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Abstrat

Three-dimensional reonstrution from a set of images is an important and

diÆult problem in omputer vision. In this paper, we address the problem

of determining image feature orrespondenes while simultaneously reon-

struting the orresponding 3D features, given the amera poses of disparate

monoular views. First, two new aÆnity measures are presented that ap-

ture the degree to whih andidate features from di�erent images onsistently
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represent the projetion of the same 3D point or 3D line. An aÆnity mea-

sure for point features in two di�erent views is de�ned with respet to their

distane from a hypothetial projeted 3D pseudo-intersetion point. Simi-

larly, an aÆnity measure for 2D image line segments aross three views is

de�ned with respet to a 3D pseudo-intersetion line. These aÆnity mea-

sures provide a foundation for determining unknown orrespondenes us-

ing weighted bipartited graphs representing andidate point and line mathes

aross di�erent images. As a result of this graph representation, a standard

graph-theoreti algorithm an provide an optimal, simultaneous mathing

and triangulation of points aross two views, and lines aross three views.

Experimental results on syntheti and real data demonstrate the e�etiveness

of the approah.

1 Introdution

Three-dimensional model aquisition remains a very ative researh area in

omputer vision. One of the key questions is how to reonstrut aurate

3D models from a set of alibrated 2D images via multi-image triangulation.

The basi priniples involved in 3D model aquisition are feature orrespon-

dene determination and triangulation, with the two ommonly used types

of image features being points and lines. Usually, 2D features are extrated

�rst, suh as orners, urvature points, and lines from eah image. Then,

the orrespondene of these features is established between any pair of im-

ages, usually referred to as \the orrespondene problem". Finally, the 3D

struture is triangulated from these 2D orrespondenes.

Many reonstrution papers assume the orrespondene problem has

been solved [2, 7, 35, 39, 50, 51, 53℄. Unfortunately, in many appliations,

this information is not available and mehanisms to ahieve orrespondene

are unreliable. This has aused serious ritiism of feature-based meth-

ods [6, 22, 33, 52, 60, 61℄. The proess of �nding 2D image feature or-

respondenes an be omputationally expensive and diÆult to implement

reliably, requiring subsequent algorithms to employ robust mehanisms for

deteting outliers due to mismathes [46, 49℄.

Even if the image feature orrespondenes are known, robust triangula-

tion of the 3D models using noisy image data is still a non-trivial problem

and an on-going researh topi. Extensive researh has been devoted to de-

veloping robust algorithms in this area [5, 8, 23, 37, 46, 49, 66, 67℄, inluding

proessing of monoular motion sequenes, stereo pairs, and sets of distint

views. Although both point-based and line-based triangulation are om-

2



monly employed, more attention has been paid to line-based triangulation

sine it generally provides more aurate reonstrutions.

In this paper, we address the problem of determining image feature or-

respondenes given known amera poses, while simultaneously omputing

the orresponding 3D features. We restrit our attention to simultaneous

determination of image feature orrespondenes and reovery of their 3D

struture using mathing and triangulation of noisy 2D image points and

lines. Our approah assumes a set of alibrated images, for whih both

intrinsi (lens) parameters and either absolute or relative poses are known.

Therefore these approahes are well-suited for photogrammetri mapping ap-

pliations where extrinsi parameters are already known, suh as 3D aerial

reonstrution in ultural settings [4℄, for wide-baseline multi-amera stereo

systems, or for model extension appliations where a previous partial model

has been used to determine amera pose for a set of new views, from whih

previously unmodeled sene features are now to be reovered [18, 19, 21, 46℄.

This paper is organized as follows. Setion 2 reviews previous related

work in the area of 3D reonstrution with unknown apriori orrespondenes.

Setion 3 introdues two new aÆnity measures for determining image point

and line orrespondenes aross images, and uses them to onstrut weighted

bipartite graphs. Setion 4 formulates the image feature mathing problem

as the general maximum-weight bipartite mathing problem and develops

two algorithms to simultaneously math and reonstrut 3D points and lines

from noisy 2D image points and lines, respetively. Finally, Setion 5 and

Setion 6 present and analyze experimental results from syntheti and real

image data sets. Setion 7 gives our onlusions.

2 Previous Work

2.1 Motion Estimation without Correspondenes

Aggarwal et al [2℄ reviewed the orrespondene problem two deades ago. In

reent years, a variety of orrespondene problems [2, 6, 13, 14, 16, 33, 39, 51,

52, 61, 63℄ have been studied. In addition, many researhers have worked on

the problem of motion estimation without pre-spei�ed orrespondenes [3,

22, 33, 39, 50, 52, 63℄.

Aloimonos, et al [3℄, presented an algorithm to estimate 3D motion

without apriori orrespondenes by ombining motion and stereo mathing.

Huang and his researh group [33, 50, 52℄ presented a series of algorithms

to estimate rigid-body motion from 3D data without mathing point or-

respondenes. Goldgof et al [33℄ presented moment-based algorithms for
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mathing and motion estimation of 3D point or line sets without orre-

spondenes and applied these algorithms to objet traking over the image

sequenes. The basi idea is to �nd two oordinate systems based on relative

positions of 3D points/lines before and after the motion, then ompute the

motion parameters (rotation and translation) that make these oordinate

systems oinide. The disadvantages of the approah inlude sensitivity to

noise and to missing or false points or lines.

Lee et al [52℄ proposed an algorithm to deal with the orrespondene

problem in image sequene analysis. This method is based on the following

three assumptions: (1) the objets undergo a rigid motion; (2) a perspetive

projetion amera model an be used; (3) the translation vetor is small

ompared to the distane of the objet.

Reently, we presented a mathematial symmetry in the solutions of ro-

tation parameters and point orrespondenes, derived a losed-form solution

based on eigenstruture deomposition for orrespondene reovery in ideal

ases with no missing points, and developed a weighted bipartite mathing

algorithm to determine the orrespondenes in general ases where missing

points our [63℄

2.2 Determination of Correspondenes from Nonrigid Ob-

jets

Objets in the world an be nonrigid, and an objet's appearane an de-

form as the viewing geometry hanges. Consequently, researh has been

arried out to address the problem of orrespondene and desription using

deformable models [56, 57, 59, 60, 61℄.

Sott and Longuet-Higgins [60℄ developed an algorithm to determine the

possible orrespondenes of 2D point features aross a pair of images with-

out use of any other information (in partiular, they had no information

about the poses of the ameras). They �rst inorporated a proximity ma-

trix desription whih desribes Gaussian-weighted distanes between fea-

tures (based on inter-element distanes) and a ompetition sheme allowing

andidate features to ontest for best mathes. Then they used the eigenve-

tors of this matrix to determine orrespondenes between two sets of feature

points.

Shapiro and Brady [61℄ also proposed an eigenvetor approah to deter-

mining point-feature orrespondene based on a modal shape desription.

Reently, Slaro� and Pentland [59℄ desribed a modal framework for or-

respondene and desription. They �rst developed a �nite element formu-

lation using Gaussian basis funtions as Galerkin interpolants, then used
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these interpolants to build sti�ness and mass matries. Correspondenes

were determined by deomposing the sti�ness and mass matries into a set

of eigenvetors.

2.3 Determination of Correspondenes among Disparate, Mono-

ular Images

Methods based on traking features suh as points and line segments through

a sequene of losely-spaed image frames annot be applied in our present

domain, sine they are based on small-motion approximations, while we are

presented with a set of disrete, disparate, monoular views. Furthermore,

heuristi measures based on similarity of image feature appearane aross

multiple images will also fail, sine widely disparate viewpoints, taken at

di�erent times of day and under di�erent weather onditions an lead to or-

responding image features of signi�antly di�erent appearane. Gruen and

Baltsavias [35℄ desribe a onstrained multi-image mathing system where

intensity templates extrated from one referene image are aÆne-warped

and orrelated along epipolar lines in eah other image. Kumar et al [48℄

present a multi-image plane+parallax mathing approah where they om-

pensate for the appearane of a known 3D surfae between a referene view

and eah other view, then searh for orresponding points along lines of

residual parallax.

Collins [16℄ introdues the term "true multi-image" mathing and present

a new spae-sweep approah to multi-image mathing that make full and

eÆient use of the geometri relationships between multiple images and the

sene to simultaneously determine 2D feature orrespondenes and the 3D

positions of feature points in the sene.

In their reent work, Bedekar and Haralik [7℄ �rst pose the triangulation

problem as that of �nding the Bayesian maximum a posteriori estimate

of the 3D point, given its projetions in N images, assuming a Gaussian

error model for the image point oordinates and the amera parameters.

Then, they onsider the orrespondene problem as a statistial hypothesis

veri�ation problem and solve this problem by an iterative steepest desent

method.

