theoretically, both vanishing point detection and estimation are invariant to the cam-

era calibration parameters. To test this is practice, both vanishing point detection and

estimation were carried out using the following default camera model

u

0

� = ImageWidth = 2 (4.11)

v

0

� = ImageHeight = 2 (4.12)

f� = (ImageWidth + ImageHeight) = 4 : (4.13)

This model places the principle point in the numeric center of an image, and yields a focal

length of approximately 90 degrees. For the image in Figure 4.5 the computed focal length

was 584, a factor of 10 smaller than the ground truth focal length of 5700.

Figure 4.7 shows the two largest line pencils found by the vanishing point clustering

algorithm. As expected, each cluster corresponds to one of the two dominant, orthogonal

orientations in the scene. There are roughly 900 line segments in each cluster. Two estimators

of vanishing point orientation were tried, corresponding to the Bingham structural model

and the Bingham functional model of Section 4.1.2. Both estimators were run on the two

dominant line pencils found for each image to produce homogeneous coordinate estimates

for both the north-south and east-west vanishing points. The estimators were applied using

the default (and incorrect) camera model described above. In order to compare the resulting

vanishing point estimates to ground truth data, it is necessary to �rst convert from default
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(a)

(b)

Figure 4.7: The two largest line pencils found for image J8. Each cluster corresponds to one

of the two dominant orthogonal orientations in the scene.
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coordinates to ground truth coordinates. The proper conversion is performed by the following

projective transformation

v

gt

=

2

6

4

f 0 u

0

0 f v

0

0 0 1

3

7

5

�1

2

6

4

f� 0 u

0

�

0 f� v

0

�

0 0 1

3

7

5

v

def

(4.14)

where v

def

is the estimated homogeneous coordinate vector of a vanishing point in the

default pinhole coordinates, and v

gt

is that same estimate after conversion to ground truth

pinhole coordinates. Homogeneous coordinate vector v

gt

can also be interpreted as a 3D

orientation estimate for one set of parallel lines in the scene.

Comparison with Ground Truth Orientations

The goal of this experiment was to compare estimated vanishing point orientations with

ground truth orientations provided with the data set. Table 4.1 summarizes the results for

both Bingham structural (S) and Bingham functional (F) vanishing point estimators.

For each image, absolute errors between estimated and ground truth line orientations

for the two dominant orthogonal vanishing points in the scene are compared, along with

the computed relative angle between the estimated orientations. The functional estimator

almost always outperforms the structural estimator. Sample means for the absolute errors

in the two vanishing point orientations are 3.5 and 4.4 degrees for the structural model, as

compared to 2.7 and 2.3 degrees for the functional model. The reason is that the structural

estimator is based on the assumption that all line segments in the image are independent and

identically distributed, while the functional model takes into account the fact that longer

lines tend to be more stable than shorter lines, and they thus receive higher weights in the

�nal estimate.
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Table 4.1: RADIUS Model Board experimental results. Comparison of absolute orientation

errors in estimated vanishing point orientations. S = Bingham structural estimator, F =

Bingham functional estimator. Also compared is the relative angle between the estimated

orientations.

Abs Error in Abs Error in Relative

Image VP1 (degrees) VP2 (degrees) Angle (degrees)

S F S F S F

J1 4.5 3.7 3.8 1.0 90.5 91.2

J2 4.2 3.7 4.7 2.8 91.7 91.7

J3 1.7 1.5 2.5 1.1 89.6 89.5

J4 5.4 4.7 3.0 0.5 86.5 87.3

J5 2.7 1.9 2.2 0.5 91.5 91.1

J6 0.9 2.4 5.0 2.3 89.5 90.3

J7 5.3 1.9 10.2 6.8 86.2 87.7

J8 3.1 2.0 3.8 3.5 92.3 91.9

avg 3.5 2.7 4.4 2.3 89.7 90.1

std 1.6 1.1 2.5 2.1 2.3 1.8

Interestingly, even though the functional estimator outperforms the structural case in

terms of absolute error, in this experiment they both perform equally well at estimating the

90 degree relative angle between the two dominant scene orientations. The average relative

angle computed was 89.7 for the structural model, and 90.1 for the functional case, both

quite accurate.

Although the model board scenes are ideal for vanishing point detection, in the sense

that there are many parallel lines in two distinct orientations, they are among the harder

cases for accurate vanishing point estimation since the convergence angle of line segments

across the image is never very large. In these images each vanishing point is signi�cantly o�

the image plane, and in many cases is far o�, near in�nity. The bene�ts of computing line
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intersections on the sphere rather than the extended image plane are very apparent in these

cases.

4.1.5 Studies using Simulated Data

This experiment was run to determine the accuracy of the con�dence regions generated by

each of the three vanishing point orientation estimators being considered here. For example,

all con�dence regions for all three estimators are based on asymptotic distributions of the

eigenvectors of the second moment matrix, and are thus only valid for large sample sizes.

How do these constructions behave under small sample sizes? As an initial step toward

answering this question, all three methods of con�dence region construction were tested

on simulated data. Line orientation estimates and con�dence regions were computed for

linesets of size n = 5, 10, 20, 40, 60, 80 and 100. One thousand trials were run for each size

n. For each trial, the unit hemisphere was sampled uniformly to choose a random 3D line

orientation, and a sample of n lines was generated in a 512� 512 image, assuming a camera

with a 45 deg �eld of view. For each line, a uniform random point in the image was chosen,

and a length between 5 and 50 pixels long was selected. A line of the selected length was

placed with its center on the chosen image point, and oriented towards the vanishing point

de�ned by the given 3D line orientation. After placement, each endpoint of the line segment

was perturbed independently by a bivariate normal noise process centered at the endpoint,

having standard deviations of 1.5 pixels along the line segment, and 0.5 pixels perpendicular

to the line.

For each of the 1000 trials of size n, a 3D line orientation was estimated from the sample

line segments. Both Bingham and Prentice structural con�dence regions were constructed for

6 �

2

values, corresponding to 90%, 92.5%, 95%, 97.5%, 99% and 99.5% levels of con�dence.
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Table 4.2: Bingham structural con�dence region counts

number of expected number of members

lines 900 925 950 975 990 995

100 827 862 900 938 969 986

80 845 876 917 953 970 985

60 856 885 914 952 981 990

40 874 904 932 955 979 987

20 835 863 899 934 971 982

10 797 837 878 906 937 959

5 650 693 737 783 832 862

Table 4.3: Prentice structural con�dence region counts

number of expected number of members

lines 900 925 950 975 990 995

100 817 852 896 932 974 987

80 840 874 910 935 982 988

60 845 886 913 952 984 992

40 876 907 930 957 981 988

20 826 860 896 942 977 987

10 765 808 854 893 931 942

5 608 639 681 734 785 811

Bingham functional con�dence regions were computed for F distribution values at the same

levels of con�dence. The original 3D line orientation was then tested for inclusion in each of

these regions. The resulting counts are an indication of the actual level of accuracy of each

con�dence region, for varying sample sizes (Tables 4.2, 4.3 and 4.4).

The derived con�dence regions for the structural models appear to be on the small side;

the true orientation was contained in a con�dence region fewer times than expected, almost
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Table 4.4: Bingham functional con�dence region counts

number of expected number of members

lines 900 925 950 975 990 995

100 904 921 952 974 982 992

80 906 924 953 981 994 996

60 887 914 935 970 986 993

40 908 928 948 967 983 990

20 907 929 947 973 989 992

10 871 900 928 959 980 987

5 887 905 937 969 985 990

uniformly across all con�dence levels and lineset sizes. This suggests that the simulated sam-

ple distributions did not exactly conform to either distributional assumption. Furthermore,

accuracy of the con�dence regions in the Prentice structural table do not di�er markedly

from those in the Bingham structural table, a feature already noted in the numerical example

of the last section. Finally, the accuracy levels of all columns stays roughly the same as the

number of lines in the sample drops from 100 down to 20. Below 20 the accuracy degrades,

dropping notably for small sample sizes of 5. This suggests that the asymptotic arguments

involved in the construction of the con�dence regions hold for clusters of at least 20 lines.

In contrast, the con�dence regions for the Bingham functional model are markedly better.

This is evidence that the assumptions underlying the Bingham functional model are closer to

the truth. In particular, the functional model dictates that longer lines should be weighted

more heavily that shorter lines, since they are expected to be more resistant to noise in the

imaging process.
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4.2 Line-Correspondence Stereo

This section presents an application of determining line and surface orientation from

stereo line segment correspondences. The orientation of 3D lines can be computed directly

from stereo line correspondences without �rst computing point depths, in contrast to meth-

ods that compute depth in order to obtain the orientation of line segments. After computing

line directions, it is possible to e�ciently discover coplanar lines and thereby recover the

orientation and distance of planar surfaces in the scene.

A persuasive case is made by Wol� and Boult [Wol�89] that line and plane orientations

are more accurately derived from line-based stereo than from point-based stereo. In par-

ticular, they show that line orientation computed by intersecting the projection planes of

corresponding line segments in a stereo pair is relatively invariant to the 3D locations of each

camera in space. Two advantages result from this observation. First, errors in the derived

line and plane orientations are relatively independent of errors in the stereo baseline, i.e.

knowledge of the absolute translation between the two cameras is not necessary. Secondly,

the rate of error in derived orientations grows fairly slowly with increasing distance from the

object to the baseline, as compared to the steeper error growth curve of point-based recon-

structions. Wol� and Boult verify both of these hypothesized advantages by Monte-Carlo

simulation. Note, however, that the authors leave the determination of planar patches from

line correspondence stereo as an open problem. One approach to solving this problem is

presented in this section.
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4.2.1 Line Orientations from Stereo

This section only considers the case of pure translational stereo, that is, the relative poses

of the two stereo cameras di�er only by a pure translation. If the two cameras are oriented

di�erently with respect to each other, and the relative orientation between them is known,

the two images can be unwarped with respect to each other to present a pure translational

stereo pair via a transformation process known as image recti�cation [Ayache91].

Consider a 3D line segment with unit orientation vector U , projecting onto the image

plane of a single camera. The focal point of the camera together with the 3D line de�nes

a plane called the projection plane of the line. The image projection of the 3D line lies on

the intersection of the projection plane and the image plane, thus the projection plane can

be computed given a line segment in the image and the focal point. Since a 3D line lies in

its projection plane, the plane normal � is perpendicular to the orientation U . If the same

3D line is imaged from a second camera, oriented the same as the �rst, but translated by a

vector T , a second projection plane that is still perpendicular to U will be measured. The

3D line orientation can thus be recovered as a unit vector parallel to the cross product of

the two projection plane normals, except when the line image lies along an epipolar line for

the two images.

Looking at this another way, translating the coordinate system by T is equivalent to

translating lines by �T . Pure translation does not change line orientations, so the new line

remains parallel to the original. Under perspective projection, parallel 3D lines of orientation

U project to converging image lines which intersect at the vanishing point associated with

U . Therefore the image of a line in one camera coordinate system intersects the image of
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the same line in a translated coordinate system at a vanishing point, from which the line

direction can be derived.

Unfortunately, the input line data is always imperfect due to noise in its imaging and

extraction, and the e�ects of noise on the computed 3D orientation must be taken into

account. When working with real data, any computed quantity should be treated as an

estimate only, with an associated measure of uncertainty.

4.2.2 Recovering Planar Surfaces

Having �rst computed 3D line directions, it is possible to discover coplanar lines and

thereby recover the orientation and distance of the planar surfaces that contain them. This

is done in two stages. First the lines are broken into groups consistent with a family of

parallel planes, then distances are �nally computed to partition the lines into sets consistent

with individual plane equations.

The normal vector to a planar surface is perpendicular to the orientations of all lines

on that surface. Conversely, given a line of orientation U lying on a planar surface, the

set of possible surface normals is the set of unit vectors perpendicular to U . On the unit

sphere, the heads of this set of possible normals trace out a great circle with polar axis

U . This geometric constraint leads to an e�cient Hough transform technique for �nding

possible surface normals on the sphere, a transform �rst employed by Barnard in the context

of locating potential vanishing points [Barnard83]. Each line orientation is mapped onto

a 2D histogram representing the surface of the unit sphere, partitioned by azimuth and

elevation. Each orientation casts a vote in all buckets along the great circle representing

vectors perpendicular to it. Potential surface normals are detected as peaks in the histogram,

corresponding to areas where several great circles intersect.
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Once potential plane orientations have been identi�ed, the unit normal can be estimated

with more accuracy. Although the true line orientations lie on a great circle around the true

plane normal, this relationship will not be exact due to errors in the derived line orientations.

Instead, line orientations lie scattered around a great circle. The statistical estimation tech-

niques previously described are used in Section 4.2.3, to estimate the polar axis of this great

circle, providing a vector estimate plus an uncertainty region for the 3D surface orientation.

Finally, for lines within a family of parallel planes, a 1D histogram of plane distances is

formed by computing for each line a hypothesized distance. The distance is computed as

d

i

=
^
n � p

i

; where p

i

is a 3D point on line i and
^
n is the estimated plane normal. Peaks in

this 1D histogram represent sets of lines consistent with a single plane equation.

Figure 4.8 shows an example of the partition created for a stereo hallway image. The

algorithm forms hypotheses of all three visible wall planes, and correctly identi�es that one

plane orientation is shared by two parallel planes at di�erent depths.
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Figure 4.8: Three hypothesized planar surface patches. Line segments extracted from the

left image of a translational stereo pair are shown in the upper left. Also shown are three

sets of lines consistent with individual planar surface patches.
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The above method for hypothesizing planes from stereo line correspondences has some

unique features. The method typically employed to solve the same problem is to compute

3D line segments or points, then cluster them into planar patches. The approach presented

here has the following advantages:

� The computation of plane distance is decoupled from computing plane orientation,

thus the Hough transform for detecting surface normals is 2-dimensional instead of 3,

and the entire process is roughly O(N) in the number of lines [Collins89].

