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Abstract

The Ascender system acquires, extends and refines 3D geometric site
models from calibrated aerial imagery.  To acquire a new site model, an
automated building detector is run on one image to hypothesize potential
building rooftops.  Supporting evidence is located in other images via
epipolar line segment matching in constrained search regions.  The precise
3D shape and location of each building is then determined by multi-image
triangulation under geometric constraints of 3D orthogonality, parallelness,
colinearity and coplanarity of lines and surfaces.  Projective mapping of
image intensity information onto these polyhedral  building models results
in a realistic site model that can be rendered using virtual “fly- through''
graphics.  

As new images of the site become available, model extension and
refinement procedures are performed to add previously unseen buildings
and  to improve the geometric accuracy of the existing 3D building models.
In this way, the system gradually accumulates evidence over time to  make
the site model more complete and more accurate.

An extensive performance evaluation of component algorithms and the full
system has been carried out.  Two-dimensional building detection
accuracy, as well as accuracy of the three-dimensional building
reconstruction, are presented for a representative data set.
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1. Introduction

The Research and Development for Image Understanding  Systems (RADIUS) project is
a national effort to apply image understanding (IU) technology to support model-based
aerial image analysis [11].   Automated construction and management of 3D geometric site
models is a key component of this effort.  Site models enable efficient exploitation of the
tremendous volume of information collected daily by national sensors. In all of these
applications, the expected benefits are decreased work-load on  human analysts,  together
with an increase in measurement accuracy due to the introduction of digital IU and
photogrammetric techniques. When properly annotated, automatically generated site
models can also provide the spatial context for specialized IU analysis tasks such as
vehicle counting and change detection, and graphical visualization techniques using 3D site
models are valuable for training and mission planning.  Other applications of the
technology presented here include automated cartography, land-use surveying and urban
planning.

The long-term goal of our research is an entirely automated system.  Given the  extreme
complexity of some image domains, often rather challenging even for expert human users,
this goal may not be fully achievable.  However, our focus in this project is to push an
automated paradigm as far as possible.  We believe that the 3D aerial reconstruction
problem can, to a great degree, be automated given a large enough set of images.  As
related factors become more difficult, such as high building density, complex building and
surface shapes (as in European cities), little space between buildings, and/or only a  small
number of available views, accurate reconstruction becomes much harder.  It is generally
true that if a sufficiently large  number of appropriate image viewpoints are not available,
any reconstruction problem can become difficult or impossible.  Thus, expectations  of a
completely automated system must be tempered.  However, our goal is to come as close
as possible, and as we reach the limits of automation, intelligent  interactive tools can be
provided for manual specification of constraints or  results.

1.1 Ascender AND THE TECHNICAL CHALLENGES

The UMass Automated Site Construction, Extension, Detection and  Refinement
(ASCENDER) system has been designed to automatically  populate a site model with
buildings extracted from multiple, overlapping images. There are many technical
challenges involved in developing a building extraction system that works reliably  on the
type of images being considered under the RADIUS program.   Images may be taken over
significant time spans, and under vastly different weather and lighting conditions. The use
of monocular, oblique imagery introduces perspective distortion due both to the obliquity
and to the large differences in camera viewpoint. Images taken under different weather
conditions and at different times of day introduce large intensity variations between
images of the same building surface.   There is typically a lot of clutter surrounding
buildings (vehicles, pipes, oil drums, vegetation)  and on their roofs (roof vents, air
conditioner units, ductwork), buildings often occlude each other in oblique views, and
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shadows falling across building faces break up extracted low-level features such as line
segments and regions.  Furthermore, nearby buildings can vary greatly in size and shape.

1.2  DESIGN PHILOSOPHY / KEY IDEAS

The Ascender system combines several algorithms into a data flow hierarchy leading from
images to a final site model.  Image 1 shows the data dependencies between each
component and how the overall system is compose.  The UMass design philosophy
incorporates several key ideas. First, 3D reconstruction  is based on geometric features
that remain stable under a wide range of viewing and lighting conditions.   Second, rigorous
photogrammetric camera models  are used to describe the relationship between pixels in
an image and 3D locations in the scene, so that diverse sensor characteristics and
viewpoints can be effectively exploited.  Third, information  is fused across multiple
images for increased accuracy and reliability.   Finally, known geometric constraints are
applied whenever possible to increase the efficiency and reliability of the reconstruction
process. The current Ascender system is designed to perform well at one end of a  data-
vs-control complexity spectrum, namely a large amount of data  and a simple control
structure,  versus the alternative of using  less data but more complicated processing
strategies.   In particular, while the system can be applied to a single stereo pair,  it
generally performs better (in terms of number and quality of buildings found) when more
images are used.

The design here represents the Ascender I system. New research is underway into more
advanced system designs.  For example, the system currently extracts polygons from a
single image and uses other imagery for verification and height computation.  However, a
true multi-image scheme would not depend on the accuracy of polygons extracted from
this first “reference image”.  Suffice it to say, there is not necessarily a single best flow of
control for an automated reconstruction system and control may depend on available
images, algorithms, and scene context.  
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Ascender I  supports three different  site modeling tasks, model acquisition, model
extension, and model refinement.  Site model acquisition involves processing a set of
images to detect both man-made and natural features of interest, and to determine their 3D
shape and placement in the scene.  Two other important site modeling tasks are model
extension -- updating the geometric site  model by adding or removing features, and  model
refinement --  iteratively refining the shape and placement of features as more views
become available.  Model extension and refinement are ongoing processes  that are
repeated whenever new images become available, each updated model becoming the
current site model for the next iteration.  Thus, over time,  the site model is steadily
improved to become more complete and more  accurate.

1.3 OUTLINE OF PAPER

This paper is organized as follows.   Section 2 reviews a number of past and present
building extraction systems.  Section 3 then presents a system-level specification of the
Ascender system, followed in  Section 4 by a breakdown of the building extraction
process into its key algorithmic components. Section 5 presents an in-depth experimental
evaluation of system performance using imagery taken over Ft. Hood, Texas.  Section 6
discusses the strengths and shortcomings of the current system, proposes future research
directions, and concludes the paper with a brief summary.

The Ascender I system is a set of complex algorithms that work together to perform site
reconstruction.  This paper introduces the system, discusses its components in detail, and
presents the results of extensive testing.  However, it is important for the reader to realize
that many parts of the system have been discussed in previous papers and we suggest
that these papers (when referenced) should be read as a useful accompaniment to this
paper.

2. Related Work

Over the past decade, automated building detection systems have evolved along many
lines, but the trend has always been towards greater generality: from special-case nadir
views to general oblique viewpoints, from single image analysis to multi-image techniques,
and from purely 2D hypothesis extraction in image-space to rigorous 3D geometric
reconstruction in object-space.  As a system for extracting precise 3D building models
from multiple, oblique views,  the Ascender system represents the  state-of-the-art in all
aspects of this ongoing evolution.

Many early systems were based on the nadir viewpoint assumption, in part because most
of the available images at that time were from mapping applications that relied on nadir
views.  The nadir assumption greatly simplifies building extraction geometry since
rectangular building roofs appear as rectangles in the image, and  there is very little
occlusion of one building by another. The RADIUS project reenforced the need for using
oblique images, since even though satellite coverage of the globe is available on a daily
basis, only  a small fraction of it appears as a nadir view directly underneath  the
satellite's flight path. The easiest generalization from nadir views to handle obliquity is to
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assume weak-perspective or affine views, where rectangular roofs appear as
parallelograms [23; 24]. The ultimate generalization is to introduce photogrammetrically
rigorous camera projection equations that more accurately model the (typically
projective) viewing geometry [26; 27; 14]. Our work takes this latter.
 approach.

Early systems were dominated by monocular, image-based approaches,  since often only
a single view of the area was available.  However, buildings are raised 3D structures, and it
is  difficult to disambiguate roof hypotheses and determine  building height without 3D
information.  One powerful source of inferred 3D information in monocular images is
shadows, and indeed, many systems have been designed that exploit the relationship
between shadows and roof hypothesis [24; 15; 25; 17]. Shadow analysis is particularly
attractive when combined with nadir viewpoints, since building height is directly
proportional to the length of the building shadow on the ground.  Systems that rely on
shadow analysis often assume that the sun position (illumination direction) is known, and
always assume that building shadows fall on flat terrain surrounding the building (and not
across other buildings or on rocky or hilly terrain). A more general method of deriving 3D
height information is to use stereo triangulation across two or more images [7; 16; 31].
The Ascender system uses such  multi-image stereo analysis to extract the precise shape
and location of each building in the scene.  Most notably, the system currently does not
use shadow  information at all, but derives 3D structure completely from multi-image
matching and triangulation.

