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Abstract

The problem of determining feature correspon-

dences across multiple views is considered. The term

\true multi-image" matching is introduced to describe

techniques that make full and e�cient use of the geo-

metric relationships between multiple images and the

scene. A true multi-image technique must generalize

to any number of images, be of linear algorithmic com-

plexity in the number of images, and use all the im-

ages in an equal manner. A new space-sweep approach

to true multi-image matching is presented that simul-

taneously determines 2D feature correspondences and

the 3D positions of feature points in the scene. The

method is illustrated on a seven-image matching ex-

ample from the aerial image domain.

1 Introduction

This paper considers the problem of multi-image

stereo reconstruction, namely the recovery of static

3D scene structure from multiple, overlapping images

taken by perspective cameras with known extrinsic

(pose) and intrinsic (lens) parameters. The dominant

paradigm is to �rst determine corresponding 2D im-

age features across the views, followed by triangula-

tion to obtain a precise estimate of 3D feature loca-

tion and shape. The �rst step, solving for matching

features across multiple views, is by far the most dif-

�cult. Unlike motion sequences, which exhibit a rich

set of constraints that lead to e�cient matching tech-

niques based on tracking, determining feature corre-

spondences from a set of widely-spaced views is a chal-

lenging problem. However, even disparate views con-

tain underlying geometric relationships that constrain

which 2D image features might be the projections of

the same 3D feature in the world. The purpose of this

paper is to explore what it means to make full and ef-

�cient use of the geometric relationships between mul-

tiple images and the scene.

2 True Multi-Image Matching

This paper presents, for the �rst time, a set of con-

ditions that a stereo matching technique should meet

�
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to be called a \true multi-image" method. By this

we mean that the technique truly operates in a multi-

image manner, and is not just a repeated application

of two- or three-camera techniques.

De�nition: A true multi-image matching technique

satis�es the following conditions:

1. the method generalizes to any number of images

greater than 2,

2. the algorithmic complexity is O(n) in the number

of images, and

3. all images are treated equally (i.e. no image is

given preferential treatment).

Condition 1 is almost a tautology, stating that a multi-

image method should work for any number of im-

ages, not just two or three. An algorithm for process-

ing three images is not a \multi-image" method, but

rather a trinocular one. Condition 2 speaks directly

to the issue of e�ciency. To enable processing large

numbers of images, the method used should be lin-

ear in the number of images. This condition precludes

approaches that process all pairs of images, then fuse

the results. Such an approach is not a multi-image

method, but rather a repeated application of a binoc-

ular technique.

Condition 3 is the most important { it states that the

information content from each image must be treated

equally. Note that this is not intended to mean that

information from all images must be equally weighted;

some may be from better viewing positions, of higher

resolution, or more in focus. Instead, condition 3 is

meant to preclude singling out one image, or a subset

of images, to receive a di�erent algorithmic treatment

than all the others. A common example is the selec-

tion of one image as a \reference" image. Features

in that image are extracted, and then the other im-

ages in the dataset are searched for correspondence

matches, typically using epipolar constraints between

the reference image and each other image in turn. Al-

though a popular approach, there is an inherent aw

in this style of processing { if an important feature is

missing in the reference image due to misdetection or

occlusion, it will not be present in the 3D reconstruc-



tion even if it has been detected in all the other views,

because the system won't know to look for it.

Although the conditions presented above are well-

motivated and reasonable, there are hardly any stereo

matching algorithms in the literature that meet all

three. For example, Okutomi and Kanade describe a

multi-baseline stereomethod for producing a dense

depth map from multiple images by performing two-

image stereo matching on all pairs of images and com-

bining the results [10]. Although they show convinc-

ingly that integrating information from multiple im-

ages is e�ective in reducing matching ambiguity, us-

ing all pairs of images makes this an O(n

2

) algorithm

that violates condition 2 of the true multi-image def-

inition. The basic multi-baseline system design was

later transfered to hardware, and the control strat-

egy changed to combining two-image stereo results be-

tween a \base" view and all other views [8]. This yields

an O(n) method rather than O(n

2

); however the im-

plementation now violates condition 3, since one image

is given special importance as a reference view. Any

areas of the scene that are occluded in that image can

not be reconstructed using this method.