� Parallel planes are immediately identi�ed, and their shared orientation is computed

from all of the lines on them.

� When the depth to a point on a line is �nally computed, the line is assumed to lie in a

plane with a given orientation that has been estimated from several lines. The depth

computed under this constraint is presumably more accurate (see [Wol�89]).

4.2.3 An Example

The stereo line correspondence example from the last section was taken with a two-camera

setup with parallel focal axes and a baseline of 20 inches. The distance from the left camera

to the corner was approximately 18 feet. As described in Section 4.2.1, each line orientation

was computed as the cross product of two corresponding projection plane normals. The

variance in each input normal was taken to be circular, and inversely proportional to the

average length of the matched lines in the image. From these two uncertain projection

plane normals, the line orientation was computed as their cross product, and an associated

con�dence region was computed. Although this generally gave an elliptical con�dence region,
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uncertainty in the line direction was taken to be a circular distribution circumscribing the

elliptical one on the sphere, summarizing the region description with a single variance.

Two plane orientations were discovered from the Hough transform array (two planes of

the three share the same orientation). To compute plane orientations from each line group

found, the approximate MAP estimator developed under the Bingham functional model

was used (Section 4.1.2). The mean orientation vector for the right wall was computed

to be (:665;�:061;�:744), as depicted in Figure 4.9a. A 95% con�dence region around

the right wall orientation is approximately an ellipse, with half-lengths on the sphere of

2.48 and 2.76 degrees. The shared orientation of the two left walls was estimated to be

(�:739;�:021 � :673), with a 95% con�dence region of half-lengths 2.53 and 2.0 degrees.

The relative orientation between the two estimated orientations is 89.4 degrees, and the

actual walls are in fact perpendicular within the usual limits of construction accuracy.

(.665, -.061, -.744)

(-.739, -.021, -.673)

41.8 +/- 2.76 degrees

47.7 +/- 2.53 degrees

FOCAL
AXIS

162.2 +/- 1.92
inches

146.06
+/- 3.57
inches

155.16
+/- 4.8
inches

WALLS

CAMERA

Figure 4.9: Numerical results for planar surface hypotheses. (a) depicts the orientation and

uncertainty in surface normals. (b) shows perpendicular distance estimates to each plane.
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In partitioning the lines into individual plane equations, the two parallel left walls were

separated. The perpendicular distance from the camera to the extended plane of the far

left wall was computed as 155:16 � 4:8 inches, at the 95% con�dence level, and that of the

closer left wall as 146:06 � 3:57 inches (see Figure 4.9b). This gives a nominal di�erence of

9:1 inches, whereas the faces of these two walls are in fact 8:5 inches apart, or a 7% error

in depth for the estimated value. A 95% con�dence region for the depth of the wall on the

right hand side of the image was estimated to be 162:2 � 1:92 inches.

4.3 Planar Model Extension

Many useful plane to plane mappings can be represented by linear, invertible projective

transformations called homographies. A planar homography can be estimated from a small

number (four or more) point or line correspondences between the two planes, using the least-

squares procedure described in Section A.1.4. When a transformation is estimated between

two images of the same planar object, points in one image can be readily mapped to their

corresponding locations in the other image, to aid the search for further correspondences.

When an estimated transformation goes from object to image, the resulting homography can

not only be used to predict where features in the object plane will appear in the image, but

the inverse transformation that maps from image coordinates back into object coordinates

allows an object model to be extended by adding new observed points and lines. These

results provide powerful methods for inferring planar scene structure without �rst solving

for camera motion, pose, or calibration parameters.
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4.3.1 Image Plane to Image Plane

Figures 4.10 and 4.11 present a concrete example of an image to image homographic

transformation, in the context of aerial surveying. Figure 4.10a shows a near-nadir aerial

photograph of Fort Hood, Texas, taken at a high enough elevation that the whole scene

can be considered approximately planar. Extracting line segment features from the image

(Figure 4.10c) is a useful �rst step towards producing a map of the site. After an initial map

has been built, it can be extended to include larger areas of the scene by adding information

from other images to form a mosaic.

Figures 4.10b and 4.10d show a second, oblique view of the same area, and its associated

line segment features. The strong perspective distortion induced by the oblique angle seems

to make this a poor candidate for extending the initial scene map. However, if at least four

point or line correspondences between the two views can be found, a projective transfor-

mation mapping the second image into the coordinate frame of the �rst can be computed,

allowing the oblique view to be e�ectively \unwarped" into registration with the initial nadir

view. Figure 4.11 shows the �nal, registered mosaic of the extracted image line segments.

Note how the rectangular boundary surrounding the initial line data of Figure 4.10d has

been transformed into a quadrilateral as a result of removing the e�ects of perspective fore-

shortening.

One real-world issue becomes immediately apparent from this example. If ideal copla-

nar features were being transformed between the two images, corresponding features would

overlap exactly in the �nal registered mosaic. This does not occur in practice, of course,

due to errors in the positions of extracted image features. What is needed is a method for

fusing multiple observations of the same feature. Each point or line feature in homogeneous
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(a) (b)

(c) (d)

Figure 4.10: Two views of Fort Hood, Texas. (a) A nadir view, suitable for site mapping.

(b) An oblique view with strong perspective distortion. (c) Line segment features extracted

for the nadir view. (d) Line segments for the oblique view.
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Figure 4.11: A �nal registered mosaic for the two images in Figure 4.10. Line segments from

the oblique view have been projectively unwarped into the coordinate system of the nadir

view.
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coordinates represents a point in the projective plane; multiple noisy estimates of the same

object feature form a sample of points in the projective plane, clustered around a point repre-

senting the homogeneous coordinates of the true object feature location. This is an example

of Rank I incidence, to use the terminology of Section 3.4, and an appropriate framework

for estimating the homogeneous coordinates of the true feature location was presented in

Section 3.4.2. An application of this merging procedure is presented in the next section, in

the context of planar object model extension.

4.3.2 Image Plane to Object Plane

In this section, model extension for planar objects is described. Given at least four object

to image correspondences, the homography that maps image points into a local object plane

coordinate system can be computed. This transformation allows new observed features in

the image to be transferred back into their proper locations on the planar surface of the

object, thereby extending the modeled portion of the object.

This approach is similar to one used by [Mohr90], where points are located on an object

surface using pairs of cross ratios between an object point and four known object locations.

Since the cross-ratio is invariant under homographies, the values in a cross-ratio pair can be

computed directly from the image. It is possible to rewrite the mapping e�ected by Mohr's

cross-ratio algorithm as a homography matrix. When exactly four point correspondences are

used, the homography estimated using the least squares approach of Section A.1.4 reduces

to that used by Mohr. When more than four point or line correspondences are known, direct

least squares estimation of the homography matrix will be more accurate.
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The PUMA Sequence

An image sequence from the pose estimation literature was chosen to illustrate model

extension [Kumar90]. Figure 4.12 shows a typical image from a sequence of 20 images taken

by mounting a CCD camera on a PUMA robot arm and rotating the arm 4 degrees between

consecutive views. Ground truth data locations of the labeled points (crosses and circles)

were measured in a room coordinate system to an accuracy of approximately 0.2 feet along

each axis. Kumar used known 3D to 2D correspondences of the 12 ground truth reference

points labeled with crosses to compute the pose of the camera for each frame. The positions

of the 20 points marked with circles were then estimated via multi-frame triangulation.

The reference points used by Kumar occur in clusters of 4 points on 3 di�erent planar

surfaces. In the following experiment, each of these 3 surfaces was treated as a separate

object plane containing 4 reference points (crosses) and 4 test points (numbered circles).

The far wall (containing points 5{8) will be called \Plane 1", the oor (containing points

9{12) will be labeled \Plane 2", and the side wall (containing points 13{16) will be called

\Plane 3". Circled points 1{4 and 17{20 were not used in this experiment. The goal of

this experiment was to test the accuracy with which new object points can be located using

projective model extension, and to compare these results with those obtained by a more

traditional 3D model reconstruction method based on triangulation [Kumar90]. Data fusion

of the reconstructed points to derive more accurate location estimates was also performed.

The 3D ground truth coordinate system for the PUMA sequence was aligned with the

natural axes of the room. For this experiment, a local 2D coordinate system for each object

plane was formed by dropping the coordinate that didn't change for the points in that plane.

In this way, each measured 3D object point was converted to a 2D point in a local object
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Figure 4.12: A typical image from Kumar's PUMA sequence.
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plane coordinate system. It should be noted that there is considerable freedom in choosing

local coordinates on both the object plane and the image plane when projective invariant

methods are used. For example, any a�ne transformation of the coordinate system of either

object or image plane can be tolerated, since the a�ne transformation matrix gets absorbed

into the estimated homographic transformation matrix. In this experiment, model points for

each wall were represented in the local 2D coordinate system described above, while points

in the image plane were represented in row-column pixel coordinates. In contrast, Kumar's

pose determination procedure required image coordinates to be speci�ed in pinhole camera

coordinates, which in turn required knowledge of the principle point (image center) and

e�ective focal length. Indeed, the main concern of [Kumar90] was to analyze how errors in

the speci�ed principle point and focal length a�ect the �nal results of the model extension

process. Such a discussion is moot when model extension is based on projective invariants.

For each of the 3 object planes used in this experiment, the 4 reference points on that

plane and their corresponding image points (this is data supplied by the Kumar experiment)

were used to estimate the homography that maps image plane points into object plane points

by solving the linear system of equations in Section A.1.4. The estimated homography was

then used to transfer the images of circled test points in the same plane back into the object

plane, where their estimated positions were compared with the known ground truth locations.

This process was repeated for each of the 20 images in the sequence.

Accuracy of the Reconstruction

The average absolute distance between reconstructed points on Plane 1 (points 5{8) and

their ground truth locations on that plane was about 0.13 feet,

1

around the level of accuracy

1

All reported distance measurements lie entirely within the object plane.
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of the ground truth measurements themselves. Distance errors in points on Plane 2 (points

9{12) were consistently low, around 0.03 feet over all 20 images, and never more than 0.04

feet. This is because the chosen reference points are well spread out in that object plane,

completely surrounding the estimated test points. On the other hand, errors in Plane 3

(points 13{16) were quite high: on average around 1.6 feet, and in some cases as much as 13

feet! This occurs because the reference points on that object plane do not adequately span

the space of points to be estimated. In fact three of the reference points are very nearly

colinear, a poor con�guration for homography estimation.

To illustrate that the poor selection of reference points in Plane 3 is the cause of the

large errors found, a new set of four reference points was chosen from the 8 points on that

planar surface, namely points 13, 15, the point directly above 16, and the point directly

to the right of 14. The process of model extension was rerun, using the other four points

as test points. This time, the selected set of reference points is one of the better possible

con�gurations, since the four points are well spread out and nearly surround the test points.

The absolute distance errors reect this fact { the average absolute error between predicted

and actual object point locations is around 0.03 feet, as low as the errors for Plane 2. This

new con�guration of reference and test points will be referred to below as \Plane 3b".

A rough comparison of the accuracy of model extension using planar homography esti-

mation vs. full 3D model extension via pose determination and triangulation is possible for

this sequence. Kumar reports average distance errors for each reconstructed point over 20

frames in both absolute terms and as a percentage of depth [Kumar90]. Table 4.5 condenses

and summarizes his results for each of the three object planes considered in this experiment.

For each plane, the average ground truth depth of points in that plane is shown (this stayed

roughly constant across all 20 images), the average absolute error between reconstructed and
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Table 4.5: Comparison of traditional vs. invariant model extension.

Pose + Triangulation Planar Invariance

Plane Avg Depth Avg Abs Avg Pct Avg Abs Avg Pct

(feet) Error (feet) Error Error (feet) Error

plane 1 30.75 0.25 0.8 % 0.13 0.4 %

plane 2 14.41 0.13 0.9 % 0.03 0.2 %

plane 3 20.64 0.05 0.2 % 1.60 7.7 %

plane 3b 20.64 0.03 0.1 %

ground truth points, and the absolute percentage error of the reconstruction with respect to

depth. Compared with this are the average absolute and percentage errors for points using

planar invariant model extension. Accuracy results for both Plane 3 and Plane 3b using

planar invariance are to be compared against the single result for Plane 3 using pose deter-

mination and triangulation. Aside from the results for Plane 3, where the reference points

used to compute the projective image to object transformation were nearly singular, model

extension based on planar invariance compares favorably with the 3D pose and triangulation

algorithm.

It should be cautioned that such direct comparisions between two vastly di�erent ap-

proaches is much like comparing apples and oranges. For instance, absolute errors in recon-

structed points via planar invariance are distances measured solely within the given object

plane, since the reconstructed point is constrained to lie in that plane, while residuals in 3D

triangulated points can be arbitrary situated. Furthermore, reporting percentage error with

respect to depth of scene points from the camera makes sense for reconstruction methods

based on triangulation, which are notably less accurate as the depth increases. It is not clear

that percentage error in depth makes any sense for methods based on projective invariants,

which theoretically should be insensitive to depth. In practice, such methods will also be
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less accurate for planes located very far from the camera due to the e�ects of digitization

on the possible resolution with which point features can be extracted, but di�culties of that

kind should not be a problem in the relatively narrow range of plane depths exhibited here.