Reently, graph theoreti methods have been applied [13, 14, 30, 34, 43,

58, 63, 64, 65℄. Gold and Rangarajan [30℄ presented a new algorithm for

graph mathing, whih uses graduated assignment. They applied \softas-

sign", a novel onstraint satisfation tehnique, to a new graph mathing

energy funtion that uses a robust, sparse distane measure between the

links of the two graphs. Wu and Leon [64℄ proposed a two-pass greedy bipar-
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tite mathing algorithm to determine the approximate solution of the stereo

orrespondene problem. GriÆn [34℄ presented a bipartite graph mathing

method to determine the orrespondenes between 2-D projetions of a 3-D

sene. Roy and Cox [58℄ desribed a algorithm for solving the N-amera

stereo orrespondene problem.

2.4 Our Approah

The work in this paper is based on an optimal graph theoreti approah

using a residual error funtion de�ned on the image plane to onstrut a bi-

partite graph, a orresponding ow network, and �nally a maximum network

ow that determines the orrespondenes between two images [13℄. Unlike

many other mathing tehniques, our method of network ow ensures that

a maximal mathing an be found. From the point of view of implementa-

tion, this mathing tehnique an be implemented eÆiently and in parallel,

and has been suessfully applied by others to mathing problems involving

graphs of large size (about 100,000 verties) [41℄.

What is needed for orrespondene mathing among disparate, mono-

ular images is a desription of the aÆnity (or 2D/3D spatial relationship )

between image features. The term "aÆnity" is �rst introdued by Ullman

in [62℄ as a measure of the pairing likelihood of two objets in two sets. Here,

we de�ne the aÆnity as a measure of the degree to whih andidates from

di�erent images onsistently represent the projetion of the same 3D point

or the same 3D line.

Traditionally, two separate proessing phases are employed to reon-

strut 3D sene struture: feature mathing and 3D triangulation. With this

division of proessing, it is very diÆult to employ 3D information to mea-

sure the aÆnity between image features during the mathing phase. We ar-

gue that it is better to ombine mathing and triangulation in an integrated

manner. This is aomplished by introduing an aÆnity measure between

image point and line features based on their distane from a hypothetial

projeted 3D pseudo-intersetion point or line, respetively [14℄. The ideas

developed in this paper are an extension of our previous work [13, 14℄.

The hallenge in ombining mathing and triangulation for image line

features is that it is more diÆult to desribe the aÆnity between image lines

than it is for image points. Line segment endpoints are not meaningful sine

there may exist signi�ant fragmentation and olusion in image line data,

and therefore only the position and orientation of the in�nite image line

passing through a given line segment an be onsidered reliable. Moreover,

this implies that at least three images are neessary to desribe line aÆnity,
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sine the projetion planes for any pair of image lines in two images always

interset in a 3D line (Note: if parallel, the planes are said to interset

at in�nity). Thus, no onlusive evidene about possible orrespondenes

between in�nite image lines may be derived from only two images.

One of the ontributions of our work is an aÆnity measure for lines

based on the rapid omputation of a 3D pseudo-intersetion line from a set

of possibly orresponding image lines during the mathing proess. This

approah leads to general maximum-weight bipartite mathing tehniques

to deal with the 3D reonstrution problem without apriori spei�ation of

known image feature orrespondenes.

3 Measuring 2D Image Point amd Line AÆnity

3.1 Measuring 2D Image Point AÆnity from Two Images

Via a 3D Pseudo-Intersetion Point

Given a point p

1

in image I

1

, we seek its math p

2

in another image I

2

. Point

p

2

neessarily belongs on an epipolar line of image I

2

determined ompletely

by p

1

, and vie versa. Most of the existing mathing algorithms e.g. [5℄

diretly utilize this 2D epipolar line onstraint to determine the image point

orrespondenes from two images. However, it is very diÆult to employ

3D information to measure the aÆnity between image features from this 2D

epipolar line onstraint. We argue that it is better to ombine mathing and

triangulation in an integrated manner.

The key observation is that for any pair of image points p

1

and p

2

from two images I

1

and I

2

, there exists a 3D pseudo-intersetion point,

de�ned as the point with the smallest sum of squared distanes from it

to the two projetion lines of p

1

and p

2

. The physial meaning of the

pseudo-intersetion point is that ideally, if p

1

and p

2

are orresponding

image points from I

1

and I

2

, then their pseudo-intersetion point is a real

3D point reovered by the traditional triangulation onstraint.

Given any pair of image points hosen at random, one from eah image,

the pair may or may not truly orrespond to a single 3D point in the sene.

The two image points always yield a 3D pseudo-intersetion point in either

ase, but when this 3D point is projeted bak into eah image it will only

oinide reasonably well with the original pair of 2D image points if the

points are a true orrespondene, and will yield a very poor �t otherwise.

Therefore, the distane between the projeted pseudo-intersetion point and

the original pair of image points yields an aÆnity measure that signi�es

whether that pair of points forms a ompatible orrespondene.
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τ τ

q

21

i

l r

j

l r

p p

Figure 1: A triangulation proess for a pair of images.

Let us now provide a formal spei�ation of the aÆnity measure, with

the reader referring to Figure 1. Given two poses (R

l

; �

l

) and (R

r

; �

r

) from

two images I

l

and I

r

, any pair of 2D points p

l

i

and p

r

j

(i = 1; 2; ... ,n

l

;

j = 1; 2; ... ,n

r

) from I

l

and I

r

, de�ne two 3D lines L

1

and L

2

suh that L

1

passes through points p

l

i

and �

l

, and L

2

passes through points p

r

j

and �

r

.

L

1

and L

2

are the projetion lines of points p

l

i

and p

r

j

, respetively.

Suppose eah projetion line L

k

(k = 1; 2) is written as

x� x

k

u

xk

=

y � y

k

u

yk

=

z � z

k

u

zk

(1)

with unit diretion vetor u

k

=(u

xk

; u

yk

; u

zk

)

T

:

Consider �rst how to ompute an optimal 3D pseudo-intersetion point

P

q

(x

q

; y

q

; z

q

) with the smallest sum of distanes from P

q

to the two lines

L

1

and L

2

. The error funtion an be de�ned [33℄ as

E = [(x

q

� x

k

)u

yk

� (y

q

� y

k

)u

xk

℄

2

+[(x

q

� x

k

)u

zk

� (z

q

� z

k

)u

xk

℄

2

+[(y

q

� y

k

)u

zk

� (z

q

� z

k

)u

yk

℄

2

(2)
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Figure 2: A wrong \negative" 3D point orresponding to a pair of image

points that interset behind one or both ameras. This is a detetable

ondition, even though it satis�es the de�nition of pseudo-intersetion.

After setting

�E

�x

q

=

�E

�y

q

=

�E

�z

q

= 0, we obtain the optimal 3D pseudo-

intersetion point P

q

[33℄

2

6

4

x

q

y

q

z

q

3

7

5

=

"

2

X

k=1

A

k

#

�1

2

6

4

2

X

k=1

0

B

�

A

k

2

6

4

x

k

y

k

z

k

3

7

5

1

C

A

3

7

5

(3)

where

A

k

=

2

6

4

u

2

yk

+ u

2

zk

�u

xk

u

yk

�u

xk

u

zk

�u

xk

u

yk

u

2

xk

+ u

2

zk

�u

yk

u

zk

�u

xk

u

zk

�u

yk

u

zk

u

2

xk

+ u

2

yk

3

7

5

As mentioned before, if p

l

i

and p

r

j

are true orresponding image points,

then P

q

is the real 3D point to be reovered. However, there are four

ases that are exeptions: (1) no 3D point ould be obtained for p

l

i

and p

r

j

,

beause the two 3D lines L

1

and L

2

are parallel; (2) an inorret \negative"

3D point ould be obtained for p

l

i

and p

r

j

, due to the two 3D lines L

1

and L

2

interseting behind one or both ameras, as shown in Figure 2; (3) a wrong

\epipolar" 3D point P

w

is obtained due to ambiguous orrespondenes, e.g.

a typial problem with p

l

i

orresponding to either p

r

j

or p

r

w

is shown in

9



τ τ
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P

l r

q

r

jr

w
i

l

l

w

w

p
p

p
p

Figure 3: An error in orrespondene produes a wrong 3D Pseudo-

intersetion point P

w

, or ambiguity in pairs of orrespondenes. P

q

is

the orret pseudo-intersetionpoint, but an inorret orrespondene using

P

r

w

along the orret epipolar line produes P

w

as an inorret psuedo-

intersetion point. If P

l

w

is an existing andidate orrespondene, then two

pairs of ambiguous orrespondenes an be suessfully resolved.
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Figure 3. This ase shows that a point p

l

i

in image I

l

ould interset with

the projetion line of more than one image point in image I

r

; (4) a pseudo-

intersetion 3D point P

q

is omputed although p

l

i

and p

r

j

don't orrespond

at all.