Gruen and Baltsavias describe a constrained mul-

tiphoto matching system where intensity tem-

plates extracted from one reference image are a�ne-

warped and correlated along epipolar lines in each

other image [5]. Kumar et.al. present a multi-image

plane+parallax matching approach where they

compensate for the appearance of a known 3D surface

between a reference view and each other view, then

search for corresponding points along lines of resid-

ual parallax [9]. In both cases, special reference views

have been chosen, and the algorithms essentially just

apply a two-image matching technique repeatedly to

pairs of images containing the reference view.

The reason why so many approaches attempt to solve

the multi-image matching problem by splitting the

set into pairs of images that are processed binocu-

larly is because matching constraints based on the

epipolar geometry of two views are so powerful and

well-known. What is needed for simultaneous match-

ing of features across multiple images is to general-

ize two-image epipolar relations to some multilinear

relation between the views. For example, Shashua

presents a \trilinear" constraint [12] where points in

three images can be the projections of a single 3D

scene point if and only if an algebraic function van-

ishes. Hartley devised a similar constraint for lines in

three views [7]. A recent paper by Triggs [13] pro-

vides a framework in which all projective multilin-

ear relationships can be enumerated: the binocular

epipolar relationship, Shashua's trilinear relationship

for points, Hartley's trilinear relationship for lines, and

a quadrilinear relation for points in four views. The

number of views is limited to four since the projective

coordinates of 3D space have only four components.

This violates condition 1 of the de�nition of a true

multi-image method, and calls into question whether

any approach that operates purely in image space can

be a true multi-image method.

In contrast to the strictly image-space approaches

above, some photogrammetric object-space ap-

proaches do �t the de�nition of a true multi-image

method. Helava presents a typical example of object-

space least-squares matching where correspon-

dences between multiple images are determined by

backprojecting image features onto some surface in

the world and performing the correspondence match-

ing in object space [6]. Another example is the work

of Fua and Leclerc, who describe an approach for

object reconstruction via image energy minimiza-

tion, where 3D surface mesh representations are di-

rectly reconstructed frommultiple intensity images [3].

Loosely speaking, triangular surface elements are ad-

justed so that their projected appearance in all the

images is as similar as possible to the observed image

intensities, while still maintaining a consistent shape

in object-space.

One thing that the true multi-image match-

ing/reconstruction methods above have in common is

the explicit reconstruction of a surface or features in

object space, simultaneous with the determination of

image correspondences. In this way, object-space be-

comes the medium by which information frommultiple

images is combined in an even-handed manner. Unfor-

tunately, the two object space approaches mentioned

here involve setting up huge optimization problems

with a large number of parameters, and initial esti-

mates of scene structure are needed to reliably reach

convergence. We present a much more e�cient ap-

proach in the next section.

3 An E�cient Space-Sweep Approach

This section presents a true multi-image matching

algorithm that simultaneously determines the image

correspondences and 3D scene locations of point-like

features (e.g. corners, edgels) across multiple views.

The method is based on the premise that areas of space

where several image feature viewing rays (nearly) in-

tersect are likely to be the 3D locations of observed

scene features. A naive implementation of this idea

would partition a volume of space into voxels, backpro-

ject each image point out as a ray through this volume,

and record how many rays pass through each voxel.

The main drawback of this implementation would be

its intensive use of storage space, particularly when

partitioning the area of interest very �nely to achieve

accurate localization of 3D features.

3.1 The Space-Sweep Method

We propose to organize the computation as a space-

sweep algorithm. A single plane partitioned into cells

is swept through the volume of space along a line per-

pendicular to the plane. Without loss of generality, as-

sume the plane is swept along the Z-axis of the scene,

so that the plane equation at any particular point

along the sweep has the form Z = z

i

(see Figure 1).

At each position of the plane along the sweeping path,

the number of viewing rays that intersect each cell are

tallied. This is done by backprojecting point features

from each image onto the sweeping plane (in a man-

ner described in Section 3.2), and incrementing cells



whose centers fall within some radius of the backpro-

jected point position (as described in Section 3.3).
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Figure 1: Illustration of the space-sweep method. Fea-

tures from each image are backprojected onto successive

positions Z = z

i

of a plane sweeping through space.

