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Abstract

Three-dimensional reconstruction from a set of images is an important and
difficult problem in computer vision. In this paper, we address the problem
of determining image feature correspondences while simultaneously recon-
structing the corresponding 3D features, given the camera poses of disparate
monocular views. First, two new affinity measures are presented that cap-
ture the degree to which candidate features from different images consistently
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represent the projection of the same 3D point or 3D line. An affinity mea-
sure for point features in two different views is defined with respect to their
distance from a hypothetical projected 3D pseudo-intersection point. Simi-
larly, an affinity measure for 2D image line segments across three views is
defined with respect to a 3D pseudo-intersection line. These affinity mea-
sures provide a foundation for determining unknown correspondences us-
ing weighted bipartited graphs representing candidate point and line matches
across different images. As a result of this graph representation, a standard
graph-theoretic algorithm can provide an optimal, simultaneous matching
and triangulation of points across two views, and lines across three views.
Ezxperimental results on synthetic and real data demonstrate the effectiveness
of the approach.

1 Introduction

Three-dimensional model acquisition remains a very active research area in
computer vision. One of the key questions is how to reconstruct accurate
3D models from a set of calibrated 2D images via multi-image triangulation.
The basic principles involved in 3D model acquisition are feature correspon-
dence determination and triangulation, with the two commonly used types
of image features being points and lines. Usually, 2D features are extracted
first, such as corners, curvature points, and lines from each image. Then,
the correspondence of these features is established between any pair of im-
ages, usually referred to as “the correspondence problem”. Finally, the 3D
structure is triangulated from these 2D correspondences.

Many reconstruction papers assume the correspondence problem has
been solved [2, 7, 35, 39, 50, 51, 53]. Unfortunately, in many applications,
this information is not available and mechanisms to achieve correspondence
are unreliable. This has caused serious criticism of feature-based meth-
ods [6, 22, 33, 52, 60, 61]. The process of finding 2D image feature cor-
respondences can be computationally expensive and difficult to implement
reliably, requiring subsequent algorithms to employ robust mechanisms for
detecting outliers due to mismatches [46, 49].

Even if the image feature correspondences are known, robust triangula-
tion of the 3D models using noisy image data is still a non-trivial problem
and an on-going research topic. Extensive research has been devoted to de-
veloping robust algorithms in this area [5, 8, 23, 37, 46, 49, 66, 67], including
processing of monocular motion sequences, stereo pairs, and sets of distinct
views. Although both point-based and line-based triangulation are com-



monly employed, more attention has been paid to line-based triangulation
since it generally provides more accurate reconstructions.

In this paper, we address the problem of determining image feature cor-
respondences given known camera poses, while simultaneously computing
the corresponding 3D features. We restrict our attention to simultaneous
determination of image feature correspondences and recovery of their 3D
structure using matching and triangulation of noisy 2D image points and
lines. Our approach assumes a set of calibrated images, for which both
intrinsic (lens) parameters and either absolute or relative poses are known.
Therefore these approaches are well-suited for photogrammetric mapping ap-
plications where extrinsic parameters are already known, such as 3D aerial
reconstruction in cultural settings [4], for wide-baseline multi-camera stereo
systems, or for model extension applications where a previous partial model
has been used to determine camera pose for a set of new views, from which
previously unmodeled scene features are now to be recovered [18, 19, 21, 46].

This paper is organized as follows. Section 2 reviews previous related
work in the area of 3D reconstruction with unknown apriori correspondences.
Section 3 introduces two new affinity measures for determining image point
and line correspondences across images, and uses them to construct weighted
bipartite graphs. Section 4 formulates the image feature matching problem
as the general maximum-weight bipartite matching problem and develops
two algorithms to simultaneously match and reconstruct 3D points and lines
from noisy 2D image points and lines, respectively. Finally, Section 5 and
Section 6 present and analyze experimental results from synthetic and real
image data sets. Section 7 gives our conclusions.

2 Previous Work

2.1 Motion Estimation without Correspondences

Aggarwal et al [2] reviewed the correspondence problem two decades ago. In
recent years, a variety of correspondence problems [2, 6, 13, 14, 16, 33, 39, 51,
52, 61, 63] have been studied. In addition, many researchers have worked on
the problem of motion estimation without pre-specified correspondences [3,
22, 33, 39, 50, 52, 63].

Aloimonos, et al [3], presented an algorithm to estimate 3D motion
without apriori correspondences by combining motion and stereo matching.
Huang and his research group [33, 50, 52] presented a series of algorithms
to estimate rigid-body motion from 3D data without matching point cor-
respondences. Goldgof et al [33] presented moment-based algorithms for



matching and motion estimation of 3D point or line sets without corre-
spondences and applied these algorithms to object tracking over the image
sequences. The basic idea is to find two coordinate systems based on relative
positions of 3D points/lines before and after the motion, then compute the
motion parameters (rotation and translation) that make these coordinate
systems coincide. The disadvantages of the approach include sensitivity to
noise and to missing or false points or lines.

Lee et al [52] proposed an algorithm to deal with the correspondence
problem in image sequence analysis. This method is based on the following
three assumptions: (1) the objects undergo a rigid motion; (2) a perspective
projection camera model can be used; (3) the translation vector is small
compared to the distance of the object.

Recently, we presented a mathematical symmetry in the solutions of ro-
tation parameters and point correspondences, derived a closed-form solution
based on eigenstructure decomposition for correspondence recovery in ideal
cases with no missing points, and developed a weighted bipartite matching
algorithm to determine the correspondences in general cases where missing
points occur [63]

2.2 Determination of Correspondences from Nonrigid Ob-
jects

Objects in the world can be nonrigid, and an object’s appearance can de-
form as the viewing geometry changes. Consequently, research has been
carried out to address the problem of correspondence and description using
deformable models [56, 57, 59, 60, 61].

Scott and Longuet-Higgins [60] developed an algorithm to determine the
possible correspondences of 2D point features across a pair of images with-
out use of any other information (in particular, they had no information
about the poses of the cameras). They first incorporated a proximity ma-
trix description which describes Gaussian-weighted distances between fea-
tures (based on inter-element distances) and a competition scheme allowing
candidate features to contest for best matches. Then they used the eigenvec-
tors of this matrix to determine correspondences between two sets of feature
points.

Shapiro and Brady [61] also proposed an eigenvector approach to deter-
mining point-feature correspondence based on a modal shape description.
Recently, Sclaroff and Pentland [59] described a modal framework for cor-
respondence and description. They first developed a finite element formu-
lation using Gaussian basis functions as Galerkin interpolants, then used



these interpolants to build stiffness and mass matrices. Correspondences
were determined by decomposing the stiffness and mass matrices into a set
of eigenvectors.

2.3 Determination of Correspondences among Disparate, Monoc-
ular Images

Methods based on tracking features such as points and line segments through
a sequence of closely-spaced image frames cannot be applied in our present
domain, since they are based on small-motion approximations, while we are
presented with a set of discrete, disparate, monocular views. Furthermore,
heuristic measures based on similarity of image feature appearance across
multiple images will also fail, since widely disparate viewpoints, taken at
different times of day and under different weather conditions can lead to cor-
responding image features of significantly different appearance. Gruen and
Baltsavias [35] describe a constrained multi-image matching system where
intensity templates extracted from one reference image are affine-warped
and correlated along epipolar lines in each other image. Kumar et al [48]
present a multi-image plane+parallax matching approach where they com-
pensate for the appearance of a known 3D surface between a reference view
and each other view, then search for corresponding points along lines of
residual parallax.

Collins [16] introduces the term ”true multi-image” matching and present
a new space-sweep approach to multi-image matching that make full and
efficient use of the geometric relationships between multiple images and the
scene to simultaneously determine 2D feature correspondences and the 3D
positions of feature points in the scene.

In their recent work, Bedekar and Haralick [7] first pose the triangulation
problem as that of finding the Bayesian maximum a posteriori estimate
of the 3D point, given its projections in N images, assuming a Gaussian
error model for the image point coordinates and the camera parameters.
Then, they consider the correspondence problem as a statistical hypothesis
verification problem and solve this problem by an iterative steepest descent
method.