Several approaches are similar to the technique in which building regions are hypothesized
in the Ascender system.  These typically organize extracted image features into more
complex structures based on geometric constraints [15] and have been used  for the
grouping of features into 3D models from several views [14].  These approaches to
grouping have been improved through the use of  a richer set of constraints including the
explicit use of knowledge [22] and the fusion of digital surface models (DSMs) with
optical images [35].  The use of DSMs has been used for both detection of possible
building regions and for constraining a perceptual grouping process [8].

There are at least three current building extraction systems similar to our own,  in that
they derive 3D building models from multiple, oblique views. Noronha and Nevatia [29]
describe a system where hierarchical grouping and matching across multiple images is used
to reconstruct 3D building models. Buildings are extracted in hierarchical stages, ranging
from line segments, to junction, parallel pairs, U-shapes,  and finally, whole
parallelograms.  At each stage in the extraction hierarchy, the following three steps are
performed: 1) two-dimensional perceptual grouping  of features at that level in each
image, 2) epipolar  matching to determine correspondence of features across pairs of
views, 3) applying geometric constraints to check the consistency of the 3D structures
implied by those feature matches. Final building hypotheses are verified by searching for
consistent shadows and evidence of vertical walls.  Only rectangular building hypotheses
are found -- arbitrary rectilinear structures are formed by merging abutting or overlapping
rectangular 3D building hypotheses of similar height. The most notable feature of the
system is that information from all views is used in a non-preferential way, as opposed to
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the Ascender system where one image is used to extract hypotheses, and other views are
used to corroborate each hypothesis and compute 3D structure.

In the MULTIVIEW system [31; 27] corner features extracted via vanishing point
analysis are matched across a pair of views to get 3D corners. These 3D corners become
nodes in a graph, and pairs are linked if image gradient intensity information supports an
edge hypothesis. Polygonal surface hypotheses are formed by looking for cycles in the
graph that meet certain planarity and perpendicularity constraints.  When more views are
available, relationships between corners and lines in the graph are updated as each new
view is added.   Surface detection can be performed after each view, or can be left until
after several views have been added (batch mode). The system results are sensitive to the
permutation of the views, since the first pair of views is used to initialize the 3D corner-
edge graph, and the graph is updated sequentially as each view is added.  Both this
system and the one of Noronha and Nevatia perform pairwise feature-based stereo to
derive 3D features that are then grouped into surfaces.
In contrast, our epipolar matching phase uses all images simultaneously to compute 3D
information, even when a building was only detected in a single image,  which can result in
more accurate localization of 3D features.  

In addition to geometric constraints, the use of semantic and domain knowledge can widen
the scope of automatic building reconstruction and improve robustness.  For example,
Fischer, Kolbe, and Lang [9] have emphasized the use of reasoning and knowledge at
several levels to constrain the number of possible hypotheses that can be produced from
multiple views.  As opposed to implicit models used in Ascender (embedded in the 2D
grouping constraints), explicit semantic models are used that include simple image
features, 3D building terminals (parameterized parts of buildings), and 3D surfaces.  A
grouping process attempts to construct complete building models from the recognized
parts.  In a similar effort, researchers within the Amobe project [13] extract trihedral
corners and make use of both epipolar imaging constraints and knowledge about building
surfaces to group features into complete building models.

The use of a range image registered to an optical image allows the extraction of a rich class
of three dimensional features including surfaces, 3D line segments, and 3D trihedral
corners.  It has been shown that the introduction of three dimensional geometric
constraints can allow for a wider range of cultural features to be detected and
reconstructed [19].

Kim and Muller [20] combine a monocular building extraction scheme with elevation
maps to detect possible building boundaries. Given possible boundaries, interior
elevations are used to estimate a height for reconstruction.  Foerstner [10] makes use of
the range image to both hypothesize buildings and reconstruct the building geometry.
Robust techniques select a set of non-contradicting 3D constraints for optimal estimation
of the object shape.  Haala and Hahn [12] use the elevation map directly to infer the
presence of buildings by searching for local maxima, with 3D lines computed in these
regions used for parametric model fits to the extracted line segments.  The approach
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estimates the initial parameters for model fitting, but assumes that the buildings at the site
can be reconstructed using a single parametric model (e.g. a peaked roof model).

3. The Ascender System

The Ascender system was designed to automatically acquire 3D building models from a
set of overlapping aerial images. To maintain tractable research and implementation goals,
Ascender I deals only with a single generic  class of buildings, namely flat-roofed,
rectilinear structures.  The simplest example of this class  is a rectangular box-shape;
however other examples include  L-shapes, U-shapes,  and indeed any arbitrary building
shape  such that pairs of adjacent roof edges are perpendicular and  lie in a horizontal
plane.

The Ascender system was developed using the RADIUS Common Development
Environment (RCDE) [28]. RCDE provides a framework for the development of site
model acquisition algorithm.  The choice of a photogrammetric development environment
was constrained by the funding agency.

3.1 IMAGES

Site model acquisition requires a set of images, both nadir and oblique, that view the same
area of the site.  The system is designed to operate over multiple images, typically five or
more, exhibiting a wide variety of viewing angles and sun conditions.  The desired number
five is chosen arbitrarily to allow ideally one nadir view plus four oblique views from each
of four perpendicular  directions (e.g. North, South, East and West).  This configuration is
not a requirement, however. Indeed, some useful portions of the system require only a
single image, namely line segment extraction and building rooftop detection.  On the other
hand, epipolar rooftop  matching and wireframe triangulation require, by definition, at
least two images, with robustness and accuracy increasing when more views are available.  

Although best results require the use of several images with overlapping coverage, the
system allows considerable freedom in the choice of  images to use.  Unlike many
previous building extraction systems, this  system does not currently use shadow
information, and works equally well  on images with different sun angles, or with no
strong shadows at all. Also, the term “epipolar” as used here does not imply that images
need to be in scan-line epipolar alignment, as required by many traditional stereo
techniques.  The term is used instead in its most general sense as a set of geometric
constraints imposed on potentially corresponding  image features by the relative
orientation of their respective cameras. The relative orientation of any pair of images is
computed from the  absolute orientation of each individual image (see below).

3.2 SITE COORDINATE SYSTEM

Reconstructed building models are represented in a local site coordinate system that must
be defined prior to the reconstruction process. The system assumes this is a “local-
vertical” Euclidean Coordinate  System, that is, a Cartesian X-Y-Z coordinate system
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with its origin  located within or close-to the site, and the positive Z-axis facing  upwards
(parallel to gravity).  The system can be either right-handed  or left-handed.  Under a
local-vertical coordinate system, the Z values of reconstructed points represent their
vertical position or elevation in the scene, and X-Y coordinates represent their horizontal
location  in the site.

3.3 CAMERA MODELS

For each image given to the system, the absolute orientation of the camera with respect to
the local site coordinate system must be known.  This is a specification of how 3D
locations in the site coordinate system are related to 2D image pixels in each image. One
common camera representation is a 3 X 4 projective transformation matrix encoding both
the internal  orientation (lens/digitizer parameters) and the external  orientation (pose
parameters) of each perspective camera. Ascender can also handle the fast block
interpolation  projection (FBIP) camera model used in the RCDE to  represent the
geometry of non-perspective cameras. Given the absolute orientation for each image,
Ascender computes all the necessary relative orientation information  needed for
determining the epipolar geometry between images (or local approximations to the
epipolar geometry in the case of non-perspective cameras).  

3.4 DIGITAL TERRAIN MAP

Currently, the Ascender system explicitly reconstructs only the rooftops of building
structures, and relies on vertical  extrusion to form a volumetric 3D wireframe model of
the  whole building.  The extrusion process relies on  knowing the local terrain, namely the
ground elevation (Z value) at each location in the scene.   This  can be represented simply
as a single plane equation provided the ground is relatively flat, or more generally as an
array of elevation values from which terrain values at any horizontal location are
interpolated.