After accumulating counts from feature points in all

of the images, cells containing counts that are \large

enough" (Section 3.3) are hypothesized as the loca-

tions of 3D scene features. The plane then continues

its sweep to the next Z location, all cell counts are re-

set to zero, and the procedure repeats. For any feature

location (x; y; z

i

) output by this procedure, the set of

corresponding 2D point features across multiple im-

ages is trivially determined as consisting of those fea-

tures that backproject to cell (x; y) within the plane

Z = z

i

.

Two implementation issues are addressed in the re-

mainder of this section, namely how to e�ciently de-

termine where viewing rays intersect the sweeping

plane, and how to decide whether a given number of

ray intersections is statistically meaningful, or could

instead have occurred by chance. We note in passing a

method developed by Seitz and Dyer that, while sub-

stantially di�erent from the approach here, is based

on the same basic premise of determining positions in

space where several viewing rays intersect [11]. How-

ever, because feature evidence is combined by geomet-

ric intersection of rays, only the correspondences and

3D structure of features detected in EVERY image are

found { a severe limitation.

3.2 E�cient Backprojection

Recall that features in each image are backprojected

onto each position Z = z

i

of the sweeping plane. For

a perspective camera model, the transformation that

backprojects features from an image onto the plane

Z = z

i

is a nonlinear planar homography represented

by the 3� 3 matrix:

H

i

= A [r

1

r

2

z

i

r

3

+t ] ;

where A is the 3 � 3 matrix describing the camera

lens parameters, and the camera pose is composed of

a translation vector t and an orthonormal rotation

matrix with column vectors r

i

. This section shows

that it is more e�cient to compute feature locations in

the plane Z = z

i

by modifying their locations in some

other plane Z = z

0

to take into account a change in Z

value, than it is to apply the homography H

i

to the

original image plane features.

Let matrix H

0

be the homography that maps image

points onto the sweeping plane at some canonical po-

sition Z = z

0

. Since homographies are invertible and

closed under composition, it follows that the homog-

raphy that maps features between the plane Z = z

0

and Z = z

i

directly, by �rst (forward) projecting them

from the z

0

-plane onto the image, then backprojecting

them to the z

i

-plane, can be written as H

i

H

-

1

0

(refer

to Figure 1).

It can be shown that the homography H

i

H

-

1

0

has a

very simple structure [2]. In fact, if (x

0

; y

0

) and (x

i

; y

i

)

are corresponding backprojected locations of a feature

point onto the two positions of the sweeping plane,

then

x

i

= � x

0

+ (1� �)C

x

y

i

= � y

0

+ (1� �)C

y

(1)

where � = (z

i

� C

z

)=(z

0

� C

z

) and (C

x

; C

y

; C

z

) =

(�r

1

� t;�r

2

� t;�r

3

� t) is the location of the camera

focal point in 3D scene coordinates. A transformation

of this form is known as a dilation.

1

The trajectories of

all points are straight lines passing through the �xed

point (C

x

; C

y

), which is the perpendicular projection

of the camera focal point onto the sweeping plane (see

Figure 2). The e�ect of the dilation is an isotropic

scaling about point (C

x

; C

y

). All orientations and an-

gles are preserved.

(Cx, Cy)

( x(z0), y(z0) )

( x(zi), y(zi) )

Figure 2: Transformation H

i

H

-

1

0

is a dilation that maps

points along trajectories de�ned by straight lines passing

through the �xed point (C

x

; C

y

).

Our strategy for e�cient feature mapping onto di�er-

ent positions of the sweeping plane is to �rst perform a

single projective transformation of feature points from

each image I

j

; j = 1; :::; n onto some canonical plane

Z = z

0

. These backprojected point positions are not

discretized into cells, but instead are represented as

full precision (X,Y) point locations. For any sweeping

plane position Z = z

i

, each of these (X,Y) locations

is mapped into the array of cells within that plane us-

ing formula (1), taking care to use the correct camera

center (C

x

; C

y

; C

z

)

j

for the features from image I

j

.

3.3 A Statistical Model of Clutter

This section sketches an approximate statistical model

of clutter that tells how likely it is for a set of view-

ing rays to coincide by chance (more details are given

1

This is unrelated to the morphological dilation operator.



in [2]). Determining the expected number of votes

each cell in the sweeping plane receives is simpli�ed

considerably by assuming that extracted point fea-

tures are roughly uniformly distributed in each image.