Recently, graph theoretic methods have been applied [13, 14, 30, 34, 43,
58, 63, 64, 65]. Gold and Rangarajan [30] presented a new algorithm for
graph matching, which uses graduated assignment. They applied “softas-
sign”, a novel constraint satisfaction technique, to a new graph matching
energy function that uses a robust, sparse distance measure between the
links of the two graphs. Wu and Leon [64] proposed a two-pass greedy bipar-



tite matching algorithm to determine the approximate solution of the stereo
correspondence problem. Griffin [34] presented a bipartite graph matching
method to determine the correspondences between 2-D projections of a 3-D
scene. Roy and Cox [58] described a algorithm for solving the N-camera
stereo correspondence problem.

2.4 Our Approach

The work in this paper is based on an optimal graph theoretic approach
using a residual error function defined on the image plane to construct a bi-
partite graph, a corresponding flow network, and finally a maximum network
flow that determines the correspondences between two images [13]. Unlike
many other matching techniques, our method of network flow ensures that
a maximal matching can be found. From the point of view of implementa-
tion, this matching technique can be implemented efficiently and in parallel,
and has been successfully applied by others to matching problems involving
graphs of large size (about 100,000 vertices) [41].

What is needed for correspondence matching among disparate, monoc-
ular images is a description of the affinity (or 2D/3D spatial relationship )
between image features. The term ”affinity” is first introduced by Ullman
in [62] as a measure of the pairing likelihood of two objects in two sets. Here,
we define the affinity as a measure of the degree to which candidates from
different images consistently represent the projection of the same 3D point
or the same 3D line.

Traditionally, two separate processing phases are employed to recon-
struct 3D scene structure: feature matching and 3D triangulation. With this
division of processing, it is very difficult to employ 3D information to mea-
sure the affinity between image features during the matching phase. We ar-
gue that it is better to combine matching and triangulation in an integrated
manner. This is accomplished by introducing an affinity measure between
image point and line features based on their distance from a hypothetical
projected 3D pseudo-intersection point or line, respectively [14]. The ideas
developed in this paper are an extension of our previous work [13, 14].

The challenge in combining matching and triangulation for image line
features is that it is more difficult to describe the affinity between image lines
than it is for image points. Line segment endpoints are not meaningful since
there may exist significant fragmentation and occlusion in image line data,
and therefore only the position and orientation of the infinite image line
passing through a given line segment can be considered reliable. Moreover,
this implies that at least three images are necessary to describe line affinity,



since the projection planes for any pair of image lines in two images always
intersect in a 3D line (Note: if parallel, the planes are said to intersect
at infinity). Thus, no conclusive evidence about possible correspondences
between infinite image lines may be derived from only two images.

One of the contributions of our work is an affinity measure for lines
based on the rapid computation of a 3D pseudo-intersection line from a set
of possibly corresponding image lines during the matching process. This
approach leads to general maximum-weight bipartite matching techniques
to deal with the 3D reconstruction problem without apriori specification of
known image feature correspondences.

3 Measuring 2D Image Point amd Line Affinity

3.1 Measuring 2D Image Point Affinity from Two Images
Via a 3D Pseudo-Intersection Point

Given a point p; in image I;, we seek its match p, in another image I>. Point
P, necessarily belongs on an epipolar line of image Iy determined completely
by p;, and vice versa. Most of the existing matching algorithms e.g. [5]
directly utilize this 2D epipolar line constraint to determine the image point
correspondences from two images. However, it is very difficult to employ
3D information to measure the affinity between image features from this 2D
epipolar line constraint. We argue that it is better to combine matching and
triangulation in an integrated manner.

The key observation is that for any pair of image points p; and p,
from two images I and I, there exists a 3D pseudo-intersection point,
defined as the point with the smallest sum of squared distances from it
to the two projection lines of p; and py,. The physical meaning of the
pseudo-intersection point is that ideally, if p; and p, are corresponding
image points from I} and I, then their pseudo-intersection point is a real
3D point recovered by the traditional triangulation constraint.

Given any pair of image points chosen at random, one from each image,
the pair may or may not truly correspond to a single 3D point in the scene.
The two image points always yield a 3D pseudo-intersection point in either
case, but when this 3D point is projected back into each image it will only
coincide reasonably well with the original pair of 2D image points if the
points are a true correspondence, and will yield a very poor fit otherwise.
Therefore, the distance between the projected pseudo-intersection point and
the original pair of image points yields an affinity measure that signifies
whether that pair of points forms a compatible correspondence.
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Figure 1: A triangulation process for a pair of images.

Let us now provide a formal specification of the affinity measure, with
the reader referring to Figure 1. Given two poses (R;, 7)) and (R,,7,) from
two images I; and I, any pair of 2D points pé and p§ (i =1,2, ... ng;
j=1,2, ... ,n,) from [; and I,, define two 3D lines Ly and Ly such that L
passes through points pé and 7, and Ly passes through points p} and 7.

L, and L, are the projection lines of points pé and pj, respectively.

Suppose each projection line Ly (k = 1,2) is written as

TPk _ Y~ Yk _ 2" %k (1)

Ugk Uy B Uzk
with unit direction vector wy =(ugk, uyk, )L
Counsider first how to compute an optimal 3D pseudo-intersection point
P(zq,vq, zg) with the smallest sum of distances from P, to the two lines
L, and Ly. The error function can be defined [33] as

E = [(xq - xk)“yk - (yq - yk)“xk]2
+[($q — T ) Uzl — (zq - Zk)ua:k]2 (2)
+[(yg — yr) ok — (2g — 2k)uyk]?
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Figure 2: A wrong “negative” 3D point corresponding to a pair of image
points that intersect behind one or both cameras. This is a detectable
condition, even though it satisfies the definition of pseudo-intersection.

After setting g—fl OE _ 9E _ () we obtain the optimal 3D pseudo-

T Oy, T 0z
intersection point P, [33]
Tq 2 -1 2 Tk
ye | =D Ak Sl Ak vk (3)
Zq ] k=1 k=1 Zk
where . )
Uy + Uy, —UgkUyk —UgkUzk
2 2
Ap = | —ugpuyr  uy, +uy, _2uykuz15
| TUgkUzk  —UykUzk  Ugy + Uy,

As mentioned before, if pé and p’ are true corresponding image points,
then P, is the real 3D point to be recovered. However, there are four
cases that are exceptions: (1) no 3D point could be obtained for pﬁ and pj,
because the two 3D lines L; and Ly are parallel; (2) an incorrect “negative”
3D point could be obtained for pﬁ and p7, due to the two 3D lines Ly and Ly
intersecting behind one or both cameras, as shown in Figure 2; (3) a wrong
“epipolar” 3D point P,, is obtained due to ambiguous correspondences, e.g.
a typical problem with pg corresponding to either pg or p; is shown in
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Figure 3: An error in correspondence produces a wrong 3D Pseudo-
intersection point P,, or ambiguity in pairs of correspondences. P, is
the correct pseudo-intersectionpoint, but an incorrect correspondence using
P along the correct epipolar line produces P, as an incorrect psuedo-
intersection point. If Pfu is an existing candidate correspondence, then two
pairs of ambiguous correspondences can be successfully resolved.
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Figure 3. This case shows that a point p} in image I; could intersect with
the projection line of more than one image point in image I,.; (4) a pseudo-
intersection 3D point P, is computed although pg and p don’t correspond
at all.

The first case, with parallel projection lines, is exceedingly rare, but is
easily detected by examining whether a solution exists for Eq. 3. It also can
be detected by examining whether the directions of the projection lines L,
and L9 are the same.

For the second case, as all pairs of image points from two images are
considered initially as possible correspondences, some of those will intersect
in their negative directions and satisfy the minimal distance condition to
lines Ly and L, but are incorrect. Fortunately, it is easy to detect this kind
of “negative” 3D point by examining the directions of rays from 7; to p!
and from 7; to P, or rays from 7, to p} and from 7, to P, to make sure
that they are the same.