3.5 OTHER REQUIRED PARAMETERS

In addition to the general information described above, a few other parameters must be
supplied. The most important of these are:

1. resection-residual-error -- a number representing the expected residual error (in
pixels) present between projected ground truth points and their observed 2D image
locations, for the given camera resection. This summarizes, in a single number for each
image, the level of geometric error remaining after camera resection has taken place.
This parameter is used for generating statistical confidence intervals, for determining
the proper relative weights of information from each image,  and for generating feature
search regions.  As new images arrive, a resection-residual error can be over-estimated
in order to be sure that evidence gathered from the image is not weighted too greatly.
Over-estimation of  this parameter will loosen search regions and may create false
positives, but will not cause the system to fail to detect features.
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2. max-building-height -- the maximum possible height of  any building that is
expected in the site model.  This threshold is used to limit the extent of epipolar
search regions in each image.  The lower this threshold is set, the smaller the search
area for rooftop feature matches will be, leading to faster searches with higher
likelihood of finding the correct matches.

3.  min-building-dimension -- the minimum extent (width, length or height) of any
building that will be included in  the site model. This is, loosely speaking, a way of
specifying the desired  “resolution” of the resulting site model, since any buildings
having dimensions less than this threshold will not be found.  Setting this value to a
relatively long length essentially ensures that only large buildings in the site will be
modeled.

4. feature grouping sensitivity -- the sensitivity at which image features are
progressively grouped into higher level objects. This linear parameter (ranging from
“low” to “high”) was defined based-on significant experience with the system, and
was intended to provide a user interface that is straightforward yet useful.  The value
of this single grouping sensitivity parameter controls several other component
procedures that are part of the system. A low sensitivity will cause the system to
group features that strictly comply with the entire set of constraints, while a larger
value will loosen the grouping operations to generate more feature aggregations.  This
parameter influences the grouping behavior of the system but remains independent of
the line extraction parameters (see Sections 4.1 and 4.2).  For example, the system will
only group lines into buildings that are strictly rectilinear at low sensitivity settings,
but line extraction filters (on length and contrast) determine the set of features that
will be used for grouping.

4. Algorithmic building blocks

The Ascender  building extraction system currently follows a simple processing strategy.
To acquire a new site model,  an automated building detector is run on one image to
hypothesize potential building rooftops.  Supporting evidence is then located in other
images via epipolar line segment matching,  and the precise 3D shape and location of each
building is determined by multi-image triangulation and extrusion.  Image intensity
information can be backprojected onto each face of these polyhedral building models, to
facilitate realistic rendering from new views.

This section describes the key algorithms that together  comprise the model acquisition
portion of the system. These algorithms are: line segment extraction,  building rooftop
detection, epipolar rooftop matching, multi-image wireframe triangulation, and projective
intensity mapping.  Line segment extraction and building rooftop detection are illustrated
with sample results from two sites, the Schenectady County Air National Guard base
(Figure 2a ),  and Radius Model Board 1 (Figure 2b).  In the next section, serious system
evaluation will be carried out on images of Ft. Hood, Texas.
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                           (a)                                                                           (b)

    Figure 2: Subimages used for reconstruction.  (a) Schenectady
subimage.  (b) Model Board 1 (MB1) subimage.

          
                             (a)                                                                          (b)       

     Figure 3:  (a) Extracted lines for Schenectady subimage.  (b) Lines
extracted for MB1.

4.1 LINE SEGMENT EXTRACTION

To help bridge the huge representational gap between pixels and site models, a straight
line feature extraction routine is applied to produce a set of symbolic line segments
representing geometric image features of potential interest such as building roof edges. We
use the Boldt algorithm for extracting line segments [4].  At the heart of the Boldt
algorithm is a hierarchical grouping system inspired by the Gestalt laws of perceptual
organization. Zero-crossings of the Laplacian of the intensity image provide an initial set
of local intensity edges. Hierarchical grouping then proceeds iteratively, using measures of
colinearity and connectedness.  At each iteration, edge pairs are linked and replaced by a
single  longer edge if their end points are close, their perpendicular offset is small, and
their  orientation and contrast values are similar (difference in average intensity level
across the line).  Each iteration results  in a set of increasingly longer line segments. The
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final set of line segment features  (Figure 3) can  be filtered according to length and
contrast values supplied by the user.

Although the Boldt algorithm does not rely on any particular camera model, the utility of
extracting straight lines as a relevant representation of image/scene structure is based on
the assumption that straight lines in the world (such as building edges)  will appear
reasonably straight in the image. To the extent that this assumption remains true at the
scale of the objects being considered, such as over a region of the image containing a single
building, then straight line extraction remains a viable feature detection method.  However,
very long lines spanning a significant extent of the image, such as the edges of airport
runways, may  become fragmented depending on the amount of curvature introduced into
the image by nonlinearities in the imaging process.  Furthermore, image lines may contain
contrast changes along their length from illumination differences in the scene,  changes in
material reflectance, and other properties in the scene.  The Boldt algorithm is sensitive to
these contrast changes and will produce fragmented lines.  The grouping algorithm
employed in the 2D polygon detection algorithm addresses this by merging compatible
line fragments based on higher level geometric grouping criteria.

4.2 BUILDING ROOFTOP DETECTION/ 2D POLYGON EXTRACTION

The goal of automated building detection is to  roughly delineate building boundaries that
will later be verified in other images by epipolar feature matching and triangulated to
create 3D geometric building models.   The  building detection algorithm [18] is based on
perceptual grouping of line segments into image polygons corresponding to the
boundaries of flat, rectilinear rooftops in the scene.   Perceptual organization is a powerful
method for locating and  extracting scene structure.  The rooftop extraction algorithm  
proceeds in three steps;  low level feature extraction, collated feature detection, and
hypothesis arbitration.  Each module generates features that are used during the next
phase, and interacts with lower level modules through top-down feature extraction.

 Low level features used by the building detection system are straight line segments and
corners. Line segments used by the building detection system are produced by the Boldt
line algorithm discussed in section 4.1.  Edges may be filtered based on length before they
are used for detection in a particular image.  The shortest expected building edge in the
scene is projected into the image to compute a minimum image distance in pixels.  Line
segments that are shorter are removed.  

The domain assumption of flat-roofed rectilinear structures implies that rooftop polygons
will be produced by flat horizontal surfaces, straight edges, and orthogonal corners.
Orthogonal corners in the world are not necessarily orthogonal in the image; however the
known camera geometry can be used to compute a corresponding world angle.  To
determine a set of relevant corner hypotheses, pairs of line segments with spatially
proximate endpoints are grouped together into candidate  image corner features.  Each
potential image corner is then backprojected  into a nominal Z-plane in the scene, and the
resulting  hypothetical scene corner is tested for orthogonality.  A parameter, tied to the
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sensitivity setting of the system, is used to threshold corners based on the angular
difference from an orthogonal corner.

 Mid-level collated features are  sequences of perceptually grouped corners and lines that
form a chain (Figure 4).  A valid chain group must contain an alternation of corners and
lines,  and can be of any length.  Chains are a generalization of the collated features in
earlier work [16] and allow  final polygons of arbitrary  rectilinear shape to be constructed
from low level features.

Collated feature chains are represented by paths in a  feature  relation graph. The feature
relation graph is an encoding of feature dependencies and perceptual compatibility in the
image.  Low level features (corners and line segments) are nodes  in the  graph, and
perceptual grouping relations between these features are represented by edges in the
graph. Nodes have a certainty measure that represents the confidence of the low level
feature extraction routines; edges are weighted with the certainty of the grouping that the
edge represents. For example, an exact alignment of corners in the scene would be
represented by an edge in the graph with a large weight, while features that are not exactly
aligned but still are grouped together would receive a lower weight edge in the graph.  A
chain of collated features inherits an accumulated certainty measure  from all the nodes
and edges along its path.  

High level polygon hypothesis extraction proceeds in two steps.  First, all possible
polygons are computed from the collated features.  Then, polygon hypotheses are
arbitrated in order to arrive  at a final set of non-conflicting, high confidence rooftop
polygons (Figure 5).