Caveats aside, some tentative conclusions can be drawn from this case study. In places where

planar model extension is applicable it yields reconstructions comparable to state-of-the-art

triangulation methods. Care must be taken to select a well-conditioned set of reference

points, however.

To explore the relative accuracy of the estimated point positions in a manner more ap-

propriate to planar reconstructions, all distances between estimated points in a single object

plane were compared to the ground truth distances, and percentage errors were computed.

Figure 4.13 shows the results. The light grey curve for each plane shows the average per-

centage error taken over all point to point distances in that object plane for each image (the

meaning of the dark grey curve will be explained shortly). Plane 2 (containing points 9{12)

shows the most accurate results; the average percentage error over all images is 1.1%, around

the level of noise in the ground truth measurements. Plane 1 (points 5{8) shows slightly

worse errors, the average percentage error over all images is 3.5%. Originally plane 3 (points

13{16) shows markedly bad errors due to the ill-suited set of reference points chosen on that

plane { the average error over all images is 51%, but for some images the average error is as

high as 200%. However, using the new con�guration of reference points devised for Plane

3b, the average percentage error drops to 0.9%.

Even in planes where points are estimated with high accuracy, the level of accuracy

varies unpredictably from image to image. This is typical for a system that makes no use

of previous estimates. In contrast, the smoother dark curve overlaid on each graph shows

average percentage point to point distance errors when position estimates for previous images
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Figure 4.13: Average percentage point to point distance. These graphs show, for each object

plane, the average percentage distance error between estimated interpoint distances and

ground truth interpoint distances in that plane. The light grey curve shows percentage

errors for each image plane computed separately. The dark grey curve shows the results of

incremental data fusion performed up to and including image n, with n = 1; : : : ; n:
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Figure 4.13: Continued.
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are combined with current position estimates using the data fusion technique described in

the next section.

Data Fusion

Planar projective model extension permits valid reconstructions to be derived from a

single image taken by an uncalibrated camera with an unknown viewpoint. Over multiple

images, multiple location estimates are obtained, and it can be reasonably assumed that

combining these estimates will lead to a more accurate reconstruction. Each point location

estimate in homogeneous coordinates represents a point in the projective plane; multiple

location estimates for each object point form a sample of points in the projective plane,

clustered around an axis representing the homogeneous coordinates of the true location.

The situation just described is clearly an example of Rank I incidence (Section 3.4),

where multiple estimates of a single homogeneous coordinate vector are given and the goal

is to estimate that vector. Each homogeneous coordinate vector is represented as a pair of

antipodal points on the unit sphere. Due to noise, the given sample estimates form a bipolar

cluster about an axis representing the true homogeneous coordinate vector. In Section 3.4.2

a Bayesian solution to this estimation problem was given. In the present case, no estimates

of image feature errors are reported [Kumar90]. It was assumed, therefore, that all image

points are equally valid, and this assumption was represented by setting the prior density

function of each sample unit vector to be an identically weighted, rotationally symmetric

Bingham density function with major axis oriented along the given sample vector. The MAP

estimate in this case reduces to the eigenvector associated with the largest eigenvalue of the

sample second moment matrix (see Section 3.4.2). This is also the maximum likelihood

estimate under the Bingham structural model of Section 3.4.1.



144

The results of applying data fusion to this example are shown as dark curves in Fig-

ure 4.13. Although the fusion process smooths over random uctuations in percentage error

from frame to frame, it does not appear to increase the overall reconstruction accuracy by

the end of the sequence. We hypothesize that this is because no provisions were made for

dealing with errors in each estimated homography. Each homography matrix was assumed

to be correct, but in fact was estimated from a minimal number of object to image point

correspondences, and both the image point and object point measurements contain errors.

These errors propagate into the parameters of the estimated transformation matrix, and

provide a potentially large, unmodeled source of error in the estimate homogeneous coordi-

nate vector of each object point. In this case \blind averaging" is not guaranteed to produce

better overall results, and to do better it will be necessary to take into account errors in the

estimated projective transformation [Thomas92].



C H A P T E R 5

Conclusions and Future Work

Projective geometry is currently a topic of signi�cant interest in computer vision. A

representative sample of work in the �eld was presented at the �rst ARPA-ESPRIT work-

shop on Applications of Invariance in Computer Vision, and later collected into book form

[Mundy92a]. In 1993, the prestigious Marr prize in computer vision was awarded for a pa-

per �rmly advocating a projective geometric approach to object recognition and structure

recovery [Rothwell93]. Projective geometry has �nally come out of the appendices and into

the titles of important computer vision publications.

Many of the contributions of projective geometry to date have been in theoretical com-

puter vision, answering fundamental questions such as how many points or lines must be

observed to reconstruct a scene up to a scale factor, from how many views must they be

seen, and are there special con�gurations of the points or lines that still yield ambiguous

reconstructions [Buchanan92, Faugeras90, Tsai82, Maybank90a]. Other theoretical contri-

butions have been made with regards to camera calibration [Beardsley92, Faugeras92b] and

the recovery of projective structure from uncalibrated cameras [Faugeras92a, Hartley93,

Mohr92, Shashua93]. Applications of projective invariant indexing for object recognition

appear promising [Forsyth91, Rothwell93]. However, very few researchers have considered

the e�ects of noise on the values of projective invariants such as the cross-ratio, and the

145
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concomitant errors introduced into the object indexing process and into the recovery of pro-

jective structure [Coelho92, Kanatani93b, Maybank93]. This thesis is one of the �rst bodies

of work to directly address the combination of probability theory and projective geometry.

Such investigations must be made before the mathematical theory of projective geometry

can contribute signi�cantly to successful and reliable computer vision applications.

5.1 Thesis Summary

A methodology for scene reconstruction has been presented that is based on the principles

of projective geometry, while dealing with uncertainty at a fundamental level. Uncertainty

in geometric features is represented and manipulated using probability density functions

on projective space, allowing valid geometric constructions to be carried out via statistical

inference.

The projective plane is topologically equivalent to the quotient space formed by the sur-

face of the Euclidean unit sphere modulo the set of in�nite lines through the sphere's center,

which amounts to equating antipodal pairs of points on the surface of the sphere. Associat-

ing the projective plane with this quotient space introduces a metric that allows antipodally

symmetric probability density functions on the sphere to be reinterpreted as density func-

tions in the projective plane. An exponential family of probability density functions on the

sphere was considered, and Bingham's distribution was chosen to represent uncertainty in

the projective plane.

The main contribution of this thesis is the development of stochastic projective geometry,

a formalism for performing uncertain geometric reasoning during the scene reconstruction
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process. The homogeneous coordinates of points and lines in the projective plane are repre-

sented by antipodal pairs of points on the sphere, and geometric uncertainty in their location

is represented using Bingham's distribution. Geometric reasoning about homogeneous coor-

dinate vectors reduces to well-de�ned manipulations on probability density functions. The

result is an uncertainty calculus in projective space analogous to the Gaussian uncertainty

calculus in a�ne space. The main strengh of the Gaussian calculus is maintained, namely

its uniform treatment of uncertainty in all stages of the geometric reasoning process. At the

same time, the limitations of the Gaussian density function as a representation of uncertainty

in projective space are removed.

There are two fundamental types of operations that any uncertain geometric reasoning

system should address. The �rst is determining how a given representation of uncertainty

transforms under a change of coordinates . The second involves fusing multiple estimates or

observations to yield more accurate geometric descriptions. The coordinate transformations

of interest in plane projective geometry are the nonsingular planar projective transforma-

tions, or homographies. Although they are linear in homogeneous coordinates, homographies

induce a nonlinear bijective transformation on the surface of the sphere. Using a method

called transformation of variables, the change in point and line uncertainty due to a pro-

jective coordinate transformation was determined by propagating the Bingham probability

density function through this nonlinear transformation.

Bingham's distribution does not remain invariant under projective transformations. In

order to maintain a uniform representation of uncertainty, methods for approximating the re-

sulting density function with a Bingham density were explored. Three approaches to �nding

an approximating Bingham density were considered: maximum likelihood approximation,
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Taylor series expansion around the mode, and propagation of 3D singular covariance matri-

ces. Comparisons on the basis of mean-squared error showed singular covariance propagation

to be more accurate over a wider range of transformations. Singular covariance propagation

was then applied to the problem of initializing Bingham uncertainty measures by mapping

Gaussian representations of uncertain points and lines in the image plane onto the sphere

via central projection.

A Bayesian approach to evidence combination on the sphere was presented for fusing

noisy homogeneous coordinate observations constrained by known projective incidence rela-

tions. Rank I incidence is used when fusing multiple observations of the same point or line

in the projective plane. Homogeneous coordinate vectors related by Rank I incidence are

represented by the same pair of antipodal points on the sphere. The associated estimation

problem involves computing the axis of a bipolar cluster of points. Rank II incidence is rel-

evant for estimating the homogeneous coordinates of a line formed by colinear points, or of

a point formed by intersecting lines. Homogeneous coordinates related by Rank II incidence

are points separated by an arc distance of �=2 on the surface of the sphere. The associated

estimation problem involves computing the polar axis of a great circle of points clustered on

the sphere.

The e�ectiveness of stochastic projective geometry for dealing with noisy projective re-

lationships was demonstrated on three geometric problems: deriving line and plane orien-

tations using vanishing point analysis, partitioning scene features into planar patches using

line correspondence stereo, and extending a partial model of planar surface structure using

projective invariants. Vanishing point analysis is a correspondenceless approach for deriving

3D line and plane orientations from a single monocular view of sets of parallel lines in the

world. An e�cient histogram-based method on the sphere was implemented for clustering
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line segments from an image into converging line pencils, and three statistical estimators for

the homogeneous coordinates of their point of intersection were presented and compared. In

an experiment run on aerial photographs, line orientations were derived to with an average

absolute error of 2{3 degrees with respect to \ground truth" orientations that were computed

by a multi-image camera resection algorithm using over 100 ground control points.

As a second application, a hierarchical method was developed for partitioning line seg-

ments extracted from a stereo pair of images into sets that are coplanar in the scene. Given

a set of image-to-image line segment correspondences from a translational stereo pair, line

orientation can be computed directly without �rst determining the depth of features in the

scene. The same histogramming method used to �nd convergent line segment pencils for

vanishing point analysis can be applied to cluster the resulting 3D line orientations into sets

consistent with lying on a family of parallel planes, and a statistical estimate of the shared

surface orientation of those planes can be computed. Each set of lines consistent with a

family of parallel planes is then partitioned again into sets consistent with a single plane

equation, using knowledge of the stereo baseline to compute depth. The feasibility of this

approach was demonstrated on a single stereo pair taken from the stereo literature. Three

planar structures in the scene were recovered, two of which share the same surface normal

but are at di�erent depths. Surface normals were computed with an estimated accuracy

of roughly 2.5 degrees (radius of 95% con�dence cone around the computed normal). The

relative orientation between the two surface normals, which should in fact be perpendicular,

was computed as 89.4 degrees.

Finally, a method for planar model extension based on homography estimation was pre-

sented that allows valid planar reconstructions to be derived from a single image taken
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by an uncalibrated camera with an unknown viewpoint. This method was tested on a se-

quence of images used in the pose literature, and shown to yield reconstructions comparable

to state-of-the-art triangulation methods, i.e. reconstruction errors of around 1% with re-

spect to the distance of scene points from the camera. It was also demonstrated that a

well-conditioned set of basis points is essential for accurate projective reconstructions. Data

fusion over multiple images did not signi�cantly improve the overall accuracy of the results.

It was hypothesized that this is due to unmodeled errors in the estimated homography ma-

trix parameters, and that to do better will require representation and propagation of these

transformation errors.

5.2 Future Work

The research reported here is only a beginning. Three possible directions in which this

work could be extended are discussed below.

5.2.1 Robustness

The analysis of uncertainty on the sphere and the projective plane using Bingham's distri-

bution bears similarity to the least-squares method of error analysis in Euclidean space. The

similarity arises due to the form of Bingham's distribution (the exponential of a second-order

polynomial), so that, like the Gaussian, su�cient statistics for the distribution are provided

by the second-order sample moments. Eigenvectors of the sample second moment matrix

turn out to be maximum likelihood estimates for the axes of the distribution. But these

eigenvectors are also the orientations of lines and planes through the origin that minimize

the sum of squares of orthogonal distances to the observed sample points on the sphere
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[Pearson01]. Maximum likelihood estimation of orientations under the Bingham assumption

on the sphere is thus closely related to orthogonal least-squares line and plane �tting in

R

3

. Even the more sophisticated Bayesian analysis of Section 3.4 reduces in special cases to

weighted, orthogonal least-squares regression of lines and planes to a set of sample points.

It is well-known that least-squares techniques perform badly in the presence of gross

errors or outliers [Harter83, Kumar92]. Outliers can be intuitively de�ned as observations

that disagree so much from the bulk of the observed data that they are highly unlikely to

have arisen from the same process. For example, when observation errors are assumed to be

Gaussian any observation more than three standard deviations away from the sample mean

is likely to be an outlier. Robust statistics are designed to be relatively una�ected by the

presence of outliers in the data.

To some extent, the vanishing point and stereo applications presented in Chapter 4 are

already robust due to the Hough transform method used to detect sets of intersecting great

circles on the sphere. This method was described in Section 4.1.1. Recall that each great

circle is entered into a set of histogram buckets on the sphere. Intersecting great circles are

detected as peaks in the histogram. To retrieve all great circles potentially contributing to

the point of intersection, a sample mean intersection û is computed from all the great circles

contained in the peak bucket. All buckets neighboring the peak are then searched for great

circles lying within a predetermined error radius � of the sample mean. As a result, all great

circles selected as candidates for intersection are known to pass through a circular area of

radius � on the sphere. Great circles that deviate notably from the proposed intersection

site are thus �ltered out at the very start.