The third case is the interesting one, caused by an incorrect correspon-
dence, due to ambiguity. For example, as shown in Figure 3, suppose pé
corresponds to p§ with P, as the correct 3D point. However, the known
poses specify epipolar lines, and since pj, lies on the known epipolar line
of pé in image I, then both are plausible but ambiguous candidates for a
correspondence match. Thus pg and p;, would intersect at a 3D point P,,.
However, this kind of ambiguity might be detected because p!, might cor-
respond to another existing point P, appearing in image I,. For this case,
the true (maximum) correspondences could be detected for the two sets of
points, i.e., pg corresponds to p} and pl, corresponds to p’ . Unfortunately,
if the point pfu doesn’t appear in the first image, it is difficult to resolve this
inherent ambiguity. In such situations, a third image would greatly reduce
such ambiguities.

For the fourth case, since it is an incorrect correspondence, the pseudo-
intersection point P, is located far from the two projection lines. This case
is easily detected by its 2D affinity function defined below.

For any pair of image points (p! ,p), we project the “pseudo-intersection”
point P, into the two images I; and I;, to get the two projected image points
p! (u},v}) and p;"-, (u},v%). Finally, we compute the error functions Egj and
Er:

! L /
Ei; = |lpi — p; |2, E5; = Ipj — Pj 2 (4)

and define a 2D point affinity function sfp(p%,pg) is defined as
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stp(pl,pf) = e Pt P2 (5)

The criterion underlying s fp(p!, pj) is that the best estimate for any 3D
pseudo-intersection point is the point that minimizes the sum of the squared
distances between the predicted image location of the computed 3D point
and its actual image locations in the first and second images. If sf p(pé, p;)
= 0, it means that p} is not a possible match for pj; if sfp(pé,pg) =1, it
means that pg is a perfect match for Dj-

3.2 Measuring 2D Line Affinity from Three Images via a 3D
Pseudo-Intersection Line

Here, we develop an analagous line pseudo-intersection measure, similar to
the 2D affinity measure between image point features in the last subsection.
Given the poses of three images, a 2D affinity measure among image line
segments is developed for the problem of determining image line correspon-
dences, while simultaneously computing the corresponding 3D lines. The
challenge in combining matching and triangulation for image line features is
that it is more difficult to describe the affinity between image line segments.
Since it is well-known that line segment endpoints are prone to error due
to fragmentation and unreliable terminations in image line data, only the
position and orientation of the infinite image line passing through a given
line segment of sufficient length can be considered reliable. Moreover, this
implies that at least three images are necessary to describe affinity, since the
projection planes for any pair of image lines in two images always intersect
in a 3D line (if parallel, the planes are said to intersect at infinity), and
thus no conclusive evidence about possible correspondences between infinite
image lines may be derived from only two images.

Given three images and their corresponding camera poses, we assume
that three line segments are chosen at random, one from each image, so that
the set may or may not truly correspond to a single 3D line in the scene.
For any triplet of image lines from three images, there exists a 3D pseudo-
intersection line L with the smallest sum of squares of the mutual moments
of L with respect to the two projection lines of the two endpoints for each
image line. As this computation will be performed many times on images
with large numbers of line segments as we search for correct correspondences,
we need it to be computationally efficient, even if this speed is achieved
at the expense of accuracy. Here, the linear line reconstruction algorithm
presented in [12] is employed to achieve a closed-form solution for the best
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3D pseudo-intersection line. It has been shown in [12] that the algorithm is
fast and efficient.

For any triplet of image line segments from three images, we wish to
compute an affinity value that measures the degree to which these lines
are consistent with the hypothesis that they are all projections of the same
linear 3D scene structure. To do this, we first use the line reconstruction
algorithm presented in [12] to compute their pseudo-intersection line L, and
then project L back into each image to get three infinite image lines I;(i =
1,...,3).

Suppose [; is represented by the equation

fiu+giv+h; =0

in pixel coordinates (u,v), and that the endpoints of the original 2D line
segment in image I; are (ug,vq) and (up,vp). A natural measure of the
distance from the line segment to the projected pseudo-intersection line [;
is the sum of absolute pixel distances from the line segment endpoints to [;,

that is
_ | fiva + Giva + hi | + | fiup + givp + hy |

I+t

If the three image line segments actually are a true correspondence of a
single linear 3D structure, we can expect all of them to lie “close” to their
respective reprojections of the pseudo-intersection line, where closeness is
judged based on our knowledge of the error characteristics of the line segment
extraction process and the level of noise in the image. On the other hand, if
the image line segments do not correspond to a linear scene structure, their
distance from the projected pseudo-intersection line will be large, which
is true of most of the line triplets (barring accidental alignments). The
distance is greater to the extent that the chosen lines are truly geometrically
incompatible.
Based on the above distance measure, the 2D line affinity value s fl(l1,12,13)

for a triplet of image line segments from three images is defined as

(6)

T

3

Sfl(l17l27l3) = ei(zizl 3)/6 (7)

where 37, 7;/6 can be interpreted as the average distance from the set of
image line segment endpoints to their respective projected pseudo-intersection
lines. If sfI(l1,l2,13) = 0, it means that l1,l2, and I3 are not compatible at
all; if sfl(l1,12,13) = 1, it means tha ly,l5, and I3 are perfectly compatible.
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4 3D Reconstruction Algorithms without Corre-
spondences Based on the Weighted Bipartite
Matching Technique

Traditional correspondence matching techniques use only 2D pixel-level in-
formation. These 2D image analysis techniques encounter significant dif-
ficulty in recovering correct correspondences of image features, since they
do not consider the important 3D information captured via our pseudo-
intersection points or lines.

In the previous section, we developed two affinity measures between
image features, sfp(pé,pg) in Eq. 5 for image points and sfl(l1,l2,13) in
Eq. 7 for image lines. The two affinity measure functions contain significant
information about potential correspondences between image features. The
important question that immediately follows is how to use this information
in a reliable process to determine image feature correspondences. Weighted
bipartite matching [41, 42] is a mature mathematical framework for solving
matching problems using our affinity measure.

In this section, we will show how the problem of image feature matching
can be formulated as a maximum-weight bipartite matching problem by
using the 2D image point affinity function in Eq. 5 and the 2D image line
affinity function in Eq. 7. An efficient graph-based algorithm for matching
and reconstruction is developed to determine image feature correspondences
while simultaneously recovering 3D features.

4.1 Formulation as a Maximum-Weight Bipartite Matching
Problem

Given the two sets of image points L = {p! | i = 1,2,...,n;} from image I,
and R = {p’ | j = 1,2,...,n; } from image I, an undirected weighted graph
G = (V, E) can be constructed as follows: V' = L U R, E = {e;;}. Each edge
eij (1 =1,2,...,m;; 5 =1,2, ..., n,;) corresponds to a weighted link between
plin I; and pj in I, whose weight w(e;;) is equal to the affinity between pl
and p7, ie. w(eij):sfp(pg,p;-). Obviously, the graph arising in such a case
is a weighted bipartite graph by construction, since two points in the same
image cannot be linked.

Given a set of line segments l,,l 3, and 1, in a triplet of images I;, I and
I3, two undirected bipartite graphs G; = (V1, E1) and Go = (Va, E3) can be
constructed as follows. First, generate two vertex sets V; and V5, such that
Vi =L Uls and Vo = I, UI3. Next, for all feasible matches among any three
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image lines I, I and 1., one from each image, generate their edges 6(11,3 ek
and e%v € F with weights equal to the affinity measure sfl(ly,1g,1l,), as
defined in the last section, i.e. w(eéﬂ) = w(e%v) = sfl(la,1s,1,). Note that
in general this could involve taking all triplets of image line segments, one
from each image, unless domain specific information is used to prune the set
of possible matches down to a smaller feasible set. Often such information
should be available through domain constraints.

It should be noted that due to the fragmentation of image lines, multiple
competing edges could exist between the same two nodes in either graph.
For example, suppose there exists a possible correspondence among the line
segments l,, lg, and I, from the three images respectively, and another
possible correspondence between [, l'ﬂ, and l,,. It would seem then, that two
edges between I, and I3 are needed, one to store the weight for s fl(l.,13,1,)
and one for sfl (la,lfg,l%). In practice, we remove these trivial conflicts at
graph creation time by checking if an edge already exists between two nodes
before adding a new one. If the affinity value of the new edge is larger
than the edge already there, then the old edge is replaced by the new one,
otherwise it is left alone.

