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Abstra
t

Three-dimensional re
onstru
tion from a set of images is an important and

diÆ
ult problem in 
omputer vision. In this paper, we address the problem

of determining image feature 
orresponden
es while simultaneously re
on-

stru
ting the 
orresponding 3D features, given the 
amera poses of disparate

mono
ular views. First, two new aÆnity measures are presented that 
ap-

ture the degree to whi
h 
andidate features from di�erent images 
onsistently
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represent the proje
tion of the same 3D point or 3D line. An aÆnity mea-

sure for point features in two di�erent views is de�ned with respe
t to their

distan
e from a hypotheti
al proje
ted 3D pseudo-interse
tion point. Simi-

larly, an aÆnity measure for 2D image line segments a
ross three views is

de�ned with respe
t to a 3D pseudo-interse
tion line. These aÆnity mea-

sures provide a foundation for determining unknown 
orresponden
es us-

ing weighted bipartited graphs representing 
andidate point and line mat
hes

a
ross di�erent images. As a result of this graph representation, a standard

graph-theoreti
 algorithm 
an provide an optimal, simultaneous mat
hing

and triangulation of points a
ross two views, and lines a
ross three views.

Experimental results on syntheti
 and real data demonstrate the e�e
tiveness

of the approa
h.

1 Introdu
tion

Three-dimensional model a
quisition remains a very a
tive resear
h area in


omputer vision. One of the key questions is how to re
onstru
t a

urate

3D models from a set of 
alibrated 2D images via multi-image triangulation.

The basi
 prin
iples involved in 3D model a
quisition are feature 
orrespon-

den
e determination and triangulation, with the two 
ommonly used types

of image features being points and lines. Usually, 2D features are extra
ted

�rst, su
h as 
orners, 
urvature points, and lines from ea
h image. Then,

the 
orresponden
e of these features is established between any pair of im-

ages, usually referred to as \the 
orresponden
e problem". Finally, the 3D

stru
ture is triangulated from these 2D 
orresponden
es.

Many re
onstru
tion papers assume the 
orresponden
e problem has

been solved [2, 7, 35, 39, 50, 51, 53℄. Unfortunately, in many appli
ations,

this information is not available and me
hanisms to a
hieve 
orresponden
e

are unreliable. This has 
aused serious 
riti
ism of feature-based meth-

ods [6, 22, 33, 52, 60, 61℄. The pro
ess of �nding 2D image feature 
or-

responden
es 
an be 
omputationally expensive and diÆ
ult to implement

reliably, requiring subsequent algorithms to employ robust me
hanisms for

dete
ting outliers due to mismat
hes [46, 49℄.

Even if the image feature 
orresponden
es are known, robust triangula-

tion of the 3D models using noisy image data is still a non-trivial problem

and an on-going resear
h topi
. Extensive resear
h has been devoted to de-

veloping robust algorithms in this area [5, 8, 23, 37, 46, 49, 66, 67℄, in
luding

pro
essing of mono
ular motion sequen
es, stereo pairs, and sets of distin
t

views. Although both point-based and line-based triangulation are 
om-
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monly employed, more attention has been paid to line-based triangulation

sin
e it generally provides more a

urate re
onstru
tions.

In this paper, we address the problem of determining image feature 
or-

responden
es given known 
amera poses, while simultaneously 
omputing

the 
orresponding 3D features. We restri
t our attention to simultaneous

determination of image feature 
orresponden
es and re
overy of their 3D

stru
ture using mat
hing and triangulation of noisy 2D image points and

lines. Our approa
h assumes a set of 
alibrated images, for whi
h both

intrinsi
 (lens) parameters and either absolute or relative poses are known.

Therefore these approa
hes are well-suited for photogrammetri
 mapping ap-

pli
ations where extrinsi
 parameters are already known, su
h as 3D aerial

re
onstru
tion in 
ultural settings [4℄, for wide-baseline multi-
amera stereo

systems, or for model extension appli
ations where a previous partial model

has been used to determine 
amera pose for a set of new views, from whi
h

previously unmodeled s
ene features are now to be re
overed [18, 19, 21, 46℄.

This paper is organized as follows. Se
tion 2 reviews previous related

work in the area of 3D re
onstru
tion with unknown apriori 
orresponden
es.

Se
tion 3 introdu
es two new aÆnity measures for determining image point

and line 
orresponden
es a
ross images, and uses them to 
onstru
t weighted

bipartite graphs. Se
tion 4 formulates the image feature mat
hing problem

as the general maximum-weight bipartite mat
hing problem and develops

two algorithms to simultaneously mat
h and re
onstru
t 3D points and lines

from noisy 2D image points and lines, respe
tively. Finally, Se
tion 5 and

Se
tion 6 present and analyze experimental results from syntheti
 and real

image data sets. Se
tion 7 gives our 
on
lusions.

2 Previous Work

2.1 Motion Estimation without Corresponden
es

Aggarwal et al [2℄ reviewed the 
orresponden
e problem two de
ades ago. In

re
ent years, a variety of 
orresponden
e problems [2, 6, 13, 14, 16, 33, 39, 51,

52, 61, 63℄ have been studied. In addition, many resear
hers have worked on

the problem of motion estimation without pre-spe
i�ed 
orresponden
es [3,

22, 33, 39, 50, 52, 63℄.

Aloimonos, et al [3℄, presented an algorithm to estimate 3D motion

without apriori 
orresponden
es by 
ombining motion and stereo mat
hing.

Huang and his resear
h group [33, 50, 52℄ presented a series of algorithms

to estimate rigid-body motion from 3D data without mat
hing point 
or-

responden
es. Goldgof et al [33℄ presented moment-based algorithms for
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mat
hing and motion estimation of 3D point or line sets without 
orre-

sponden
es and applied these algorithms to obje
t tra
king over the image

sequen
es. The basi
 idea is to �nd two 
oordinate systems based on relative

positions of 3D points/lines before and after the motion, then 
ompute the

motion parameters (rotation and translation) that make these 
oordinate

systems 
oin
ide. The disadvantages of the approa
h in
lude sensitivity to

noise and to missing or false points or lines.

Lee et al [52℄ proposed an algorithm to deal with the 
orresponden
e

problem in image sequen
e analysis. This method is based on the following

three assumptions: (1) the obje
ts undergo a rigid motion; (2) a perspe
tive

proje
tion 
amera model 
an be used; (3) the translation ve
tor is small


ompared to the distan
e of the obje
t.

Re
ently, we presented a mathemati
al symmetry in the solutions of ro-

tation parameters and point 
orresponden
es, derived a 
losed-form solution

based on eigenstru
ture de
omposition for 
orresponden
e re
overy in ideal


ases with no missing points, and developed a weighted bipartite mat
hing

algorithm to determine the 
orresponden
es in general 
ases where missing

points o

ur [63℄

2.2 Determination of Corresponden
es from Nonrigid Ob-

je
ts

Obje
ts in the world 
an be nonrigid, and an obje
t's appearan
e 
an de-

form as the viewing geometry 
hanges. Consequently, resear
h has been


arried out to address the problem of 
orresponden
e and des
ription using

deformable models [56, 57, 59, 60, 61℄.

S
ott and Longuet-Higgins [60℄ developed an algorithm to determine the

possible 
orresponden
es of 2D point features a
ross a pair of images with-

out use of any other information (in parti
ular, they had no information

about the poses of the 
ameras). They �rst in
orporated a proximity ma-

trix des
ription whi
h des
ribes Gaussian-weighted distan
es between fea-

tures (based on inter-element distan
es) and a 
ompetition s
heme allowing


andidate features to 
ontest for best mat
hes. Then they used the eigenve
-

tors of this matrix to determine 
orresponden
es between two sets of feature

points.

Shapiro and Brady [61℄ also proposed an eigenve
tor approa
h to deter-

mining point-feature 
orresponden
e based on a modal shape des
ription.

Re
ently, S
laro� and Pentland [59℄ des
ribed a modal framework for 
or-

responden
e and des
ription. They �rst developed a �nite element formu-

lation using Gaussian basis fun
tions as Galerkin interpolants, then used
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these interpolants to build sti�ness and mass matri
es. Corresponden
es

were determined by de
omposing the sti�ness and mass matri
es into a set

of eigenve
tors.

2.3 Determination of Corresponden
es among Disparate, Mono
-

ular Images

Methods based on tra
king features su
h as points and line segments through

a sequen
e of 
losely-spa
ed image frames 
annot be applied in our present

domain, sin
e they are based on small-motion approximations, while we are

presented with a set of dis
rete, disparate, mono
ular views. Furthermore,

heuristi
 measures based on similarity of image feature appearan
e a
ross

multiple images will also fail, sin
e widely disparate viewpoints, taken at

di�erent times of day and under di�erent weather 
onditions 
an lead to 
or-

responding image features of signi�
antly di�erent appearan
e. Gruen and

Baltsavias [35℄ des
ribe a 
onstrained multi-image mat
hing system where

intensity templates extra
ted from one referen
e image are aÆne-warped

and 
orrelated along epipolar lines in ea
h other image. Kumar et al [48℄

present a multi-image plane+parallax mat
hing approa
h where they 
om-

pensate for the appearan
e of a known 3D surfa
e between a referen
e view

and ea
h other view, then sear
h for 
orresponding points along lines of

residual parallax.

Collins [16℄ introdu
es the term "true multi-image" mat
hing and present

a new spa
e-sweep approa
h to multi-image mat
hing that make full and

eÆ
ient use of the geometri
 relationships between multiple images and the

s
ene to simultaneously determine 2D feature 
orresponden
es and the 3D

positions of feature points in the s
ene.

In their re
ent work, Bedekar and Harali
k [7℄ �rst pose the triangulation

problem as that of �nding the Bayesian maximum a posteriori estimate

of the 3D point, given its proje
tions in N images, assuming a Gaussian

error model for the image point 
oordinates and the 
amera parameters.