This approach can be related to robust techniques that attempt to �lter out incorrect

data points. One such technique is median �ltering [Kumar92]. In median �ltering, robust
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estimators of sample mean and standard deviation are �rst applied to the input data. All

sample points lying farther away than three standard deviations from the computed mean are

then discarded as outliers. Finally, the remaining data points are treated as an outlier-free

sample using ordinary least-squares statistical techniques. The histogram-based method

of great circle cluster selection used in Chapter 4 would be virtually identical to median

�ltering if only the error radius within which surrounding buckets are searched was computed

automatically from the data rather than predetermined by the user.

Very little has been written about robust statistical estimators for directional data. Two

papers that have appeared only consider angular data { that is, data points on the circle

[Lenth81, Stein92]. Lenth presents M-estimators for directional data that minimize error

functions that are more resistant to outliers than the sum of squares error function. Stein

and Werman consider a number of robust estimates based on the circular median, in the

context of robust line and conic �tting. They de�ne the circular median as any point � on

the unit circle such that half of the data points are on either side of the diameter from �

to � + �, and the majority of the points are nearer to � than to � + �. Unfortunately, it is

not readily apparent how this de�nition of circular median can be generalized for use with

directional data on the sphere and hypersphere. We propose here a method for computing

the median of a set of directional unit vectors v

i

in any dimension. A well-known estimator
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for the sample mean in this case is provided by

P

v

i

=k

P

v

i

k, which is the normalized vector

resultant [Watson83]. In three dimensions, for example, the resulting unit vector is

(
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i
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which can be rewritten as

(
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�
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�

X

2

+

�

Y

2

+

�

Z

2

(5.1)

where

�

X,

�

Y , and

�

Z are the sample means of the sets fx

i

g, fy

i

g, and fz

i

g of vector

components. The proposed sample median vector is obtained simply by replacing each

sample component mean in equation (5.1) by the component median, i.e. replacing

�

X by

medianfx

i

g, and so on. This de�nition also has limitations, in that it only works for signed

directional vectors. Robust estimation of axial data, particularly under the assumption of

Bingham-distributed errors, will ultimately require investigation into techniques for robust

eigenvector analysis, or equivalently, robust methods for orthogonal least-squares regression.

Any proposed estimator should �rst be subjected to rigorous statistical testing to deter-

mine its variance, bias, and degree of robustness to outliers. Direct application of routine

statistical tests to circular and spherical data should be approached with caution, however.

Stein and Werman point out that standard robust estimation concepts such as \breakdown

point" do not generalize well to the case of directional data. The breakdown point of an

estimator is the percentage of gross errors that can be tolerated before the di�erence between

the estimated value and the true value becomes arbitrarily large { i.e. before the estimator

becomes totally unreliable. For example, the mean of a random sample has a 0% breakdown

point because only one outlier at in�nity can shift the sample mean to in�nity, while the

median has a breakdown point of 50% it can tolerate up to half of the data points being
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shifted to in�nity before it too becomes in�nite. However, outliers in directional data can

only be o� by 180 degrees for signed directions; and only 90 degrees in the case of unsigned,

axial data. Therefore, no amount or severity of outliers can cause an orientation estimate to

be \arbitrarily" incorrect. Clearly, the development of new methods for robust estimation of

directional data, particularly methods that generalize well to higher dimensions, is an open

area for future research.

5.2.2 Extensions to Other Manifolds

Bingham's distribution on the unit sphere S

2

has been used in this thesis as a probability

density function over points and lines in the projective plane P

2

. Bingham's distribution is

readily generalized to P

n

. A projective point (and its dual in projective n-space) is repre-

sented by an antipodal pair of points on the surface of the unit hypersphere S

n

. Bingham's

distribution on S

n

(and hence P

n

) is formed as the intersection of an (n+1)-dimensional

zero-mean Gaussian with the surface S

n

, suitably renormalized so that the total probability

density over S

n

integrates to one. Bingham's distribution on the circle S

2

represents a prob-

ability density function over points in the projective line P

1

. Bingham's distribution on the

hypersphere S

3

represents a probability density function over points and planes in projective

three-space P

3

. A rigid rotation in SO(3), when represented as a unit quaternion, can be

visualized as an antipodal pair of points on the unit hypersphere S

3

[Horn86]. Therefore

Bingham's distribution on S

3

is also a probability density function over the space of 3D

rotations.

Probability distributions on the hypercylinder S

m

�R

n

can be formed as the direct prod-

uct of an m-dimensional Bingham distribution with an n-dimensional Gaussian [Bagchi91].

Some hypercylinders that are useful in computer vision are the Euclidean line manifold
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S

1

� R

1

, the Euclidan plane manifold S

2

� R

1

, and the rigid motion or pose manifold

S

3

�R

3

. Extensions to the hypertorus S

m

� S

n

are formed similarly.

5.2.3 Towards Nonplanar Model Extension

One of the applications considered in Chapter 4 was planar model extension. Given

knowledge of at least four coplanar points or lines in the scene and their correspondences in

an image, a planar homography is estimated that maps new points and lines from the image

into their proper locations on the object plane without �rst computing pose or calibrating

the camera.

When other, non-coplanar scene features are present, the mapping from world to image is

no longer completely described by a homography. We assume in this section that two views

of a scene are available, that at least four coplanar points or lines are available for use as a

reference plane, and that an image-to-image homography has been computed that transforms

the projections of reference plane point features from image one into their corresponding

projections in image two. What can be said about the transformed image of a scene point

outside of the reference plane? The location predicted for it by the planar homography will

not in general coincide with the actual location of the projected scene point in image two.

However, the residual di�erence between a the predicted and actual positions of the projected

point in image two are constrained to lie along lines intersecting in a single point. These lines

are called epipolar lines, and they intersect at the epipole, which geometrically corresponds

to the image of the focal point of the camera when image one was taken. Furthermore,

the direction of each residual di�erence vector either towards or away from the epipole

determines whether the corresponding 3D scene point lies either forward or behind the plane
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of reference. These results are valid regardless of either camera's location, orientation, or

calibration parameters, and have been noted previously [Demey92, Luong93, Shashua93].

For illustration, two aerial photographs are shown in Figures 5.1a and 5.1b. Figures 5.1c

and 5.1d show 37 corresponding pairs of points that were chosen by hand from these images.

Several sets of points delimit the tops of buildings, and are therefore coplanar in the scene.

The four pairs of coplanar points marked with a cross bound a rooftop, and were used to

estimate a homography from the �rst image into the second. All points from the �rst image

were then mapped into the second image using this homography, and their positions noted.

Figure 5.2 shows residual di�erence vectors between predicted locations (in black) of points

from image one, and actual point locations (in white) where they were found in image two.

The four pairs of coplanar reference points line up exactly, as they must by de�nition of the

homography. All remaining residual vectors lie along in�nite epipolar lines that intersect at

a single epipolar point, which in this case is far o� the image. Furthermore, note that the

di�erence vectors for structures taller than the rooftop used to compute the homography

are oriented in one direction, while di�erence vectors for structures shorter than the rooftop

are oriented in the opposite direction. This property holds in general, and can be used to

qualitatively partition scene points into three categories depending on the orientation of their

residuals: those lying closer to the viewer than the reference plane, those lying on the plane

(di�erence vector is zero), and those lying further away.

Accurately recovering the position of the epipole is an important step in recovering scene

structure from an uncalibrated stereo pair. Statistical estimation of the epipole should

be a straightforward application of the same estimation techniques used in this thesis to

precisely locate vanishing points from noisy line segments. A more detailed analysis of
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(a) (b)

(c) (d)

Figure 5.1: Two aerial photographs that are not well-approximated by a single plane. (a)

Radius Model Board 1, Image J8. (b) Radius Model Board 1, Image J2. (c) Interesting

points extracted by hand from Image J8. (d) Corresponding points extracted by hand from

Image J2. Some building boundaries have been added for clarity. Crosses mark points that

will be used to estimate a homography between the two images.
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Figure 5.2: Residual di�erence vectors between predicted and actual locations. Black dots

mark the predicted locations of points from image one transformed by a planar homography

into image two. White dots mark the actual locations where the points were found . Points

marked with crosses were used to de�ne the homography.
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error propagation in the recovery of projective structure from uncalibrated stereo will be the

subject of future research.



A P P E N D I X A

Projective Geometry Primer

A.1 Projective Transformations

What is projective geometry? There are several answers, reecting the many di�er-

ent ways of approaching this vast subject. The classic axiomatic approach postulates the

existence of points, lines, planes and a binary incidence relation between them, then system-

atically explores the logical conclusions of a short list of axioms. The most notable axiom

states that two distinct lines in a plane always intersect in a point, therefore there is no no-

tion of parallelism in projective geometry, as there is in a�ne and Euclidean geometry. The

rigorous axiomatic approach has led to the study of projective spaces with a �nite number

of elements, and to the study of projective spaces with coordinates over arbitrary division

rings.

We will be concerned with continuous, real projective spaces of dimension one (the pro-

jective line), two (the projective plane), and three (projective 3-space). A feel for these

spaces can be gained by comparision with their a�ne and Euclidean analogs. For example,

the projective plane can be thought of as an a�ne plane with extra points added to repre-

sent the intersections of parallel lines. Alternatively, upon the introduction of homogeneous

coordinates, points and lines in the projective plane can be identi�ed with lines and planes

through the origin of R

3

. The analysis of incidence relations between projective elements

160
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then boils down to questions involving the dependence or independence of linear subspaces,

and the techniques of linear algebra become available.

Perhaps the simplest description of projective geometry was given by Felix Klein in

his famous Erlanger Programm. Klein classi�ed geometry as the study of properties of

point sets that remain invariant under some group of transformations. At one end of the

spectrum is classical Euclidean geometry, studying properties such as length and angle that

remain invariant under the Euclidean group of rotations, translations and reections. At

the opposite end is topology, the study of properties such as connectedness that remain

invariant under homeomorphisms, or \rubber-sheet" deformations. Projective geometry,

then, can be characterized as the study of properties that remain invariant under projective

transformations.

A.1.1 Perspectivities

The canonical example of a projective transformation is central projection, also known

as a perspectivity. Figure A.1 shows a perspectivity between two distinct lines L and M in

the a�ne plane. (The a�ne plane can be thought of as the familiar Euclidean plane as long

as metric notions such as length and angle are ignored. Parallelism is still de�ned, however.)

Under a perspectivity, corresponding pairs of points are joined by projection lines that all

pass through a single, distinct point C called the perspective center. Viewed as a mapping

from line L to line M , the image of point l is the point m where the projection line C-l

intersects M , and likewise the preimage of m is the intersection of projection line C-m with

line L. This mapping is one-to-one except for one point on L that has no image because its

projection line is parallel to M . Likewise, the mapping is onto except for one point on M

that has no preimage because its projection line is parallel to L.
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L

M

l

m

c

Figure A.1: A perspectivity between two lines in a plane.

It is easier mathematically to deal with mappings that are both one-to-one and onto,

called bijections. In order to make a perspectivity between two lines bijective, points at

in�nity are explicitly added to lines L and M . The image of the point on L having a

projection line parallel to M is de�ned to be the point at in�nity on line M . Similarly, the

preimage of the point on M whose projection line is parallel to L is said to be the point at

in�nity on line L. With these additions, every point on L has an image on M and every

point of M has a preimage on L, and thus the mapping is bijective. When an a�ne line

is augmented in this way with a single point at in�nity, a new geometric entity called the

projective line is created. The projective line has a di�erent global topology than the a�ne

line, and this has profound implications for the representation of observed points and their

uncertainty, as discussed in Section 1.2 of this thesis.
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A perspectivity between two distinct planes in space is de�ned in a manner analogous

to that for lines. Given two distinct planes P and Q in a�ne space, and a point C not on

either, point p from plane P is mapped to the point q where projection line C-p intersects

plane Q (Figure A.2). As in the one dimensional case, some points on P don't have any

corresponding images in q, because their projection lines are parallel to plane Q. In fact, the

locus of points in P having no image is a line, and likewise a whole line of points in plane

Q have no preimage. Once again, a bijective mapping can be arranged by adding points at

in�nity to the con�guration. One in�nite point is added to plane Q to correspond to each

point in P having no image, and similarly one point at in�nity is added to P for each point

in Q having no preimage. The locus of in�nite points added to each plane forms a line at

in�nity. When an a�ne plane is augmented with a line of points at in�nity, it becomes a

new geometric entity called the projective plane. Parallel lines in the a�ne plane intersect

in a point at in�nity in the projective plane, so the notion of parallelism no longer holds any

special signi�cance.

A perspectivity between two 3D-spaces in a�ne 4-space can also be de�ned, although it

is easier to visualize this as a mapping from projective 3-space into itself. Projective space is

formed by adding points at in�nity to a�ne space. For each family of parallel lines in a�ne

space, a point at in�nity is added to represent their intersection. Each family of parallel

planes in a�ne space intersect in a line of points at in�nity. The totality of points at in�nity

added to a�ne space forms a plane at in�nity in projective space.

A.1.2 Projectivities

Perspectivity is just one form of projective transformation. The most general type of

projective mapping, called a projectivity, is formed as a sequence of perspectivities. An

example appears in Figure A.3, which depicts a perspective mapping from line L to a second
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Towards line at
infinity on Q

Towards line at
infinity on P

Locus of points
with no preimage

Locus of points with no image

Figure A.2: A perspectivity between two planes.
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line M , followed by a perspective mapping from lineM to a third line N . The resulting map

from line L to line N is not in general a perspectivity, because lines through corresponding

points no longer converge to a perspective center.