From the previous subsections, we know that for any pair of image points
pé and p7, there is a weighted link e;; between pg and pj in the weighted
bipartite graph G. Similarly, for any triplet of image line segments [, g,
and I, there is a weighted link 6(11,3 between [, and Iz in the first bipartite
graph G; and a weighted link 6%7 between I3 and [, in the second bipartite
graph Gy. Ideally, if the image features (points/lines) are in true correspon-
dence then their weights w(e;;), or w(e}lﬂ) and w(e%v) should be equal to the
maximum weight of 1; thus they significantly contribute to the final match-
ing to be determined, and the number of total image feature (point/line)
correspondences is equal to the size of the matching. Due to the errors in
some of the camera poses and the locations of the extracted image points
or line segments, however, the weights w(e;;), or w(eqs) and w(egy) will be
below 1, but often can be expected to be high (i.e. approach 1).

On the other hand, from graph theory, we know that given an undirected
graph, a matching is a subset of edges M C F such that for all vertices v € V,
at most one edge of M is incident on v. A vertex v € V' is matched by M if
some edge in M is incident on v; otherwise, v is unmatched. The mazimum-
weight matching is a matching M, of size | M,, | such that the sum of the
weights of the edges in M,, is maximum over all possible matchings. There-
fore, the image feature correspondences to be determined correspond to the
maximum-weight matching in the bipartite graphs G for determination of
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image point correspondences, or G; and G4 for determination of image line
correspondences.

4.2 Reduction to the Maximum-Flow Problem

As discussed from Subsection 4.1, the correspondence problem of image
points and lines can be considered as the problem of finding the maximum-
weight matching in the weighted bipartite graphs. The remaining question is
how to find the maximum-weight matching in the weighted bipartite graphs.

If each edge has a unit weight in the bipartite graph, then we get the
unweighted bipartite matching problem, which is to find a matching of max-
imum cardinality. The above image feature matching problem for image
points and lines could be reduced to the unweighted matching problem by
setting all the weights in the bipartite graph to be 1 if sfp(pg,pg) > T, for
image points p} and pj, or if sfl(la,lp,ly) > T; for image line segments
lo,ls, and I,,. Here, the thresholds 7}, and 7; would be chosen empirically.
For the weighted bipartite graph shown in Figure 4(a), its unweighted coun-
terpart is shown in Figure 4(a) by setting all the weights in the bipartite
graph to be 1 if sfp(p%,p?) > 1T, =0.8.

C 0.95 @ C 1 @
C 0.97 @ C 1 @
C 0.95 @ C 1 @

Figure 4: The weighted and unweighted bipartite graphs: (a) weighted bi-
partite graph; (b) unweighted bipartite graph.

The problem of image feature matching seems on the surface to have
little to do with flow networks, but it can in fact be reduced to a maximum-
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flow problem. By relating the unweighted matching problem for bipartite
graphs to the max-flow problem for simple networks, the matching problem
becomes simpler, and the fastest maximum flow algorithm can be used to
find the maximum matching, which was discussed in [13]. In order to reduce
the problem of a maximum matching in the bipartite graph G to a maximum
flow problem in the flow network G’, the trick is to construct a flow network
in which flows represent correspondences. We build a corresponding flow
network G' = (V' E') for the bipartite graph G as follows: Let the source s
and sink ¢ be new vertices not in V, let V' =V U{s,t}, and let the directed
edges of G’ be given by

E'= {(s,v}) :vj € L} U{(v},v}) : vj € L,v; € R,

(vi,v5) € B} U{(v},t) :v € R}

and finally, assign unit flow capacity to each edge in E.

Further, it has been shown that a maximum matching M,, in a bipartite
graph G corresponds to a maximum flow in its corresponding flow network
G'. Therefore, the unweighted image feature correspondence problem is
exactly equivalent to finding the maximum flow in G' = (V', E'), and we
can compute a maximum matching in G by finding a maximum flow in
G’'. The main advantage of formulating the image feature correspondence
problem as the unweighted bipartite matching problem is that there exist
very fast algorithms (e.g. Goldberg’s algorithm is O(|V||E|log|V'])), which
can be implemented in an efficient and parallel way to find the maximum
matching in the unweighted bipartite graph.

4.3 Solving for the Maximum-Weight Bipartite Match

The main disadvantage of the unweighted bipartite matching formulation
is that it is crucial to choose an appropriate value for the threshold 7}, for
the image point correspondence problem and 7; for the image line segment
correspondence problem before the unweighted bipartite matching algorithm
is performed. If T, or T is too small, more outliers will be created; if
Ty, or 1; is too large, it will filter out too many correct correspondences.
For example, as shown in Figure 4(a), if we choose T, = 0.9, then the
correct correspondence (5,¢€) could be filtered. In this case, we would miss
the matching (5,e) and could not then disambiguate the matchings (4, d)
and (4,e) for the left image point “4”. Therefore, it is necessary to deal
with the general maximum-weight bipartite matching problem, which is the
generalization of the unweighted bipartite matching problem. Although the
weighted matching problem is not characterized by maximum flows in terms
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Figure 5: The symmetric difference operator of M and P: (a) matching M;
(b) augmenting path P wrt. M; (c) M & P.

of augmenting paths, it indeed can be solved based on exactly the same idea:
start with any empty matching, and repeatedly discover augmenting paths.
In the following, we focus on how to find the maximum-weight matching in
the weighted bipartite graph.

Consider the matching M shown in Figure 5(a). The edges (1, a), (2,b),
(3,¢), and (4, e) are matched, and the edges (4,d) and (5, e) are unmatched.
Given a matching M in a bipartite graph G = (V, E), a simple path in G is
called an augmenting path with respect to matching M if its two endpoints
are both unmatched, and its edges alternate between £ — M and in M.
The augmenting path P = {(5,¢e), (e,4), (4,d)} with respect to matching M
is shown in Figure 5(b). Endpoints 5 and d are unmatched, and the path
consisting of alternating edges (5,e) in £ — M, (4,e) in M, and finally (4,d)
in E— M.

Let p denote an augmenting path with respect to matching M, and P
denote the set of edges in p, then M @ P is called the symmetric difference
of M and P. M & P is the set of elements that are in one of M or P,
but not both, ie. M & P = (M — P) U (P — M). It can be shown that
M @ P has the following properties: (1) it is a matching; (2) | M @ P | =
| M | +1. The symmetric difference M @ P is shown in Figure 5(c), i.e.
M & P ={(1,a),(2,b),(3,¢),(4,¢e),(5,d)}, and | M & P | = 44+1=5.
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For the matching M, its total weight of matching M is defined as

ecM

Let M’ be a set of edges; then an incremental weight AM' is defined as the
total weight of the unmatched edges in M' minus the total weight of the
matched edges in M':

AM' = w(M' — M) —w(M' N M)

From the definition of incremental weight, we know that for an augmenting
path p with respect to M, then AP gives the net change in the weight of
the matching after augmenting p:

w(M @ P) =w(M)+ AP

Intuitively, we can use an iterative algorithm to construct a maximum-
weight matching. Initially, the matching M is empty. At each iteration,
the matching M is increased by finding an augmenting path of maximum
incremental weight. This is repeated until no augmenting path with respect
to matching M can be found. It has been proven that repeatedly performing
augmentations using augmenting paths of maximum incremental weight,
yields a maximum-weight matching M,, [41].

The remaining problem is how to search for augmenting paths with re-
spect to matching M in a systematic and efficient way. Naturally, a search
for augmenting paths must start by constructing alternating paths from the
unmatched points. Because an augmenting path must have one unmatched
endpoint in L and the other in R, without loss of generality, we can start
growing alternating paths only from unmatched vertices of L. We may
search for all possible alternating paths from unmatched vertices of L si-
multaneously in a breadth-first manner. Here, an efficient Gabor’s N-cubed
weighted matching algorithm [41] is used to compute the maximum-weight
matching in the weighted bipartite graph. This algorithm has two basic
steps: (1) to find a shortest path augmentation from a subset of left vertices
in L to a subset of right vertices in R; (2) to perform the shortest augmen-
tation. The algorithm is very efficient; more implementation are discussed
in [41].