Then, they 
onsider the 
orresponden
e problem as a statisti
al hypothesis

veri�
ation problem and solve this problem by an iterative steepest des
ent

method.

Re
ently, graph theoreti
 methods have been applied [13, 14, 30, 34, 43,

58, 63, 64, 65℄. Gold and Rangarajan [30℄ presented a new algorithm for

graph mat
hing, whi
h uses graduated assignment. They applied \softas-

sign", a novel 
onstraint satisfa
tion te
hnique, to a new graph mat
hing

energy fun
tion that uses a robust, sparse distan
e measure between the

links of the two graphs. Wu and Leon [64℄ proposed a two-pass greedy bipar-
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tite mat
hing algorithm to determine the approximate solution of the stereo


orresponden
e problem. GriÆn [34℄ presented a bipartite graph mat
hing

method to determine the 
orresponden
es between 2-D proje
tions of a 3-D

s
ene. Roy and Cox [58℄ des
ribed a algorithm for solving the N-
amera

stereo 
orresponden
e problem.

2.4 Our Approa
h

The work in this paper is based on an optimal graph theoreti
 approa
h

using a residual error fun
tion de�ned on the image plane to 
onstru
t a bi-

partite graph, a 
orresponding 
ow network, and �nally a maximum network


ow that determines the 
orresponden
es between two images [13℄. Unlike

many other mat
hing te
hniques, our method of network 
ow ensures that

a maximal mat
hing 
an be found. From the point of view of implementa-

tion, this mat
hing te
hnique 
an be implemented eÆ
iently and in parallel,

and has been su

essfully applied by others to mat
hing problems involving

graphs of large size (about 100,000 verti
es) [41℄.

What is needed for 
orresponden
e mat
hing among disparate, mono
-

ular images is a des
ription of the aÆnity (or 2D/3D spatial relationship )

between image features. The term "aÆnity" is �rst introdu
ed by Ullman

in [62℄ as a measure of the pairing likelihood of two obje
ts in two sets. Here,

we de�ne the aÆnity as a measure of the degree to whi
h 
andidates from

di�erent images 
onsistently represent the proje
tion of the same 3D point

or the same 3D line.

Traditionally, two separate pro
essing phases are employed to re
on-

stru
t 3D s
ene stru
ture: feature mat
hing and 3D triangulation. With this

division of pro
essing, it is very diÆ
ult to employ 3D information to mea-

sure the aÆnity between image features during the mat
hing phase. We ar-

gue that it is better to 
ombine mat
hing and triangulation in an integrated

manner. This is a

omplished by introdu
ing an aÆnity measure between

image point and line features based on their distan
e from a hypotheti
al

proje
ted 3D pseudo-interse
tion point or line, respe
tively [14℄. The ideas

developed in this paper are an extension of our previous work [13, 14℄.

The 
hallenge in 
ombining mat
hing and triangulation for image line

features is that it is more diÆ
ult to des
ribe the aÆnity between image lines

than it is for image points. Line segment endpoints are not meaningful sin
e

there may exist signi�
ant fragmentation and o

lusion in image line data,

and therefore only the position and orientation of the in�nite image line

passing through a given line segment 
an be 
onsidered reliable. Moreover,

this implies that at least three images are ne
essary to des
ribe line aÆnity,
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sin
e the proje
tion planes for any pair of image lines in two images always

interse
t in a 3D line (Note: if parallel, the planes are said to interse
t

at in�nity). Thus, no 
on
lusive eviden
e about possible 
orresponden
es

between in�nite image lines may be derived from only two images.

One of the 
ontributions of our work is an aÆnity measure for lines

based on the rapid 
omputation of a 3D pseudo-interse
tion line from a set

of possibly 
orresponding image lines during the mat
hing pro
ess. This

approa
h leads to general maximum-weight bipartite mat
hing te
hniques

to deal with the 3D re
onstru
tion problem without apriori spe
i�
ation of

known image feature 
orresponden
es.

3 Measuring 2D Image Point amd Line AÆnity

3.1 Measuring 2D Image Point AÆnity from Two Images

Via a 3D Pseudo-Interse
tion Point

Given a point p

1

in image I

1

, we seek its mat
h p

2

in another image I

2

. Point

p

2

ne
essarily belongs on an epipolar line of image I

2

determined 
ompletely

by p

1

, and vi
e versa. Most of the existing mat
hing algorithms e.g. [5℄

dire
tly utilize this 2D epipolar line 
onstraint to determine the image point


orresponden
es from two images. However, it is very diÆ
ult to employ

3D information to measure the aÆnity between image features from this 2D

epipolar line 
onstraint. We argue that it is better to 
ombine mat
hing and

triangulation in an integrated manner.

The key observation is that for any pair of image points p

1

and p

2

from two images I

1

and I

2

, there exists a 3D pseudo-interse
tion point,

de�ned as the point with the smallest sum of squared distan
es from it

to the two proje
tion lines of p

1

and p

2

. The physi
al meaning of the

pseudo-interse
tion point is that ideally, if p

1

and p

2

are 
orresponding

image points from I

1

and I

2

, then their pseudo-interse
tion point is a real

3D point re
overed by the traditional triangulation 
onstraint.

Given any pair of image points 
hosen at random, one from ea
h image,

the pair may or may not truly 
orrespond to a single 3D point in the s
ene.

The two image points always yield a 3D pseudo-interse
tion point in either


ase, but when this 3D point is proje
ted ba
k into ea
h image it will only


oin
ide reasonably well with the original pair of 2D image points if the

points are a true 
orresponden
e, and will yield a very poor �t otherwise.

Therefore, the distan
e between the proje
ted pseudo-interse
tion point and

the original pair of image points yields an aÆnity measure that signi�es

whether that pair of points forms a 
ompatible 
orresponden
e.
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P

L L

τ τ

q

21

i

l r

j

l r

p p

Figure 1: A triangulation pro
ess for a pair of images.

Let us now provide a formal spe
i�
ation of the aÆnity measure, with

the reader referring to Figure 1. Given two poses (R

l

; �

l

) and (R

r

; �

r

) from

two images I

l

and I

r

, any pair of 2D points p

l

i

and p

r

j

(i = 1; 2; ... ,n

l

;

j = 1; 2; ... ,n

r

) from I

l

and I

r

, de�ne two 3D lines L

1

and L

2

su
h that L

1

passes through points p

l

i

and �

l

, and L

2

passes through points p

r

j

and �

r

.

L

1

and L

2

are the proje
tion lines of points p

l

i

and p

r

j

, respe
tively.

Suppose ea
h proje
tion line L

k

(k = 1; 2) is written as

x� x

k

u

xk

=

y � y

k

u

yk

=

z � z

k

u

zk

(1)

with unit dire
tion ve
tor u

k

=(u

xk

; u

yk

; u

zk

)

T

:

Consider �rst how to 
ompute an optimal 3D pseudo-interse
tion point

P

q

(x

q

; y

q

; z

q

) with the smallest sum of distan
es from P

q

to the two lines

L

1

and L

2

. The error fun
tion 
an be de�ned [33℄ as

E = [(x

q

� x

k

)u

yk

� (y

q

� y

k

)u

xk

℄

2

+[(x

q

� x

k

)u

zk

� (z

q

� z

k

)u

xk

℄

2

+[(y

q

� y

k

)u

zk

� (z

q

� z

k

)u

yk

℄

2

(2)
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τ τ

L L

P
e

l r

1 2

i

l

j

rp p

Figure 2: A wrong \negative" 3D point 
orresponding to a pair of image

points that interse
t behind one or both 
ameras. This is a dete
table


ondition, even though it satis�es the de�nition of pseudo-interse
tion.

After setting

�E

�x

q

=

�E

�y

q

=

�E

�z

q

= 0, we obtain the optimal 3D pseudo-

interse
tion point P

q

[33℄

2

6

4

x

q

y

q

z

q

3

7

5

=

"

2

X

k=1

A

k

#

�1

2

6

4

2

X

k=1

0

B

�

A

k

2

6

4

x

k

y

k

z

k

3

7

5

1

C

A

3

7

5

(3)

where

A

k

=

2

6

4

u

2

yk

+ u

2

zk

�u

xk

u

yk

�u

xk

u

zk

�u

xk

u

yk

u

2

xk

+ u

2

zk

�u

yk

u

zk

�u

xk

u

zk

�u

yk

u

zk

u

2

xk

+ u

2

yk

3

7

5

As mentioned before, if p

l

i

and p

r

j

are true 
orresponding image points,

then P

q

is the real 3D point to be re
overed. However, there are four


ases that are ex
eptions: (1) no 3D point 
ould be obtained for p

l

i

and p

r

j

,

be
ause the two 3D lines L

1

and L

2

are parallel; (2) an in
orre
t \negative"

3D point 
ould be obtained for p

l

i

and p

r

j

, due to the two 3D lines L

1

and L

2

interse
ting behind one or both 
ameras, as shown in Figure 2; (3) a wrong

\epipolar" 3D point P

w

is obtained due to ambiguous 
orresponden
es, e.g.

a typi
al problem with p

l

i


orresponding to either p

r

j

or p

r

w

is shown in

9



τ τ

P

P

l r

q

r

jr

w
i

l

l

w

w

p
p

p
p

Figure 3: An error in 
orresponden
e produ
es a wrong 3D Pseudo-

interse
tion point P

w

, or ambiguity in pairs of 
orresponden
es. P

q

is

the 
orre
t pseudo-interse
tionpoint, but an in
orre
t 
orresponden
e using

P

r

w

along the 
orre
t epipolar line produ
es P

w

as an in
orre
t psuedo-

interse
tion point. If P

l

w

is an existing 
andidate 
orresponden
e, then two

pairs of ambiguous 
orresponden
es 
an be su

essfully resolved.