A

B
C

D

D
C

BA

α
β

χ

δ

L

M

N

Figure A.3: A projectivity is a sequence of two or more perspectivities.

General projectivities are de�ned algebraically as linear transformations in homogeneous

coordinates. Homogeneous coordinates represent a point in projective n-space by an (n+1)-

dimensional coordinate vector, the extra component being used to represent points at in�nity.

In the projective plane, for instance, the homogeneous coordinate vector (X;Y; S) represents

a�ne plane coordinates (X=S ; Y=S) when S 6= 0, but represents a point at in�nity when

S = 0. The homogeneous coordinates of a point can be scaled by any nonzero number and
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still represent the same point. More formally, coordinate vectors p and q are equivalent,

written p � q; if and only if p = kq for k 6= 0:

In homogeneous coordinates, a projectivity between two lines is de�ned as

"

X

0

S

0

#

�

"

a b

c d

# "

X

S

#

; (A.1)

and between two planes as
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: (A.2)

Since the equivalence relation � is used rather than strict equality, these equations are state-

ments about equivalence classes rather than speci�c vector results. Any such matrix relation

p

0

�Hp can be rewritten using equality by introducing a nonzero scalar variable k and writ-

ing p

0

= kHp. Since homogeneous coordinates are equivalent up to scalar multiples, each

matrix of transformation parameters can be multiplied by any nonzero constant and still

represent the same mapping. Matrices representing projective transformations are therefore

equivalent up to scalar multiples also, so that a projectivity between lines has only 3 inde-

pendent parameters, a projectivity between planes has 8, and a projective transformation of

3-space has 15.

A projectivity is nonsingular, and therefore invertible, if and only if the matrix of parame-

ters representing it is square and has non-zero determinant. Only projective transformations
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between spaces of the same dimension can �ll these requirements. An important example of

a projectivity between spaces of di�erent dimension is

2
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; (A.3)

which projects points in 3D space onto a plane. Since a whole line of points in space is

mapped onto each point in the plane, this mapping is obviously non-invertible.

A.1.3 Homographies

A nonsingular projectivity, represented by a nonsingular square matrix in homogeneous

coordinates, is called a homography. Functional composition of two homographies is per-

formed by multiplying their corresponding matrices. The determinant of this product will

also be nonzero, thus the set of all homographies is closed under function composition. The

composition of any homography with a scalar multiple of the identity matrix performs the

same projective transformation as the original homography. The inverse of a homography

always exists, and can be found by inverting the nonsingular matrix representing the ho-

mography. These conditions verify that the matrices representing homographies form a

mathematical structure called a group, under the operations of matrix multiplication and

matrix inverse. Group theory is a powerful branch of mathematics with a rich set of results

that can be applied to the study of transformations and their invariants [Tsai82, Forsyth91].

A set of matrices form a subgroup of the homography group if they all have some iden-

tifying characteristic that remains unchanged under matrix multiplication. The projective

transformations they represent then form a functionally closed subgroup of transformations,

and according to Klein de�ne a subgeometry. Two important subgroups of the homography
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group are the a�ne group and the proper Euclidean group. An n-dimensional a�ne trans-

formation can be written as an n�n matrix with a 1 in the bottom, rightmost position, and

zeros everywhere else in the bottom row, e.g.
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represents an a�ne transformation in the plane. It is easily veri�ed that the composition of

two a�ne matrices yields a third. Under an a�ne transformation, points at in�nity (S = 0)

only map to other points at in�nity, and �nite points (S 6= 0) stay �nite. Parallel lines,

de�ned as lines having an intersection point at in�nity, therefore remain parallel under a�ne

transformations. A�ne geometry is concerned with properties of �gures, such as parallelism,

that remain invariant under a�ne transformations.

The proper Euclidean group is a subgroup of the a�ne group consisting only of rigid

motions (rotations and translations, no reections). A rigid motion in 3-space can be written

as
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where the upper left submatrix fr

ij

g is an orthonormal rotation matrix, and ft

i

g is an arbi-

trary vector of translation parameters. Euclidean motions preserve distances, and therefore

preserve angles and parallelism as well.

Figure A.4 illustrates the e�ects of the eight independent plane to plane homography

parameters in isolation. Given an initial image of a unit square, centered about the origin,

the three proper Euclidean group parameters rotate the square and translate it about the

plane. The four-parameter a�ne or similarity group adds an extra scale factor that allows
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the �gure to shrink or expand. These mappings all preserve the shape of the image, that

is, the �gure always remains square. The general a�ne group includes two more parameters

that can stretch and skew the square into a rectangle or parallelogram. Although the shape

of the square is not preserved under general a�ne transformations, opposite sides of the

�gure remain parallel. The �nal two parameters of the planar homography group allow the

line at in�nity to be mapped into the �nite portion of the plane. The intersection points of

opposite sides of the resulting �gure lie on this line, thus opposite sides of the �gure are no

longer parallel and the square image is transformed into a quadrilateral.

A.1.4 Estimating Projective Transformations

Since the parameters of an arbitrary plane to plane homography can be characterized in

terms of their e�ects on the image of a unit square (Figure A.4), it seems reasonable to expect

that these parameters could be recovered from a careful examination of the before and after

images of a square or quadrilateral. The fundamental theorem of projective geometry makes

this intuitive notion more precise. It states that a plane to plane homography is uniquely

determined by the correspondences of four points, no three of which are colinear. That

four is the minimum number of independent points required to estimate the parameters of

a planar homography can also be arrived at by a simple analysis of degrees of freedom. A

planar homography has 8 unknown parameters. The position of a point in the plane has

two degrees of freedom, therefore each point correspondence provides two equations in the

eight unknowns. As a result, four points are needed to provide eight equations in eight

unknowns. The condition that no three of the four points can lie in a line is necessary to

ensure that all eight equations are in fact independent. This simple analysis can be used

to extend the fundamental theorem to projective spaces of other dimension. It can then

be shown that at least three distinct point correspondences are necessary to estimate a line
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Figure A.4: E�ects of the eight independent planar homography parameters on the image

of a unit square.
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to line homography, and at least �ve points, no four of which are coplanar, are needed to

uniquely estimate a projective transformation over three-space.

The fundamental theorem of projective geometry determines the theoretical minimum

number of points required to estimate the parameters of a homography, but in practice it is

better to use as many point correspondences as possible to reduce errors in the estimated

transformation caused by noise in the observed image data. Faugeras and Lustman present

a least squares approach to estimating a plane to plane homography from four or more

�nite point correspondences [Faugeras88]. In this case equation (A.2) can be written as the

fractional linear transformation

X

0

=

aX + bY + c

gX + hY + i

, Y

0

=

dX + eY + f

gX + hY + i

: (A.6)

Each point to point correspondence provides two constraints on the transformation param-

eters, namely

aX + bY + c � X

0

(gX + hY + i) = 0

dX + eY + f � Y

0

(gX + hY + i) = 0:

(A.7)

Since possible solutions for the set of parameters are equivalent up to scalar multiples, a

further constraint like i = 1 is imposed to provide a unique solution.

A.2 Duality

Points and lines are duals in the projective plane. Intuitively this means geometric

constructions that are valid for points are also valid for lines. The homogeneous coordinate

representation of a line in the projective plane is formed as the vector cross-product p� q

of the homogeneous coordinates p and q of any two distinct points on the line. The result
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is another 3-place vector that can be scaled arbitrarily. A given homogeneous coordinate

vector can therefore be interpreted either as a point or as a line. The principle of duality

states that points and lines are indeed interchangeable, as long as the exchange is carried out

systematically. For example, the dual of the fundamental theorem of projective geometry

states that a plane-to-plane homography can also be determined by the correspondences of

four corresponding lines, no three of which meet at a point.

There is a simple relationship between a homography matrix estimated from points and

the corresponding dual homography matrix estimated from lines. Under a point homograpy

H, the line passing through points p and q now passes through Hp and Hq, and its

homogeneous coordinates therefore becomeHp�Hq. It is straightforward, though slightly

tedious, to show that for any nonsingular 3� 3 matrix H,

Hp �Hq = [H

-

1

]

T

(p� q) : (A.8)

This means that the homography matrix that maps line coordinates to line coordinates under

a given projective mapping is the transpose of the inverse of the matrix mapping points to

points, and vice versa.

Using the above relationship a homography estimated from line correspondences can al-

ways be converted to a homography that maps points. Since line segment extraction is a

more global process than point extraction, it seems reasonable to expect a homography de-

rived by transforming an estimated line homography to be more accurate than one estimated

directly from points.
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A.3 Incidence Relations

Once the existence of two or more geometric entities is postulated, one can begin to ask

how they relate to each other geometrically. The fundamental relationships de�ned between

projective geometric elements are the incidence relations. For example, given two points in

the projective plane, they can either coincide, or be distinct. Given three points, they can

either coincide, form a colinear set all lying on a single line, or else form the vertices of a

nondegenerate triangle. A similar situation holds for lines in the projective plane, due to the

principle of duality. Three lines in the plane can either overlap exactly, form a line pencil

intersecting in a single point, or intersect in pairs to form three distinct points.

Staying with the projective plane for concreteness, the homogeneous coordinate represen-

tation of points and lines in the plane allows questions about incidence to be reformulated

in terms of linear subspace dimension. Recall that a point or line in the projective plane is

represented by a nonzero, 3D homogeneous coordinate vector that can be scaled arbitrarily.

The set of equivalent homogeneous coordinate vectors that all represent the same point or

line can therefore be visualized as a set of vectors lying along a single in�nite line through

the origin of R

3

, and therefore spanning a linear subspace of dimension one. The dimension

of the subspace spanned by a set of vectors can be represented by the rank of a matrix

with columns formed by the point coordinates. Given n homogeneous coordinate vectors,

arranged to form the columns of a 3 � n matrix, those homogeneous coordinates represent

coincident points, i.e. represent the same point, i� the matrix has rank one.

Using the notion of matrix rank, the incidence relations between sets of points (and by

duality, lines) in the projective plane can be enumerated. The rank of a 3 � n matrix can

be at most three, and since a homogeneous coordinate vector cannot consist of all zeros,

the rank of a matrix formed by homogeneous coordinate vectors must be at least one. If
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the rank is one, all points (lines) are coincident, and therefore equivalent. In the text, this

is called Rank I incidence. If the rank of the homogeneous coordinate matrix is two, all

the points lie on a single line (all the lines intersect in a single point). This is called Rank

II incidence. Finally, if the matrix has full rank then at least three points (lines) in the

set form a nondegenerate triangle. Questions about whether a con�guration of four points

is arranged so that no three of them are colinear, a necessary condition for estimating the

parameters of a projective transformation, can be veri�ed by requiring all 3� 3 submatrices

formed by choosing three columns from the 3�4 homogeneous coordinate matrix describing

the geometric con�guration to have full rank.

A.4 Projective Invariants

Geometric properties can be classi�ed into two types : descriptive and metric [Mihalek72].

Descriptive properties represent qualitative positional relationships between structures in the

scene, including colinearity, coplanarity and tangency. Metric properties, on the other hand,

are measured quantities like distance, orientation and area. The classi�cation of a geometric

property as either descriptive or metric is made precise by the study of projective geometry.

A descriptive property remains invariant under projective transformations.
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All of the incidence relations between projective geometric elements are invariant. For

example, consider n colinear points in a plane. Their colinearity relation is expressed by the

matrix equation

rank [p

1

p

2

� � � p

n

] = 2; (A.9)

where each column p

i

is the 3 � 1 homogeneous coordinate vector of point i. An arbitrary

homography H transforms point p

i

to a new point p

i

0

= k

i

Hp

i

: This is expressed by

[p

1

0

p

2

0

� � � p

n

0

] = KH [p

1

p

2

� � � p

n

] ; (A.10)

where K is a diagonal matrix composed of the nonzero scale factors k

i

. K is obviously

nonsingular, and H is also nonsingular due to the fact that it represents a homography. It

is a well-known result from matrix algebra that when a matrix A is nonsingular, the rank

of AB is that of B [Ayres62]. Therefore

rank [p

1

0

p

2

0

� � � p

n

0

] = rank [p

1

p

2

� � � p

n

] = 2: (A.11)

Therefore, when a set of colinear points in a plane is subjected to a planar homography,

their resulting positions are still colinear. Colinearity is thus invariant under a homography,

and is a descriptive rather than a metric geometric property.

An important example of a numeric projective invariant on a line is the cross-ratio of four

points. More general projective invariants in the plane and in 3-space can be constructed
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from the cross-ratio. Letting p

1

, p

2

, p

3

and p

4

be the 2�1 homogeneous coordinate vectors

of four points on a line, their cross-ratio is de�ned as

CR(p

1

;p

2

;p

3

;p

4

) =

det [p

1

p

3

]

det [p

1

p

4

]

�

det [p

2

p

4

]

det [p

2

p

3

]

: (A.12)

To prove invariance one proceeds as before, letting p

i

0

= k

i

Hp

i

for some nonsingular matrix

H. The cross ratio of the transformed points is

CR(p

1

0

;p

2

0

;p

3

0

;p

4

0

) =

k

1

k

3

(detH)(det [p

1

p

3

])

k

1

k

4

(detH)(det [p

1

p

4

])

�

k

2

k

4

(detH)(det [p

2

p

4

])

k

2

k

3

(detH)(det [p

2

p

3

])

=

det [p

1

p

3

]

det [p

1

p

4

]

�

det [p

2

p

4

]

det [p

2

p

3

]

: (A.13)

This veri�es that the value of the cross-ratio of four points on a line remains unchanged by

a homography, and it is therefore a projective invariant.