The �rst ase, with parallel projetion lines, is exeedingly rare, but is

easily deteted by examining whether a solution exists for Eq. 3. It also an

be deteted by examining whether the diretions of the projetion lines L

1

and L

2

are the same.

For the seond ase, as all pairs of image points from two images are

onsidered initially as possible orrespondenes, some of those will interset

in their negative diretions and satisfy the minimal distane ondition to

lines L

1

and L

2

, but are inorret. Fortunately, it is easy to detet this kind

of \negative" 3D point by examining the diretions of rays from �

l

to p

l

i

and from �

l

to P

q

or rays from �

r

to p

r

j

and from �

r

to P

q

to make sure

that they are the same.

The third ase is the interesting one, aused by an inorret orrespon-

dene, due to ambiguity. For example, as shown in Figure 3, suppose p

l

i

orresponds to p

r

j

with P

q

as the orret 3D point. However, the known

poses speify epipolar lines, and sine p

r

w

lies on the known epipolar line

of p

l

i

in image I

r

, then both are plausible but ambiguous andidates for a

orrespondene math. Thus p

l

i

and p

r

w

would interset at a 3D point P

w

.

However, this kind of ambiguity might be deteted beause p

l

w

might or-

respond to another existing point P

r

w

appearing in image I

r

. For this ase,

the true (maximum) orrespondenes ould be deteted for the two sets of

points, i.e., p

l

i

orresponds to p

r

j

and p

l

w

orresponds to p

r

w

. Unfortunately,

if the point p

l

w

doesn't appear in the �rst image, it is diÆult to resolve this

inherent ambiguity. In suh situations, a third image would greatly redue

suh ambiguities.

For the fourth ase, sine it is an inorret orrespondene, the pseudo-

intersetion point P

q

is loated far from the two projetion lines. This ase

is easily deteted by its 2D aÆnity funtion de�ned below.

For any pair of image points (p

l

i

,p

r

j

), we projet the \pseudo-intersetion"

point P

q

into the two images I

l

and I

r

, to get the two projeted image points

p

l

0

i

(u

0

i

; v

0

i

) and p

r

0

j

(u

0

j

; v

0

j

). Finally, we ompute the error funtions E

l

ij

and

E

r

ij

:

E

l

ij

= kp

l

i

� p

l

0

i

k

2

; E

r

ij

= kp

r

j

� p

r

0

j

k

2

(4)

and de�ne a 2D point aÆnity funtion sfp(p

l

i

;p

r

j

) is de�ned as
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sfp(p

l

i

;p

r

j

) = e

�(E

l

ij

+E

r

ij

)=2

(5)

The riterion underlying sfp(p

l

i

;p

r

j

) is that the best estimate for any 3D

pseudo-intersetion point is the point that minimizes the sum of the squared

distanes between the predited image loation of the omputed 3D point

and its atual image loations in the �rst and seond images. If sfp(p

l

i

;p

r

j

)

= 0, it means that p

l

i

is not a possible math for p

r

j

; if sfp(p

l

i

;p

r

j

) = 1, it

means that p

l

i

is a perfet math for p

r

j

.

3.2 Measuring 2D Line AÆnity from Three Images via a 3D

Pseudo-Intersetion Line

Here, we develop an analagous line pseudo-intersetion measure, similar to

the 2D aÆnity measure between image point features in the last subsetion.

Given the poses of three images, a 2D aÆnity measure among image line

segments is developed for the problem of determining image line orrespon-

denes, while simultaneously omputing the orresponding 3D lines. The

hallenge in ombining mathing and triangulation for image line features is

that it is more diÆult to desribe the aÆnity between image line segments.

Sine it is well-known that line segment endpoints are prone to error due

to fragmentation and unreliable terminations in image line data, only the

position and orientation of the in�nite image line passing through a given

line segment of suÆient length an be onsidered reliable. Moreover, this

implies that at least three images are neessary to desribe aÆnity, sine the

projetion planes for any pair of image lines in two images always interset

in a 3D line (if parallel, the planes are said to interset at in�nity), and

thus no onlusive evidene about possible orrespondenes between in�nite

image lines may be derived from only two images.

Given three images and their orresponding amera poses, we assume

that three line segments are hosen at random, one from eah image, so that

the set may or may not truly orrespond to a single 3D line in the sene.

For any triplet of image lines from three images, there exists a 3D pseudo-

intersetion line L with the smallest sum of squares of the mutual moments

of L with respet to the two projetion lines of the two endpoints for eah

image line. As this omputation will be performed many times on images

with large numbers of line segments as we searh for orret orrespondenes,

we need it to be omputationally eÆient, even if this speed is ahieved

at the expense of auray. Here, the linear line reonstrution algorithm

presented in [12℄ is employed to ahieve a losed-form solution for the best

12



3D pseudo-intersetion line. It has been shown in [12℄ that the algorithm is

fast and eÆient.

For any triplet of image line segments from three images, we wish to

ompute an aÆnity value that measures the degree to whih these lines

are onsistent with the hypothesis that they are all projetions of the same

linear 3D sene struture. To do this, we �rst use the line reonstrution

algorithm presented in [12℄ to ompute their pseudo-intersetion line L, and

then projet L bak into eah image to get three in�nite image lines l

i

(i =

1; :::; 3).

Suppose l

i

is represented by the equation

f

i

u+ g

i

v + h

i

= 0

in pixel oordinates (u; v), and that the endpoints of the original 2D line

segment in image I

i

are (u

a

; v

a

) and (u

b

; v

b

). A natural measure of the

distane from the line segment to the projeted pseudo-intersetion line l

i

is the sum of absolute pixel distanes from the line segment endpoints to l

i

,

that is

r

i

=

j f

i

u

a

+ g

i

v

a

+ h

i

j + j f

j

u

b

+ g

i

v

b

+ h

i

j

q

f

2

i

+ g

2

i

: (6)

If the three image line segments atually are a true orrespondene of a

single linear 3D struture, we an expet all of them to lie \lose" to their

respetive reprojetions of the pseudo-intersetion line, where loseness is

judged based on our knowledge of the error harateristis of the line segment

extration proess and the level of noise in the image. On the other hand, if

the image line segments do not orrespond to a linear sene struture, their

distane from the projeted pseudo-intersetion line will be large, whih

is true of most of the line triplets (barring aidental alignments). The

distane is greater to the extent that the hosen lines are truly geometrially

inompatible.

Based on the above distane measure, the 2D line aÆnity value sfl(l

1

; l

2

; l

3

)

for a triplet of image line segments from three images is de�ned as

sfl(l

1

; l

2

; l

3

) = e

�(

P

3

i=1

r

i

)=6

(7)

where

P

3

i=1

r

i

=6 an be interpreted as the average distane from the set of

image line segment endpoints to their respetive projeted pseudo-intersetion

lines. If sfl(l

1

; l

2

; l

3

) = 0, it means that l

1

,l

2

, and l

3

are not ompatible at

all; if sfl(l

1

; l

2

; l

3

) = 1, it means tha l

1

,l

2

, and l

3

are perfetly ompatible.
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4 3D Reonstrution Algorithms without Corre-

spondenes Based on the Weighted Bipartite

Mathing Tehnique

Traditional orrespondene mathing tehniques use only 2D pixel-level in-

formation. These 2D image analysis tehniques enounter signi�ant dif-

�ulty in reovering orret orrespondenes of image features, sine they

do not onsider the important 3D information aptured via our pseudo-

intersetion points or lines.

In the previous setion, we developed two aÆnity measures between

image features, sfp(p

l

i

;p

r

j

) in Eq. 5 for image points and sfl(l

1

; l

2

; l

3

) in

Eq. 7 for image lines. The two aÆnity measure funtions ontain signi�ant

information about potential orrespondenes between image features. The

important question that immediately follows is how to use this information

in a reliable proess to determine image feature orrespondenes. Weighted

bipartite mathing [41, 42℄ is a mature mathematial framework for solving

mathing problems using our aÆnity measure.

In this setion, we will show how the problem of image feature mathing

an be formulated as a maximum-weight bipartite mathing problem by

using the 2D image point aÆnity funtion in Eq. 5 and the 2D image line

aÆnity funtion in Eq. 7. An eÆient graph-based algorithm for mathing

and reonstrution is developed to determine image feature orrespondenes

while simultaneously reovering 3D features.

4.1 Formulation as a Maximum-Weight Bipartite Mathing

Problem

Given the two sets of image points L = fp

l

i

j i = 1; 2; :::; n

l

g from image I

l

and R = fp

r

j

j j = 1; 2; :::; n

r

g from image I

r

, an undireted weighted graph

G = (V;E) an be onstruted as follows: V = L [ R;E = fe

ij

g. Eah edge

e

ij

(i = 1; 2; ..., n

l

; j = 1; 2; ..., n

r

) orresponds to a weighted link between

p

l

i

in I

l

and p

r

j

in I

r

, whose weight w(e

ij

) is equal to the aÆnity between p

l

i

and p

r

j

, i.e. w(e

ij

)=sfp(p

l

i

;p

r

j

). Obviously, the graph arising in suh a ase

is a weighted bipartite graph by onstrution, sine two points in the same

image annot be linked.