10



Figure 3. This 
ase shows that a point p

l

i

in image I

l


ould interse
t with

the proje
tion line of more than one image point in image I

r

; (4) a pseudo-

interse
tion 3D point P

q

is 
omputed although p

l

i

and p

r

j

don't 
orrespond

at all.

The �rst 
ase, with parallel proje
tion lines, is ex
eedingly rare, but is

easily dete
ted by examining whether a solution exists for Eq. 3. It also 
an

be dete
ted by examining whether the dire
tions of the proje
tion lines L

1

and L

2

are the same.

For the se
ond 
ase, as all pairs of image points from two images are


onsidered initially as possible 
orresponden
es, some of those will interse
t

in their negative dire
tions and satisfy the minimal distan
e 
ondition to

lines L

1

and L

2

, but are in
orre
t. Fortunately, it is easy to dete
t this kind

of \negative" 3D point by examining the dire
tions of rays from �

l

to p

l

i

and from �

l

to P

q

or rays from �

r

to p

r

j

and from �

r

to P

q

to make sure

that they are the same.

The third 
ase is the interesting one, 
aused by an in
orre
t 
orrespon-

den
e, due to ambiguity. For example, as shown in Figure 3, suppose p

l

i


orresponds to p

r

j

with P

q

as the 
orre
t 3D point. However, the known

poses spe
ify epipolar lines, and sin
e p

r

w

lies on the known epipolar line

of p

l

i

in image I

r

, then both are plausible but ambiguous 
andidates for a


orresponden
e mat
h. Thus p

l

i

and p

r

w

would interse
t at a 3D point P

w

.

However, this kind of ambiguity might be dete
ted be
ause p

l

w

might 
or-

respond to another existing point P

r

w

appearing in image I

r

. For this 
ase,

the true (maximum) 
orresponden
es 
ould be dete
ted for the two sets of

points, i.e., p

l

i


orresponds to p

r

j

and p

l

w


orresponds to p

r

w

. Unfortunately,

if the point p

l

w

doesn't appear in the �rst image, it is diÆ
ult to resolve this

inherent ambiguity. In su
h situations, a third image would greatly redu
e

su
h ambiguities.

For the fourth 
ase, sin
e it is an in
orre
t 
orresponden
e, the pseudo-

interse
tion point P

q

is lo
ated far from the two proje
tion lines. This 
ase

is easily dete
ted by its 2D aÆnity fun
tion de�ned below.

For any pair of image points (p

l

i

,p

r

j

), we proje
t the \pseudo-interse
tion"

point P

q

into the two images I

l

and I

r

, to get the two proje
ted image points

p

l

0

i

(u

0

i

; v

0

i

) and p

r

0

j

(u

0

j

; v

0

j

). Finally, we 
ompute the error fun
tions E

l

ij

and

E

r

ij

:

E

l

ij

= kp

l

i

� p

l

0

i

k

2

; E

r

ij

= kp

r

j

� p

r

0

j

k

2

(4)

and de�ne a 2D point aÆnity fun
tion sfp(p

l

i

;p

r

j

) is de�ned as

11



sfp(p

l

i

;p

r

j

) = e

�(E

l

ij

+E

r

ij

)=2

(5)

The 
riterion underlying sfp(p

l

i

;p

r

j

) is that the best estimate for any 3D

pseudo-interse
tion point is the point that minimizes the sum of the squared

distan
es between the predi
ted image lo
ation of the 
omputed 3D point

and its a
tual image lo
ations in the �rst and se
ond images. If sfp(p

l

i

;p

r

j

)

= 0, it means that p

l

i

is not a possible mat
h for p

r

j

; if sfp(p

l

i

;p

r

j

) = 1, it

means that p

l

i

is a perfe
t mat
h for p

r

j

.

3.2 Measuring 2D Line AÆnity from Three Images via a 3D

Pseudo-Interse
tion Line

Here, we develop an analagous line pseudo-interse
tion measure, similar to

the 2D aÆnity measure between image point features in the last subse
tion.

Given the poses of three images, a 2D aÆnity measure among image line

segments is developed for the problem of determining image line 
orrespon-

den
es, while simultaneously 
omputing the 
orresponding 3D lines. The


hallenge in 
ombining mat
hing and triangulation for image line features is

that it is more diÆ
ult to des
ribe the aÆnity between image line segments.

Sin
e it is well-known that line segment endpoints are prone to error due

to fragmentation and unreliable terminations in image line data, only the

position and orientation of the in�nite image line passing through a given

line segment of suÆ
ient length 
an be 
onsidered reliable. Moreover, this

implies that at least three images are ne
essary to des
ribe aÆnity, sin
e the

proje
tion planes for any pair of image lines in two images always interse
t

in a 3D line (if parallel, the planes are said to interse
t at in�nity), and

thus no 
on
lusive eviden
e about possible 
orresponden
es between in�nite

image lines may be derived from only two images.

Given three images and their 
orresponding 
amera poses, we assume

that three line segments are 
hosen at random, one from ea
h image, so that

the set may or may not truly 
orrespond to a single 3D line in the s
ene.

For any triplet of image lines from three images, there exists a 3D pseudo-

interse
tion line L with the smallest sum of squares of the mutual moments

of L with respe
t to the two proje
tion lines of the two endpoints for ea
h

image line. As this 
omputation will be performed many times on images

with large numbers of line segments as we sear
h for 
orre
t 
orresponden
es,

we need it to be 
omputationally eÆ
ient, even if this speed is a
hieved

at the expense of a

ura
y. Here, the linear line re
onstru
tion algorithm

presented in [12℄ is employed to a
hieve a 
losed-form solution for the best

12



3D pseudo-interse
tion line. It has been shown in [12℄ that the algorithm is

fast and eÆ
ient.

For any triplet of image line segments from three images, we wish to


ompute an aÆnity value that measures the degree to whi
h these lines

are 
onsistent with the hypothesis that they are all proje
tions of the same

linear 3D s
ene stru
ture. To do this, we �rst use the line re
onstru
tion

algorithm presented in [12℄ to 
ompute their pseudo-interse
tion line L, and

then proje
t L ba
k into ea
h image to get three in�nite image lines l

i

(i =

1; :::; 3).

Suppose l

i

is represented by the equation

f

i

u+ g

i

v + h

i

= 0

in pixel 
oordinates (u; v), and that the endpoints of the original 2D line

segment in image I

i

are (u

a

; v

a

) and (u

b

; v

b

). A natural measure of the

distan
e from the line segment to the proje
ted pseudo-interse
tion line l

i

is the sum of absolute pixel distan
es from the line segment endpoints to l

i

,

that is

r

i

=

j f

i

u

a

+ g

i

v

a

+ h

i

j + j f

j

u

b

+ g

i

v

b

+ h

i

j

q

f

2

i

+ g

2

i

: (6)

If the three image line segments a
tually are a true 
orresponden
e of a

single linear 3D stru
ture, we 
an expe
t all of them to lie \
lose" to their

respe
tive reproje
tions of the pseudo-interse
tion line, where 
loseness is

judged based on our knowledge of the error 
hara
teristi
s of the line segment

extra
tion pro
ess and the level of noise in the image. On the other hand, if

the image line segments do not 
orrespond to a linear s
ene stru
ture, their

distan
e from the proje
ted pseudo-interse
tion line will be large, whi
h

is true of most of the line triplets (barring a

idental alignments). The

distan
e is greater to the extent that the 
hosen lines are truly geometri
ally

in
ompatible.

Based on the above distan
e measure, the 2D line aÆnity value sfl(l

1

; l

2

; l

3

)

for a triplet of image line segments from three images is de�ned as

sfl(l

1

; l

2

; l

3

) = e

�(

P

3

i=1

r

i

)=6

(7)

where

P

3

i=1

r

i

=6 
an be interpreted as the average distan
e from the set of

image line segment endpoints to their respe
tive proje
ted pseudo-interse
tion

lines. If sfl(l

1

; l

2

; l

3

) = 0, it means that l

1

,l

2

, and l

3

are not 
ompatible at

all; if sfl(l

1

; l

2

; l

3

) = 1, it means tha l

1

,l

2

, and l

3

are perfe
tly 
ompatible.
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4 3D Re
onstru
tion Algorithms without Corre-

sponden
es Based on the Weighted Bipartite

Mat
hing Te
hnique

Traditional 
orresponden
e mat
hing te
hniques use only 2D pixel-level in-

formation. These 2D image analysis te
hniques en
ounter signi�
ant dif-

�
ulty in re
overing 
orre
t 
orresponden
es of image features, sin
e they

do not 
onsider the important 3D information 
aptured via our pseudo-

interse
tion points or lines.

In the previous se
tion, we developed two aÆnity measures between

image features, sfp(p

l

i

;p

r

j

) in Eq. 5 for image points and sfl(l

1

; l

2

; l

3

) in

Eq. 7 for image lines. The two aÆnity measure fun
tions 
ontain signi�
ant

information about potential 
orresponden
es between image features. The

important question that immediately follows is how to use this information

in a reliable pro
ess to determine image feature 
orresponden
es. Weighted

bipartite mat
hing [41, 42℄ is a mature mathemati
al framework for solving

mat
hing problems using our aÆnity measure.

In this se
tion, we will show how the problem of image feature mat
hing


an be formulated as a maximum-weight bipartite mat
hing problem by

using the 2D image point aÆnity fun
tion in Eq. 5 and the 2D image line

aÆnity fun
tion in Eq. 7. An eÆ
ient graph-based algorithm for mat
hing

and re
onstru
tion is developed to determine image feature 
orresponden
es

while simultaneously re
overing 3D features.