A P P E N D I X B

Probability on the Sphere

Readers of this thesis are most likely unfamiliar with applications of probability theory

and statistics on the sphere. To help make this work more accessible, several relevant mathe-

matical preliminaries and statistical results are collected here. Among the background topics

covered are

� de�nitions of the sphere S

n

and projective space P

n

,

� spherical vs. cartesian coordinates,

� integration and spherical surface area,

� probability density functions on the sphere,

� polynomial approximations and spherical harmonic expansions,

Although for generality's sake equations are written in terms of an arbitrary dimension n,

frequent examples are provided that specialize these general equations to the familiar one,

two and three dimensional cases.

B.1 The Unit Sphere and Projective Space

The unit sphere S

n

is de�ned as the set of all points unit distance away from some origin

in Euclidean space E

n+1

. Let x = (x

1

; : : : ; x

n+1

) 2 R

n+1

be the rectangular coordinates of a

177
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point in E

n+1

. Then the unit sphere S

n

is the set of all points x such that x

2

1

+ � � � + x

2

n

=

kxk

2

= 1. We will be concerned primarily with the unit circle S

1

, the unit sphere S

2

,

and the unit hypersphere S

3

. Note that S

n

corresponds to the n-dimensional surface of a

(n+1)-dimensional unit ball centered at the origin.

A curvilinear coordinate system on S

n

is provided by the spherical angles � = (�

1

; : : : ; �

n

),

which are related to the rectangular coordinates of a point on the sphere by

x

1

= x

1

(�) = sin �

1

sin �

2

: : : sin �

n�1

sin �

n

x

2

= x

2

(�) = sin �

1

sin �

2

: : : sin �

n�1

cos �

n

x

3

= x

3

(�) = sin �

1

sin �

2

: : : cos �

n�1

.

.

.

x

n

= x

n

(�) = sin �

1

cos �

2

x

n+1

= x

n+1

(�) = cos �

1

with 0 � �

n

� 2� and 0 � �

i

� � for i = 1; : : : ; n � 1 (see [Muirhead82]). Rectangular and

spherical coordinate representations will be used interchangeably in this section. In most

cases rectangular coordinates provide the most concise equations, however integration over

the sphere is expressed more naturally in spherical coordinates.

Real projective space P

n

can be de�ned as the set of all lines through the origin of

Euclidean space E

n+1

. Again identify R

n

with E

n

, and let (R

n

�f0g) denote Euclidean space

with the origin removed. We de�ne an equivalence relation � on points x; y 2 (R

n

� f0g)

such that x � y i� there exists some nonzero scalar k such that x = k y. The projective

plane P

n

is then formally de�ned as the quotient space (R

n+1

� f0g) = � : Geometrically

speaking, each member of the quotient space is an equivalence class of points along an

in�nite line through the origin (excluding the origin itself which would otherwise need to be

a member of all the equivalence classes).
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Consider now the surface of the unit sphere S

n

, and form the quotient space S

n

= � :

Each equivalence class now contains one pair of diametrically opposite points, or antipodes.

Equating these equivalence classes with those of the projective plane in the obvious way

shows that the surface of the unit sphere with antipodal points equated is isomorphic to the

projective plane. The unit circle S

1

, the unit sphere S

2

, and the unit hypersphere S

3

, when

combined with the antipodal symmetry constraint x = �x, represent the projective line P

1

,

the projective plane P

2

, and projective 3-space P

3

, respectively.

B.2 Density Functions on the Sphere

Any real-valued function f(x) de�ned over R

n+1

can be interpreted as a function f(x(�))

on the unit sphere, by restricting its domain of operation to points in S

n

. If the function

sati�es the relation f(x) = f(�x) for x 2 S

n

, then it is said to be antipodally symmetric

over the sphere, and thus additionally represents a function in real projective space P

n

.

The integral of a real-valued function f(x) over the surface of the unit sphere in any

dimension will be written

Z

f(x) dS

n

where dS

n

is the surface area element of the sphere S

n

and the single integral sign denotes

the appropriate n-dimensional multiple integral over the sphere. In spherical coordinates,

the surface area element for S

n

is

dS

n

= dS

n

(�) = sin

n�1

�

1

sin

n�2

�

2

� � � sin �

n�1

d�

1

d�

2

� � � d�

n

and the multiple integral consists of n integrals, one for each �

i

.
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Any non-negative continuous function can be interpreted as a probability density function

on the sphere with the addition of normalization constant such that the function integrates

to unity over the sphere. Thus if f(x) � 0 for all x 2 S

n

, then

�

Z

f(x) dS

n

�

-

1

f(x) dS

n

= C f(x) dS

n

is a probability density on the sphere, with dS

n

now playing the role of Lebesgue measure

on S

n

. The total surface area of the sphere is

!

n

=

Z

dS

n

=

2(�)

n+1

2

�(

n+1

2

)

:

Therefore a simple probability density function on the sphere is

!

-

1

n

dS

n

:

This function has constant value (the reciprocal of the total surface area) over the whole

surface of the sphere , and therefore represents the uniform probability density function on

the sphere. It is obviously antipodally symmetric, so it also serves as a uniform density over

projective space.

Example B.4 A point on the unit circle S

1

is indexed by angle � = �

1

, and simultaneously

by rectangular coordinates (x; y) = (x

1

; x

2

) = (sin �; cos �). The surface area element dS

1

is

merely d�. Integration of a function f(x; y) over S

1

is performed by

Z

2�

0

f(sin �; cos �)d� :

Total surface area (circumference) is

R

d� = 2�. The uniform distribution on the circle and

the projective line therefore has density function (2�)

-

1

d�.
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Example B.5 The unit sphere S

2

is indexed by spherical angles (�; �) = (�

1

; �

2

) and by

rectangular coordinates

(x; y; z) = (x

1

; x

2

; x

3

) = (sin � cos �; sin � sin �; cos �) :

The surface area element dS

2

is sin � d�d�. Integration of a function f(x; y; z) over S

2

is

handled by the double integral

Z

2�

0

Z

�

0

f(sin � cos �; sin � sin �; cos �) sin � d�d� :

Total surface area of the unit sphere is

R R

sin � d�d� = 4�. The uniform density function on

the unit sphere and the projective plane is (4�)

-

1

sin � d�d�.

Example B.6 The unit hypersphere S

3

is indexed by spherical angles (�; �; �) = (�

1

; �

2

; �

3

)

and by rectangular coordinates

(x; y; z; w) = (x

1

; x

2

; x

3

; x

4

) = (sin � sin � cos �; sin � sin � sin �; sin � cos �; cos �) :

The surface area element dS

3

is sin

2

� sin �d�d�d�. Integration of a function f(x; y; z; w)

over S

3

corresponds to the multiple integral

Z

2�

0

Z

�

0

Z

�

0

f(x(�); y(�); z(�); w(�)) sin

2

� sin �d�d�d� :

Total surface area (actually a volume) of the hypersphere is

R R R

sin

2

� sin �d�d�d� = 2�

2

.

The uniform density function on the unit hypersphere and projective 3-space is thus

(2�

2

)

-

1

sin

2

� sin �d�d�d�:
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B.3 Polynomial Approximations and Spherical Har-

monics

A polynomial in n variables x

1

; : : : ; x

n

consists of a sum of terms, called monomials, each

having the form

cx

q

1

1

x

q

2

2

� � � x

q

n

n

:

The degree or order of a monomial is the sum of its exponents q

1

+ q

2

+ � � �+ q

n

. The degree

of a polynomial is the highest degree attained by any monomial appearing in it. Thus a

polynomial of degree k consists of monomials of degree less than or equal to k. A polynomial

consisting only of monomials having exactly degree k is said to be a homogeneous polynomial

of that degree. To avoid confusion, a general polynomial of degree k will be written as P

k

,

while H

k

will denote a homogeneous polynomial of degree k.

By the Weierstrass approximation theorem, any continuous function on the sphere can be

approximated uniformly by a polynomial [Dennery69]. This means a polynomial with �nite

degree can always be found that agrees arbitrarily closely with a given continuous function

at points on the surface of the sphere. A nested family of polynomial approximations can

be constructed by considering polynomials of degree k, for increasing k. Absolute error

in the approximation monotonically decreases as terms of higher degree are added, since

polynomials of higher degree have more degrees of freedom available to �t a desired function.

At some point, however, there is a tradeo� between accuracy and the number of terms that

must be handled. To �nd the polynomial of degree k that \best" approximates a given

continuous function, we will choose polynomial coe�cients that minimize the least-squares

�t error.

The space of continuous functions on the sphere is a linear vector space, albeit one of

in�nite dimension. The set of all possible polynomials of degree k on the sphere constitutes
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a linear vector space of �nite dimension. A basis for this space is provided by the set of all

monomials of degree � k. The number of monomials of exactly degree k in n+1 variables is

 

k + n

k

!

. the number of ways of choosing k unordered elements from a (k+n) element set.

However, when restricted to the sphere, not all of these monomials are linearly independent.

Let N(k; n) be the number of linearly independent monomials of degree k over S

n

. Then

N(k; n) =

(2k + n� 1)

(k + n� 1)

 

k + n� 1

k

!

:

The dimension D(k; n) of the space of general polynomial functions of degree k over S

n

therefore has dimension

D(k; n) =

k

X

j=0

N(j; n):

Each polynomial \point" in this space is a linear combination

D(k;n)

X

i=0

a

i

M

i

(x)

with a

i

an arbitrary real coe�cient and M

i

one of the D(k; n) linearly independent basis

monomials of degree � k. In addition, letting M

k

be an arbitrary monomial of degree k, we

have M

k

(�x) = (�1)

k

M

k

(x), so monomials of even degree form a basis for the antipodally

symmetric functions on the sphere, and thus for functions in projective space.

Example B.7 The monomials of degree three or less in the variables x, y and z are:

degree 0: 1

1: x, y, z

2: x

2

, xy, y

2

, xz, yz, z

2

3: x

3

, x

2

y, xy

2

, y

3

, x

2

z, xyz, y

2

z, xz

2

, yz

2

, z

3

.
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On the unit sphere S

2

the constraint x

2

+ y

2

+ z

2

= 1 is in e�ect. Therefore, one of the

monomials of degree two can be written in terms of other monomials with the same, or lesser

degree, namely z

2

= 1 � x

2

� y

2

. Of the 10 monomials of degree three, only 7 are linearly

independent, since

xz

2

= x� x

3

� xy

2

yz

2

= y � x

2

y � y

3

z

3

= z � x

2

z � y

2

z.

Altogether, there are

D(3; 2) = N(0; 2) +N(1; 2) +N(2; 2) +N(3; 2) = 1 + 3 + 5 + 7 = 16

linearly independent monomials forming a basis for the 16-dimensional space of third-order

polynomials on the sphere S

2

. Of these, only six monomials 1, x

2

, xy, y

2

, xz and yz are

antipodally symmetric functions, and thus able to provide a basis for second-order polynomials

in the real projective plane P

2

.

Although theoretically any linearly independent basis set is as good as any other, when

�tting polynomials there are bene�ts to choosing an orthonormal basis set, both in terms

of numerical stability and ease of computation [Rivlin69]. To de�ne orthonormality on a

vector space, metric de�nitions of distance and angle must be introduced by choosing an
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inner product on the space. For the space of functions on the sphere, the inner product is

de�ned as

hf(x); g(x)i =

Z

f(x)g(x) dS

n

:

A set of functions fY

i

(x) g is said to be orthonormal on the sphere when

Z

Y

i

(x)Y

j

(x) dS

n

=

(

1 i = j

0 otherwise.

An orthonormal basis for polynomials on S

n

is provided by the set of spherical harmonics

in n dimensions [Erd�elyi53, M�uller66]. Since they are merely a di�erent basis for the same

polynomial space, there are N(k; n) spherical harmonics having exactly degree k and D(k; n)

harmonics of degree k or less. Spherical harmonics form a complete set of orthonormal

functions, so any continuous function f on the sphere can be written as a series

f(x) =

1

X

i=0

a

i

Y

i

(x)

of spherical harmonic polynomials. Because they are orthonormal, we have

Z

Y

j

(x)f(x) dS

n

=

1

X

i=0

a

i

Z

Y

i

(x)Y

j

(x) dS

n

= a

i

;

therefore each coe�cient in the series may be computed relatively easily. Furthermore, the

spherical harmonic polynomial approximation of degree k

D(k;n)

X

i=0

a

i

Y

i

(x) =

D(k;n)

X

i=0

�

Z

Y

i

(x)f(x) dS

n

�

Y

i

(x)

is the best kth-order approximation to f(x) in the least-squares sense, i.e. this kth-order

approximating polynomial is the orthogonal projection of f(x) onto the space of all possible

polynomials of degree k.
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Transformation of Random Variables

The transformation of variables technique provides a general method for determining how

a probability density function changes when its underlying coordinate system is changed.

In the context of this thesis, the method is used to determine how the uncertainty in a

geometric object is transformed due to a change in object representation. The parameter

vectors describing a geometric object before and after a change in representation are related

by the vector function y = T (x). If parameter vector x is a vector of random variables,

representing an uncertain object description, then the resulting parameter vector y is also

a random vector, with a density function determined both by the density of x and the

transformation T .