                    
                        (a)                                                                               (b)

                Figure 4: (a) Feature chains for Schenectady.  (b Feature chains
for MB1
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                        (a)                                                                                  (b)

    Figure 5:  Final rooftop hypotheses.  (a) Schenectady subimage.  (b)
MB1 subimage.

Polygon hypotheses are simply closed chains, which can be found as cycles in the feature
relation graph.   All of the cycles in the feature relation graph are searched for in a depth-
first manner, and stored in a  dependency graph where nodes represent complete cycles
(rooftop hypotheses).  Nodes in  the dependency graph contain the certainty of the cycle
that the node represents.  An edge between two nodes in the dependency graph  is created
when cycles have low-level features in common.

The final  set of non-overlapping rooftop polygons is the set of nodes in the dependency
graph that are both independent (have no edges in common) and are of maximum
certainty. Standard graph-theoretic techniques are employed to discover the maximally-
weighted set of independent cycles, which is output by the algorithm as the final set of
independent high confidence rooftop polygons.

While searching for closed cycles, the collated feature detector may be invoked in order to
attempt closure of chains that are missing  a particular feature. The system then searches
for evidence in the image  that such a virtual feature can be hypothesized.  An  example
occurs in Figure 4.  The upper-right building corner is missing due to a large gap in the
extracted line segments.  However, during the graph search, a corner was hypothesized
and the extracted line segments provided sufficient support to complete a cycle (figure 5).  
In this way, the rooftop detection process does not have to rely on  the original set of
features that were extracted from the image.   Rather, as evidence for a polygon
accumulates, tailor-made searches for lower level features can be performed. This type of
top-down inquiry increases system robustness.  Currently virtual feature production is
only used to fill in a single missing feature, i.e. a missing corner or straight line but not
both.  Therefore U-shapes will not be hypothesized for completion.

4.3 EPIPOLAR LINE SEGMENT MATCHING

After detecting a potential rooftop in one image, corroborating geometric evidence is
sought in other images (often taken from widely different viewpoints) via epipolar feature
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matching. The primary difficulty to be overcome during epipolar matching  is the
resolution of ambiguous potential matches, and this ambiguity is highest when only a
single pair of images is used.  For example, the epipolar search region for a roof edge
match will often contain multiple potentially matching line segments of the appropriate
length and orientation, one of which comes from the corresponding roof edge, but the
others coming from the base of the building, the shadow edge of the building on the
ground, or from roof/ base/shadow edges of adjacent buildings (see  6a).  This situation is
exacerbated when the roof edge being searched for happens to be nearly aligned with an
epipolar line in the second image.  The resolution of this potential ambiguity is the reason
that simultaneous processing of multiple images with a variety of viewpoints and sun
angles is preferred.

                              (a)                                                                       (b)

Figure 6: Multiple ambiguous matches can often be resolved by consulting
a new view.

Rooftop polygons are matched using an algorithm similar to the mutibaseline stereo
matching algorithm of  Okutumi and Kanade [30], but generalized to handle arbitrary
camera poses and line segment image features.  For each polygon line segment from one
image,  an appropriate epipolar search area is formed in each of the other images, based on
the known camera geometry and the assumption that the roof is flat.   This quadrilateral
search area is scanned for possible matching line segments,  the disparity of each potential
match implying a different roof height  in the scene. Results from each line search are
combined in a 1-dimensional histogram,  each potential match voting for a particular roof
height.   Each vote is weighted by compatibility of the match  in terms of expected line
segment orientation and length. This allows for correct handling of fragmented  line data,
since the combined votes of all subpieces of a fragmented line count the same as the vote
of a full-sized, unfragmented line. A single global histogram accumulates height votes from
multiple images, and for multiple edges in a rooftop polygon.   After all votes have been
tallied, the histogram bucket  containing the most votes  yields an estimate of the roof
height in the scene and a set of correspondences between rooftop edges and image line
segments from multiple views.  Competing ambiguous roof heights will appear as
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multiple peaks in the histogram; these can be carried forward for disambiguation via future
images.

4.4 WIREFRAME TRIANGULATION AND OPTIMIZATION

Multi-image triangulation is performed to determine the precise size, shape, and position
of a building in the local 3D site coordinate system. A nonlinear estimation algorithm has
been developed for simultaneous multi-image, multi-line triangulation of rectilinear
rooftop polygons. Object-level constraints such as perpendicularity and coplanarity are
imposed on the solution to assure reliable results.  This algorithm is used for triangulating
3D rooftop polygons from the line segment correspondences determined by epipolar
feature matching.  

The parameters estimated for each rooftop polygon are shown in Figure 7.  The
horizontal plane  containing the polygon is parameterized by a single variable Z.  The
orientation of the rectilinear structure within that plane is represented  by a single
parameter  θ.  Finally, each separate line within  the polygon is represented by a single
value ri   representing signed distance of the line from a local origin within the roof
polygon. The representation is simple and compact, and the necessary coplanarity and
rectangularity constraints on the polygon's shape are built in.  (A more general approach
based on the Plucker coordinate representation of 3D lines has also been implemented for
triangulating general wireframe structures [5,6]).

            

Θ

   Figure 7:  Parameterization of a flat, rectilinear polygon for multi-image
triangulation.

The triangulation process minimizes an objective function that measures how well each
3D edge aligns with corresponding 2D line segments  in the set of images.  Each edge  
(Z,θ, ri  ) of the parameterized  3D roof polygon is projected into an image to form a 2D
line, a x + b y + c = 0.  The endpoints (x1, y1) and (x2, y2) of a corresponding image line
segment determined by the prior epipolar matching stage provide a perpendicular
distance measure that is squared and added to the function:
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       El =  Σ              (ax1 + by1+c)2  +  (ax2 + by2 + c)2

                                             endpoints of
         corresponding

           line segments

                    
This is summed over all 3D roof edge lines, and over all images, resulting in an objective
function of the form:

  Ep = Σ     Σ        El
  images    roof  lines

A standard Levenberg-Marquardt algorithm is employed to determine the set of  polygon
parameters( Z,θ, r1...rn)  that minimize this objective function. Such nonlinear estimation
algorithms typically require an initial estimate that is then iteratively refined.  In this
system, the original 2D rooftop polygon extracted by the building detector, and the roof
height estimate computed by the epipolar matching algorithm, are used to automatically
generate the initial flat-roofed polygon estimate.  This results in a 2D rectangle with an
associated height estimate that best fits all the images simultaneously.

After triangulation, each refined 3D roof polygon is extruded vertically down to the
terrain to form a volumetric model.  The extrusion process relies on being able to compute
a terrain elevation (Z value) for each (X,Y) vertex location in the scene.  This computation
is performed by the RCDE, which can handle a number of terrain representations, ranging
from a simple  plane equation for relatively flat terrain, to a complete digital terrain map
(DTM).  For representations such as DTMs that represent terrain elevations at a discrete
number of sampled locations, the elevation value at any horizontal location between
samples is computed via interpolation.  We compute the terrain elevation under each of
the roof polygon's vertices, and select the minimum elevation as the Z-value for the base
of the volumetric extrusion.

4.5 VOLUMETRIC HYPOTHESIS ARBITRATION

After building rooftops have been triangulated and extruded to the local DTM, they are
represented as a volumetric, 3D model.  The final set of buildings are filtered according to
spatial overlap in order to generate a complete and consistent site model.  Figure 8 shows
a reconstruction that resulted in several competing model hypotheses.  Arbitration of
these overlapping  building models is  especially important when batch mode processing
produces similar or identical models due to 3D reconstructions from multiple overlapping
polygons from different images and processing windows. (see Section 3).  
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The arbitration algorithm is straightforward.  Each building model volume, VM, is
intersected with each neighboring, overlapping model volume, VO,  to compute a
intersection volume, VI .   If this volume is greater than a certain percentage of both VM

and VO, then the building model with the lower certainty measure is removed from the site

model. That is, if, 
V

V
PI

M

>  and
V

V
PI

O

> , then the model with the lowest certainty measure

computed from the grouping process (see Section 4.2) is removed.  Otherwise, both
overlapping models will be retained in the final output.

Figure 8: Multiple, overlapping hypotheses generated by the Ascender
system. Brightness corresponds to the certainty value of the hypotheses.
There are five alternate building models in addition to the six true models.
(There are no alternative models for the top center and left models and two
alternates for the bottom right model.)  Only the best (brightest) of the
overlapping models is retained after arbitration.