4.1 Formulation as a Maximum-Weight Bipartite Mat
hing

Problem

Given the two sets of image points L = fp

l

i

j i = 1; 2; :::; n

l

g from image I

l

and R = fp

r

j

j j = 1; 2; :::; n

r

g from image I

r

, an undire
ted weighted graph

G = (V;E) 
an be 
onstru
ted as follows: V = L [ R;E = fe

ij

g. Ea
h edge

e

ij

(i = 1; 2; ..., n

l

; j = 1; 2; ..., n

r

) 
orresponds to a weighted link between

p

l

i

in I

l

and p

r

j

in I

r

, whose weight w(e

ij

) is equal to the aÆnity between p

l

i

and p

r

j

, i.e. w(e

ij

)=sfp(p

l

i

;p

r

j

). Obviously, the graph arising in su
h a 
ase

is a weighted bipartite graph by 
onstru
tion, sin
e two points in the same

image 
annot be linked.

Given a set of line segments l

�

,l

�

, and l




in a triplet of images I

1

, I

2

and

I

3

, two undire
ted bipartite graphs G

1

= (V

1

; E

1

) and G

2

= (V

2

; E

2

) 
an be


onstru
ted as follows. First, generate two vertex sets V

1

and V

2

su
h that

V

1

= I

1

[I

2

and V

2

= I

2

[I

3

. Next, for all feasible mat
hes among any three

14



image lines l

�

, l

�

and l




, one from ea
h image, generate their edges e

1

��

2 E

1

and e

2

�


2 E

2

with weights equal to the aÆnity measure sfl(l

�

; l

�

; l




), as

de�ned in the last se
tion, i.e. w(e

1

��

) = w(e

2

�


) = sfl(l

�

; l

�

; l




). Note that

in general this 
ould involve taking all triplets of image line segments, one

from ea
h image, unless domain spe
i�
 information is used to prune the set

of possible mat
hes down to a smaller feasible set. Often su
h information

should be available through domain 
onstraints.

It should be noted that due to the fragmentation of image lines, multiple


ompeting edges 
ould exist between the same two nodes in either graph.

For example, suppose there exists a possible 
orresponden
e among the line

segments l

�

, l

�

, and l




from the three images respe
tively, and another

possible 
orresponden
e between l

�

, l

0

�

, and l




. It would seem then, that two

edges between l

�

and l

�

are needed, one to store the weight for sfl(l

�

; l

�

; l




)

and one for sfl(l

�

; l

�

; l

0




). In pra
ti
e, we remove these trivial 
on
i
ts at

graph 
reation time by 
he
king if an edge already exists between two nodes

before adding a new one. If the aÆnity value of the new edge is larger

than the edge already there, then the old edge is repla
ed by the new one,

otherwise it is left alone.

From the previous subse
tions, we know that for any pair of image points

p

l

i

and p

r

j

, there is a weighted link e

ij

between p

l

i

and p

r

j

in the weighted

bipartite graph G. Similarly, for any triplet of image line segments l

�

, l

�

,

and l




, there is a weighted link e

1

��

between l

�

and l

�

in the �rst bipartite

graph G

1

and a weighted link e

2

�


between l

�

and l




in the se
ond bipartite

graph G

2

. Ideally, if the image features (points/lines) are in true 
orrespon-

den
e then their weights w(e

ij

), or w(e

1

��

) and w(e

2

�


) should be equal to the

maximum weight of 1; thus they signi�
antly 
ontribute to the �nal mat
h-

ing to be determined, and the number of total image feature (point/line)


orresponden
es is equal to the size of the mat
hing. Due to the errors in

some of the 
amera poses and the lo
ations of the extra
ted image points

or line segments, however, the weights w(e

ij

), or w(e

��

) and w(e

�


) will be

below 1, but often 
an be expe
ted to be high (i.e. approa
h 1).

On the other hand, from graph theory, we know that given an undire
ted

graph, amat
hing is a subset of edgesM � E su
h that for all verti
es v 2 V ,

at most one edge of M is in
ident on v. A vertex v 2 V is mat
hed by M if

some edge inM is in
ident on v; otherwise, v is unmat
hed. The maximum-

weight mat
hing is a mat
hing M

w

of size j M

w

j su
h that the sum of the

weights of the edges in M

w

is maximum over all possible mat
hings. There-

fore, the image feature 
orresponden
es to be determined 
orrespond to the

maximum-weight mat
hing in the bipartite graphs G for determination of
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image point 
orresponden
es, or G

1

and G

2

for determination of image line


orresponden
es.

4.2 Redu
tion to the Maximum-Flow Problem

As dis
ussed from Subse
tion 4.1, the 
orresponden
e problem of image

points and lines 
an be 
onsidered as the problem of �nding the maximum-

weight mat
hing in the weighted bipartite graphs. The remaining question is

how to �nd the maximum-weight mat
hing in the weighted bipartite graphs.

If ea
h edge has a unit weight in the bipartite graph, then we get the

unweighted bipartite mat
hing problem, whi
h is to �nd a mat
hing of max-

imum 
ardinality. The above image feature mat
hing problem for image

points and lines 
ould be redu
ed to the unweighted mat
hing problem by

setting all the weights in the bipartite graph to be 1 if sfp(p

l

i

;p

r

j

) � T

p

for

image points p

l

i

and p

r

j

, or if sfl(l

�

; l

�

; l




) � T

l

for image line segments

l

�

; l

�

, and l




. Here, the thresholds T

p

and T

l

would be 
hosen empiri
ally.

For the weighted bipartite graph shown in Figure 4(a), its unweighted 
oun-

terpart is shown in Figure 4(a) by setting all the weights in the bipartite

graph to be 1 if sfp(p

1

i

;p

2

j

) � T

p

= 0:8.

1
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b
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d

e
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0.92
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1

2

3

4

5

a

b

c

d

e

1

1

1

1

1
1

(b)

Figure 4: The weighted and unweighted bipartite graphs: (a) weighted bi-

partite graph; (b) unweighted bipartite graph.

The problem of image feature mat
hing seems on the surfa
e to have

little to do with 
ow networks, but it 
an in fa
t be redu
ed to a maximum-
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ow problem. By relating the unweighted mat
hing problem for bipartite

graphs to the max-
ow problem for simple networks, the mat
hing problem

be
omes simpler, and the fastest maximum 
ow algorithm 
an be used to

�nd the maximum mat
hing, whi
h was dis
ussed in [13℄. In order to redu
e

the problem of a maximummat
hing in the bipartite graph G to a maximum


ow problem in the 
ow network G

0

, the tri
k is to 
onstru
t a 
ow network

in whi
h 
ows represent 
orresponden
es. We build a 
orresponding 
ow

network G

0

= (V

0

; E

0

) for the bipartite graph G as follows: Let the sour
e s

and sink t be new verti
es not in V , let V

0

= V [fs; tg, and let the dire
ted

edges of G

0

be given by

E

0

= f(s; v

0

i

) : v

0

i

2 Lg [ f(v

0

i

; v

0

j

) : v

0

i

2 L; v

0

j

2 R;

(v

0

i

; v

0

j

) 2 Eg [ f(v

0

j

; t) : v 2 Rg

and �nally, assign unit 
ow 
apa
ity to ea
h edge in E.

Further, it has been shown that a maximum mat
hing M

w

in a bipartite

graph G 
orresponds to a maximum 
ow in its 
orresponding 
ow network

G

0

. Therefore, the unweighted image feature 
orresponden
e problem is

exa
tly equivalent to �nding the maximum 
ow in G

0

= (V

0

; E

0

), and we


an 
ompute a maximum mat
hing in G by �nding a maximum 
ow in

G

0

. The main advantage of formulating the image feature 
orresponden
e

problem as the unweighted bipartite mat
hing problem is that there exist

very fast algorithms (e.g. Goldberg's algorithm is O(jV jjEjlogjV j)), whi
h


an be implemented in an eÆ
ient and parallel way to �nd the maximum

mat
hing in the unweighted bipartite graph.

4.3 Solving for the Maximum-Weight Bipartite Mat
h

The main disadvantage of the unweighted bipartite mat
hing formulation

is that it is 
ru
ial to 
hoose an appropriate value for the threshold T

p

for

the image point 
orresponden
e problem and T

l

for the image line segment


orresponden
e problem before the unweighted bipartite mat
hing algorithm

is performed. If T

p

or T

l

is too small, more outliers will be 
reated; if

T

p

or T

l

is too large, it will �lter out too many 
orre
t 
orresponden
es.

For example, as shown in Figure 4(a), if we 
hoose T

p

= 0.9, then the


orre
t 
orresponden
e (5; e) 
ould be �ltered. In this 
ase, we would miss

the mat
hing (5; e) and 
ould not then disambiguate the mat
hings (4; d)

and (4; e) for the left image point \4". Therefore, it is ne
essary to deal

with the general maximum-weight bipartite mat
hing problem, whi
h is the

generalization of the unweighted bipartite mat
hing problem. Although the

weighted mat
hing problem is not 
hara
terized by maximum 
ows in terms
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Figure 5: The symmetri
 di�eren
e operator of M and P : (a) mat
hing M ;

(b) augmenting path P wrt. M ; (
) M � P .

of augmenting paths, it indeed 
an be solved based on exa
tly the same idea:

start with any empty mat
hing, and repeatedly dis
over augmenting paths.

In the following, we fo
us on how to �nd the maximum-weight mat
hing in

the weighted bipartite graph.

Consider the mat
hing M shown in Figure 5(a). The edges (1; a), (2; b),

(3; 
), and (4; e) are mat
hed, and the edges (4; d) and (5; e) are unmat
hed.

Given a mat
hing M in a bipartite graph G = (V;E), a simple path in G is


alled an augmenting path with respe
t to mat
hing M if its two endpoints

are both unmat
hed, and its edges alternate between E �M and in M .