This is manifestly untrue, of course, since image fea-

tures exhibit a regularity that arises from the underly-

ing scene structure. Nonetheless, they will be uniform

enough for the purpose of this discussion as long as

a k � k block of pixels in the image contains roughly

the same number of features as any other k� k block.

Under this assumption, let the density of point fea-

tures in image i be E

i

<< 1 (computed empirically).

The expected number of features that image i projects

into the sweeping plane is then this expected number

of features per pixel E

i

times the number of pixels O

i

that have viewing rays passing through some cell in

the sweeping plane.

Recall that each point feature in image i is allowed

to vote for a set of cells surrounding the intersection

of its viewing ray with the sweeping plane. Votes are

given to the set of cells roughly contained in the re-

gion subtended by a pixel-shaped cone of viewing rays

emanating from the point feature in image i. Pix-

els from images farther away from the sweeping plane

thus contribute votes to more cells than pixels from

images that are closer. This mechanism automatically

accounts for the fact that scene feature locations are

localized more �nely by close-up images than by im-

ages taken from far away.

The number of cells in the sweeping plane that a pixel

in image i votes for is thus speci�ed by the Jaco-

bian J

i

of the projective transformation from image

i onto the sweeping plane. We make a second sim-

plifying assumption that this Jacobian is roughly con-

stant, which is equivalent to assuming that the camera

projection equations are approximately a�ne over the

volume of interest in the scene. The total expected

number of votes that image i contributes to the sweep-

ing plane is thus estimated as the number of features

mapped to the plane, times the number of cells that

each feature votes for, that is E

i

� O

i

� J

i

. Dividing

this by the number of accumulator cells in the sweep-

ing plane yields the probability �

i

that any cell in the

sweeping plane will get a vote from image i.

For each accumulator cell, the process of receiving a

vote from image i is modeled as a Bernoulli random

variable with probability of success (receiving a vote)

equal to �

i

. The total number of votes V in any sweep-

ing plane cell is simply the sum of the votes it receives

from all n images. Thus V is a sum of n Bernoulli ran-

dom variables with probabilities of success �

1

; : : : ; �

n

.

Its probability distribution function D[V ] tells, for

any possible number of votes V = 0; 1; :::; n, what

the probability is that V votes could have arisen by

chance. In other words, D[V ] speci�es how likely is it

that V backprojected feature rays could have passed

through that cell due purely to accidental alignments.

Once the clutter distribution function D[V ] is known,

a solid foundation exists for evaluating decision rules

that determine which sweeping plane cells are likely

to contain scene features based on the evidence pro-

vided by backprojected image feature rays. A simple

decision rule compares the number of votes V in each

cell against a global threshold T , declaring that lo-

cation to contain a feature when V � T . For each

potential threshold T 2 f1; :::; ng, the false positive

rate F [T ] of this decision rule is easily computed as

F [T ] =

P

n

i=j

D[i]. A threshold T can then be chosen

based on how certain we want the results to be.

4 Experimental Example

This section presents an in-depth example of the

space-sweep algorithm for multi-image matching using

aerial imagery from the RADIUS project [4]. Seven

images of Fort Hood, Texas were cropped to enclose

two buildings and the terrain immediately surround-

ing them. The images exhibit a range of views and

resolutions (see Figure 3). The point features used

Figure 3: Seven aerial subimages of two buildings.

are edgels detected by the Canny edge operator [1].

Figure 4 shows a binary edge image extracted from

one of the views. Structural features of particular in-

terest are the building rooftops and the network of

walkways between the buildings. Note the signi�cant

amount of clutter due to trees in the scene, and a row

of parked cars at the bottom.

Reconstruction was carried out in a volume of space

with dimensions 136� 130� 30 meters. A horizontal

sweeping plane was swept through this volume along

the Z-axis. Each accumulator cell on the plane was

1=3 meter square, a size chosen to roughly match the

resolution of the highest resolution image. Viewing

ray intersections were sampled at 100 equally-spaced

locations along the sweeping path, yielding approx-



Figure 4: Canny edges extracted from one image.

imately a 1=3-meter resolution in the vertical direc-

tion as well. Figure 5 shows three sample plane lo-

cations along the sweeping path, chosen to illustrate

the state of the sweeping plane when it is coincident

with ground-level features (a), roof-level features (c)

and when there is no signi�cant scene structure (b).

Also shown are the results of thresholding the sweep-

ing plane at these levels, displaying only those cells

with �ve or more viewing rays passing through them.