Given a set of line segments l

�

,l

�

, and l



in a triplet of images I

1

, I

2

and

I

3

, two undireted bipartite graphs G

1

= (V

1

; E

1

) and G

2

= (V

2

; E

2

) an be

onstruted as follows. First, generate two vertex sets V

1

and V

2

suh that

V

1

= I

1

[I

2

and V

2

= I

2

[I

3

. Next, for all feasible mathes among any three

14



image lines l

�

, l

�

and l



, one from eah image, generate their edges e

1

��

2 E

1

and e

2

�

2 E

2

with weights equal to the aÆnity measure sfl(l

�

; l

�

; l



), as

de�ned in the last setion, i.e. w(e

1

��

) = w(e

2

�

) = sfl(l

�

; l

�

; l



). Note that

in general this ould involve taking all triplets of image line segments, one

from eah image, unless domain spei� information is used to prune the set

of possible mathes down to a smaller feasible set. Often suh information

should be available through domain onstraints.

It should be noted that due to the fragmentation of image lines, multiple

ompeting edges ould exist between the same two nodes in either graph.

For example, suppose there exists a possible orrespondene among the line

segments l

�

, l

�

, and l



from the three images respetively, and another

possible orrespondene between l

�

, l

0

�

, and l



. It would seem then, that two

edges between l

�

and l

�

are needed, one to store the weight for sfl(l

�

; l

�

; l



)

and one for sfl(l

�

; l

�

; l

0



). In pratie, we remove these trivial onits at

graph reation time by heking if an edge already exists between two nodes

before adding a new one. If the aÆnity value of the new edge is larger

than the edge already there, then the old edge is replaed by the new one,

otherwise it is left alone.

From the previous subsetions, we know that for any pair of image points

p

l

i

and p

r

j

, there is a weighted link e

ij

between p

l

i

and p

r

j

in the weighted

bipartite graph G. Similarly, for any triplet of image line segments l

�

, l

�

,

and l



, there is a weighted link e

1

��

between l

�

and l

�

in the �rst bipartite

graph G

1

and a weighted link e

2

�

between l

�

and l



in the seond bipartite

graph G

2

. Ideally, if the image features (points/lines) are in true orrespon-

dene then their weights w(e

ij

), or w(e

1

��

) and w(e

2

�

) should be equal to the

maximum weight of 1; thus they signi�antly ontribute to the �nal math-

ing to be determined, and the number of total image feature (point/line)

orrespondenes is equal to the size of the mathing. Due to the errors in

some of the amera poses and the loations of the extrated image points

or line segments, however, the weights w(e

ij

), or w(e

��

) and w(e

�

) will be

below 1, but often an be expeted to be high (i.e. approah 1).

On the other hand, from graph theory, we know that given an undireted

graph, amathing is a subset of edgesM � E suh that for all verties v 2 V ,

at most one edge of M is inident on v. A vertex v 2 V is mathed by M if

some edge inM is inident on v; otherwise, v is unmathed. The maximum-

weight mathing is a mathing M

w

of size j M

w

j suh that the sum of the

weights of the edges in M

w

is maximum over all possible mathings. There-

fore, the image feature orrespondenes to be determined orrespond to the

maximum-weight mathing in the bipartite graphs G for determination of

15



image point orrespondenes, or G

1

and G

2

for determination of image line

orrespondenes.

4.2 Redution to the Maximum-Flow Problem

As disussed from Subsetion 4.1, the orrespondene problem of image

points and lines an be onsidered as the problem of �nding the maximum-

weight mathing in the weighted bipartite graphs. The remaining question is

how to �nd the maximum-weight mathing in the weighted bipartite graphs.

If eah edge has a unit weight in the bipartite graph, then we get the

unweighted bipartite mathing problem, whih is to �nd a mathing of max-

imum ardinality. The above image feature mathing problem for image

points and lines ould be redued to the unweighted mathing problem by

setting all the weights in the bipartite graph to be 1 if sfp(p

l

i

;p

r

j

) � T

p

for

image points p

l

i

and p

r

j

, or if sfl(l

�

; l

�

; l



) � T

l

for image line segments

l

�

; l

�

, and l



. Here, the thresholds T

p

and T

l

would be hosen empirially.

For the weighted bipartite graph shown in Figure 4(a), its unweighted oun-

terpart is shown in Figure 4(a) by setting all the weights in the bipartite

graph to be 1 if sfp(p

1

i

;p

2

j

) � T

p

= 0:8.
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Figure 4: The weighted and unweighted bipartite graphs: (a) weighted bi-

partite graph; (b) unweighted bipartite graph.

The problem of image feature mathing seems on the surfae to have

little to do with ow networks, but it an in fat be redued to a maximum-
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ow problem. By relating the unweighted mathing problem for bipartite

graphs to the max-ow problem for simple networks, the mathing problem

beomes simpler, and the fastest maximum ow algorithm an be used to

�nd the maximum mathing, whih was disussed in [13℄. In order to redue

the problem of a maximummathing in the bipartite graph G to a maximum

ow problem in the ow network G

0

, the trik is to onstrut a ow network

in whih ows represent orrespondenes. We build a orresponding ow

network G

0

= (V

0

; E

0

) for the bipartite graph G as follows: Let the soure s

and sink t be new verties not in V , let V

0

= V [fs; tg, and let the direted

edges of G

0

be given by

E

0

= f(s; v

0

i

) : v

0

i

2 Lg [ f(v

0

i

; v

0

j

) : v

0

i

2 L; v

0

j

2 R;

(v

0

i

; v

0

j

) 2 Eg [ f(v

0

j

; t) : v 2 Rg

and �nally, assign unit ow apaity to eah edge in E.

Further, it has been shown that a maximum mathing M

w

in a bipartite

graph G orresponds to a maximum ow in its orresponding ow network

G

0

. Therefore, the unweighted image feature orrespondene problem is

exatly equivalent to �nding the maximum ow in G

0

= (V

0

; E

0

), and we

an ompute a maximum mathing in G by �nding a maximum ow in

G

0

. The main advantage of formulating the image feature orrespondene

problem as the unweighted bipartite mathing problem is that there exist

very fast algorithms (e.g. Goldberg's algorithm is O(jV jjEjlogjV j)), whih

an be implemented in an eÆient and parallel way to �nd the maximum

mathing in the unweighted bipartite graph.

4.3 Solving for the Maximum-Weight Bipartite Math

The main disadvantage of the unweighted bipartite mathing formulation

is that it is ruial to hoose an appropriate value for the threshold T

p

for

the image point orrespondene problem and T

l

for the image line segment

orrespondene problem before the unweighted bipartite mathing algorithm

is performed. If T

p

or T

l

is too small, more outliers will be reated; if

T

p

or T

l

is too large, it will �lter out too many orret orrespondenes.

For example, as shown in Figure 4(a), if we hoose T

p

= 0.9, then the

orret orrespondene (5; e) ould be �ltered. In this ase, we would miss

the mathing (5; e) and ould not then disambiguate the mathings (4; d)

and (4; e) for the left image point \4". Therefore, it is neessary to deal

with the general maximum-weight bipartite mathing problem, whih is the

generalization of the unweighted bipartite mathing problem. Although the

weighted mathing problem is not haraterized by maximum ows in terms
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Figure 5: The symmetri di�erene operator of M and P : (a) mathing M ;

(b) augmenting path P wrt. M ; () M � P .

of augmenting paths, it indeed an be solved based on exatly the same idea:

start with any empty mathing, and repeatedly disover augmenting paths.

In the following, we fous on how to �nd the maximum-weight mathing in

the weighted bipartite graph.

Consider the mathing M shown in Figure 5(a). The edges (1; a), (2; b),

(3; ), and (4; e) are mathed, and the edges (4; d) and (5; e) are unmathed.

Given a mathing M in a bipartite graph G = (V;E), a simple path in G is

alled an augmenting path with respet to mathing M if its two endpoints

are both unmathed, and its edges alternate between E �M and in M .

The augmenting path P = f(5; e); (e; 4); (4; d)g with respet to mathing M

is shown in Figure 5(b). Endpoints 5 and d are unmathed, and the path

onsisting of alternating edges (5,e) in E �M , (4,e) in M , and �nally (4,d)

in E �M .

Let p denote an augmenting path with respet to mathing M , and P

denote the set of edges in p, then M � P is alled the symmetri di�erene

of M and P . M � P is the set of elements that are in one of M or P ,

but not both, i.e. M � P = (M � P ) [ (P �M). It an be shown that

M � P has the following properties: (1) it is a mathing; (2) j M � P j =

j M j +1. The symmetri di�erene M � P is shown in Figure 5(), i.e.