The augmenting path P = f(5; e); (e; 4); (4; d)g with respe
t to mat
hing M

is shown in Figure 5(b). Endpoints 5 and d are unmat
hed, and the path


onsisting of alternating edges (5,e) in E �M , (4,e) in M , and �nally (4,d)

in E �M .

Let p denote an augmenting path with respe
t to mat
hing M , and P

denote the set of edges in p, then M � P is 
alled the symmetri
 di�eren
e

of M and P . M � P is the set of elements that are in one of M or P ,

but not both, i.e. M � P = (M � P ) [ (P �M). It 
an be shown that

M � P has the following properties: (1) it is a mat
hing; (2) j M � P j =

j M j +1. The symmetri
 di�eren
e M � P is shown in Figure 5(
), i.e.

M � P = f(1; a); (2; b); (3; 
); (4; e); (5; d)g, and jM � P j = 4+1=5.
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For the mat
hing M , its total weight of mat
hing M is de�ned as

w(M) =

X

e2M

w(e)

Let M

0

be a set of edges; then an in
remental weight �M

0

is de�ned as the

total weight of the unmat
hed edges in M

0

minus the total weight of the

mat
hed edges in M

0

:

�M

0

= w(M

0

�M)� w(M

0

\M)

From the de�nition of in
remental weight, we know that for an augmenting

path p with respe
t to M , then �P gives the net 
hange in the weight of

the mat
hing after augmenting p:

w(M � P ) = w(M) + �P

Intuitively, we 
an use an iterative algorithm to 
onstru
t a maximum-

weight mat
hing. Initially, the mat
hing M is empty. At ea
h iteration,

the mat
hing M is in
reased by �nding an augmenting path of maximum

in
remental weight. This is repeated until no augmenting path with respe
t

to mat
hingM 
an be found. It has been proven that repeatedly performing

augmentations using augmenting paths of maximum in
remental weight,

yields a maximum-weight mat
hing M

w

[41℄.

The remaining problem is how to sear
h for augmenting paths with re-

spe
t to mat
hing M in a systemati
 and eÆ
ient way. Naturally, a sear
h

for augmenting paths must start by 
onstru
ting alternating paths from the

unmat
hed points. Be
ause an augmenting path must have one unmat
hed

endpoint in L and the other in R, without loss of generality, we 
an start

growing alternating paths only from unmat
hed verti
es of L. We may

sear
h for all possible alternating paths from unmat
hed verti
es of L si-

multaneously in a breadth-�rst manner. Here, an eÆ
ient Gabor's N-
ubed

weighted mat
hing algorithm [41℄ is used to 
ompute the maximum-weight

mat
hing in the weighted bipartite graph. This algorithm has two basi


steps: (1) to �nd a shortest path augmentation from a subset of left verti
es

in L to a subset of right verti
es in R; (2) to perform the shortest augmen-

tation. The algorithm is very eÆ
ient; more implementation are dis
ussed

in [41℄.

Sin
e the number of mat
hed verti
es in
reases by two ea
h time, this

takes at most

n

2

augmentations. It has been shown that for a mat
hing M

of size k of maximum weight among all mat
hings of size at most k, if there
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exists a mat
hing M

�

of maximum weight among all mat
hings in G, and

w(M

�

) � w(M), then M has an augmenting path of positive in
remental

weight. Therefore, the image feature 
orresponden
e problem 
an be exa
tly

redu
ed to �nding the maximum-weight mat
hing in the weighted bipartite

graph.

In summary, the general mat
hing and re
onstru
tion algorithm for im-

age point 
orresponden
es 
an be a
hieved by the following steps:

Step 1: 
ompute a pseudo-interse
tion point for ea
h pair of image points

p

l

i

and p

r

j

.

Step 2: 
al
ulate the value of sfp(p

l

i

;p

r

j

) in Eq. 5 for ea
h pair of image

points p

l

i

and p

r

j

.

Step 3: remove the pair for further graph-based mat
hing analysis if its

sfp(p

l

i

;p

r

j

) value is less than 
ertain prede�ned threshold.

Step 4: determine if the pair should not be added into a weighted bi-

partite graph in Step 5 with respe
t to in
orre
t Cases 1 and 2, whi
h were

dis
ussed in Se
tion 3.1.

Step 5: 
onstru
t a weighted bipartite graphG = (V;E) for image points.

Step 6: �nd the maximum weighted mat
hing M

w

for G.

Step 7: determine image point 
orresponden
es and their 
orresponding

3D points from the maximum mat
hing M

w

.

Similarly, the general mat
hing and re
onstru
tion algorithm for image

line 
orresponden
es 
an be a
hieved by the following steps:

Step 1: 
ompute a pseudo-interse
tion line for ea
h triplet of image lines

l

1

; l

2

, and l

3

.

Step 2: 
al
ulate the value of sfl(l

1

; l

2

; l

3

) in Eq. 7 for ea
h triplet of

image lines l

1

; l

2

, and l

3

.

Step 3: remove the triplet for further graph-based mat
hing analysis if

its sfl(l

1

; l

2

; l

3

) value is less than 
ertain prede�ned threshold.

Step 4: 
onstru
t two weighted bipartite graphs G

1

= (V

1

; E

1

) and G

2

=

(V

2

; E

2

) for image line segments.

Step 5: �nd the maximum weighted mat
hing M

w

for G

1

and G

2

.

Step 6: determine image line 
orresponden
es and their 
orresponding

3D lines from the maximum mat
hing M

w

.

It should be noted that Step 3 in the above two mat
hing algorithms

is not ne
essary, but 
an �lter out a great number of in
orre
t 
orrespon-

den
es that don't 
orrespond at all, thus improve 
omputational eÆ
ien
y

and running time of the two mat
hing algorithms sin
e it 
an redu
e the

numbers of verti
es and edges, i.e. the size of the bipartite graphs. In
or-

re
t 
orresponden
es that are not �ltered in Step 3, will be determined by
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our weighted bipartite mat
hing pro
ess.

5 Experimental Results for Corresponden
e of Im-

age Points

In this se
tion, we present experiments to 
hara
terize the performan
e of

our approa
h to 3D point re
onstru
tion while simultaneously determin-

ing 
orresponden
es, based on the aÆnity fun
tion de�ned in Eq. 5. We

will examine the performan
e in terms of the number of the re
overed im-

age point 
orresponden
es, and the distan
e between ea
h triangulated 3D

pseudo-interse
tion point and its a
tual 3D point. In all the experiments,

we assume that both the intrinsi
 
amera parameters and poses are known.

The algorithm uses two sets of image points separately extra
ted from two

images as input, and produ
es a set of image point 
orresponden
es and

their 
orresponding triangulated 3D points.

5.1 Syntheti
 Data

The syntheti
 experiments are performed on a set of synthesized 3D points

representing a rigid obje
t. To evaluate performan
e with known ground

truth, a set of 40 3D points were randomly generated from the obje
t and

proje
ted into two images. The image point lo
ations for ea
h image were


orrupted by Gaussian noise. Noise for ea
h image point lo
ation was as-

sumed to be zero-mean, identi
ally distributed, and independent. The stan-

dard deviation ranges from 1.0 pixel to 5.0 pixels. In order to examine how

the robustness of mat
hing is a�e
ted by missing points (i.e. no 
orre
t


orresponden
e in the other image), 16 sets were generated with di�erent

per
entages of missing points ranging from

0

40

% to

15

40

%. For ea
h of these

redu
ed point sets, 100 trials of noisy samples were used to spatially perturb

the remaining points for ea
h of the �ve levels of noise. For ea
h sample

of the same set, the number of missing points is the same, i.e. the same

per
entage of image points were randomly deleted. The algorithm was run

on ea
h of the samples, and the number of in
orre
t image point 
orre-

sponden
es was 
omputed for ea
h sample run. Figure 6 shows the average

number of in
orre
t 
orresponden
es for ea
h noise level.

As shown in Figure 6, the algorithm works very well if the number of

missing points is 0, i.e. ea
h 3D point to be re
overed is visible in both

images. On average, there is only one in
orre
t 
orresponden
e even for

the highest noise level of 5 pixels. For lower levels of noise ranging from 1
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Figure 6: Performan
e of the image point mat
hing algorithm against �ve

levels of noise with di�erent numbers of missing points. The average number

of in
orre
t 
orresponden
es is shown for the true set of 3D points. Noise

level k means all points were perturbed with Gaussian noise of standard

deviation k.

pixel to 3 pixels, there is litte e�e
t on the performan
e of the algorithm

for di�erent numbers of missing points. For the higher levels of noise, the

number of in
orre
t 
orresponden
es in
reases linearly as the di�eren
e in

the sizes of image points from two images in
reases. From Figure 6, we 
an

see that on average, the number of in
orre
t 
orresponden
es rises about 3%

at any of the noise levels. Therefore, our experiments have shown that the
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algorithm 
an tolerate a signi�
ant di�eren
e in the number of image points

from two images and is robust against a reasonable level of noise.

5.2 PUMA Sequen
e

The 3D point re
onstru
tion algorithm with unknown 
orresponden
es is

applied to the set of real images referred to as the PUMA sequen
e [49℄, sin
e

the images were a
quired by a 
amera mouted on a PUMA robot arm. The

image sequen
es were 
aptured with a SONY B/W AVC D-1 
amera with

an e�e
tive �eld of view of 41.7

Æ

(fovx: �eld of view x-axis) by 39.5

Æ

(fovy:

�eld of view y-axis) and the image resolution is 256 � 242. Thirty frames

were taken over a total angular displa
ement of 116 degrees. The maximum

displa
ement of the 
amera in these twenty frames is approximately 2 feet

along the world y-axis and 1 foot along the world x-axis.