Recall that a probability density function g(x) is a function such that

R

V

g(x) dx yields

the probability that the value of random vector x lies within a given volume V of parameter

space. The general idea behind the transformation of variables technique is to rewrite the

function g(x) in terms of the new variables y, and to determine the change in di�erential

volume dx that occurs due to the transformation. This latter manipulation is simpli�ed

considerably by the fact that, at an in�nitesimal scale, any well-behaved nonlinear function

can be approximated locally by an a�ne function, and likewise, any nonlinear parameter

space (manifold) can be approximated locally by an a�ne tangent space.

186
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There is a similarity between this approach and the function linearization approach to

approximate covariance propagation as described in Section 2.2.1. In that approach, a given

nonlinear transformation is approximated by the �rst order terms of its Taylor series expan-

sion, evaluated about the current mean value of x. The mean and covariance of x are then

propagated through the resulting a�ne approximation to determine the approximate mean

and covariance of the transformed variables y. The important di�erence in this section is

that instead of computing a single, global a�ne approximation to the nonlinear transfor-

mation, a seperate a�ne approximation is being implicitly computed at every point in the

parameter space of x to determine how the probability density changes in an in�nitesimal

neighborhood of that point. By simultaneously considering how the density changes locally

at every point, an exact formula for the transformed probability density function over the

whole parameter space is determined.

C.1 Mapping R

n

to R

n

Consider a random vector x 2 R

n

distributed according to the density function g(x),

and the vector transformation T : R

n

7! R

n

. For the transformed random vector y = T (x)

we would like to compute a density function h(y) such that for any volume V of R

n

Z

V

g(x) dx =

Z

T (V )

h(y) dy (C.1)

where T (V ) denotes the image of volume V under transformation T . This constraint insures

that the probability computed over a given volume of parameter space will be the same no

matter what coordinate system is used to do the computation.
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If transformation T is one-to-one, onto, and continuously di�erentiable, computation of

the resulting density function h(y) is a straightforward application of the change of variables

formula for multiple integrals [Williamson68]. Since the inverse transformation T

-

1

is well-

de�ned in this case, we can make the substitutions

x = T

-

1

(y) (C.2)

dx =

dy

J

T

(T

-

1

(y))

= J

T

-

1

(y) dy (C.3)

where the Jacobians J

T

and J

T

-

1

specify how the in�nitesimal volume element at a point

is scaled under the transformation T and its inverse, respectively (see Figure C.1). The

Jacobian of a transformation fromR

n

to R

n

is the absolute value of the determinant of the n�

n Jacobian matrix containing the �rst partial derivatives of each transformed coordinate with

respect to each original coordinate, evaluated at a point in the domain of the transformation.

That is,

J

T

(x

0

) � j det

@T

@x

(x

0

)j � j det

(

@y

i

@x

j

(x

0

)

)

j ; x

0

2 V (C.4)

J

T

-

1

(y

0

) � j det

@T

@y

-

1

(y

0

)j � j det

(

@x

i

@y

j

(y

0

)

)

j ; y

0

2 T (V ) (C.5)

The two alternative substitutions of equation (C.3) reect the fact that the reciprocal of the

Jacobian of a transformation is the Jacobian of the inverse transformation.
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dT

R
2

dX

R
2

Figure C.1: The Jacobian of a transformation T from R

2

to R

2

. The Jacobian matrix @T=@X

maps a unit square at point x

0

in the domain of T into a parallelogram at point T (x

0

) in the

range. The change in area between the unit square and the parallelogram is the Jacobian of

transformation T at point x

0

.

Using substitutions (C.2) and (C.3) to change the variables of integration, we write

Z

V

g(x) dx =

Z

T (V )

g(T

-

1

(y))

J

T

(T

-

1

(y))

dy =

Z

T (V )

g(T

-

1

(y))J

T

-

1

(y) dy (C.6)

Comparing (C.6) with equation (C.1) we �nd that the probability density function resulting

from the transformation y = T (x) is given by the formula

h(y) =

g(T

-

1

(y))

J

T

(T

-

1

(y))

= g(T

-

1

(y))J

T

-

1

(y) (C.7)

Which Jacobian is easier to compute, J

T

or J

T

-

1

, will in practice determine which of the two

equivalent forms of this equation to use.
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Example C.8 Consider the a�ne transformation y = Ax + b, where A is a nonsingular

n � n matrix and b is an n � 1 vector of constants. This transformation, its inverse, and

their corresponding Jacobians are listed as follows

T (x) = Ax+ b

@T

@x

(x) = A

J

T

(x) = j detA j

T

-

1

(y) = A

-

1

(y � b ) (C.8)

@T

@y

-

1

(y) = A

-

1

(C.9)

J

T

-

1

(y) = j detA

-

1

j (C.10)

Let x be an n-dimensional multivariate Gaussian random variable with mean vector � and

covariance matrix �. The probability density function is written

g(x) =

j det�

-

1

j

1

2

(

p

2�)

n

expf�

1

2

(x� �)

t

�

-

1

(x� �) g (C.11)

Plugging into the transformation of variables formula (C.7)

h(y) = j detA

-

1

j g(A

-

1

(y � b ))

=

j detA

-

1

jj det�

-

1

j

1

2

(

p

2�)

n

expf�

1

2

h

A

-

1

(y � b )� �

i

t

�

-

1

h

A

-

1

(y � b )� �

i

g

=

j det(A�A

t

)

-

1

j

1

2

(

p

2�)

n

expf�

1

2

[y � (A�+ b )]

t

(A�A

t

)

-

1

[y � (A�+ b )] g

The transformed vector y of random variables is therefore also distributed as a multivariate

Gaussian density, with new mean vector A�+ b and covariance matrix A�A

t

.

In many cases, the standard restrictions placed on the transformation of variables tech-

nique, namely that transformation T should be one-to-one, onto and nonsingular, can be
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relaxed. If T is not onto, then the domain of the resulting density function simply needs to

be restricted to the range of T . If T is not one-to-one, the inverse transformation T

-

1

is not

uniquely de�ned. However, each solution x

i

such that y = T (x

i

) contributes its share of

probability mass to the resulting density function about y, so that the resulting density can

be written as [Papoulis65]

h(y) =

g(x

1

)

J

T

(x

1

)

+ � � � +

g(x

i

)

J

T

(x

i

)

+ � � � (C.12)

Finally, transformation T is permitted to be singular, i.e. to have a Jacobian of either 0

or in�nity, provided it does so only on a set of points having zero measure [Williamson68].

Intuitively, an m-dimensional set of points has measure zero with respect to an n-dimensional

space when m < n.

Example C.9 Let P be a projective transformation in the plane, represented in homoge-

neous coordinates by a nonsingular 3 � 3 matrix A. To see how P a�ects probability distri-

butions in the plane, �rst write it in terms of inhomogeneous plane coordinates, namely as

the fractional linear form

y

1

�

u

w

=

a

11

x

1

+ a

12

x

2

+ a

13

a

31

x

1

+ a

32

x

2

+ a

33

y

2

�

v

w

=

a

21

x

1

+ a

22

x

2

+ a

23

a

31

x

1

+ a

32

x

2

+ a

33

This representation is singular when the denominator w of the fractional linear form is

zero. The denominator is only zero, however, for the set of points (x

1

; x

2

) lying on the

line a

31

x

1

+ a

32

x

2

+ a

33

= 0. Since a line of points has measure zero in the plane, the

transformation of variables procedure is still applicable.
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The Jacobian matrix of �rst partial derivatives can be written as

@P

@x

=

1

w

"

1 0 �u=w

0 1 �v=w

#

2

6

4

a

11

a

12

a

21

a

22

a

31

a

32

3

7

5

(C.13)

=

1

w

("

a

11

a

12

a

21

a

22

#

�

"

u

v

#

h

1=w

i h

a

31

a

32

i

)

To evaluate the determinant of this matrix, we �rst recall a result from the theory of

matrix algebra. Let M be an n� n matrix, partitioned into four pieces as

M =

"

M

11

M

12

M

21

M

22

#

where M

11

is l� l, M

12

is l�m, M

21

is m� l and M

22

is m�m, for some l+m = n. Then

the determinant of M is

detM = detM

22

det (M

11

�M

12

M

-

1

22

M

21

)

assuming M

22

is invertible [Eaton83, proposition 1.34]. Using this identity,

det

@P

@x

=

1

w

2

det

("

a

11

a

12

a

21

a

22

#

�

"

u

v

#

h

1=w

i h

a

31

a

32

i

)

=

1

w

2

�

1

w

�

det

2

6

4

a

11

a

12

u

a

21

a

22

v

a

31

a

32

w

3

7

5

=

1

w

3

det

2

6

4

a

11

a

12

(a

11

x

1

+ a

12

x

2

+ a

13

)

a

21

a

22

(a

21

x

1

+ a

22

x

2

+ a

23

)

a

31

a

32

(a

31

x

1

+ a

32

x

2

+ a

33

)

3

7

5

where the values of u, v and w have been substituted in the last column of the matrix. To

simplify further, recall that a basic property of the determinant is that it remains unchanged
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when a scalar multiple of any column is added to any other column. Adding �x

1

times the

�rst column, and �x

2

times the second column, to the third column of this matrix shows that

its determinant is the same as the determinant of A. Therefore

J

P

(x) =

�

�

�

�

1

w

3

detA

�

�

�

�

=

j detA j

j a

31

x

1

+ a

32

x

2

+ a

33

j

3

(C.14)

Notice that the Jacobian of a projective transformation may depend on the position of the

point at which it is evaluated. Note further that a necessary and su�cient condition for the

Jacobian of a projective transformation to remain constant is that a

31

= a

32

= 0, precisely

the conditions under which a projective transformation reduces to an a�ne transformation.

It is straightforward to see that the Jacobian of the inverse projective transformation,

represented in homogeneous coordinates by matrix B � A

-

1

is

J

P

-

1

(y) =

j detB j

j b

31

y

1

+ b

32

y

2

+ b

33

j

3

(C.15)

and therefore a probability density function g(x

1

; x

2

) in the plane is transformed into the new

density function

h(y

1

; y

2

) = g(

b

11

y

1

+ b

12

y

2

+ b

13

b

31

y

1

+ b

32

y

2

+ b

33

;

b

21

y

1

+ b

22

y

2

+ b

23

b

31

y

1

+ b

32

y

2

+ b

33

)

j detB j

j b

31

y

1

+ b

32

y

2

+ b

33

j

3

For the measure zero set of points b

31

y

1

+ b

32

y

2

+ b

33

= 0 where this formula will fail, the

density function can be set arbitrarily to zero.
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C.2 Mapping between R

n

and S

n

This section considers mappings between a 2D image plane or tangent plane and the

surface of the unit sphere in 3D. Mappings from the image to the sphere determine how

probability distributions in the image plane induce distributions on the sphere. Mappings

from the sphere to a tangent plane are useful for display purposes. Some of the standard

mappings that will be considered are orthographic projection, central projection, and equal-

area projection. In order for these mappings to be well-de�ned when going from a plane to

the sphere, their range will be restricted to the surface of a hemisphere. Restriction to a

hemisphere also makes these mappings one-to-one, and hence invertible.

The standard method for computing Jacobian values assumes a mapping from R

n

to R

n

,

since a square Jacobian matrix is needed to compute the determinant. The determinant of

the Jacobian matrix indicates how di�erential areas and volumes are scaled as a result of

the mapping. However, a mapping from plane coordinates (u; v) to hemisphere coordinates

(x; y; z) seems to be a mapping from R

2

to R

3

. The resulting Jacobian matrix is not square,

and computation of the determinant can not be carried out. This di�culty can be resolved

by keeping in mind the underlying de�nition of the Jacobian as a magni�cation factor for

di�erential areas and volumes. The surface of the hemisphere is, of course, just a 2D surface

after all, reected by the constraint x

2

+y

2

+ z

2

= 1 between Cartesian point coordinates. A

standard result from vector calculus states that the independent column vectors of the 3� 2

Jacobian matrix of a mapping from a plane to a 2D surface embedded in 3D, span the tan-

gent plane to the surface at the point where the Jacobian is being evaluated [Williamson68].

A di�erential unit square around the evaluation point in R

2

is thus mapped to a di�erential

parallelogram in the tangent plane to the surface in R

3

. At the in�nitesimal scale of di�er-

entials, the structure of a surface at a point is represented faithfully by the tangent plane
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at that point, therefore the area of the tangent parallelogram represents the exact change of

di�erential area under the nonlinear mapping at that point (Figure C.2).

dT

R
23

RS
2 U

dX

Figure C.2: The Jacobian of a transformation T from R

2

to S

2

. The Jacobian matrix @T=@X

maps a unit square at point x

0

into a parallelogram in the tangent plane at point T (x

0

) on S

2

.

The change in area between the unit square and the tangent parallelogram is the Jacobian

of transformation T at point x

0

.

The area of a parallelogram is a multiple of the lengths of both sides and the sine of the

angle between them. Each column vector of the 3 � 2 Jacobian matrix represents one side

of the parallelogram (translated to the origin). But the length of the cross product of two

vectors is equal to the length of both vectors multiplied by the sine of the angle between

them. Thus the length of the cross product of the columns of the Jacobian matrix represents

the change in di�erential area under the mapping at the point about which the Jacobian is

evaluated.
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In summary, when mapping from R

2

to a 2D surface in R

3

, the columns of the Jacobian

matrix span a parallelogram in the tangent plane to the surface. The area of this parallelo-

gram, computed as the length of the cross product of the two column vectors, is the Jacobian.