M � P = f(1; a); (2; b); (3; ); (4; e); (5; d)g, and jM � P j = 4+1=5.
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For the mathing M , its total weight of mathing M is de�ned as

w(M) =

X

e2M

w(e)

Let M

0

be a set of edges; then an inremental weight �M

0

is de�ned as the

total weight of the unmathed edges in M

0

minus the total weight of the

mathed edges in M

0

:

�M

0

= w(M

0

�M)� w(M

0

\M)

From the de�nition of inremental weight, we know that for an augmenting

path p with respet to M , then �P gives the net hange in the weight of

the mathing after augmenting p:

w(M � P ) = w(M) + �P

Intuitively, we an use an iterative algorithm to onstrut a maximum-

weight mathing. Initially, the mathing M is empty. At eah iteration,

the mathing M is inreased by �nding an augmenting path of maximum

inremental weight. This is repeated until no augmenting path with respet

to mathingM an be found. It has been proven that repeatedly performing

augmentations using augmenting paths of maximum inremental weight,

yields a maximum-weight mathing M

w

[41℄.

The remaining problem is how to searh for augmenting paths with re-

spet to mathing M in a systemati and eÆient way. Naturally, a searh

for augmenting paths must start by onstruting alternating paths from the

unmathed points. Beause an augmenting path must have one unmathed

endpoint in L and the other in R, without loss of generality, we an start

growing alternating paths only from unmathed verties of L. We may

searh for all possible alternating paths from unmathed verties of L si-

multaneously in a breadth-�rst manner. Here, an eÆient Gabor's N-ubed

weighted mathing algorithm [41℄ is used to ompute the maximum-weight

mathing in the weighted bipartite graph. This algorithm has two basi

steps: (1) to �nd a shortest path augmentation from a subset of left verties

in L to a subset of right verties in R; (2) to perform the shortest augmen-

tation. The algorithm is very eÆient; more implementation are disussed

in [41℄.

Sine the number of mathed verties inreases by two eah time, this

takes at most

n

2

augmentations. It has been shown that for a mathing M

of size k of maximum weight among all mathings of size at most k, if there
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exists a mathing M

�

of maximum weight among all mathings in G, and

w(M

�

) � w(M), then M has an augmenting path of positive inremental

weight. Therefore, the image feature orrespondene problem an be exatly

redued to �nding the maximum-weight mathing in the weighted bipartite

graph.

In summary, the general mathing and reonstrution algorithm for im-

age point orrespondenes an be ahieved by the following steps:

Step 1: ompute a pseudo-intersetion point for eah pair of image points

p

l

i

and p

r

j

.

Step 2: alulate the value of sfp(p

l

i

;p

r

j

) in Eq. 5 for eah pair of image

points p

l

i

and p

r

j

.

Step 3: remove the pair for further graph-based mathing analysis if its

sfp(p

l

i

;p

r

j

) value is less than ertain prede�ned threshold.

Step 4: determine if the pair should not be added into a weighted bi-

partite graph in Step 5 with respet to inorret Cases 1 and 2, whih were

disussed in Setion 3.1.

Step 5: onstrut a weighted bipartite graphG = (V;E) for image points.

Step 6: �nd the maximum weighted mathing M

w

for G.

Step 7: determine image point orrespondenes and their orresponding

3D points from the maximum mathing M

w

.

Similarly, the general mathing and reonstrution algorithm for image

line orrespondenes an be ahieved by the following steps:

Step 1: ompute a pseudo-intersetion line for eah triplet of image lines

l

1

; l

2

, and l

3

.

Step 2: alulate the value of sfl(l

1

; l

2

; l

3

) in Eq. 7 for eah triplet of

image lines l

1

; l

2

, and l

3

.

Step 3: remove the triplet for further graph-based mathing analysis if

its sfl(l

1

; l

2

; l

3

) value is less than ertain prede�ned threshold.

Step 4: onstrut two weighted bipartite graphs G

1

= (V

1

; E

1

) and G

2

=

(V

2

; E

2

) for image line segments.

Step 5: �nd the maximum weighted mathing M

w

for G

1

and G

2

.

Step 6: determine image line orrespondenes and their orresponding

3D lines from the maximum mathing M

w

.

It should be noted that Step 3 in the above two mathing algorithms

is not neessary, but an �lter out a great number of inorret orrespon-

denes that don't orrespond at all, thus improve omputational eÆieny

and running time of the two mathing algorithms sine it an redue the

numbers of verties and edges, i.e. the size of the bipartite graphs. Inor-

ret orrespondenes that are not �ltered in Step 3, will be determined by
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our weighted bipartite mathing proess.

5 Experimental Results for Correspondene of Im-

age Points

In this setion, we present experiments to haraterize the performane of

our approah to 3D point reonstrution while simultaneously determin-

ing orrespondenes, based on the aÆnity funtion de�ned in Eq. 5. We

will examine the performane in terms of the number of the reovered im-

age point orrespondenes, and the distane between eah triangulated 3D

pseudo-intersetion point and its atual 3D point. In all the experiments,

we assume that both the intrinsi amera parameters and poses are known.

The algorithm uses two sets of image points separately extrated from two

images as input, and produes a set of image point orrespondenes and

their orresponding triangulated 3D points.

5.1 Syntheti Data

The syntheti experiments are performed on a set of synthesized 3D points

representing a rigid objet. To evaluate performane with known ground

truth, a set of 40 3D points were randomly generated from the objet and

projeted into two images. The image point loations for eah image were

orrupted by Gaussian noise. Noise for eah image point loation was as-

sumed to be zero-mean, identially distributed, and independent. The stan-

dard deviation ranges from 1.0 pixel to 5.0 pixels. In order to examine how

the robustness of mathing is a�eted by missing points (i.e. no orret

orrespondene in the other image), 16 sets were generated with di�erent

perentages of missing points ranging from

0

40

% to

15

40

%. For eah of these

redued point sets, 100 trials of noisy samples were used to spatially perturb

the remaining points for eah of the �ve levels of noise. For eah sample

of the same set, the number of missing points is the same, i.e. the same

perentage of image points were randomly deleted. The algorithm was run

on eah of the samples, and the number of inorret image point orre-

spondenes was omputed for eah sample run. Figure 6 shows the average

number of inorret orrespondenes for eah noise level.

As shown in Figure 6, the algorithm works very well if the number of

missing points is 0, i.e. eah 3D point to be reovered is visible in both

images. On average, there is only one inorret orrespondene even for

the highest noise level of 5 pixels. For lower levels of noise ranging from 1
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Figure 6: Performane of the image point mathing algorithm against �ve

levels of noise with di�erent numbers of missing points. The average number

of inorret orrespondenes is shown for the true set of 3D points. Noise

level k means all points were perturbed with Gaussian noise of standard

deviation k.

pixel to 3 pixels, there is litte e�et on the performane of the algorithm

for di�erent numbers of missing points. For the higher levels of noise, the

number of inorret orrespondenes inreases linearly as the di�erene in

the sizes of image points from two images inreases. From Figure 6, we an

see that on average, the number of inorret orrespondenes rises about 3%

at any of the noise levels. Therefore, our experiments have shown that the
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algorithm an tolerate a signi�ant di�erene in the number of image points

from two images and is robust against a reasonable level of noise.

5.2 PUMA Sequene

The 3D point reonstrution algorithm with unknown orrespondenes is

applied to the set of real images referred to as the PUMA sequene [49℄, sine

the images were aquired by a amera mouted on a PUMA robot arm. The

image sequenes were aptured with a SONY B/W AVC D-1 amera with

an e�etive �eld of view of 41.7

Æ

(fovx: �eld of view x-axis) by 39.5

Æ

(fovy:

�eld of view y-axis) and the image resolution is 256 � 242. Thirty frames

were taken over a total angular displaement of 116 degrees. The maximum

displaement of the amera in these twenty frames is approximately 2 feet

along the world y-axis and 1 foot along the world x-axis.

For eah image, line segments were �rst extrated by the Boldt algorithm

[9℄, and then 2D orner image points were omputed by alulating the

intersetion point between any pair of nearby image line segments. Figure 7

shows two sets of extrated and unmathed image points from the 1st frame

and the 10th frame, respetively. There is a di�erene in the number of

image points from the two images, sine the 1st frame has 113 image points

while the 10th frame has 107 image points. There are two kinds of error

soures: the 2D image point loations and the estimated amera parameters.

The noise in the image points is due to many typial fators suh as amera

distortion and errors in the image line extration algorithm. The noise in the

amera parameters is mainly due to errors in amera alibration. As seen in

Figure 7, some image points were extrated in the 1st frame, but not in the

10th frame, and vie versa. Thus, it is a general 3D point reonstrution

problem with unknown image point orrespondenes.