For ea
h image, line segments were �rst extra
ted by the Boldt algorithm

[9℄, and then 2D 
orner image points were 
omputed by 
al
ulating the

interse
tion point between any pair of nearby image line segments. Figure 7

shows two sets of extra
ted and unmat
hed image points from the 1st frame

and the 10th frame, respe
tively. There is a di�eren
e in the number of

image points from the two images, sin
e the 1st frame has 113 image points

while the 10th frame has 107 image points. There are two kinds of error

sour
es: the 2D image point lo
ations and the estimated 
amera parameters.

The noise in the image points is due to many typi
al fa
tors su
h as 
amera

distortion and errors in the image line extra
tion algorithm. The noise in the


amera parameters is mainly due to errors in 
amera 
alibration. As seen in

Figure 7, some image points were extra
ted in the 1st frame, but not in the

10th frame, and vi
e versa. Thus, it is a general 3D point re
onstru
tion

problem with unknown image point 
orresponden
es.

Figure 8 shows a subset of 43 
orre
t image point 
orresponden
es de-

termined from the two frames. The 
orresponding 3D points re
onstru
ted

by the algorithm are reported in Table 1. This experiment uses the ground

truth 3D data supplied in Kumar's thesis [49℄. Note that here we only

reported the 
omparisons between the re
onstru
ted 3D points and their

ground truth data for those 3D points whose ground truth 
oordinates are

available. As shown in Table 1, there is only one in
orre
t 
orresponden
e

labeled 21, where the 
orresponden
e is of two di�erent image points from

the 1st frame and 10th frame. Point 21 in Frame 1 is on the lower of two

re
tangles (the upper left 
orner), while Point 21 in Frame 10 is on the up-

per re
tangle (the lower left 
orner). Although they are very 
lose in the

images, the absolute error between the triangulated 3D point re
overed by
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Table 1: 3D point re
onstru
tion error for the PUMA ROOM data (average

3D error: 0.43 feet without in
orre
t point 21.

Line

A
tual 3D point Computed 3D points Error

x y z x y z (feet)

1 -6.06 -0.47 13.70 -5.94 -0.52 13.48 0.26

2 -6.06 -0.47 11.56 -5.89 -0.55 11.18 0.43

3 -6.06 -0.47 16.81 -6.87 -0.50 16.62 0.83

4 -6.06 -0.47 14.68 -6.88 -0.49 14.50 0.84

5 -8.58 -0.47 16.81 -8.53 -0.48 16.64 0.18

6 -8.58 -0.47 14.68 -8.54 -0.45 14.59 0.11

7 0.00 4.05 20.82 0.20 4.04 18.89 1.94

8 0.00 8.13 13.51 0.13 8.21 13.32 0.25

9 0.00 6.81 14.91 0.17 6.89 14.64 0.33

10 0.00 7.31 13.51 0.15 7.38 13.28 0.28

11 0.00 7.00 13.89 0.19 7.09 13.60 0.36

12 0.00 7.00 11.76 0.18 7.11 11.47 0.36

13 0.00 5.36 13.89 0.11 5.39 13.76 0.17

14 0.00 4.69 14.89 0.18 4.72 14.66 0.30

15 0.00 4.66 16.00 0.27 4.72 16.19 0.33

16 0.00 4.98 11.95 0.25 5.07 11.58 0.46

17 0.00 4.92 14.11 0.23 4.98 13.77 0.41

18 0.00 4.25 11.96 0.34 4.22 11.42 0.64

19 -3.32 9.01 7.03 -3.17 9.23 6.35 0.73

20 -1.45 9.01 3.13 -1.08 9.18 2.27 0.95

21 -3.02 3.80 11.28 0.68 4.26 2.33 9.69

22 -6.32 8.11 0.00 -6.13 8.27 -0.85 0.88

23 -4.20 8.07 0.00 -4.00 8.19 -0.64 0.68

24 -6.35 6.49 0.00 -6.20 6.56 -0.55 0.58

25 -1.77 2.86 0.00 -1.52 2.87 -0.68 0.73

26 -7.26 8.09 0.00 -7.11 8.17 -0.47 0.50

27 -7.26 6.45 0.00 -7.15 6.50 -0.25 0.27

28 -4.82 -0.47 17.82 -4.68 -0.52 17.64 0.23

29 -4.81 -0.47 14.82 -4.67 -0.54 14.56 0.30

30 -4.81 -0.47 16.95 -4.66 -0.52 16.73 0.27

31 -4.43 -0.47 11.63 -4.22 -0.55 11.30 0.40

33 -6.44 -0.47 16.95 -6.35 -0.52 16.74 0.23

34 -6.94 -0.47 19.45 -6.86 -0.52 19.24 0.23

35 -6.94 -0.47 17.82 -6.88 -0.50 17.66 0.18

36 -7.53 -0.47 17.54 -7.48 -0.49 17.38 0.16

37 -3.32 9.01 15.03 -3.42 9.04 15.08 0.12

38 0.00 5.37 11.76 0.35 5.48 11.17 0.70

39 0.00 4.10 14.09 0.24 4.15 13.76 0.41

40 -1.43 3.64 0.00 -1.21 3.67 -0.55 0.59

41 -4.23 6.45 0.00 -4.05 6.53 -0.61 0.64

43 -6.87 0.11 13.75 -6.84 0.09 13.71 0.05

this in
orre
t 
orresponden
e and the original 3D point asso
iated with im-

age point 21 in the �rst frame has large error, 9.69 feet. For the other 42
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orre
t 
orresponden
es, the average distan
e between the triangulated 3D

points and ground truth data is 0.43 feet.

5.3 RADIUS Image Set

The 3D point re
onstru
tion algorithm without apriori 
orresponden
es is

also applied to the RADIUS image set. This experiment uses data supplied

through the ARPA/ORD RADIUS proje
t(Resear
h and Development for

Image Understanding Systems) [4℄. The images and 
amera parameters

used in this experiment were the "model board 1" data set distributed with

version 1.0 of the RCDE (RADIUS Common Development Environment)

software pa
kage [54℄. The image size is approximate 1320 � 1035 pixels.

Unlike the PUMA image sequen
e used in last subse
tion, ea
h pair of im-

ages from this data set were taken from two disparate views. Eight images

were provided in this data set.

Again, for ea
h image, line segments and 2D 
orner points were extra
ted

as part of an automated building dete
tion algorithm [17℄. These 2D 
orner

points are thus extra
ted in a di�erent manner than those in the PUMA

sequen
e. Here the points to be mat
hed are the 
orners of building poly-

gons. Figures 9 and 10 show two sets of extra
ted and unmat
hed image

points from images J3 and J7, respe
tively. It should be noted that J3 and

J7 have two di�erent numbers of missing points although they have exa
tly

the same number of image points, i.e. 186 points. Again, both the 2D image

points and the 
amera parameters are noisy. The noise in the image points

is again due to errors in point lo
alization and 
amera 
alibration.

Our algorithm re
overed 61 
orresponden
e rooftop polygon points, all

of them 
orre
t (Figures 11 and 12). The 
orresponding 3D points re
on-

stru
ted by the algorithm are reported in Table 2. This experiment uses

the ground truth 3D data supplied in the \model board 1" data set Here

we only reported the 
omparisons between the re
onstru
ted 3D points and

their ground truth data for those 3D points whose ground truth 
oordinates

are available. From Table 2, we 
an see that for some image 
orresponden
es

su
h as 20, 21, 34, 35, 36, 49, 50, and 57, the triangulated 3D points have

large errors although their 
orresponden
es are determined 
orre
tly by our

algorithm. This is due mainly to the errors in the lo
ations of rooftop poly-

gon points, sin
e it is well known that these 2D errors have a signi�
ant e�e
t

on the triangulated 3D data, espe
ially when there are only two images [17℄.

Some of the in
reased size of errors 
an be attributed to 2D 
orners being

"moved" due to shadows in one of the views (e.g. point 49 whi
h produ
ed

the largest error). In order to improve overall a

ura
y, more images are
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required. Nevertheless, the results are quite good, with the average distan
e

between the triangulated 3D points and ground truth data a
ross 61 
orre
t

image point 
orresponden
es being 0.45 feet.

6 Experimental Results for Image Lines

In this se
tion, we will demonstrate the performan
e of the 3D line re
on-

stru
tion algorithm with unknown 
orresponden
es. It should be noted that

the a

ura
y of the triangulated 3D lines depends upon the performan
e of

the line re
onstru
tion algorithm employed. Here, we use a fast line re
on-

stru
tion algorithm with 
omputational eÆ
ien
y and robustness against

noise [12℄. Therefore, in the following, we will simply report a 
ompar-

ison between the triangulated 3D lines and their ground-truth data, and


on
entrate instead on 
hara
terizing the performan
e of the algorithm for

determining the 2D line 
orresponden
es that are used for 3D line re
on-

stru
tion. Thus, more detailed experiments are reported in terms of the

number of the re
overed image line 
orresponden
es. In all the experiments

presented here, we again assume that both the intrinsi
 
amera parameters

and poses are known. Unlike the previous se
tion, image lines are extra
ted

dire
tly as image features, and the algorithm uses three sets of image lines

a
ross three images as input, 
omputing the image line 
orresponden
es and

their 
orresponding triangulated 3D lines as output.