This criterion is used to filter similar overlapping building models but is not guaranteed to
remove all false positives generated in the reconstruction process.  For example, a small
building completely contained within a larger building model will not be eliminated (since
the intersected volume will always remain small with respect to the large model) even
though this is not a physically realizable model.  Multi-level buildings present another
problem since they are often detected as two separate, overlapping polygons.
Hypothesis arbitration as currently implemented may filter one of the two polygons and
thus correct detail in the site model may be removed.  A more sophisticated analysis of
the model topology would be required to include complex multi-leveled buildings in the
site model, and research into appropriate reconstruction strategies for these cases is
underway.
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4.6 PROJECTIVE INTENSITY MAPPING

Rapid improvements in the  capability of low-end to medium-end graphics hardware
makes the use of intensity mapping an attractive option for visualizing geometric  site
models from any viewpoint, with near real-time interactive virtual reality displays
achievable on high-end workstations.   These graphics capabilities have resulted in a
demand for algorithms that can automatically acquire the necessary surface intensity
maps from available digital photographs. We have developed routines for acquiring image
intensity maps  for the planar facets (walls and roof surfaces) of each  building model
recovered by Ascender.

Planar projective transformations provide a mathematical description of how surface
structure from a planar building facet maps into an image. By inverting this
transformation using known building position and camera geometry,  intensity
information from each image can  be backprojected to “paint” the walls and roof of the
building model. Since multiple images are used, intensity information  from all faces of the
building polygon can be recovered, even though  they are not all seen in any single image
(see Figure 9a).  The full intensity-mapped site model can then be rendered to predict
how the scene will appear from a new view  (Figure 9b).

                 (a)                                                       (b)
Figure 9.  (a) Intensity maps are stored with the planar facets of a building
model. (b) A complete site site model rendered from a new view.

When processing multiple overlapping images, each building facet will often be seen in
more than one image, under a variety of viewing angles and illumination conditions.  This
has led to the development of a systematic mechanism for managing intensity map data,
called the Orthographic Facet Library.  The orthographic facet library is an indexed data
set storing all of the intensity-mapped images of all the polygonal building facets  that
have been recovered from the site, tagged with spatial and photometric indices (e.g.
viewing angle, resolution, sun angle). The building facets in the library are further
automatically partitioned  into pieces according to whether they are sunlit, in shadow,  or
occluded (as determined by the viewpoint, sun angle, and  the position and size of the
other buildings that are hypothesized to be in the site model).  In order to render new
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views, the  multiple intensity-map versions for each building facet are “compiled” into a
single, best representative intensity map for that facet.  Each pixel in the representative
intensity map is backprojected to determine which pieces of the intensity map in the
orthographic facet library it is associated with.   The set of pieces is then sorted according
to a heuristic  function [34] that estimates the quality of the pixel data for that piece in
terms of resolution, orientation and  photometric contrast, and the  intensity data from
the highest ranked piece is chosen as the representative value for that pixel. Each surface
intensity map in the rendered image is thus a composite formed from the best available
views of that  building face, automatically chosen to avoid as much  as possible visual
artifacts caused by shadows and occlusions.   While pixels are individually ranked, usually
larger sets of pixels in connected components are selected from a single image because
they are ranked equally in that image.

Although intensity mapping enhances the virtual realism of  graphic displays, this illusion
of realism  is greatly reduced as the observer's viewpoint comes closer to the rendered
object surface.   For example, straightforward mapping of an image intensity map onto a
flat wall surface looks (and is) two dimensional,  unlike the surface of an actual wall,
windows and doors on a real wall surface are typically inset  into the wall surface and are
surrounded by framing material that extends out beyond the wall surface.  While these
effects are barely noticeable from  a distance, they are quite pronounced up close.   A
further problem  is that the resolution of the surface texture map is limited by  the
resolution of the original image.   As one moves  closer to the surface, more detail should
become apparent, but instead, the graphics surface begins to look “pixelated”  and
features become blurry.  In particular, some of the window features on the building
models we have produced are near the limits of the available image resolution.

What is needed to go beyond simple intensity mapping is explicit extraction and rendering
of detailed surface  structures such as windows, doors and roof vents. Our current
intensity map extraction technology provides a  convenient starting point, since
rectangular lattices of windows or roof vents can be  searched for in the orthographic facet
library without complication  from the effects of perspective distortion.  Specific  surface
structure  extraction techniques can be applied only where  relevant, i.e. window and door
extraction can be focused on  wall intensity maps, while roof vent computations are
performed  only on roofs.   As one example, a generic algorithm has been developed for
extracting windows and doors on wall surfaces, based on a rectangular region growing
method applied at  local intensity minima in the unwarped intensity map.  Extracted
window and door hypotheses are  used to compose a refined building model that
explicitly represents those architectural details.  An example is shown in Figure 10.  The
windows and doors have been rendered as dark and opaque, but since they are now
symbolically represented, it would be possible to render the windows with glass-like
properties such as transparency and reflectivity that would enhance the dynamic
visualization of the scene.
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Before

After

Figure 10:  Rendered building model before and after symbolic window
extraction.

Future work on extraction of surface structures will concentrate on roof features such as
pipes and vents that appear as ``bumps'' on an otherwise planar surface area.  Visual cues
for this reconstruction include shadows from monocular imagery, as well as disparity
information between multiple images.   This is a challenging problem given the resolution
of available aerial imagery.

4.7 SITE MODEL EXTENSION

The goal of site model extension is to find unmodeled buildings in new images and add
them into the site model database.  The main difference between model extension and
model acquisition is that now the camera pose for each image can be determined via
model-to-image registration. Our approach to model-to-image registration involves two
components:  model matching and pose determination.

The goal of  model matching is to find the correspondence between 3D features in a site
model and 2D features that have been extracted from an image; in this case determining
correspondences between lines in a 3D building wireframe and 2D extracted line segments
from the image.   The model matching algorithm described in [3] is being used. Based on a
local search approach to combinatorial  optimization, this algorithm searches the discrete
space of correspondence mappings between model and image lines for one that minimizes
a match error function. The match error depends upon how well the projected model
geometrically aligns with the data, as well as how much of the model is accounted for by
the data. The result of model matching is a set of correspondences between  model edges
and image line segments, and an estimate of the transformation that brings the projected
model into the best  possible geometric alignment with the underlying image data.
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Although a set of images with rigorous photogrammetric parameters are required to
generate an initial site model, partial site models can be used to compute the pose
parameters of new views and extend the capability of the system to handle poorly or
partially calibrated imagery.  This involves a second aspect of model-to-image registration
called pose determination. It is important to note that since model-to-image
correspondences are being found automatically, the pose determination routine needs to
take into account the possibility of mistakes or  outliers in the set of correspondences
found.  The robust pose estimation procedure described in [21] is being used. At the heart
of this code is an iterative, weighted least-squares algorithm for computing pose from a
set of correspondences that are assumed to be free from outliers. The pose parameters are
found by minimizing an objective function that measures how closely projected model
features overlap with their corresponding image features. Since it is well known that least
squares optimization techniques can fail catastrophically when outliers are present in the
data, this basic pose algorithm is embedded inside a least median squares (LMS)
procedure that repeatedly samples subsets of correspondences to find one  devoid of
outliers. LMS is robust over  data sets containing up to 50% outliers.   The final results of
pose determination are a set of  camera pose parameters and a covariance matrix that
estimates  the accuracy of the solution.

The model extension process involves registering a current geometric site model with a
new image, and then focusing on unmodeled areas to recover previously unmodeled
buildings.  This process is illustrated using the a partial site model constructed using the
Ascender system applied to the Model Board 1 dataset.
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Figure 11:  An existing model is matched to a new view (thin lines).  Areas
in the new image are masked if they contain a building and the remaining
image is processed for new buildings.  New buildings (thick lines) are
extracted and merged into a more complete site model.