The approximate statistical model of clutter presented

in Section 3.3 needs to be validated, since it is based

on two simplifying assumptions, namely that edgels

in the each image are distributed uniformly, and that

the Jacobian of the backprojection from each image

to the sweeping plane is roughly constant. This was

done by comparing the theoretical clutter probability

distribution D[V ]; V = 0; 1; :::;7 against the empirical

distributions of feature votes collected in each of the

100 sweeping plane positions. Recall that the clut-

ter distribution D[V ] tells how many ray intersections

are likely to pass through each accumulator cell purely

by chance. This theoretical distribution should match

the empirical distribution well for sweeping plane posi-

tions where there is no signi�cant 3D scene structure.

The chi-square statistic was used to measure how sim-

ilar these two discrete distributions are for each Z-

position of the sweeping plane; the results are plotted

in Figure 6. Lower values mean good agreement be-

tween the two distributions, higher values mean they

are not very similar. Two prominant, sharp peaks can

be seen, implying that the dominant 3D structure of

this scene lies in two well-de�ned horizontal planes, in

this case ground-level features and building rooftops.

More importantly, the plot is very at for Z-levels that

contain no signi�cant scene structure, showing that

the theoretical clutter model is actually a very good

approximation to the actual clutter distribution.

Recall that once the clutter distribution D[V ] is com-

puted for any Z-position of the sweeping plane, a vote

threshold T = 1; :::; n for classifying which cells con-

tain 3D scene features can be chosen taking into ac-

Figure 5: Three sample Z-positions of the sweeping plane.

Left shows votes in the sweeping plane; right the results of

feature classi�cation using a threshold value of 5.

count the expected false positive rate F [T ]. The false

positive rates computed for this dataset are very con-

sistent across all Z positions of the sweeping plane. A

representative sample is:

T 1 2 3 4 5 6 7

100 F[T] 88.4 59.0 27.3 8.3 1.6 0.17 0.01

This table displays for any given choice of threshold T ,

what the percentage of false positives would be if cells

with votes of T or higher are classi�ed as the locations

of 3D scene features.

A desired con�dence level of 99% was chosen for re-

covered 3D scene features, implying that we are will-

ing to tolerate only 1% false positives due to clutter.

Based on this choice and the above table, the optimal

threshold should be between 5 and 6, but closer to

the former. Figure 7 graphically compares extracted

3D ground features and roof features using these two

di�erent threshold values. Choosing an optimal

threshold is a balancing act; ultimately, the proper

tradeo� between structure and clutter needs to deter-

mined by the application.
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Figure 6: Comparison of theoretical and empirical clutter

distributions at each sweeping plane position (see text).

Figure 7: XY locations of detected scene features for a

range of Z-values containing ground features (left) and roof

features (right). Results from two di�erent threshold val-

ues of 5 (top) and 6 (bottom) are compared.

5 Summary and Extensions

This paper de�nes the term \true multi-image"

matching to formalize what it means to make full and

e�cient use of the geometric relationships between

multiple images and the scene. Three conditions are

placed on a true multi-image method: it should gen-

eralize to any number of images, the algorithmic com-

plexity should be linear in the number of images, and

every image should be treated on an equal footing,

with no one image singled out for special treatment

as a reference view. A new space-sweep algorithm

for true multi-image matching is presented that simul-

taneously determines 2D feature correspondences be-

tween multiple images and the 3D positions of feature

points in the scene. It is shown that the intersections

of viewing rays with a plane sweeping through space

can be determined very e�ciently. A statistical model

of feature clutter is developed to tell how likely it is

that a given number of viewing rays pass through some

area of the sweeping plane by chance, thus enabling a

principled choice of threshold to be chosen for deter-

mining whether or not a 3D feature is present. The

approach is illustrated using a seven-image matching

example from the aerial image domain.

Several extensions to this basic approach are being

considered. One is the development of a more sophis-

ticated model of clutter that adapts to the spatial dis-

tribution of feature points in each image. The second

extension is to consider the gradient orientations of

potentially corresponding edgel features; when accu-

mulating feature votes in a sweeping plane cell, only

edgels with compatible orientations should be added

together. With the introduction of orientation infor-

mation, detected 3D edgels could begin to be linked

together in the scene to form 3D chains, leading to the

detection and �tting of symbolic 3D curves.
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