6.1 Syntheti
 Data

Simulations were performed on a set of syntheti
 3D lines representing a rigid

body. A set of 40 3D lines were randomly generated from an obje
t, and

proje
ted into three images. The two endpoints of ea
h image line segment

in three images were 
orrupted by Gaussian noise. Noise for ea
h image line

segment endpoint was assumed to be zero-mean, identi
ally distributed, and

independent. The standard deviation of line endpoint noise ranges from

1.0 pixel to 5.0 pixels. In order to examine how the number of in
orre
t


orresponden
es is a�e
ted by the number of missing image line segments,

16 sets of 100 noisy line samples were 
reated for ea
h level of noise, in terms

of 16 di�erent per
entages of missing lines ranging from

0

40

% to

15

40

%. For

ea
h sample of the same set, the number of missing lines is the same, i.e.

the same per
entage of image lines were randomly deleted. The algorithm

was run on ea
h of the samples, and the average number of in
orre
t image

line 
orresponden
es was 
omputed a
ross samples used. Figure 13 shows 16
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Table 2: 3D point re
onstru
tion error for the RADIUS image data.

Line

A
tual 3D point Computed 3D points Error

x y z x y z (feet)

1 15.79 22.79 -1.15 16.12 22.79 -0.87 0.44

2 15.77 16.40 -1.15 16.01 16.51 -1.33 0.32

3 20.51 16.39 -1.15 20.74 16.48 -1.39 0.34

4 20.52 22.78 -1.15 20.83 22.76 -0.93 0.38

5 9.90 39.36 -1.21 10.45 39.46 -1.32 0.56

6 9.90 40.13 -1.21 10.45 40.16 -1.29 0.55

7 5.89 40.13 -1.21 6.26 40.17 -1.00 0.43

8 5.89 39.35 -1.21 6.26 39.44 -1.01 0.43

15 17.55 7.14 -0.16 17.79 7.17 0.46 0.67

16 17.52 0.76 -0.16 17.77 0.88 0.46 0.68

17 20.08 0.75 -0.16 20.32 0.80 -0.35 0.31

18 20.11 7.13 -0.16 20.34 7.14 -0.18 0.23

20 17.26 10.35 -0.22 17.53 10.48 1.06 1.31

21 17.27 13.36 -0.22 17.56 13.56 1.05 1.32

22 20.29 13.35 -0.22 20.52 13.52 0.06 0.40

23 22.92 11.25 -0.97 22.98 11.49 -0.86 0.27

24 1.60 23.56 -0.43 1.86 23.44 -1.06 0.69

25 1.61 26.53 -0.43 1.85 26.61 -1.21 0.82

26 -4.41 26.55 -0.43 -4.04 26.69 -0.65 0.45

27 -4.42 23.58 -0.43 -4.04 23.47 -0.49 0.40

28 1.64 27.16 -0.78 1.86 27.21 -1.29 0.56

29 1.61 23.38 -0.78 1.86 23.40 -1.04 0.36

30 4.49 26.52 -0.55 4.75 26.55 -0.60 0.27

31 4.34 16.55 -0.55 4.62 16.57 -0.53 0.28

32 14.33 16.40 -0.55 14.60 16.45 -0.65 0.29

33 14.49 26.31 -0.94 14.75 26.35 -1.06 0.30

34 14.45 24.56 -0.55 13.07 24.90 -2.01 2.03

35 12.88 26.39 -0.55 13.12 26.38 -1.98 1.45

36 20.47 26.36 1.71 20.91 26.42 -0.19 1.96

49 20.65 32.76 -1.19 20.13 35.10 -0.05 2.65

50 20.72 35.92 -1.19 20.16 35.92 -0.10 1.22

51 12.80 36.09 -1.19 13.09 36.17 -0.73 0.55

52 12.78 35.26 -1.19 13.05 35.34 -0.86 0.43

55 13.16 33.77 -1.47 13.46 33.78 -1.23 0.38

56 13.16 33.01 -1.47 13.42 33.16 -1.43 0.30

57 19.01 33.74 -1.47 19.59 33.04 -0.93 1.05

58 19.01 32.97 -1.47 19.59 33.66 -1.05 0.99

di�erent average numbers of in
orre
t 
orresponden
es for ea
h noise level,

respe
tively.
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As shown in Figure 13, the algorithm works very well if the number of

missing lines is 0, i.e. ea
h 3D line is visible in all three images. For example,

on average, there are only about 0.5 in
orre
t 
orresponden
es for the noise

level of 5 pixels. For the lower levels of noise ranging from 1 pixel to 3

pixels, there is little e�e
t on the performan
e of the algorithm for di�erent

numbers of missing points. For the higher levels of noise, the number of

in
orre
t 
orresponden
es in
reases as the number of missing image lines

in
reases. From Figure 13, we 
an see that on the average, the number

of in
orre
t 
orresponden
es rises about 0.5 lines (about 2%) at any of the

noise levels. Therefore, our experiments have shown that the algorithm 
an

tolerate a di�eren
e in the number of image lines from three images and is

robust against a reasonable level of noise.

6.2 PUMA Sequen
e

In this subse
tion, we test on the indoor PUMA image sequen
e again. For

ea
h image, 2D image line segments were extra
ted by the a

urate Boldt

line extra
tion algorithm [9℄. Figures 14 shows a triplet of the extra
ted

line sets from the 1st, 10th, and 20th frames in the sequen
e with 196, 185,

and 189 image line segments, respe
tively. Here, the three images have more

a

urate image line segments, but also more line segments are extra
ted than

in the previous set shown in Figure ??. Figure ?? shows 76 
orre
t image line

segment 
orresponden
es. Again, this experiment uses the ground truth 3D

data supplied in Kumar's thesis [49℄. Here we only reported the 
omparisons

between the re
onstru
ted 3D lines and their ground truth data for those 3D

lines whose ground truth 
oordinates of two endpoints are available. Table 3

and Table 4 report a 
omparison between the triangulated 3D lines and their

ground-truth data. For the 35 line 
orresponden
es, the average orientation

error is 3.36 degree, and the average distan
e error is 0.11 feet.

6.3 RADIUS Image Set

The goal of this experiment is to test the performan
e of 
orresponden
e

pro
ess for larger size images and a huge line data set, and we will not

attempt evaluation of 3D a

ura
y here. Again, this experiment uses the

RADIUS image data set (J1-J8) supplied through the ARPA-ORD RA-

DIUS proje
t [4℄. Ea
h image 
ontains approximately 1320�1035 pixels,

with about 11 bits of grey level information per pixel. The dimensions

of ea
h image vary slightly be
ause the images have been resampled, and

unmodeled geometri
 and photometri
 distortions have been introdu
ed to
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more a

urately re
e
t a
tual operating 
onditions.

Here, the Boldt line algorithm [9℄, was run on all of the eight images

J1-J8. To redu
e the number of lines to a 
omputationally manageable size

these images were �rst redu
ed in resolution to half their original size before

line extra
tion. After line extra
tion, the segments found were res
aled ba
k

into original image 
oordinates, then �ltered so that ea
h line segment in the

�nal set has a length of at least 10 pixels and a 
ontrast (di�eren
e in average

grey level a
ross the line) of at least 15 grey levels. This pro
edure produ
ed

more than 2000 line segments per image. Figures 16, 17, and 18 show three

sets of line segments produ
ed from images J1, J2, J3, respe
tively.

As shown in Figures 16, 17, and 18, the three line sets are huge, and the

numbers of image line segments from the three images are di�erent, sin
e

J1, J2, and J3 have 2662, 2772, and 2734 image line segments, respe
tively.

Both the 2D image lines and the 
amera parameters are noisy. Clearly, there

exists signi�
ant fragmentation in the three image line data sets. Due to this

fragmentation, there may be several line segment 
orresponden
es that 
or-

respond to the same 3D line. Geometri
ally, ea
h �nite image line segment


orresponds to a �nite line segment in its 
orresponding 3D line. Due to frag-

mentation, ea
h of three line segments in an image line 
orresponden
e often

is from a di�erent part of the a
tual 3D line triple. In order to redu
e some

unne
essary 
orresponden
es obtained by the line mat
hing and re
onstru
-

tion algorithm, a "
ommon part" 
onstraint was imposed. This 
onstraint

ensures that any line segment 
orresponden
e must have an overlapping


ommon part in their 3D interse
tion line. Another advantage of this 
on-

straint is that it 
an eliminate some in
orre
t 
orresponden
es whi
h have

no 
ommon element in their 
orresponding 3D pseudo-interse
tion lines, al-

though they have small aÆnity values. The result of the algorithm was 232

line segment 
orresponden
es a
ross three images, shown in �gures 19, 20,

and 21.

7 Con
lusions

This paper addresses the problems of determining image feature 
orrespon-

den
es while simultaneously 
omputing the 
orresponding 3D features, for

images with known 
amera pose. Our novel 
ontribution is the development

and appli
ation of an aÆnity measure between image features (points and

lines), i.e. a measure of the degree to whi
h 
andidates from di�erent images


onsistently represent the proje
tion of the same 3D point or the same 3D

line. We utilize optimal bipartite graph mat
hing to solve the problem of

29



simultaneous re
overy of 
orresponden
e and 3D re
onstru
tion. The mat
h-

ing me
hanism is general and robust sin
e it ensures that a maximal mat
h-

ing 
an be found based upon proven graph theoreti
al algorithms. From the

point of view of implementation, this graph-based mat
hing te
hnique 
an

be implemented eÆ
iently and in parallel, and has been su

essfully applied

to mat
hing problems involving graphs of quite large size.

Experiments with both syntheti
 and real image data sets were 
on-

du
ted to evaluate performan
e of the point and line mat
hing algorithms.

The experiments have shown that the algorithms are robust in the presen
e

of signi�
ant amounts of missing points and lines, and noise in the 
am-

era parameters and in the extra
ted image point and line features. The

presented integrated mat
hing and triangulation methods are well-suited

for photogrammetri
 mapping appli
ations where 
amera pose is already

known, for wide-baseline multi-
amera stereo systems, and for model ex-

tension where a set of known features are tra
ked. Also, these te
hniques

potentially have a wider appli
ation domain than traditional mat
hing and

re
onstru
tion algorithms, sin
e our mat
hing me
hanism is general-purpose

and only the aÆnity measures would need to be rede�ned. They 
ould also

be extended to deformable 3D mat
hing and re
onstru
tion problems.