The Jacobian value computed in this way can be substituted directly into the transformation

of variables formula C.7. In higher dimensions, the mapping from R

n

to an n-dimensional

surface in R

(n+1)

will generate an (n + 1) � n Jacobian matrix with columns spanning a

parallelopiped in the tangent space to the surface. The volume of this parallelopiped is the

Jacobian of the transformation. The volume can be computed using a generalization of the

cross product, called the wedge product or exterior product.

Example C.10 The conversion that maps between spherical coordinates � = (�; �) and

Cartesian coordinates X = (x; y; z) on the hemisphere z > 0 is a mapping from a subset of

R

2

to a surface in R

3

. The forward and inverse mappings can be written as

X(�) =

8

>

<

>

:

x = sin � cos�

y = sin � sin �

z = cos �

�(X) =

8

<

:

� = arctan(

p

x

2

+ y

2

=z)

� = arctan2(y; x)

For notational clarity the transformations have been labeled by the coordinate systems they

convert from and to. The label X(�) denotes the transformation that converts spherical

(�; �) coordinates into Cartesian (x; y; z) coordinates.
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After some simple computations, the corresponding matrices of �rst partial derivatives

are found to be

@X(�)

@�

=

2

6

4

cos � cos� � sin � sin �

cos � sin � sin � cos�

� sin � 0

3

7

5

and

@�(X)

@X

=

"

cos � cos � cos � sin � � sin �

� csc � sin � csc � cos � 0

#

=

2

6

4

xz

p

x

2

+y

2

yz

p

x

2

+y

2

�

p

x

2

+y

2

�y

x

2

+y

2

x

x

2

+y

2

0

3

7

5

The two columns of the Jacobian matrix @X(�)=@� de�ne a parallelogram in the tangent

plane to the hemisphere at point (�; �). The Jacobian value is found as the length of their

cross product.

J

X(�)

= sin �

The usual absolute value sign has been left o� because sin � is never negative on the positive

hemisphere where 0 � � � �=2. The Jacobian is zero, and hence the transformation is

singular, only when � = 0. This corresponds to a single point at the pole of the hemisphere,

and thus the transformation is only singular on a set of measure zero with respect to the

whole hemispherical surface. The inverse Jacobian is easily computed as the reciprocal of the

Jacobian, and rewritten in terms of Cartesian variables x, y and z to yield

J

�(X)

=

1

J

X(�)

=

1

sin �

=

1

p

x

2

+ y

2

The simplest method for computing the Jacobian of a projection between the tangent

plane z = 1 and the positive hemisphere is to break the transformation into two stages:
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projecting from plane coordinates U = (u; v) to spherical coordinates � = (�; �), then

converting from spherical coordinates to Cartesian coordinates X = (x; y; z). The �rst stage

is a mapping from R

2

to R

2

, so the Jacobian is easily computed. The Jacobian from spherical

to Cartesian coordinates was worked out in the last example. By the chain rule, the Jacobian

matrix of a two-stage transformation is found by composing the Jacobian matrices for each

stage computed separately [Williamson68], i.e.

@X(U)

@U

=

@X(�)

@�

@�(U)

@U

and

@U(X)

@X

=

@U(�)

@�

@�(X)

@X

(C.16)

Similarly, the Jacobian value for a composition is computed by multiplying together the

Jacobians from each stage, so that

J

X(U)

= J

X(�)

J

�(U)

and J

U(X)

= J

U(�)

J

�(X)

(C.17)

What follows is a summary of the Jacobian computations for three common projections

between the tangent plane z = 1 and the positive hemisphere. The three transformations are

orthographic projection, central projection, and equal-area projection. Each transformation

maps coordinates U of the plane z = 1 into spherical coordinates � on the positive hemi-

sphere. The Jacobians for mapping between plane coordinates U and Cartesian coordinates

X on the hemisphere are found by substituting these results, along with the results from

Example C.10, into equations C.16 and C.17.

C.2.1 Orthographic Projection

Under orthographic projection, a point on the hemisphere is related to a point on the

plane z = 1 by a line parallel to the z-axis. The set of points in the plane related to some

point on the hemisphere lie within a circle of radius 1. Orthographic projection is singular
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for the (measure zero) set of points on the boundary of this circle, corresponding to the great

circle of points � = �=2 on the boundary of the hemisphere.

U(�) =

8

<

:

u = sin � cos�

v = sin � sin �

�(U) =

8

<

:

� = arcsin

p

u

2

+ v

2

� = arctan2(v; u)

@U(�)

@�

=

2

4

cos � cos � � sin � sin �

cos � sin � sin � cos �

3

5

@�(U)

@U

=

2

4

sec � cos � sec � sin �

� csc � sin � csc � cos �

3

5

J

U(�)

= sin � cos �

J

�(U)

=

1

sin � cos �

J

U(X)

= cos � = z

J

X(U)

=

1

cos �

= 1=z

C.2.2 Central Projection

Under central projection, a point on the hemisphere is related to a point on the plane

z = 1 by a line (projection ray) through the center of the sphere. Unlike orthographic

projection, every point on the plane corresponds to some point on the hemisphere. The
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projection is singular only for the measure zero set of points on the boundary � = �=2 of the

hemisphere, since the projection rays for those points are parallel to the plane.

U(�) =

8

<

:

u = tan � cos �

v = tan � sin �

�(U) =

8

<

:

� = arctan(

p

u

2

+ v

2

)

� = arctan2(v; u)

@U(�)

@�

=

2

4

sec

2

� cos � � tan � sin �

sec

2

� sin � tan � cos�

3

5

@�(U)

@U

=

2

4

cos

2

� cos� cos

2

� sin �

� cot � sin � cot � cos�

3

5

J

U(�)

= sin �= cos

3

�

J

�(U)

= cos

3

�= sin �

J

U(X)

=

1

cos

3

�

=

1

z

3

J

X(U)

= cos

3

� = z

3

C.2.3 Equal-Area Projection

Equal-area projection is a one-to-one mapping of points on the hemisphere into a circle

of radius

p

2 in the plane z = 1. Unlike orthographic and central projection, equal-area

projection has no simple geometric interpretation. It is instead a projection method designed

speci�cally to have a Jacobian value of 1 at every point, when considered as a projection

between Cartesian hemisphere coordinates X and plane coordinates U . This property ensures

that the area of surface patches on the hemisphere is preserved through the projection

process. Note, for instance, that the area of a circle of radius

p

2 is 2�, precisely the surface

area of the unit hemisphere itself. The mapping has no singularities.

Equal-area projection is ideal for displaying likelihood contours of a probability density

function on the sphere since the area contained within the contour is preserved through the

projection process. Equal-area projection is also used in Geology for making probabilistic
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inferences about random samples of points on the sphere, since the density of point clusters

per unit area is preserved. For example, a set of points uniformly distributed on the hemi-

sphere will map to a set of points uniformly distributed over a circular area of radius

p

2

[Mardia72].

U(�) =

8

<

:

u = 2 sin

�

2

cos �

v = 2 sin

�

2

sin �

�(U) =

8

<

:

� = 2 arcsin(

p

u

2

+ v

2

=2)

� = arctan2(v; u)

@U(�)

@�

=

2

4

cos

�

2

cos� �2 sin

�

2

sin �

cos

�

2

sin � 2 sin

�

2

cos �

3

5

@�(U)

@U

=

2

6

6

6

4

sec

�

2

cos� sec

�

2

sin �

�

1

2

csc

�

2

sin �

1

2

csc

�

2

cos �

3

7

7

7

5

J

U(�)

= sin �

J

�(U)

=

1

sin �

J

U(X)

= 1

J

X(U)

= 1

C.3 Mapping S

n

to S

n

In Cartesian coordinates, the Jacobian matrix of a mapping from the surface of the

sphere S

2

to itself is a 3 � 3 matrix. Unfortunately this matrix is always singular, since it

is essentially a 3D representation of a 2D transformation. As it is not possible to compute

a Jacobian value by taking the determinant of a singular Jacobian matrix, once again an

appeal must be made to the underlying de�nition of the Jacobian as a magni�cation factor.

The Jacobian matrix of a mapping that takes x

0

to y

0

on the surface of the sphere transforms

a unit square in the tangent plane at point x

0

into a parallelogram in the tangent plane at
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point y

0

. The area of the tangent parallelogram represents the change in di�erential area

under the mapping at that point (Figure C.3).

dT

S
2 S

2

dX

Figure C.3: The Jacobian of a transformation T from S

2

to S

2

. The Jacobian matrix @T=@X

maps a unit square in the tangent plane at point x

0

on S

2

into a parallelogram in the tangent

plane at point T (x

0

) on S

2

. The change in area between the unit square and the tangent

parallelogram is the Jacobian of transformation T at point x

0

.

To compute the Jacobian value at point x

0

on the sphere, it su�ces to choose two

orthonormal vectors u

1

and u

2

(the unit square) in the tangent plane at point x

0

, multiply

them on the left by the Jacobian matrix to produce vectors a and b (the parallelogram) in

the tangent plane at point y

0

, then compute the length of the cross product a�b (the area of



203

the parallelogram). Note further than if v

1

and v

2

are an orthonormal basis for the tangent

plane at y

0

, then

a = �

1

v

1

+ �

2

v

2

b = �

1

v

1

+ �

2

v

2

and jja� bjj =

�

�

�

�

�

det

"

�

1

�

2

�

1

�

2

#
�

�

�

�

�

(C.18)

The Jacobian of transformation T at point x

0

on the sphere can therefore be computed as

the absolute value of the determinant of a 2 � 2 matrix as follows

J

T

(x

0

) =

�

�

�

�

�

�

�

�

�

det

8

>

>

>

<

>

>

>

:

2 � 3 3 � 3 3� 2

2

4

v

t

1

v

t

2

3

5

@T

@X

(x

0

)

h

u

1

u

2

i

9

>

>

>

=

>

>

>

;

�

�

�

�

�

�

�

�

�

(C.19)

where v

1

and v

2

are any two orthogonal unit vectors perpendicular to y

0

= T (x

0

),

@T

@X

(x

0

) is

the Jacobian matrix of transformation T , evaluated at point x

0

, and u

1

and u

2

are any two

orthogonal unit vectors perpendicular to x

0

.

Example C.11 The Jacobian of a projective transformation in the plane was computed in

Example C.9 in order to determine how probability distributions in the plane were a�ected.

This example considers the e�ect a projective transformation has over probability density

functions on the sphere. An equivalent result for this problem has been presented previously,

without derivation, in [Watson83].

Let A be a nonsingular 3� 3 matrix representing a plane-to-plane projective transforma-

tion in homogeneous coordinates. Identify each equivalence class of homogeneous coordinates

with a line through the origin of R

3

. This line intersects the unit sphere S

2

in a pair of

antipodal points. Under a projective transformation, each in�nite line through the origin is

mapped to a new line, which intersects the unit sphere in another pair of antipodal points.

The operation of A upon the sphere is said to be the transformation P that maps a pair
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of antipodal points on the sphere before transformation A to the corresponding pair after

transformation A.

Transformation A is a linear transformation on R

3

, mapping points on the surface of

the sphere to points on an ellipsoid. This ellipsoid is mapped back onto the sphere by renor-

malizing each point vector to have unit length. Projective transformation A thus induces the

following nonlinear mapping over points on the sphere

y = P (x) =

Ax

kAxk

: (C.20)

Notice that P (�x) = �P (x) so that antipodal pairs are indeed mapped to antipodal pairs.

Taking the derivatives of P (x) with respect to vector x, the Jacobian matrix is found to be

@P

@X

=

"

I

3

�

(Ax)(Ax)

t

kAxk

2

#

A

kAxk

=

h

I

3

� yy

t

i

A

kAxk

: (C.21)

Plugging into equation (C.19)

J

P

(x) =

�

�

�

�

�

�

det

8

<

:

2

4

v

t

1

v

t

2

3

5

h

I

3

� yy

t

i

A

kAxk

h

u

1
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�

�

�

�

�

�

(C.22)

where the u

i

are arbitary orthonormal vectors perpendicular to x, and the v

i

are arbitrary

orthonormal vectors perpendicular to y. To simplify, note that

v

t

i

h

I

3

� yy

t

i

= v

t

i

(C.23)

since both vectors v

i

are perpendicular to y by construction. Therefore

J

P

(x) =

�

�

�

�

�

�

det

8

<

:

2

4

v

t

1

v

t

2

3

5

A

kAxk

h

u

1

u

2

i

9

=

;

�

�

�

�

�

�

� j detM j : (C.24)
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It does not seem right that the value of the Jacobian should depend on the arbitrary choice

of tangent plane basis vectors u

i

and v

i

. In fact, it does not. Form the orthonormal rotation

matrices R

x

= [u

1

u

2

x] and R

y

= [v

1

v

2

y], and note that

R

y

t

A

kAxk

R

x

=

2

6

4

h

M

i

0

0

| | 1

3

7

5

: (C.25)

Because of its special form, the determinant of this 3� 3 matrix is same as M , therefore

J

P

(x) = j detM j =

�

�

�

�

�

det

(

R

y

t

A

kAxk

R

x

)

�

�

�

�

�

=

j detA j

kAxk

3

: (C.26)

Since A is nonsingular, the length of Ax can never be zero, and hence there are no singular-

ities in a projective transformation on the sphere.

By similar reasoning, the Jacobian of the inverse projective transformation, speci�ed in

homogeneous coordinates by the matrix B � A

-

1

, is

J

P

-

1

(y) =

j detB j

kB yk

3

: (C.27)

Combining this with equation (C.7) shows that a probability density function g(x) on the

surface of the sphere is transformed into the new density function

h(y) = g

 

B y

kB yk

!

j detB j

kB yk

3

: (C.28)
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