Since the number of matched vertices increases by two each time, this
takes at most § augmentations. It has been shown that for a matching M
of size k of maximum weight among all matchings of size at most &, if there
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exists a matching M* of maximum weight among all matchings in G, and
w(M*) > w(M), then M has an augmenting path of positive incremental
weight. Therefore, the image feature correspondence problem can be exactly
reduced to finding the maximum-weight matching in the weighted bipartite
graph.

In summary, the general matching and reconstruction algorithm for im-
age point correspondences can be achieved by the following steps:

Step 1: compute a pseudo-intersection point for each pair of image points
pé and p;.

Step 2: calculate the value of sfp(p!, pj) in Eq. 5 for each pair of image
points pg and pj.

Step 3: remove the pair for further graph-based matching analysis if its
sfp(pt, pj) value is less than certain predefined threshold.

Step 4: determine if the pair should not be added into a weighted bi-
partite graph in Step 5 with respect to incorrect Cases 1 and 2, which were
discussed in Section 3.1.

Step 5: construct a weighted bipartite graph G = (V, E) for image points.

Step 6: find the maximum weighted matching M, for G.

Step 7: determine image point correspondences and their corresponding
3D points from the maximum matching M,,.

Similarly, the general matching and reconstruction algorithm for image
line correspondences can be achieved by the following steps:

Step 1: compute a pseudo-intersection line for each triplet of image lines
ll,lg, and l3.

Step 2: calculate the value of sfl(l1,l2,13) in Eq. 7 for each triplet of
image lines 11,19, and 3.

Step 3: remove the triplet for further graph-based matching analysis if
its sfl(ly,12,1l3) value is less than certain predefined threshold.

Step 4: construct two weighted bipartite graphs G1 = (V1, E1) and G2 =
(Va, Ey) for image line segments.

Step 5: find the maximum weighted matching M,, for G; and G5.

Step 6: determine image line correspondences and their corresponding
3D lines from the maximum matching M,,.

It should be noted that Step 3 in the above two matching algorithms
is not necessary, but can filter out a great number of incorrect correspon-
dences that don’t correspond at all, thus improve computational efficiency
and running time of the two matching algorithms since it can reduce the
numbers of vertices and edges, i.e. the size of the bipartite graphs. Incor-
rect correspondences that are not filtered in Step 3, will be determined by
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our weighted bipartite matching process.

5 Experimental Results for Correspondence of Im-
age Points

In this section, we present experiments to characterize the performance of
our approach to 3D point reconstruction while simultaneously determin-
ing correspondences, based on the affinity function defined in Eq. 5. We
will examine the performance in terms of the number of the recovered im-
age point correspondences, and the distance between each triangulated 3D
pseudo-intersection point and its actual 3D point. In all the experiments,
we assume that both the intrinsic camera parameters and poses are known.
The algorithm uses two sets of image points separately extracted from two
images as input, and produces a set of image point correspondences and
their corresponding triangulated 3D points.

5.1 Synthetic Data

The synthetic experiments are performed on a set of synthesized 3D points
representing a rigid object. To evaluate performance with known ground
truth, a set of 40 3D points were randomly generated from the object and
projected into two images. The image point locations for each image were
corrupted by Gaussian noise. Noise for each image point location was as-
sumed to be zero-mean, identically distributed, and independent. The stan-
dard deviation ranges from 1.0 pixel to 5.0 pixels. In order to examine how
the robustness of matching is affected by missing points (i.e. no correct
correspondence in the other image), 16 sets were generated with different
percentages of missing points ranging from 4%% to %%. For each of these
reduced point sets, 100 trials of noisy samples were used to spatially perturb
the remaining points for each of the five levels of noise. For each sample
of the same set, the number of missing points is the same, i.e. the same
percentage of image points were randomly deleted. The algorithm was run
on each of the samples, and the number of incorrect image point corre-
spondences was computed for each sample run. Figure 6 shows the average
number of incorrect correspondences for each noise level.

As shown in Figure 6, the algorithm works very well if the number of
missing points is 0, i.e. each 3D point to be recovered is visible in both
images. On average, there is only one incorrect correspondence even for
the highest noise level of 5 pixels. For lower levels of noise ranging from 1
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Figure 6: Performance of the image point matching algorithm against five
levels of noise with different numbers of missing points. The average number
of incorrect correspondences is shown for the true set of 3D points. Noise
level k means all points were perturbed with Gaussian noise of standard
deviation k.

pixel to 3 pixels, there is litte effect on the performance of the algorithm
for different numbers of missing points. For the higher levels of noise, the
number of incorrect correspondences increases linearly as the difference in
the sizes of image points from two images increases. From Figure 6, we can
see that on average, the number of incorrect correspondences rises about 3%
at any of the noise levels. Therefore, our experiments have shown that the
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algorithm can tolerate a significant difference in the number of image points
from two images and is robust against a reasonable level of noise.

5.2 PUMA Sequence

The 3D point reconstruction algorithm with unknown correspondences is
applied to the set of real images referred to as the PUMA sequence [49], since
the images were acquired by a camera mouted on a PUMA robot arm. The
image sequences were captured with a SONY B/W AVC D-1 camera with
an effective field of view of 41.7° (fovx: field of view x-axis) by 39.5° (fovy:
field of view y-axis) and the image resolution is 256 x 242. Thirty frames
were taken over a total angular displacement of 116 degrees. The maximum
displacement of the camera in these twenty frames is approximately 2 feet
along the world y-axis and 1 foot along the world x-axis.

For each image, line segments were first extracted by the Boldt algorithm
[9], and then 2D corner image points were computed by calculating the
intersection point between any pair of nearby image line segments. Figure 7
shows two sets of extracted and unmatched image points from the 1st frame
and the 10th frame, respectively. There is a difference in the number of
image points from the two images, since the 1st frame has 113 image points
while the 10th frame has 107 image points. There are two kinds of error
sources: the 2D image point locations and the estimated camera parameters.
The noise in the image points is due to many typical factors such as camera
distortion and errors in the image line extraction algorithm. The noise in the
camera parameters is mainly due to errors in camera calibration. As seen in
Figure 7, some image points were extracted in the 1st frame, but not in the
10th frame, and vice versa. Thus, it is a general 3D point reconstruction
problem with unknown image point correspondences.

Figure 8 shows a subset of 43 correct image point correspondences de-
termined from the two frames. The corresponding 3D points reconstructed
by the algorithm are reported in Table 1. This experiment uses the ground
truth 3D data supplied in Kumar’s thesis [49]. Note that here we only
reported the comparisons between the reconstructed 3D points and their
ground truth data for those 3D points whose ground truth coordinates are
available. As shown in Table 1, there is only one incorrect correspondence
labeled 21, where the correspondence is of two different image points from
the 1st frame and 10th frame. Point 21 in Frame 1 is on the lower of two
rectangles (the upper left corner), while Point 21 in Frame 10 is on the up-
per rectangle (the lower left corner). Although they are very close in the
images, the absolute error between the triangulated 3D point recovered by
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Table 1: 3D point reconstruction error for the PUMA ROOM data (average
3D error: 0.43 feet without incorrect point 21.