Some remaining issues asso
iated with generalization to multi-image

analysis over larger numbers of images are subje
t for further study. In

order to perform 3D re
onstru
tion from m images, the point mat
hing and

triangulation algorithm 
ould be repeated for ea
h image pair of

�

m

2

�

, and

the integrated line mat
hing and triangulation algorithm 
ould be repeated

for ea
h image triplet of

�

m

3

�

. This is not true multi-image mat
hing, sin
e

all images are not used together, and the two aÆnity measures are not able

to des
ribe the aÆnity among image features (points and lines) over mul-

tiple images. The development of a new multi-image mat
hing algorithm

based on more general aÆnity measures is left for future work. Finally, it is

desirable to develop a uni�ed mat
hing and re
onstru
tion algorithm based

on both image points and image lines, 
ombining the advantages of both.
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(a)

(b)

Figure 7: PUMA sequen
e data for mat
hing experiments: (a) extra
ted

image points (113 points) in the 1st frame; (b) extra
ted image points (107

points) in the 10th frame.
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(a)

(b)

Figure 8: (a) 43 mat
hed image points in the 1st frame; (b) 43 mat
hed

image points in the 10th frame.
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Figure 9: Extra
ted image points in image J3. The 186 points are a result

of generating 2D building polygons via the ASCENDER system.
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Figure 10: Extra
ted image points (186 points) in image J7.
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Figure 11: Experiments with RADIUS dete
t 61 mat
hed image points in

image J3.
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Figure 12: Experiments with RADIUS dete
t 61 mat
hed image points in

image J7.
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Figure 13: Performan
e of the image line mat
hing algorithm against 5 levels

of noise with di�erent numbers of missing points.
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(a)

(b)

(
)

Figure 14: Boldt lines in PUMA sequen
e. Three sets of image line segments

extra
ted by the Boldt algorithm: (a) 196 image line segments in frame 1;

(b) 185 image line segments in frame 10; (
) 189 image line segments in

frame 20.

44



(a)

(b)

(
)

Figure 15: 76 mat
hed line segments from Boldt lines in PUMA sequen
e:

(a) frame 1; (b) frame 10; (
) frame 20.
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Table 3: 3D line re
onstru
tion error for the PUMA Sequen
e frames using

Boldt line algorithm: Pro
essing of Frames 1,10,20 produ
es an average

orientation error of 3.36 degree, and average distan
e error of 0.11 feet (Part

1).

Line A
tual 3D Lines Computed 3D Lines Orient. Distan
e

u

x

u

y

u

z

u

x

u

y

u

z

Error Error

m

x

m

y

m

z

m

x

m

y

m

z

4 -0.00 -0.00 1.00 0.08 0.02 1.00

-8.19 -0.00 -0.00 -7.98 -0.91 0.66 4.74 0.05

5 -0.00 -0.01 1.00 0.00 -0.02 1.00

-7.01 -0.00 -0.00 -7.13 0.16 0.03 0.21 0.19

7 0.00 0.00 1.00 0.01 0.01 1.00

-7.25 0.00 0.00 -7.30 0.04 0.09 0.71 0.05

8 -0.00 -0.00 1.00 0.02 -0.00 1.00

-7.03 -0.00 -0.00 -7.15 -0.09 0.17 1.38 0.12

9 0.00 1.00 0.00 0.12 0.97 -0.20

13.89 0.00 0.00 14.50 -1.65 0.62 13.41 0.01

10 0.00 -0.02 1.00 -0.01 -0.01 1.00

-5.02 0.00 0.00 -4.84 0.35 -0.04 0.95 0.22

11 -0.00 -0.03 1.00 0.02 -0.04 1.00

-5.34 -0.00 -0.00 -5.49 -0.09 0.12 1.39 0.12

12 1.00 -0.00 -0.00 1.00 -0.02 0.10

-0.00 -7.03 9.01 -1.05 -6.71 9.10 5.90 0.09

15 1.00 0.01 0.00 1.00 0.00 0.06

0.14 -11.28 4.17 -0.23 -11.09 4.16 3.60 0.03

17 0.00 1.00 0.00 0.06 0.99 -0.16

11.28 0.00 2.94 12.63 -0.09 3.44 9.58 0.00

18 1.00 0.01 0.00 1.00 0.01 -0.04

0.14 -11.28 2.79 0.16 -10.87 2.74 2.09 0.02

23 -0.00 -0.00 1.00 0.01 0.00 1.00

0.47 -4.82 -0.00 0.51 -4.90 0.00 0.63 0.04

24 -0.00 -0.00 1.00 -0.03 0.02 1.00

0.47 -4.43 -0.00 0.72 -3.95 0.09 1.93 0.02

29 0.00 0.00 1.00 0.02 -0.02 1.00

0.47 -6.94 0.00 0.09 -7.35 -0.16 1.91 0.01

30 -0.00 -0.00 1.00 0.01 -0.00 1.00

0.47 -7.53 -0.00 0.38 -7.63 -0.03 0.41 0.02

33 1.00 -0.00 -0.00 1.00 0.00 -0.04

-0.00 -15.03 9.01 0.45 -14.65 9.14 2.48 0.10

34 0.00 1.00 0.01 0.02 1.00 -0.04

14.85 0.00 0.00 15.24 -0.31 0.20 3.31 0.03

35 0.00 0.00 1.00 0.00 0.01 1.00

-9.01 -3.32 0.00 -9.05 -3.34 0.07 0.49 0.04
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Table 4: 3D line re
onstru
tion error for the PUMA Sequen
e frames using

Boldt line algorithm: Pro
essing of Frames 1,10,20 produ
es an average

orientation error of 3.36 degree, and average distan
e error of 0.11 feet (Part

2)(
ontinue from Table 3).

Line A
tual 3D Lines Computed 3D Lines Orient. Distan
e

u

x

u

y

u

z

u

x

u

y

u

z

Error Error

m

x

m

y

m

z

m

x

m

y

m

z

36 0.00 1.00 -0.00 -0.10 0.98 0.18

11.78 0.00 0.00 10.56 1.21 -0.54 11.93 0.01

37 0.00 -0.00 1.00 -0.00 -0.02 1.00

-5.40 0.00 0.00 -5.65 0.26 -0.00 0.90 0.22

39 0.00 -0.07 1.00 0.00 -0.03 1.00

-5.05 0.00 0.00 -4.55 0.19 0.02 2.17 0.21

44 1.00 0.02 -0.00 1.00 0.01 -0.02

0.28 -11.28 5.26 0.21 -10.99 5.28 1.45 0.19

50 1.00 -0.02 0.00 0.99 -0.03 0.13

0.00 0.00 6.37 -0.81 0.15 6.35 7.34 0.01

56 1.00 0.00 0.01 1.00 -0.01 0.01

0.00 -14.85 -0.47 -0.19 -14.59 -0.60 0.74 0.25

58 1.00 0.01 0.00 1.00 -0.06 0.01

0.19 -13.75 1.57 -0.83 -13.51 1.00 4.27 0.31

59 1.00 -0.05 0.00 1.00 -0.05 0.06

-0.74 -13.73 0.37 -0.77 -13.85 0.32 3.44 0.04

60 1.00 -0.00 0.00 1.00 -0.00 0.07

-0.06 -13.75 0.08 -0.08 -13.91 0.02 3.95 0.06

61 1.00 0.00 0.00 1.00 0.01 0.08

0.00 -16.81 -0.47 0.20 -17.14 -0.43 4.74 0.01

63 1.00 0.00 0.05 1.00 -0.00 0.03

0.02 -17.92 -0.47 -0.08 -17.52 -0.54 1.25 0.02

64 1.00 0.00 0.00 1.00 -0.02 0.06

0.00 -11.13 9.01 -0.71 -10.82 9.06 3.48 0.03

65 0.00 1.00 0.00 -0.10 0.99 0.13

16.00 0.00 0.00 15.73 1.67 -0.47 9.26 0.34

66 0.00 0.00 1.00 -0.00 0.01 1.00

-9.01 -1.45 0.00 -9.11 -1.04 -0.01 0.47 0.42

71 1.00 0.00 0.00 1.00 -0.01 -0.05

0.00 -19.48 -0.47 -0.31 -18.98 -0.59 3.20 0.01

72 1.00 0.00 0.00 1.00 -0.01 -0.01

0.00 -17.82 -0.47 -0.15 -17.59 -0.57 0.65 0.12

73 1.00 -0.00 -0.00 1.00 -0.00 -0.00

-0.00 -16.95 -0.47 -0.08 -16.73 -0.54 0.29 0.20
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 Plot of j1.tks    Sat Feb  3 13:48:43 1996 

Figure 16: RADIUS model board image J1. The Boldt straight line extra
-

tion algorithm produ
ed 2662 lines.
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 Plot of j2.tks    Sat Feb  3 13:49:28 1996 

Figure 17: RADIUS model board image J2. The Boldt straight line extra
-

tion algorithm produ
ed 2772 lines.
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 Plot of j3.tks    Sat Feb  3 13:50:00 1996 

Figure 18: RADIUS model board image J3. The Boldt straight line extra
-

tion algorithm produ
ed 2734 lines.
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 Plot of j1.tks    Tue Jan 23 20:09:30 1996 

Figure 19: 232 mat
hed line segments for RADIUS model board image J1.
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 Plot of j2.tks    Tue Jan 23 20:10:16 1996 

Figure 20: 232 mat
hed line segments for RADIUS model board image J2.
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 Plot of j3.tks    Tue Jan 23 20:10:16 1996 

Figure 21: 232 mat
hed line segments for RADIUS model board image J3.
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