Results of model-to-image registration of image J8 with the partial site model can be seen
in Figure 11, which shows projected building rooftops from the previous site model
overlaid on the image. Image areas containing buildings already in the site model were
masked off, and the building rooftop detector was run on the unmodeled areas. The multi-
image epipolar matching and constrained multi-image triangulation procedures from
Sections 4.3 and 4.4 were then applied to verify the hypotheses and construct 3D
volumetric building models.  These were added to the site model database, to produce the
extended model shown in Figure 11 (thick lines). The main reason for failure among
building hypotheses that were not verified was that they represented buildings located at
the periphery of the site, in an area which is not visible in very many of the eight views.
If more images were used with greater site coverage, more of these buildings would have
been included in the site model.  The utility of this approach is explored in section 5.6 by
detecting buildings in multiple views of the Ft. Hood dataset and analyzing the overall
building detection rate for the site.
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5. System Evaluation

The  Ascender  system has been delivered  to government contractors for testing on
classified imagery  and for integration into the RADIUS Testbed System [11].  An
informal transfer has also been made to the National Exploitation Laboratory (NEL) for
familiarization and additional testing. The system has been extensively tested on diverse
sets of data.  This section presents a of experiments designed to address  questions like:  

1.  How is the rooftop detection rate related to system sensitivity settings?
2.  Is the detection rate affected by viewpoint (nadir vs. oblique)?
3.  Does 2D detected polygon accuracy vary by viewpoint?
4.  Is  2D geometric accuracy related to sensitivity settings
5.  How does 3D accuracy vary with the number of images used?
6.  Does 3D accuracy vary by the geometry of the images used?
7.  How does 3D accuracy vary according to 2D accuracy of the hypothesized

polygons?

Experiments were carried out using two different methods.  The first set of tests were run
on local image patches that were known to contain buildings.  This helped to classify
system performance and accuracy for a scenario in which a previous focus-of-attention
mechanism has detected image regions that may contain buildings.  For example, an image
analyst may have selected areas in which building reconstruction should take place.  Each
image patch is selected by creating a bounding volume around each building in the ground
truth model (discussed shortly).  Each volume is then projected into each of the images
using the known camera geometry for those images.  This obtains all image patches of
every building in the ground truth model for which the entire building appears. The
system was then run on each of these projected regions.

The second set of tests deal with the case in which focus of attention regions are not
available.  In this case, the image is broken into overlapping windows and reconstruction
takes place within each image window independently.  In this “batch mode” style of
processing the final reconstruction undergoes a hypothesis arbitration phase in which
redundant buildings, generated from overlapping regions, are filtered (see section 4.5).
The size of the window for each of the images was set to be at least as large as the largest
ground truth building.  The size of the overlapping area between windows was half the
width of a window.

Evaluation was carried out on a large data  set from Ft.Hood Texas. The imagery was
collected by Photo Science Inc. (PSI) in October 1993 and scanned at the Digital Mapping
Laboratory at Carnegie Mellon University (CMU) in Jan-Feb, 1995.   Camera resections
were performed by PSI for the nadir views,  and by CMU for the oblique views.
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5.1 METHODOLOGY

An evaluation data set was cropped from the Ft.Hood imagery, yielding seven subimages
from the views labeled 711, 713, 525, 927, 1025,  1125 and 1325 (images 711 and 713 are
nadir views, the rest are obliques). Table 1 summarizes the ground sample distance GSD
for each image.  The region of overlap within the scene covers an evaluation area of
roughly 760x740 meters, containing a good blend of  both simple and complex roof
structures.  Thirty ground truth building models were created by hand using  interactive
modeling tools provided by the RCDE. Each building is composed of RCDE “cube”,
“house” and/or “extrusion” objects that were shaped and positioned to project as well as
possible (as determined by eye) simultaneously into the set of seven images. This has
become a standard procedure for acquiring ground truth data in a domain where ground
truth is difficult to obtain. The ground truth data set is  shown in Figure 12.

711 713 525 927 1027 1125 1325
0.31 0.31 0.61 0.52 1.10 1.01 1.01

Table 1: Ground sample distances (GSD) in meters for the seven evaluation images.  A
GSD of 0.3 means that a length of one pixel in the image roughly corresponds to a
distance of 0.3 meters on the ground.

Figure 12:  Ft. Hood evaluation area with 30 ground truth building models
composed of  single and multi-level flat roofs, and two peaked roofs.  There
are 73 roof facets in all. The size of the image area shown is 2375x1805
pixels.
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Since the Ascender system explicitly recovers only rooftop polygons (the rest of the
building wireframe is formed by vertical extrusion), the evaluation is based on comparing
detected 2D and triangulated 3D roof polygons vs. their ground truth counterparts. In the
set of seven images there are 73 ground truth rooftop polygons among the set of 30
buildings.  Ground truth 2D polygons for each image are determined by projecting the
ground truth 3D polygons into that image using the known camera projection equations.

We have utilized a metric that provides a  measure of the average distance between the
two  polygons boundaries, reported in pixels for 2D polygons, and in meters for 3D
polygons.  The  Center-Line Distance measures how well  two arbitrary polygons match
in terms of size, shape  and location2.   The procedure is to oversample the boundary of
one polygon into a set of equally spaced points (several thousand of them).   For each
point, measure the minimum distance from  that point to the other polygon boundary.
Repeat the  procedure by oversampling the other polygon and  measuring the distance of
each point to the  first polygon boundary.  The center-line distance is taken  as the
average of all these values.  We prefer the center-line distance  to other comparison
measures, such as the one used in [32] since it is very easy to compute and can be applied
to two polygons that do not have the same number of vertices.

For polygons that have the same number of vertices, and are fairly close to each other in
terms of center-line distance, an additional distance measure is computed between
corresponding pairs of vertices between the two polygons.  That is, for each polygon
vertex, the  distance to the closest vertex on the other polygon is measured. For 2D
polygons these Inter-Vertex Distances are reported in pixels, for 3D polygons the units
are meters, and the distances are broken into their  planimetric (distance parallel to the X-
Y plane)  vs. altimetric (distance in Z) components.    An Inter-Vertex distance is only
computed between  vertices for which there is a corresponding ground truth polygon
vertex.  Therefore statistics involving the inter-vertex distance will not include vertices
that are far from ground truth (from a partially detected building, for example).

5.2 EVALUATION OF 2D BUILDING DETECTION

One important module of the Ascender system is the 2D polygonal rooftop detector.  If
2D building polygons are not detected in at least one image, then a complete 3D
reconstruction is not possible.  The detector was tested on images 711, 713, 525 and 927
to see how well it performed at different grouping sensitivity settings, and with different
length and contrast settings of the Boldt line extraction  algorithm.  

The detector was first tested in “bounding-box mode” by projecting each ground  truth
roof polygon into an image, growing its 2D bounding box out  by 20 pixels on each side,
then invoking the building detector in that region to hypothesize 2D rooftop polygons.
The evaluation goals were to determine both true and false positive detection rates when
the building detector was invoked on an area containing a building, and to  measure the
2D accuracy of the true positives.

                                                
2 Robert Haralick, private communication



29

The detector was also tested in “batch mode”  by blindly processing each image in
overlapping image windows of size N  by N.  Each window overlapped its neighbors by
N/2 pixels.  The number N was chosen for each image so that the image windows could
encompass the largest projected ground truth building. Typically, N was much larger than
the size of ground truth buildings.

5.3 2D DETECTION RATES

The polygon detector typically produces several roof hypotheses within a given image
area, particularly when run at the higher sensitivity settings. Determining true and false
positive detection rates thus involves determining whether or not each hypothesized
image polygon is a good match with some  ground truth projected roof polygon.  To
automate the process of counting true positives and tabulating their associated error, each
hypothesized polygon  was ranked by its center-line distance from the known  ground
truth 2D polygon that was supposed to be detected.   Of all hypotheses with distances
less than a threshold (i.e. polygons that were reasonably good matches to the ground
truth), the one with the smallest distance  was counted as a true positive; all other
hypotheses  were considered  to be false positives.  The threshold value  used was 0.2
times the square root of the area of the ground  truth polygon, that is:

Dist hyp gt Area gt( , ) .≤ ∗ ( )0 2  where hyp and  gt are hypothesized and ground truth

polygons, respectively.  This empirical threshold allows 2 pixels total error for a square
with sides 10 pixels long, and is invarient with respect to the scale of the image.  