R Actual 3D point Computed 3D points | Error
Line x y z x y z (feet)
1 -6.06 -0.47 13.70 -5.94 -0.52 13.48 0.26
2 -6.06 -0.47 11.56 -5.89 -0.55 11.18 0.43
3 -6.06 -0.47 16.81 -6.87 -0.50 16.62 0.83
4 -6.06 -0.47 14.68 -6.88 -0.49 14.50 0.84
5 -8.58 -0.47 | 16.81 -8.53 -0.48 | 16.64 0.18
6 -8.58 -0.47 14.68 -8.54 -0.45 14.59 0.11
7 0.00 4.05 20.82 0.20 4.04 18.89 1.94
8 0.00 8.13 13.51 0.13 8.21 13.32 0.25
9 0.00 6.81 14.91 0.17 6.89 | 14.64 0.33
10 0.00 7.31 13.51 0.15 7.38 13.28 0.28
11 0.00 7.00 13.89 0.19 7.09 13.60 0.36
12 0.00 7.00 11.76 0.18 7.11 11.47 0.36
13 0.00 5.36 13.89 0.11 5.39 13.76 0.17
14 0.00 4.69 14.89 0.18 4.72 14.66 0.30
15 0.00 4.66 | 16.00 0.27 4.72 | 16.19 0.33
16 0.00 4.98 | 11.95 0.25 5.07 | 11.58 0.46
17 0.00 4.92 14.11 0.23 4.98 13.77 0.41
18 0.00 4.25 11.96 0.34 4.22 11.42 0.64
19 -3.32 9.01 7.03 -3.17 9.23 6.35 0.73
20 -1.45 9.01 3.13 -1.08 9.18 2.27 0.95
21 -3.02 3.80 11.28 0.68 4.26 2.33 9.69
22 -6.32 8.11 0.00 -6.13 8.27 -0.85 0.88
23 -4.20 8.07 0.00 -4.00 8.19 -0.64 0.68
24 -6.35 6.49 0.00 -6.20 6.56 -0.55 0.58
25 -1.77 2.86 0.00 -1.52 2.87 -0.68 0.73
26 -7.26 8.09 0.00 -7.11 8.17 -0.47 0.50
27 -7.26 6.45 0.00 -7.15 6.50 -0.25 0.27
28 -4.82 -0.47 17.82 -4.68 -0.52 17.64 0.23
29 -4.81 -0.47 14.82 -4.67 -0.54 14.56 0.30
30 -4.81 -0.47 | 16.95 -4.66 -0.52 | 16.73 0.27
31 -4.43 -0.47 11.63 -4.22 -0.55 11.30 0.40
33 -6.44 -0.47 16.95 -6.35 -0.52 16.74 0.23
34 -6.94 -0.47 19.45 -6.86 -0.52 19.24 0.23
35 -6.94 -0.47 17.82 -6.88 -0.50 17.66 0.18
36 -7.53 -0.47 17.54 -7.48 -0.49 17.38 0.16
37 -3.32 9.01 15.03 -3.42 9.04 15.08 0.12
38 0.00 5.37 | 11.76 0.35 5.48 | 11.17 0.70
39 0.00 4.10 14.09 0.24 4.15 13.76 0.41
40 -1.43 3.64 0.00 -1.21 3.67 -0.55 0.59
41 -4.23 6.45 0.00 -4.05 6.53 -0.61 0.64
43 -6.87 0.11 13.75 -6.84 0.09 13.71 0.05

this incorrect correspondence and the original 3D point associated with im-
age point 21 in the first frame has large error, 9.69 feet. For the other 42
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correct correspondences, the average distance between the triangulated 3D
points and ground truth data is 0.43 feet.

5.3 RADIUS Image Set

The 3D point reconstruction algorithm without apriori correspondences is
also applied to the RADIUS image set. This experiment uses data supplied
through the ARPA/ORD RADIUS project(Research and Development for
Image Understanding Systems) [4]. The images and camera parameters
used in this experiment were the "model board 1”7 data set distributed with
version 1.0 of the RCDE (RADIUS Common Development Environment)
software package [54]. The image size is approximate 1320 x 1035 pixels.
Unlike the PUMA image sequence used in last subsection, each pair of im-
ages from this data set were taken from two disparate views. Eight images
were provided in this data set.

Again, for each image, line segments and 2D corner points were extracted
as part of an automated building detection algorithm [17]. These 2D corner
points are thus extracted in a different manner than those in the PUMA
sequence. Here the points to be matched are the corners of building poly-
gons. Figures 9 and 10 show two sets of extracted and unmatched image
points from images J3 and J7, respectively. It should be noted that J3 and
J7 have two different numbers of missing points although they have exactly
the same number of image points, i.e. 186 points. Again, both the 2D image
points and the camera parameters are noisy. The noise in the image points
is again due to errors in point localization and camera calibration.

Our algorithm recovered 61 correspondence rooftop polygon points, all
of them correct (Figures 11 and 12). The corresponding 3D points recon-
structed by the algorithm are reported in Table 2. This experiment uses
the ground truth 3D data supplied in the “model board 1” data set Here
we only reported the comparisons between the reconstructed 3D points and
their ground truth data for those 3D points whose ground truth coordinates
are available. From Table 2, we can see that for some image correspondences
such as 20, 21, 34, 35, 36, 49, 50, and 57, the triangulated 3D points have
large errors although their correspondences are determined correctly by our
algorithm. This is due mainly to the errors in the locations of rooftop poly-
gon points, since it is well known that these 2D errors have a significant effect
on the triangulated 3D data, especially when there are only two images [17].
Some of the increased size of errors can be attributed to 2D corners being
"moved” due to shadows in one of the views (e.g. point 49 which produced
the largest error). In order to improve overall accuracy, more images are
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required. Nevertheless, the results are quite good, with the average distance
between the triangulated 3D points and ground truth data across 61 correct
image point correspondences being 0.45 feet.

6 Experimental Results for Image Lines

In this section, we will demonstrate the performance of the 3D line recon-
struction algorithm with unknown correspondences. It should be noted that
the accuracy of the triangulated 3D lines depends upon the performance of
the line reconstruction algorithm employed. Here, we use a fast line recon-
struction algorithm with computational efficiency and robustness against
noise [12]. Therefore, in the following, we will simply report a compar-
ison between the triangulated 3D lines and their ground-truth data, and
concentrate instead on characterizing the performance of the algorithm for
determining the 2D line correspondences that are used for 3D line recon-
struction. Thus, more detailed experiments are reported in terms of the
number of the recovered image line correspondences. In all the experiments
presented here, we again assume that both the intrinsic camera parameters
and poses are known. Unlike the previous section, image lines are extracted
directly as image features, and the algorithm uses three sets of image lines
across three images as input, computing the image line correspondences and
their corresponding triangulated 3D lines as output.

6.1 Synthetic Data

Simulations were performed on a set of synthetic 3D lines representing a rigid
body. A set of 40 3D lines were randomly generated from an object, and
projected into three images. The two endpoints of each image line segment
in three images were corrupted by Gaussian noise. Noise for each image line
segment endpoint was assumed to be zero-mean, identically distributed, and
independent. The standard deviation of line endpoint noise ranges from
1.0 pixel to 5.0 pixels. In order to examine how the number of incorrect
correspondences is affected by the number of missing image line segments,
16 sets of 100 noisy line samples were created for each level of noise, in terms
of 16 different percentages of missing lines ranging from ;5% to 12%. For
each sample of the same set, the number of missing lines is the same, i.e.
the same percentage of image lines were randomly deleted. The algorithm
was run on each of the samples, and the average number of incorrect image
line correspondences was computed across samples used. Figure 13 shows 16
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Table 2: 3D point reconstruction error for the RADIUS image data.

Actual 3D point Computed 3D points | Error

Line

x Yy z T y z | (feet)
1| 1579 | 22.79 | -1.15 | 16.12 | 22.79 | -0.87 0.44
2| 15.77 | 16.40 | -1.15 | 16.01 | 16.51 -1.33 0.32
3| 2051 | 16.39 | -1.15 | 20.74 | 16.48 | -1.39 0.34
4| 20.52 | 22.78 | -1.15 | 20.83 | 22.76 | -0.93 0.38
5 9.90 | 39.36 | -1.21 | 1045 | 39.46 | -1.32 0.56
6 9.90 | 40.13 | -1.21 | 10.45 | 40.16 | -1.29 0.55
7 5.89 | 40.13 | -1.21 6.26 | 40.17 | -1.00 0.43