Figure 8 shows a subset of 43 orret image point orrespondenes de-

termined from the two frames. The orresponding 3D points reonstruted

by the algorithm are reported in Table 1. This experiment uses the ground

truth 3D data supplied in Kumar's thesis [49℄. Note that here we only

reported the omparisons between the reonstruted 3D points and their

ground truth data for those 3D points whose ground truth oordinates are

available. As shown in Table 1, there is only one inorret orrespondene

labeled 21, where the orrespondene is of two di�erent image points from

the 1st frame and 10th frame. Point 21 in Frame 1 is on the lower of two

retangles (the upper left orner), while Point 21 in Frame 10 is on the up-

per retangle (the lower left orner). Although they are very lose in the

images, the absolute error between the triangulated 3D point reovered by
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Table 1: 3D point reonstrution error for the PUMA ROOM data (average

3D error: 0.43 feet without inorret point 21.

Line

Atual 3D point Computed 3D points Error

x y z x y z (feet)

1 -6.06 -0.47 13.70 -5.94 -0.52 13.48 0.26

2 -6.06 -0.47 11.56 -5.89 -0.55 11.18 0.43

3 -6.06 -0.47 16.81 -6.87 -0.50 16.62 0.83

4 -6.06 -0.47 14.68 -6.88 -0.49 14.50 0.84

5 -8.58 -0.47 16.81 -8.53 -0.48 16.64 0.18

6 -8.58 -0.47 14.68 -8.54 -0.45 14.59 0.11

7 0.00 4.05 20.82 0.20 4.04 18.89 1.94

8 0.00 8.13 13.51 0.13 8.21 13.32 0.25

9 0.00 6.81 14.91 0.17 6.89 14.64 0.33

10 0.00 7.31 13.51 0.15 7.38 13.28 0.28

11 0.00 7.00 13.89 0.19 7.09 13.60 0.36

12 0.00 7.00 11.76 0.18 7.11 11.47 0.36

13 0.00 5.36 13.89 0.11 5.39 13.76 0.17

14 0.00 4.69 14.89 0.18 4.72 14.66 0.30

15 0.00 4.66 16.00 0.27 4.72 16.19 0.33

16 0.00 4.98 11.95 0.25 5.07 11.58 0.46

17 0.00 4.92 14.11 0.23 4.98 13.77 0.41

18 0.00 4.25 11.96 0.34 4.22 11.42 0.64

19 -3.32 9.01 7.03 -3.17 9.23 6.35 0.73

20 -1.45 9.01 3.13 -1.08 9.18 2.27 0.95

21 -3.02 3.80 11.28 0.68 4.26 2.33 9.69

22 -6.32 8.11 0.00 -6.13 8.27 -0.85 0.88

23 -4.20 8.07 0.00 -4.00 8.19 -0.64 0.68

24 -6.35 6.49 0.00 -6.20 6.56 -0.55 0.58

25 -1.77 2.86 0.00 -1.52 2.87 -0.68 0.73

26 -7.26 8.09 0.00 -7.11 8.17 -0.47 0.50

27 -7.26 6.45 0.00 -7.15 6.50 -0.25 0.27

28 -4.82 -0.47 17.82 -4.68 -0.52 17.64 0.23

29 -4.81 -0.47 14.82 -4.67 -0.54 14.56 0.30

30 -4.81 -0.47 16.95 -4.66 -0.52 16.73 0.27

31 -4.43 -0.47 11.63 -4.22 -0.55 11.30 0.40

33 -6.44 -0.47 16.95 -6.35 -0.52 16.74 0.23

34 -6.94 -0.47 19.45 -6.86 -0.52 19.24 0.23

35 -6.94 -0.47 17.82 -6.88 -0.50 17.66 0.18

36 -7.53 -0.47 17.54 -7.48 -0.49 17.38 0.16

37 -3.32 9.01 15.03 -3.42 9.04 15.08 0.12

38 0.00 5.37 11.76 0.35 5.48 11.17 0.70

39 0.00 4.10 14.09 0.24 4.15 13.76 0.41

40 -1.43 3.64 0.00 -1.21 3.67 -0.55 0.59

41 -4.23 6.45 0.00 -4.05 6.53 -0.61 0.64

43 -6.87 0.11 13.75 -6.84 0.09 13.71 0.05

this inorret orrespondene and the original 3D point assoiated with im-

age point 21 in the �rst frame has large error, 9.69 feet. For the other 42
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orret orrespondenes, the average distane between the triangulated 3D

points and ground truth data is 0.43 feet.

5.3 RADIUS Image Set

The 3D point reonstrution algorithm without apriori orrespondenes is

also applied to the RADIUS image set. This experiment uses data supplied

through the ARPA/ORD RADIUS projet(Researh and Development for

Image Understanding Systems) [4℄. The images and amera parameters

used in this experiment were the "model board 1" data set distributed with

version 1.0 of the RCDE (RADIUS Common Development Environment)

software pakage [54℄. The image size is approximate 1320 � 1035 pixels.

Unlike the PUMA image sequene used in last subsetion, eah pair of im-

ages from this data set were taken from two disparate views. Eight images

were provided in this data set.

Again, for eah image, line segments and 2D orner points were extrated

as part of an automated building detetion algorithm [17℄. These 2D orner

points are thus extrated in a di�erent manner than those in the PUMA

sequene. Here the points to be mathed are the orners of building poly-

gons. Figures 9 and 10 show two sets of extrated and unmathed image

points from images J3 and J7, respetively. It should be noted that J3 and

J7 have two di�erent numbers of missing points although they have exatly

the same number of image points, i.e. 186 points. Again, both the 2D image

points and the amera parameters are noisy. The noise in the image points

is again due to errors in point loalization and amera alibration.

Our algorithm reovered 61 orrespondene rooftop polygon points, all

of them orret (Figures 11 and 12). The orresponding 3D points reon-

struted by the algorithm are reported in Table 2. This experiment uses

the ground truth 3D data supplied in the \model board 1" data set Here

we only reported the omparisons between the reonstruted 3D points and

their ground truth data for those 3D points whose ground truth oordinates

are available. From Table 2, we an see that for some image orrespondenes

suh as 20, 21, 34, 35, 36, 49, 50, and 57, the triangulated 3D points have

large errors although their orrespondenes are determined orretly by our

algorithm. This is due mainly to the errors in the loations of rooftop poly-

gon points, sine it is well known that these 2D errors have a signi�ant e�et

on the triangulated 3D data, espeially when there are only two images [17℄.

Some of the inreased size of errors an be attributed to 2D orners being

"moved" due to shadows in one of the views (e.g. point 49 whih produed

the largest error). In order to improve overall auray, more images are
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required. Nevertheless, the results are quite good, with the average distane

between the triangulated 3D points and ground truth data aross 61 orret

image point orrespondenes being 0.45 feet.

6 Experimental Results for Image Lines

In this setion, we will demonstrate the performane of the 3D line reon-

strution algorithm with unknown orrespondenes. It should be noted that

the auray of the triangulated 3D lines depends upon the performane of

the line reonstrution algorithm employed. Here, we use a fast line reon-

strution algorithm with omputational eÆieny and robustness against

noise [12℄. Therefore, in the following, we will simply report a ompar-

ison between the triangulated 3D lines and their ground-truth data, and

onentrate instead on haraterizing the performane of the algorithm for

determining the 2D line orrespondenes that are used for 3D line reon-

strution. Thus, more detailed experiments are reported in terms of the

number of the reovered image line orrespondenes. In all the experiments

presented here, we again assume that both the intrinsi amera parameters

and poses are known. Unlike the previous setion, image lines are extrated

diretly as image features, and the algorithm uses three sets of image lines

aross three images as input, omputing the image line orrespondenes and

their orresponding triangulated 3D lines as output.

6.1 Syntheti Data

Simulations were performed on a set of syntheti 3D lines representing a rigid

body. A set of 40 3D lines were randomly generated from an objet, and

projeted into three images. The two endpoints of eah image line segment

in three images were orrupted by Gaussian noise. Noise for eah image line

segment endpoint was assumed to be zero-mean, identially distributed, and

independent. The standard deviation of line endpoint noise ranges from

1.0 pixel to 5.0 pixels. In order to examine how the number of inorret

orrespondenes is a�eted by the number of missing image line segments,

16 sets of 100 noisy line samples were reated for eah level of noise, in terms

of 16 di�erent perentages of missing lines ranging from

0

40

% to

15

40

%. For

eah sample of the same set, the number of missing lines is the same, i.e.

the same perentage of image lines were randomly deleted. The algorithm

was run on eah of the samples, and the average number of inorret image

line orrespondenes was omputed aross samples used. Figure 13 shows 16
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Table 2: 3D point reonstrution error for the RADIUS image data.