The total numbers of roof hypotheses generated  for each of the images 711, 713, 525 and
927 for bounding-box processing are shown  at the top of Figure 13.  Total polygons per
image were computed for nine different sensitivity settings of the building detector
ranging from 0.1 to 0.9 (very low to very high). The line segments used for each image
were computed  by the Boldt algorithm using length and contrast thresholds of 10.  The
second graph in 13 plots the number of true positive hypotheses. For the highest
sensitivity setting,  the percentage of rooftops detected in 711, 713, 525 and 927 using
the bounding-box strategy were 51%, 59%, 45% and 47%, respectively.  The same test
was performed for the system using batch-mode processing and the results are shown in
figure 14.   For the highest sensitivity,  results similar to the bounding-box processing
mode were produced. Detection rates of  46%, 55%, 42%, and 39% for each of the 711,
713, 525, 927 images respectively.  
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Figure 13:  Bounding-Box processing detection rates.Top: Building detector
sensitivity vs. total number of generated roof hypotheses per image.
Bottom: Sensitivity vs. number of true positives.  Horizontal lines show
the actual number of ground truth polygons.  Combining results from all four
view yields a detection rate of 81% with lines of L > 10 , and 97% with
lines of L > 5.
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Figure 14:  Batch-mode processing detection rates.  Top: Building detector
sensitivity vs. total number of roof hypotheses.  Bottom: Sensitivity vs.
number of true positives.  Horizontal lines show the actual number of
ground truth polygons.  Combining results from all four view yields a
detection rate of 95%.  Combining results from a more feasible setting of
0.7 yields a combined detection result of 89% with a false positive
percentage of 46%.
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A significant difference between the two modes of processing is in the number of false
positives generated by each technique.  Because batch-mode processing involves blind
application of the building detector to the entire image an increase in the number of
polygons detected is expected.  At the mid-to-higher range of sensitivities (0.5-0.7) the
number of false positives produced is not  significant, however, at the highest
sensitivities, batch-mode processing produces a large number of false positives.  Without
a prior focus-of-attention mechanism, the batch-mode extraction is only feasible at
middle-range sensitivities, which limits the number of  true positives achievable.

The detection rates seem to be sensitive to viewpoint. More total hypotheses and more
true positives were detected in the nadir views than in the obliques. This may represent a
property of the building detector, but it is more likely that most of the discrepancy  is
due to the difference in GSD of the  images for this area (see Table 1).  Each building roof
simply occupies a larger set  of pixels in the nadir views than in the obliques for this data
set, and therefore the nadir view of buildings has a significantly higher resolution.

To measure the best possible performance of the rooftop detector on this data, it was run
on all four images at sensitivity level 0.9, using Boldt line data computed with the lowest
length and contrast thresholds of 5.  These were judged to be the highest sensitivity levels
for both line extractor  and building detector that were feasible, and the results represent
the best job that the  current building detector can do with each image. The percentages of
rooftops detected in each of the four images under these conditions in bounding-box mode
were 86%,  84%, 74%, and 67%, with a combined image  detection rate of 97% (71 out of
73).  Under these same conditions (ignoring false positives) the batch-mode system
reconstruction percentages were 85%, 83%, 72%, and 66%, with a combined image
detection rate of  95%.  Using the highest possible feasible sensitivity for batch-mode
processing at 0.7 produces 62%, 51%, 34%, and 32% detection rates for each of the
images and a combined rate of 89% while limiting the false positive rate to 46% (see
Figure 13).  This represents the best possible performance in batch-mode while limiting
the number of false positives.  

Finally, the rooftop detector was run in batch-mode on all four images at a sensitivity of
0.7, using Boldt line data with length and contrast thresholds of 10.  These settings were
deemed to be the most feasible for batch-mode processing and were chosen to maximize
the detection rate versus false positives. This reflects the proper setting of the system
without specific focus-of-attention mechanisms. The set of buildings extracted in the
batch-mode experiments at a sensitivity of 0.7 were combined, yielding an overall
detection rate of  89%.  It is interesting to note that although not all buildings are detected
in one image, the use of multiple images improves results significantly.  Figure 15 shows a
view of the groundtruth with the number of times each of the buildings was detected in
the dataset.  Nearly all buildings were detected in more than one image.  

The reader should understand that if a building polygon was only detected in a single
image, all line correspondences in an epipolar constrained search region in the other images
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will contribute to the 3D building triangulation even though a complete polygon was not
detected in other images.   The peaked roof building at the right of the image was not
detected in any image because it does not conform to the class of buildings currently built
into the system (see Section 6).  The center roof polygon was missed because tree cover
breaks up both line and corner features.  Other reasons for failure included too-low
contrast between the building and ground in all images, resolution problems (as in the
small second story polygon at the right of the image), and accidental alignment of
surrounding clutter causing large error in the final polygon (a polygon that included the
rooftop at the far left of the image with surrounding walkways was generated in two
images and was eliminated because of the introduced error).

Figure 15:  The ground truth model projected into image 713.  The number
of times each roof polygon was detected over the four different views is
overlayed to depict an overall 2D detection rate of 89% for batch-mode
processing at 0.7 sensitivity setting.
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5.4 QUANTITATIVE ACCURACY

To assess the quantitative accuracy of the true positive 2D roof polygons, each was
compared with its corresponding 2D  projected ground truth polygon in terms of center-
line distance.  Figure 16 plots the median of the center-line polygon distances between
detected and ground truth 2D polygons for different sensitivity settings. Polygons
detected at low sensitivity levels seem to be slightly more accurate than those detected at
the high sensitivity settings. This is so because the detector only finds clearly delineated
rooftop boundaries at the lower settings, and is more forgiving in its grouping  criteria at
the higher settings  (i.e. accepting less accurate line and polygon data) with the obvious
benefit of a higher detection rate.
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Figure 16:  2D polygon accuracy vs. Building detector sensitivity.
Accuracy is represented in pixels for both modes of processing (see text).

For pairs of detected and ground truth polygons having the same number of vertices, their
set of inter-vertex distances were also computed, and the medians of those  measurements
are broken down by image  in Table 2.  The average distance is around 2.7 pixels.   
Polygons detected in image 927 appear to be a little more accurate.  This difference may
or may not be significant; however, image 927 was taken in the afternoon, and all the
other images  were taken in the morning, so the difference in sun angle may be the cause.
An interesting result is that the reconstruction accuracy of the two modes of processing is
similar.  The differences shown in Table 2 are statistically insignificant.

InterVertex Results for Bounding-Box Mode
711 713 525 927

IV
Distance

2.75 2.82 2.71 2.22

InterVertex Results for Batch Mode
711 713 525 927

IV Distance 2.78 2.87 2.73 2.24
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Table 2: 2D vertex accuracy.  Median inter-vertex distances (in pixels)
between detected polygon vertices and projected ground truth  roof
vertices, for four images.

5.5 EVALUATION OF 3D RECONSTRUCTION

The second major subsystem in Ascender takes 2D roof hypotheses detected in one
image and reconstructs 3D rooftop polygons via multi-image line segment matching and
triangulation. Two different quantitative evaluations were performed on this subsystem.
The 3D reconstruction  process was first tested in isolation  from the 2D detection
process by using 2D projected ground  truth polygons as input.  This initial evaluation
was done  to establish a baseline measure of reconstruction accuracy, that is, to see how
accurate the final 3D building models  would be given perfect 2D rooftop extraction. A
second evaluation tested end-to-end system performance by performing 3D
reconstruction using a set of automatically detected 2D image polygons.

5.5.1 Baseline 3D Reconstruction Accuracy

The baseline measure of reconstruction accuracy was performed using 2D projected
ground truth roof polygons.  Since these 2D polygons were generated from the same 3D
ground truth 3D polygons, presumably they would optimally regenerate the initial 3D
polygon model.  For each of the 7 images in the evaluation test set, all the ground truth
2D polygons  from that image were matched and triangulated using the other 6 images as
corroborating views.  The accuracy of each reconstructed roof polygon was then
determined by comparing it with its 3D ground truth counterpart in terms of center-line
distance and inter-vertex distances.  Table 3 reports,  for each image, the median of the
center-line polygon distances between reconstructed and ground truth polygons  in pixels
for that image.  Also reported are the medians of the   planimetric (horizontal) and
altimetric (vertical) components of the  inter-vertex distances between reconstructed and
ground truth polygon vertices in meters. Horizontal placement accuracy was about 0.3
meters, which is in accordance with the resolution of the images.   This baseline error
provides a measure of inherent 2D noise effects and pose errors in the 3D reconstruction
process.  