8 5.89 | 39.35 | -1.21 6.26 | 39.44 | -1.01 0.43
15 | 17.55 7.14 | -0.16 | 17.79 7.17 0.46 0.67
16 | 17.52 0.76 | -0.16 | 17.77 0.88 0.46 0.68
17 | 20.08 0.75 | -0.16 | 20.32 0.80 | -0.35 0.31
18 | 20.11 713 | -0.16 | 20.34 7.14 | -0.18 0.23
20 | 17.26 | 10.35 | -0.22 | 17.53 | 10.48 1.06 1.31
21 | 17.27 | 13.36 | -0.22 | 17.56 | 13.56 1.05 1.32
22 | 20.29 | 13.35 | -0.22 | 20.52 | 13.52 0.06 0.40
23 | 2292 | 11.25 | -0.97 | 22.98 | 11.49 | -0.86 0.27
24 1.60 | 23.56 | -0.43 1.86 | 23.44 | -1.06 0.69
25 1.61 | 26.53 | -0.43 1.85 | 26.61 | -1.21 0.82
26 | -4.41 | 26.55 | -0.43 | -4.04 | 26.69 | -0.65 0.45
27 | -4.42 | 2358 | -0.43 | -4.04 | 23.47 | -0.49 0.40
28 1.64 | 27.16 | -0.78 1.86 | 27.21 | -1.29 0.56
29 1.61 | 23.38 | -0.78 1.86 | 23.40 | -1.04 0.36
30 4.49 | 26.52 | -0.55 4.75 | 26.55 | -0.60 0.27
31 4.34 | 16.55 | -0.55 4.62 | 16.57 | -0.53 0.28
32 | 14.33 | 16.40 | -0.55 | 14.60 | 16.45 | -0.65 0.29
33 | 14.49 | 26.31 | -0.94 | 14.75 | 26.35 | -1.06 0.30
34 | 14.45 | 24.56 | -0.55 | 13.07 | 24.90 | -2.01 2.03
35 | 12.88 | 26.39 | -0.55 | 13.12 | 26.38 | -1.98 1.45
36 | 20.47 | 26.36 1.71 | 2091 | 26.42 | -0.19 1.96
49 | 20.65 | 32.76 | -1.19 | 20.13 | 35.10 | -0.05 2.65
50 | 20.72 | 35.92 | -1.19 | 20.16 | 35.92 | -0.10 1.22
51 | 12.80 | 36.09 | -1.19 | 13.09 | 36.17 | -0.73 0.55
52 | 12.78 | 35.26 | -1.19 | 13.05 | 35.34 | -0.86 0.43
55 | 13.16 | 33.77 | -1.47 | 13.46 | 33.78 | -1.23 0.38
56 | 13.16 | 33.01 | -1.47 | 13.42 | 33.16 | -1.43 0.30
57 | 19.01 | 33.74 | -1.47 | 19.59 | 33.04 | -0.93 1.05
58 | 19.01 | 32.97 | -1.47 | 19.59 | 33.66 | -1.05 0.99

different average numbers of incorrect correspondences for each noise level,
respectively.
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As shown in Figure 13, the algorithm works very well if the number of
missing lines is 0, i.e. each 3D line is visible in all three images. For example,
on average, there are only about 0.5 incorrect correspondences for the noise
level of 5 pixels. For the lower levels of noise ranging from 1 pixel to 3
pixels, there is little effect on the performance of the algorithm for different
numbers of missing points. For the higher levels of noise, the number of
incorrect correspondences increases as the number of missing image lines
increases. From Figure 13, we can see that on the average, the number
of incorrect correspondences rises about 0.5 lines (about 2%) at any of the
noise levels. Therefore, our experiments have shown that the algorithm can
tolerate a difference in the number of image lines from three images and is
robust against a reasonable level of noise.

6.2 PUMA Sequence

In this subsection, we test on the indoor PUMA image sequence again. For
each image, 2D image line segments were extracted by the accurate Boldt
line extraction algorithm [9]. Figures 14 shows a triplet of the extracted
line sets from the 1st, 10¢h, and 20tk frames in the sequence with 196, 185,
and 189 image line segments, respectively. Here, the three images have more
accurate image line segments, but also more line segments are extracted than
in the previous set shown in Figure ?7?. Figure 7?7 shows 76 correct image line
segment correspondences. Again, this experiment uses the ground truth 3D
data supplied in Kumar’s thesis [49]. Here we only reported the comparisons
between the reconstructed 3D lines and their ground truth data for those 3D
lines whose ground truth coordinates of two endpoints are available. Table 3
and Table 4 report a comparison between the triangulated 3D lines and their
ground-truth data. For the 35 line correspondences, the average orientation
error is 3.36 degree, and the average distance error is 0.11 feet.

6.3 RADIUS Image Set

The goal of this experiment is to test the performance of correspondence
process for larger size images and a huge line data set, and we will not
attempt evaluation of 3D accuracy here. Again, this experiment uses the
RADIUS image data set (J1-J8) supplied through the ARPA-ORD RA-
DIUS project [4]. Each image contains approximately 1320x1035 pixels,
with about 11 bits of grey level information per pixel. The dimensions
of each image vary slightly because the images have been resampled, and
unmodeled geometric and photometric distortions have been introduced to
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more accurately reflect actual operating conditions.

Here, the Boldt line algorithm [9], was run on all of the eight images
J1-J8. To reduce the number of lines to a computationally manageable size
these images were first reduced in resolution to half their original size before
line extraction. After line extraction, the segments found were rescaled back
into original image coordinates, then filtered so that each line segment in the
final set has a length of at least 10 pixels and a contrast (difference in average
grey level across the line) of at least 15 grey levels. This procedure produced
more than 2000 line segments per image. Figures 16, 17, and 18 show three
sets of line segments produced from images J1, J2, J3, respectively.

As shown in Figures 16, 17, and 18, the three line sets are huge, and the
numbers of image line segments from the three images are different, since
J1, J2, and J3 have 2662, 2772, and 2734 image line segments, respectively.
Both the 2D image lines and the camera parameters are noisy. Clearly, there
exists significant fragmentation in the three image line data sets. Due to this
fragmentation, there may be several line segment correspondences that cor-
respond to the same 3D line. Geometrically, each finite image line segment
corresponds to a finite line segment in its corresponding 3D line. Due to frag-
mentation, each of three line segments in an image line correspondence often
is from a different part of the actual 3D line triple. In order to reduce some
unnecessary correspondences obtained by the line matching and reconstruc-
tion algorithm, a ”common part” constraint was imposed. This constraint
ensures that any line segment correspondence must have an overlapping
common part in their 3D intersection line. Another advantage of this con-
straint is that it can eliminate some incorrect correspondences which have
no common element in their corresponding 3D pseudo-intersection lines, al-
though they have small affinity values. The result of the algorithm was 232
line segment correspondences across three images, shown in figures 19, 20,
and 21.

7 Conclusions

This paper addresses the problems of determining image feature correspon-
dences while simultaneously computing the corresponding 3D features, for
images with known camera pose. Our novel contribution is the development
and application of an affinity measure between image features (points and
lines), i.e. a measure of the degree to which candidates from different images
consistently represent the projection of the same 3D point or the same 3D
line. We utilize optimal bipartite graph matching to solve the problem of

29



simultaneous recovery of correspondence and 3D reconstruction. The match-
ing mechanism is general and robust since it ensures that a maximal match-
ing can be found based upon proven graph theoretical algorithms. From the
point of view of implementation, this graph-based matching technique can
be implemented efficiently and in parallel, and has been successfully applied
to matching problems involving graphs of quite large size.

Experiments with both synthetic and real image data sets were con-
ducted to evaluate performance of the point and line matching algorithms.
The experiments have shown that the algorithms are robust in the presence
of significant amounts of missing points and lines, and noise in the cam-
era parameters and in the extracted image point and line features. The
presented integrated matching and triangulation methods are well-suited
for photogrammetric mapping applications where camera pose is already
known, for wide-baseline multi-camera stereo systems, and for model ex-
tension where a set of known features are tracked. Also, these techniques
potentially have a wider application domain than traditional matching and
reconstruction algorithms, since our matching mechanism is general-purpose
and only the affinity measures would need to be redefined. They could also
be extended to deformable 3D matching and reconstruction problems.

Some remaining issues associated with generalization to multi-image
analysis over larger numbers of images are subject for further study. In
order to perform 3D reconstruction from m images, the point matching and
triangulation algorithm could be repeated for each image pair of (%), and
the integrated line matching and triangulation algorithm could be repeated
for each image triplet of (j'). This is not true multi-image matching, since
all images are not used together, and the two affinity measures are not able
to describe the affinity among image features (points and lines) over mul-
tiple images. The development of a new multi-image matching algorithm
based on more general affinity measures is left for future work. Finally, it is
desirable to develop a unified matching and reconstruction algorithm based
on both image points and image lines, combining the advantages of both.
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Figure 7: PUMA sequence data for matching experiments: (a) extracted
image points (113 points) in the 1st frame; (b) extracted image points (107
points) in the 10¢h frame.
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Figure 8: (a) 43 matched image points in the 1st frame; (b) 43 matched
image points in the 10¢h frame.
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Figure 9: Extracted image points in image J3. The 186 points are a result
of generating 2D building polygons via the ASCENDER system.
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Figure 10: Extracted image points (186 points) in image J7.
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Figure 11: Experiments with RADIUS detect 61 matched image points in
image J3.
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Figure 12: Experiments with RADIUS detect 61 matched image points in
image J7.
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Figure 14: Boldt lines in PUMA sequence. Three sets of image line segments
extracted by the Boldt algorithm: (a) 196 image line segments in frame 1;
(b) 185 image line segments in frame 10; (¢) 189 image line segments in
frame 20.