Line

Atual 3D point Computed 3D points Error

x y z x y z (feet)

1 15.79 22.79 -1.15 16.12 22.79 -0.87 0.44

2 15.77 16.40 -1.15 16.01 16.51 -1.33 0.32

3 20.51 16.39 -1.15 20.74 16.48 -1.39 0.34

4 20.52 22.78 -1.15 20.83 22.76 -0.93 0.38

5 9.90 39.36 -1.21 10.45 39.46 -1.32 0.56

6 9.90 40.13 -1.21 10.45 40.16 -1.29 0.55

7 5.89 40.13 -1.21 6.26 40.17 -1.00 0.43

8 5.89 39.35 -1.21 6.26 39.44 -1.01 0.43

15 17.55 7.14 -0.16 17.79 7.17 0.46 0.67

16 17.52 0.76 -0.16 17.77 0.88 0.46 0.68

17 20.08 0.75 -0.16 20.32 0.80 -0.35 0.31

18 20.11 7.13 -0.16 20.34 7.14 -0.18 0.23

20 17.26 10.35 -0.22 17.53 10.48 1.06 1.31

21 17.27 13.36 -0.22 17.56 13.56 1.05 1.32

22 20.29 13.35 -0.22 20.52 13.52 0.06 0.40

23 22.92 11.25 -0.97 22.98 11.49 -0.86 0.27

24 1.60 23.56 -0.43 1.86 23.44 -1.06 0.69

25 1.61 26.53 -0.43 1.85 26.61 -1.21 0.82

26 -4.41 26.55 -0.43 -4.04 26.69 -0.65 0.45

27 -4.42 23.58 -0.43 -4.04 23.47 -0.49 0.40

28 1.64 27.16 -0.78 1.86 27.21 -1.29 0.56

29 1.61 23.38 -0.78 1.86 23.40 -1.04 0.36

30 4.49 26.52 -0.55 4.75 26.55 -0.60 0.27

31 4.34 16.55 -0.55 4.62 16.57 -0.53 0.28

32 14.33 16.40 -0.55 14.60 16.45 -0.65 0.29

33 14.49 26.31 -0.94 14.75 26.35 -1.06 0.30

34 14.45 24.56 -0.55 13.07 24.90 -2.01 2.03

35 12.88 26.39 -0.55 13.12 26.38 -1.98 1.45

36 20.47 26.36 1.71 20.91 26.42 -0.19 1.96

49 20.65 32.76 -1.19 20.13 35.10 -0.05 2.65

50 20.72 35.92 -1.19 20.16 35.92 -0.10 1.22

51 12.80 36.09 -1.19 13.09 36.17 -0.73 0.55

52 12.78 35.26 -1.19 13.05 35.34 -0.86 0.43

55 13.16 33.77 -1.47 13.46 33.78 -1.23 0.38

56 13.16 33.01 -1.47 13.42 33.16 -1.43 0.30

57 19.01 33.74 -1.47 19.59 33.04 -0.93 1.05

58 19.01 32.97 -1.47 19.59 33.66 -1.05 0.99

di�erent average numbers of inorret orrespondenes for eah noise level,

respetively.
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As shown in Figure 13, the algorithm works very well if the number of

missing lines is 0, i.e. eah 3D line is visible in all three images. For example,

on average, there are only about 0.5 inorret orrespondenes for the noise

level of 5 pixels. For the lower levels of noise ranging from 1 pixel to 3

pixels, there is little e�et on the performane of the algorithm for di�erent

numbers of missing points. For the higher levels of noise, the number of

inorret orrespondenes inreases as the number of missing image lines

inreases. From Figure 13, we an see that on the average, the number

of inorret orrespondenes rises about 0.5 lines (about 2%) at any of the

noise levels. Therefore, our experiments have shown that the algorithm an

tolerate a di�erene in the number of image lines from three images and is

robust against a reasonable level of noise.

6.2 PUMA Sequene

In this subsetion, we test on the indoor PUMA image sequene again. For

eah image, 2D image line segments were extrated by the aurate Boldt

line extration algorithm [9℄. Figures 14 shows a triplet of the extrated

line sets from the 1st, 10th, and 20th frames in the sequene with 196, 185,

and 189 image line segments, respetively. Here, the three images have more

aurate image line segments, but also more line segments are extrated than

in the previous set shown in Figure ??. Figure ?? shows 76 orret image line

segment orrespondenes. Again, this experiment uses the ground truth 3D

data supplied in Kumar's thesis [49℄. Here we only reported the omparisons

between the reonstruted 3D lines and their ground truth data for those 3D

lines whose ground truth oordinates of two endpoints are available. Table 3

and Table 4 report a omparison between the triangulated 3D lines and their

ground-truth data. For the 35 line orrespondenes, the average orientation

error is 3.36 degree, and the average distane error is 0.11 feet.

6.3 RADIUS Image Set

The goal of this experiment is to test the performane of orrespondene

proess for larger size images and a huge line data set, and we will not

attempt evaluation of 3D auray here. Again, this experiment uses the

RADIUS image data set (J1-J8) supplied through the ARPA-ORD RA-

DIUS projet [4℄. Eah image ontains approximately 1320�1035 pixels,

with about 11 bits of grey level information per pixel. The dimensions

of eah image vary slightly beause the images have been resampled, and

unmodeled geometri and photometri distortions have been introdued to
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more aurately reet atual operating onditions.

Here, the Boldt line algorithm [9℄, was run on all of the eight images

J1-J8. To redue the number of lines to a omputationally manageable size

these images were �rst redued in resolution to half their original size before

line extration. After line extration, the segments found were resaled bak

into original image oordinates, then �ltered so that eah line segment in the

�nal set has a length of at least 10 pixels and a ontrast (di�erene in average

grey level aross the line) of at least 15 grey levels. This proedure produed

more than 2000 line segments per image. Figures 16, 17, and 18 show three

sets of line segments produed from images J1, J2, J3, respetively.

As shown in Figures 16, 17, and 18, the three line sets are huge, and the

numbers of image line segments from the three images are di�erent, sine

J1, J2, and J3 have 2662, 2772, and 2734 image line segments, respetively.

Both the 2D image lines and the amera parameters are noisy. Clearly, there

exists signi�ant fragmentation in the three image line data sets. Due to this

fragmentation, there may be several line segment orrespondenes that or-

respond to the same 3D line. Geometrially, eah �nite image line segment

orresponds to a �nite line segment in its orresponding 3D line. Due to frag-

mentation, eah of three line segments in an image line orrespondene often

is from a di�erent part of the atual 3D line triple. In order to redue some

unneessary orrespondenes obtained by the line mathing and reonstru-

tion algorithm, a "ommon part" onstraint was imposed. This onstraint

ensures that any line segment orrespondene must have an overlapping

ommon part in their 3D intersetion line. Another advantage of this on-

straint is that it an eliminate some inorret orrespondenes whih have

no ommon element in their orresponding 3D pseudo-intersetion lines, al-

though they have small aÆnity values. The result of the algorithm was 232

line segment orrespondenes aross three images, shown in �gures 19, 20,

and 21.

7 Conlusions

This paper addresses the problems of determining image feature orrespon-

denes while simultaneously omputing the orresponding 3D features, for

images with known amera pose. Our novel ontribution is the development

and appliation of an aÆnity measure between image features (points and

lines), i.e. a measure of the degree to whih andidates from di�erent images

onsistently represent the projetion of the same 3D point or the same 3D

line. We utilize optimal bipartite graph mathing to solve the problem of
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simultaneous reovery of orrespondene and 3D reonstrution. The math-

ing mehanism is general and robust sine it ensures that a maximal math-

ing an be found based upon proven graph theoretial algorithms. From the

point of view of implementation, this graph-based mathing tehnique an

be implemented eÆiently and in parallel, and has been suessfully applied

to mathing problems involving graphs of quite large size.

Experiments with both syntheti and real image data sets were on-

duted to evaluate performane of the point and line mathing algorithms.

The experiments have shown that the algorithms are robust in the presene

of signi�ant amounts of missing points and lines, and noise in the am-

era parameters and in the extrated image point and line features. The

presented integrated mathing and triangulation methods are well-suited

for photogrammetri mapping appliations where amera pose is already

known, for wide-baseline multi-amera stereo systems, and for model ex-

tension where a set of known features are traked. Also, these tehniques

potentially have a wider appliation domain than traditional mathing and

reonstrution algorithms, sine our mathing mehanism is general-purpose

and only the aÆnity measures would need to be rede�ned. They ould also

be extended to deformable 3D mathing and reonstrution problems.