711 713 525 927
CL Distance 0.57 0.46 0.45 0.53
IV planimetric 0.29 0.25 0.33 0.35
IV altimetric 0.49 0.42 0.37 0.43

Table 3: Evaluation of  baseline accuracy of the 3D reconstruction process.
Median center-line distances (in pixels) as well as inter-vertex  planimetric
and altimetric errors are shown (in meters) for four images.  See text.
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Another suite of tests was performed to determine  how the number of views affects the
baseline accuracy of the resulting 3D polygons. These tests were performed using image
711 as the  primary image, and all 63 non-empty subsets of the other 6 views as
additional views.  For each subset of additional views, all 2D projected ground truth
polygons in image 711 were matched and triangulated, and the median center-line and
inter-vertex distances between reconstructed and ground truth 3D polygons were
recorded. Figure 17 graphs the results, organized by number of images used (including
711), ranging from only two views up to all six views.
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Figure 17: Number of views used vs. 3D reconstruction accuracy in meters.
(see text).

 The distances reported under label “2” are averaged over the 6 possible image sets
containing 711 and one other image,  distances  reported under “3” are averaged over all 15
possible image sets  containing 711 and two other images, and so on.   There is a
noticeable improvement in accuracy when using three views instead of two, but the
curves flatten out after that, and there is only modest improvement in 3D accuracy to be
gained by taking image sets  larger than four.

5 . 5 . 2 ACTUAL 3D RECONSTRUCTION ACCURACY

 In actual practice, Ascender reconstruction techniques are applied to the 2D image
polygons hypothesized by its automated building detector.  Thus, the final reconstruction
accuracy depends not only on the number and geometry of the additional views used, but
also on the 2D image accuracy of the hypothesized roof polygons.  The typical end-to-
end performance of the system was separately evaluated by taking the 2D polygons
detected through both bounding-box and batch-mode processing and performing matching
and triangulation using the other six views. The median center-line  distances between
reconstructed and ground truth 3D polygons are plotted in Figure 18 for different
sensitivity settings of the polygon detector. The accuracy is  slightly better when using
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polygons detected at the lower sensitivity settings, mirroring the better accuracy of the
2D polygons at those levels (compare with Figure 16).
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Figure 18:  Building detector sensitivity vs. 3D polygon accuracy,
computed as the median of center-line distances between reconstructed 3D
polygons and ground truth polygons

For pairs of detected and ground truth polygons having the same number of vertices, the
set of inter-vertex planimetric and altimetric  errors were computed, and the medians of
those measurements are shown in Table 4, broken down by the image in which the 2D
polygons feeding the reconstruction process were hypothesized. Unlike the baseline error
data from  Table 3, where the horizontal accuracy of reconstructed polygon vertices was
better than their vertical accuracy, here the situation is reversed, strongly suggesting that
the planimetric component of reconstructed vertices is more sensitive to inaccuracies in
the 2D polygon detection process than the altimetric component. This result is consistent
with previous observations that the corners of Ascender's reconstructed building models
are more accurate in height than in horizontal position [8].

Bounding-Box Mode 3D Accuracy
711 713 525 927

IV planimetric 0.68 0.73 1.09 0.89
IV altimetric 0.51 0.55 0.90 0.61

Batch-Mode 3D Accuracy
711 713 525 927

IV planimetric 0.67 0.75 1.11 0.90
IV altimetric 0.53 0.55 0.91 0.60
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Table 4:  Evaluation of actual reconstruction accuracy.  Median planimetric
and  altimetric errors (in meters) between reconstructed  3D polygon
vertices and ground truth roof vertices for the two different modes of
processing.

6. Summary and Future Work

6.1 EVALUATION SUMMARY

The previous section  presented results of a comprehensive evaluation of the Ascender
system using an unclassified data set of Ft. Hood. While the results of the analysis are
inevitably  tied to this specific data set, they give  some indication of how the system
should be  expected to perform under different scenarios.

Single-Image Performance: The building detection rate varies roughly linearly with the
sensitivity setting of the  polygon detector.  At the high sensitivity level, roughly 50% of
the buildings are detected in each image using Boldt lines extracted at length and contrast >
10,  and about 75%-80% when using Boldt lines extracted with length and contrast > 5.  
Although line segments and corner hypotheses are localized to subpixel accuracy, the
median localization error of 2D rooftop polygon vertices is around 2-3 pixels, due in part
to grouping errors, but also in part to errors in resected camera pose. Note that even a
perfectly segmented  polygon boundary will not align with the projected ground truth
roof if the camera projection parameters are incorrect.

Multiple-Image Performance: One of our underlying research hypotheses is that the use
of multiple images increases the accuracy and reliability of the building extraction process.
Rooftops that are missed in one image are often  found in another, so combining results
from multiple  images typically increases the building detection rate. By combining
detected polygons from four images,  the total building detection rate increased to 81%
using   medium-sensitivity Boldt lines,  and to  97% using  high-sensitivity ones.
Matching and triangulation to produce 3D roof polygons, and thus the full building
wireframe by extrusion, can perform at satisfactory levels of accuracy given only a pair of
images, but using three views gives  noticeably better results.  After four images,  only a
modest increase in 3D accuracy is gained.

Of course, any of these general statements depends  critically on the particular
configuration of views used.  Further  testing is needed to elucidate  how different camera
positions and orientations affect 3D accuracy.  Nadir views appear to produce better
detection rates than obliques, but this can be explained by large differences in the ground
sample distance for this image set and may not be characteristic of system performance in
general -- again, more experimentation is needed. For this data set, 3D building corner
positions  were recovered to well within a meter of accuracy, with  height being estimated
more accurately than horizontal position. The accuracy of the final reconstruction
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depends on the accuracy of the detected 2D polygons, as one might expect; however
horizontal accuracy is more sensitive to 2D polygon errors than vertical  accuracy.  Also,
the version of Ascender tested here uses only a simple control strategy for detecting flat-
roofed buildings.  More complex control strategies under development (see next section)
may yield more  reliable results.

6.2  FUTURE WORK

The building reconstruction strategies used in the Ascender system provide an elegant
solution to extracting flat-roofed rectilinear buildings, but extensions are necessary in
order to handle other common building types.  Examples  are complex multi-level flat
roofs, peaked-roof buildings,  juxtapositions of flat and peaked roofs, curved-roof
buildings such as Quonset huts or hangars, as well as buildings with more complex roof
structures containing gables, slanted dormers or spires.

To develop more general and flexible building reconstruction systems,  a significant
research effort is underway at UMass to explore  alternative strategies that combine  a
wider range of 2D and 3D information.  The types of strategies being considered involve
generation and grouping of 3D  geometric tokens such as lines, corners and surfaces,  as
well as techniques for fusing geometric token data with  high-resolution digital elevation
map (DEM) data.  By verifying geometric consistencies between 2D and 3D tokens
associated with building components, larger and more complex 3D structures are being
organized using context-sensitive,  knowledge-based strategies.

In addition to work that addressses a wider class of building models, improvements to the
Ascender system have been implemented in order to increase the overall detection rates.
Changes to the control structure that allow polygons to be detected in any of the available
images and improvements to the perceputal grouping routine have increased overall
detection rates.  For example, in recent tests, three additional buildings have been detected
at the Fort Hood site without increasing in the number of false positives.

Our symbolic building extraction procedures is being be combined with Terrest [33], a
correlation-based terrain extraction system developed at UMass.  The two techniques
clearly  complement each other: symbolic processing and triangulation of 2D lines
produces 3D line features, complementing area correlation techniques that produce DEMs
to which planar surfaces can be fit.  Another way that they complement each other is that
the terrain extraction system can determine a digital elevation map upon which the
volumetric building models rest, and the symbolic building  extraction procedures can
identify building occlusion boundaries in exactly the locations where correlation-based
terrain recovery is expected to behave  poorly.  A tighter coupling of the two systems is
also being investigated, to allow correlation-based  surface extraction to be applied to
building rooftop  regions to identify fine surface structure like roof vents and air
conditioner units.
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