Figure 15: 76 matched line segments from Boldt lines in PUMA sequence:
(a) frame 1; (b) frame 10; (c) frame 20.



Table 3: 3D line reconstruction error for the PUMA Sequence frames using
Boldt line algorithm: Processing of Frames 1,10,20 produces an average
orientation error of 3.36 degree, and average distance error of 0.11 feet (Part

1).

Line Actual 3D Lines Computed 3D Lines Orient. | Distance

Uy Uy U Uy Uy U Error Error

Mgy my m. Mg my m.

4 -0.00 | -0.00 | 1.00 | 0.08 0.02 1.00
-8.19 | -0.00 | -0.00 | -7.98 | -0.91 | 0.66 4.74 0.05

5 -0.00 | -0.01 | 1.00 | 0.00 | -0.02 | 1.00
-7.01 | -0.00 | -0.00 | -7.13 | 0.16 0.03 0.21 0.19

7 0.00 0.00 1.00 | 0.01 0.01 1.00
-7.25 | 0.00 0.00 | -7.30 | 0.04 0.09 0.71 0.05

8 -0.00 | -0.00 | 1.00 | 0.02 | -0.00 | 1.00
-7.03 | -0.00 | -0.00 | -7.15 | -0.09 | 0.17 1.38 0.12

9 0.00 1.00 0.00 | 0.12 0.97 | -0.20
13.89 | 0.00 0.00 | 14.50 | -1.65 | 0.62 13.41 0.01

10 0.00 | -0.02 | 1.00 | -0.01 | -0.01 | 1.00
-5.02 | 0.00 0.00 | -4.84 | 035 | -0.04 0.95 0.22

11 -0.00 | -0.03 | 1.00 | 0.02 | -0.04 | 1.00
-5.34 | -0.00 | -0.00 | -5.49 | -0.09 | 0.12 1.39 0.12

12 1.00 | -0.00 | -0.00 | 1.00 | -0.02 | 0.10
-0.00 | -7.03 | 9.01 | -1.05 | -6.71 | 9.10 5.90 0.09

15 1.00 0.01 0.00 | 1.00 0.00 0.06
0.14 | -11.28 | 4.17 | -0.23 | -11.09 | 4.16 3.60 0.03

17 0.00 1.00 0.00 | 0.06 0.99 | -0.16
11.28 | 0.00 294 | 12.63 | -0.09 | 3.44 9.58 0.00

18 1.00 0.01 0.00 | 1.00 0.01 | -0.04
0.14 | -11.28 | 2.79 | 0.16 | -10.87 | 2.74 2.09 0.02

23 | -0.00 | -0.00 | 1.00 | 0.01 0.00 1.00
047 | -4.82 | -0.00 | 0.51 -4.90 | 0.00 0.63 0.04

24 | -0.00 | -0.00 | 1.00 | -0.03 | 0.02 1.00
047 | -443 | -0.00 | 0.72 | -3.95 | 0.09 1.93 0.02

29 0.00 0.00 1.00 | 0.02 | -0.02 | 1.00
047 | -6.94 | 0.00 | 0.09 | -7.35 | -0.16 1.91 0.01

30 | -0.00 | -0.00 | 1.00 | 0.01 -0.00 | 1.00
047 | -7.53 | -0.00 | 0.38 | -7.63 | -0.03 0.41 0.02

33 1.00 | -0.00 | -0.00 | 1.00 0.00 | -0.04
-0.00 | -15.03 | 9.01 | 0.45 | -14.65 | 9.14 2.48 0.10

34 0.00 1.00 0.01 | 0.02 1.00 | -0.04
14.85 | 0.00 0.00 | 15.24 | -0.31 | 0.20 3.31 0.03

35 0.00 0.00 1.00 | 0.00 0.01 1.00
-9.01 | -3.32 | 0.00 | -9.05 | -3.34 | 0.07 0.49 0.04
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Table 4: 3D line reconstruction error for the PUMA Sequence frames using
Boldt line algorithm: Processing of Frames 1,10,20 produces an average
orientation error of 3.36 degree, and average distance error of 0.11 feet (Part
2)(continue from Table 3).

Line Actual 3D Lines Computed 3D Lines Orient. | Distance

Uy Uy Uy Ug Uy Uy Error Error

Mg my m; my My m,

36 0.00 1.00 | -0.00 | -0.10 0.98 0.18
11.78 0.00 0.00 | 10.56 1.21 -0.54 11.93 0.01

37 0.00 -0.00 1.00 | -0.00 | -0.02 1.00
-5.40 0.00 0.00 | -5.65 0.26 | -0.00 0.90 0.22

39 0.00 -0.07 | 1.00 | 0.00 -0.03 1.00
-5.05 0.00 0.00 | -4.55 0.19 0.02 2.17 0.21

44 1.00 0.02 -0.00 1.00 0.01 -0.02
0.28 | -11.28 | 5.26 0.21 -10.99 | 5.28 1.45 0.19

50 1.00 -0.02 0.00 | 0.99 -0.03 | 0.13
0.00 0.00 6.37 | -0.81 0.15 6.35 7.34 0.01

56 1.00 0.00 0.01 1.00 -0.01 0.01
0.00 | -14.85 | -0.47 | -0.19 | -14.59 | -0.60 0.74 0.25

58 1.00 0.01 0.00 1.00 -0.06 | 0.01
0.19 | -13.75 | 1.57 | -0.83 | -13.51 | 1.00 4.27 0.31

59 1.00 -0.05 0.00 1.00 -0.05 0.06
-0.74 | -13.73 | 0.37 | -0.77 | -13.85 | 0.32 3.44 0.04

60 1.00 -0.00 | 0.00 1.00 -0.00 | 0.07
-0.06 | -13.75 | 0.08 | -0.08 | -13.91 | 0.02 3.95 0.06

61 1.00 0.00 0.00 1.00 0.01 0.08
0.00 | -16.81 | -0.47 | 0.20 | -17.14 | -0.43 4.74 0.01

63 1.00 0.00 0.05 1.00 -0.00 | 0.03
0.02 | -17.92 | -0.47 | -0.08 | -17.52 | -0.54 1.25 0.02

64 1.00 0.00 0.00 1.00 -0.02 0.06
0.00 | -11.13 | 9.01 | -0.71 | -10.82 | 9.06 3.48 0.03

65 0.00 1.00 0.00 | -0.10 0.99 0.13
16.00 | 0.00 0.00 | 15.73 1.67 | -0.47 9.26 0.34

66 0.00 0.00 1.00 | -0.00 0.01 1.00
-9.01 -1.45 0.00 | -9.11 -1.04 | -0.01 0.47 0.42

71 1.00 0.00 0.00 1.00 -0.01 | -0.05
0.00 | -19.48 | -0.47 | -0.31 | -18.98 | -0.59 3.20 0.01

72 1.00 0.00 0.00 1.00 -0.01 | -0.01
0.00 | -17.82 | -0.47 | -0.15 | -17.59 | -0.57 0.65 0.12

73 1.00 -0.00 | -0.00 | 1.00 -0.00 | -0.00
-0.00 | -16.95 | -0.47 | -0.08 | -16.73 | -0.54 0.29 0.20
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Figure 16: RADIUS model board image J1. The Boldt straight line extrac-

tion algorithm produced 2662 lines.
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tion algorithm produced 2772 lines.
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Figure 18: RADIUS model board image J3. The Boldt straight line extrac-
tion algorithm produced 2734 lines.
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Figure 19: 232 matched line segments for RADIUS model board image J1.
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Figure 20: 232 matched line segments for RADIUS model board image J2.
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Figure 21: 232 matched line segments for RADIUS model board image J3.

93