Some remaining issues assoiated with generalization to multi-image

analysis over larger numbers of images are subjet for further study. In

order to perform 3D reonstrution from m images, the point mathing and

triangulation algorithm ould be repeated for eah image pair of

�

m

2

�

, and

the integrated line mathing and triangulation algorithm ould be repeated

for eah image triplet of

�

m

3

�

. This is not true multi-image mathing, sine

all images are not used together, and the two aÆnity measures are not able

to desribe the aÆnity among image features (points and lines) over mul-

tiple images. The development of a new multi-image mathing algorithm

based on more general aÆnity measures is left for future work. Finally, it is

desirable to develop a uni�ed mathing and reonstrution algorithm based

on both image points and image lines, ombining the advantages of both.
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(a)

(b)

Figure 7: PUMA sequene data for mathing experiments: (a) extrated

image points (113 points) in the 1st frame; (b) extrated image points (107

points) in the 10th frame.
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(a)

(b)

Figure 8: (a) 43 mathed image points in the 1st frame; (b) 43 mathed

image points in the 10th frame.
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Figure 9: Extrated image points in image J3. The 186 points are a result

of generating 2D building polygons via the ASCENDER system.
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Figure 10: Extrated image points (186 points) in image J7.
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Figure 11: Experiments with RADIUS detet 61 mathed image points in

image J3.
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Figure 12: Experiments with RADIUS detet 61 mathed image points in

image J7.
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Figure 13: Performane of the image line mathing algorithm against 5 levels

of noise with di�erent numbers of missing points.
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(a)

(b)

()

Figure 14: Boldt lines in PUMA sequene. Three sets of image line segments

extrated by the Boldt algorithm: (a) 196 image line segments in frame 1;

(b) 185 image line segments in frame 10; () 189 image line segments in

frame 20.

44



(a)

(b)

()

Figure 15: 76 mathed line segments from Boldt lines in PUMA sequene:

(a) frame 1; (b) frame 10; () frame 20.
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Table 3: 3D line reonstrution error for the PUMA Sequene frames using

Boldt line algorithm: Proessing of Frames 1,10,20 produes an average

orientation error of 3.36 degree, and average distane error of 0.11 feet (Part

1).

Line Atual 3D Lines Computed 3D Lines Orient. Distane

u

x

u

y

u

z

u

x

u

y

u

z

Error Error

m

x

m

y

m

z

m

x

m

y

m

z

4 -0.00 -0.00 1.00 0.08 0.02 1.00

-8.19 -0.00 -0.00 -7.98 -0.91 0.66 4.74 0.05

5 -0.00 -0.01 1.00 0.00 -0.02 1.00

-7.01 -0.00 -0.00 -7.13 0.16 0.03 0.21 0.19

7 0.00 0.00 1.00 0.01 0.01 1.00

-7.25 0.00 0.00 -7.30 0.04 0.09 0.71 0.05

8 -0.00 -0.00 1.00 0.02 -0.00 1.00

-7.03 -0.00 -0.00 -7.15 -0.09 0.17 1.38 0.12

9 0.00 1.00 0.00 0.12 0.97 -0.20

13.89 0.00 0.00 14.50 -1.65 0.62 13.41 0.01

10 0.00 -0.02 1.00 -0.01 -0.01 1.00

-5.02 0.00 0.00 -4.84 0.35 -0.04 0.95 0.22

11 -0.00 -0.03 1.00 0.02 -0.04 1.00

-5.34 -0.00 -0.00 -5.49 -0.09 0.12 1.39 0.12

12 1.00 -0.00 -0.00 1.00 -0.02 0.10

-0.00 -7.03 9.01 -1.05 -6.71 9.10 5.90 0.09

15 1.00 0.01 0.00 1.00 0.00 0.06

0.14 -11.28 4.17 -0.23 -11.09 4.16 3.60 0.03

17 0.00 1.00 0.00 0.06 0.99 -0.16

11.28 0.00 2.94 12.63 -0.09 3.44 9.58 0.00

18 1.00 0.01 0.00 1.00 0.01 -0.04

0.14 -11.28 2.79 0.16 -10.87 2.74 2.09 0.02

23 -0.00 -0.00 1.00 0.01 0.00 1.00

0.47 -4.82 -0.00 0.51 -4.90 0.00 0.63 0.04

24 -0.00 -0.00 1.00 -0.03 0.02 1.00

0.47 -4.43 -0.00 0.72 -3.95 0.09 1.93 0.02

29 0.00 0.00 1.00 0.02 -0.02 1.00

0.47 -6.94 0.00 0.09 -7.35 -0.16 1.91 0.01

30 -0.00 -0.00 1.00 0.01 -0.00 1.00

0.47 -7.53 -0.00 0.38 -7.63 -0.03 0.41 0.02

33 1.00 -0.00 -0.00 1.00 0.00 -0.04

-0.00 -15.03 9.01 0.45 -14.65 9.14 2.48 0.10

34 0.00 1.00 0.01 0.02 1.00 -0.04

14.85 0.00 0.00 15.24 -0.31 0.20 3.31 0.03

35 0.00 0.00 1.00 0.00 0.01 1.00

-9.01 -3.32 0.00 -9.05 -3.34 0.07 0.49 0.04
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Table 4: 3D line reonstrution error for the PUMA Sequene frames using

Boldt line algorithm: Proessing of Frames 1,10,20 produes an average

orientation error of 3.36 degree, and average distane error of 0.11 feet (Part

2)(ontinue from Table 3).

Line Atual 3D Lines Computed 3D Lines Orient. Distane

u

x

u

y

u

z

u

x

u

y

u

z

Error Error

m

x

m

y

m

z

m

x

m

y

m

z

36 0.00 1.00 -0.00 -0.10 0.98 0.18

11.78 0.00 0.00 10.56 1.21 -0.54 11.93 0.01

37 0.00 -0.00 1.00 -0.00 -0.02 1.00

-5.40 0.00 0.00 -5.65 0.26 -0.00 0.90 0.22

39 0.00 -0.07 1.00 0.00 -0.03 1.00

-5.05 0.00 0.00 -4.55 0.19 0.02 2.17 0.21

44 1.00 0.02 -0.00 1.00 0.01 -0.02

0.28 -11.28 5.26 0.21 -10.99 5.28 1.45 0.19

50 1.00 -0.02 0.00 0.99 -0.03 0.13

0.00 0.00 6.37 -0.81 0.15 6.35 7.34 0.01

56 1.00 0.00 0.01 1.00 -0.01 0.01

0.00 -14.85 -0.47 -0.19 -14.59 -0.60 0.74 0.25

58 1.00 0.01 0.00 1.00 -0.06 0.01

0.19 -13.75 1.57 -0.83 -13.51 1.00 4.27 0.31

59 1.00 -0.05 0.00 1.00 -0.05 0.06

-0.74 -13.73 0.37 -0.77 -13.85 0.32 3.44 0.04

60 1.00 -0.00 0.00 1.00 -0.00 0.07

-0.06 -13.75 0.08 -0.08 -13.91 0.02 3.95 0.06

61 1.00 0.00 0.00 1.00 0.01 0.08

0.00 -16.81 -0.47 0.20 -17.14 -0.43 4.74 0.01

63 1.00 0.00 0.05 1.00 -0.00 0.03

0.02 -17.92 -0.47 -0.08 -17.52 -0.54 1.25 0.02

64 1.00 0.00 0.00 1.00 -0.02 0.06

0.00 -11.13 9.01 -0.71 -10.82 9.06 3.48 0.03

65 0.00 1.00 0.00 -0.10 0.99 0.13

16.00 0.00 0.00 15.73 1.67 -0.47 9.26 0.34

66 0.00 0.00 1.00 -0.00 0.01 1.00

-9.01 -1.45 0.00 -9.11 -1.04 -0.01 0.47 0.42

71 1.00 0.00 0.00 1.00 -0.01 -0.05

0.00 -19.48 -0.47 -0.31 -18.98 -0.59 3.20 0.01

72 1.00 0.00 0.00 1.00 -0.01 -0.01

0.00 -17.82 -0.47 -0.15 -17.59 -0.57 0.65 0.12

73 1.00 -0.00 -0.00 1.00 -0.00 -0.00

-0.00 -16.95 -0.47 -0.08 -16.73 -0.54 0.29 0.20
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 Plot of j1.tks    Sat Feb  3 13:48:43 1996 

Figure 16: RADIUS model board image J1. The Boldt straight line extra-

tion algorithm produed 2662 lines.
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 Plot of j2.tks    Sat Feb  3 13:49:28 1996 

Figure 17: RADIUS model board image J2. The Boldt straight line extra-

tion algorithm produed 2772 lines.
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 Plot of j3.tks    Sat Feb  3 13:50:00 1996 

Figure 18: RADIUS model board image J3. The Boldt straight line extra-

tion algorithm produed 2734 lines.
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 Plot of j1.tks    Tue Jan 23 20:09:30 1996 

Figure 19: 232 mathed line segments for RADIUS model board image J1.
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 Plot of j2.tks    Tue Jan 23 20:10:16 1996 

Figure 20: 232 mathed line segments for RADIUS model board image J2.
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 Plot of j3.tks    Tue Jan 23 20:10:16 1996 

Figure 21: 232 mathed line segments for RADIUS model board image J3.
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